i915_irq.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN3_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. #define GEN2_IRQ_RESET(type) do { \
  124. I915_WRITE16(type##IMR, 0xffff); \
  125. POSTING_READ16(type##IMR); \
  126. I915_WRITE16(type##IER, 0); \
  127. I915_WRITE16(type##IIR, 0xffff); \
  128. POSTING_READ16(type##IIR); \
  129. I915_WRITE16(type##IIR, 0xffff); \
  130. POSTING_READ16(type##IIR); \
  131. } while (0)
  132. /*
  133. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  134. */
  135. static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  136. i915_reg_t reg)
  137. {
  138. u32 val = I915_READ(reg);
  139. if (val == 0)
  140. return;
  141. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  142. i915_mmio_reg_offset(reg), val);
  143. I915_WRITE(reg, 0xffffffff);
  144. POSTING_READ(reg);
  145. I915_WRITE(reg, 0xffffffff);
  146. POSTING_READ(reg);
  147. }
  148. static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  149. i915_reg_t reg)
  150. {
  151. u16 val = I915_READ16(reg);
  152. if (val == 0)
  153. return;
  154. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  155. i915_mmio_reg_offset(reg), val);
  156. I915_WRITE16(reg, 0xffff);
  157. POSTING_READ16(reg);
  158. I915_WRITE16(reg, 0xffff);
  159. POSTING_READ16(reg);
  160. }
  161. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  162. gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  163. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  164. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  165. POSTING_READ(GEN8_##type##_IMR(which)); \
  166. } while (0)
  167. #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
  168. gen3_assert_iir_is_zero(dev_priv, type##IIR); \
  169. I915_WRITE(type##IER, (ier_val)); \
  170. I915_WRITE(type##IMR, (imr_val)); \
  171. POSTING_READ(type##IMR); \
  172. } while (0)
  173. #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
  174. gen2_assert_iir_is_zero(dev_priv, type##IIR); \
  175. I915_WRITE16(type##IER, (ier_val)); \
  176. I915_WRITE16(type##IMR, (imr_val)); \
  177. POSTING_READ16(type##IMR); \
  178. } while (0)
  179. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  180. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  181. /* For display hotplug interrupt */
  182. static inline void
  183. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  184. uint32_t mask,
  185. uint32_t bits)
  186. {
  187. uint32_t val;
  188. lockdep_assert_held(&dev_priv->irq_lock);
  189. WARN_ON(bits & ~mask);
  190. val = I915_READ(PORT_HOTPLUG_EN);
  191. val &= ~mask;
  192. val |= bits;
  193. I915_WRITE(PORT_HOTPLUG_EN, val);
  194. }
  195. /**
  196. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  197. * @dev_priv: driver private
  198. * @mask: bits to update
  199. * @bits: bits to enable
  200. * NOTE: the HPD enable bits are modified both inside and outside
  201. * of an interrupt context. To avoid that read-modify-write cycles
  202. * interfer, these bits are protected by a spinlock. Since this
  203. * function is usually not called from a context where the lock is
  204. * held already, this function acquires the lock itself. A non-locking
  205. * version is also available.
  206. */
  207. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  208. uint32_t mask,
  209. uint32_t bits)
  210. {
  211. spin_lock_irq(&dev_priv->irq_lock);
  212. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  213. spin_unlock_irq(&dev_priv->irq_lock);
  214. }
  215. /**
  216. * ilk_update_display_irq - update DEIMR
  217. * @dev_priv: driver private
  218. * @interrupt_mask: mask of interrupt bits to update
  219. * @enabled_irq_mask: mask of interrupt bits to enable
  220. */
  221. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  222. uint32_t interrupt_mask,
  223. uint32_t enabled_irq_mask)
  224. {
  225. uint32_t new_val;
  226. lockdep_assert_held(&dev_priv->irq_lock);
  227. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  228. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  229. return;
  230. new_val = dev_priv->irq_mask;
  231. new_val &= ~interrupt_mask;
  232. new_val |= (~enabled_irq_mask & interrupt_mask);
  233. if (new_val != dev_priv->irq_mask) {
  234. dev_priv->irq_mask = new_val;
  235. I915_WRITE(DEIMR, dev_priv->irq_mask);
  236. POSTING_READ(DEIMR);
  237. }
  238. }
  239. /**
  240. * ilk_update_gt_irq - update GTIMR
  241. * @dev_priv: driver private
  242. * @interrupt_mask: mask of interrupt bits to update
  243. * @enabled_irq_mask: mask of interrupt bits to enable
  244. */
  245. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  246. uint32_t interrupt_mask,
  247. uint32_t enabled_irq_mask)
  248. {
  249. lockdep_assert_held(&dev_priv->irq_lock);
  250. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  251. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  252. return;
  253. dev_priv->gt_irq_mask &= ~interrupt_mask;
  254. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  255. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  256. }
  257. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  258. {
  259. ilk_update_gt_irq(dev_priv, mask, mask);
  260. POSTING_READ_FW(GTIMR);
  261. }
  262. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  263. {
  264. ilk_update_gt_irq(dev_priv, mask, 0);
  265. }
  266. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  267. {
  268. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  269. }
  270. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  271. {
  272. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  273. }
  274. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  275. {
  276. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  277. }
  278. /**
  279. * snb_update_pm_irq - update GEN6_PMIMR
  280. * @dev_priv: driver private
  281. * @interrupt_mask: mask of interrupt bits to update
  282. * @enabled_irq_mask: mask of interrupt bits to enable
  283. */
  284. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  285. uint32_t interrupt_mask,
  286. uint32_t enabled_irq_mask)
  287. {
  288. uint32_t new_val;
  289. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  290. lockdep_assert_held(&dev_priv->irq_lock);
  291. new_val = dev_priv->pm_imr;
  292. new_val &= ~interrupt_mask;
  293. new_val |= (~enabled_irq_mask & interrupt_mask);
  294. if (new_val != dev_priv->pm_imr) {
  295. dev_priv->pm_imr = new_val;
  296. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
  297. POSTING_READ(gen6_pm_imr(dev_priv));
  298. }
  299. }
  300. void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  301. {
  302. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  303. return;
  304. snb_update_pm_irq(dev_priv, mask, mask);
  305. }
  306. static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  307. {
  308. snb_update_pm_irq(dev_priv, mask, 0);
  309. }
  310. void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  311. {
  312. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  313. return;
  314. __gen6_mask_pm_irq(dev_priv, mask);
  315. }
  316. static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
  317. {
  318. i915_reg_t reg = gen6_pm_iir(dev_priv);
  319. lockdep_assert_held(&dev_priv->irq_lock);
  320. I915_WRITE(reg, reset_mask);
  321. I915_WRITE(reg, reset_mask);
  322. POSTING_READ(reg);
  323. }
  324. static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
  325. {
  326. lockdep_assert_held(&dev_priv->irq_lock);
  327. dev_priv->pm_ier |= enable_mask;
  328. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  329. gen6_unmask_pm_irq(dev_priv, enable_mask);
  330. /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
  331. }
  332. static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
  333. {
  334. lockdep_assert_held(&dev_priv->irq_lock);
  335. dev_priv->pm_ier &= ~disable_mask;
  336. __gen6_mask_pm_irq(dev_priv, disable_mask);
  337. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  338. /* though a barrier is missing here, but don't really need a one */
  339. }
  340. void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  341. {
  342. spin_lock_irq(&dev_priv->irq_lock);
  343. gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
  344. dev_priv->gt_pm.rps.pm_iir = 0;
  345. spin_unlock_irq(&dev_priv->irq_lock);
  346. }
  347. void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
  348. {
  349. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  350. if (READ_ONCE(rps->interrupts_enabled))
  351. return;
  352. spin_lock_irq(&dev_priv->irq_lock);
  353. WARN_ON_ONCE(rps->pm_iir);
  354. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  355. rps->interrupts_enabled = true;
  356. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  357. spin_unlock_irq(&dev_priv->irq_lock);
  358. }
  359. void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
  360. {
  361. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  362. if (!READ_ONCE(rps->interrupts_enabled))
  363. return;
  364. spin_lock_irq(&dev_priv->irq_lock);
  365. rps->interrupts_enabled = false;
  366. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
  367. gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  368. spin_unlock_irq(&dev_priv->irq_lock);
  369. synchronize_irq(dev_priv->drm.irq);
  370. /* Now that we will not be generating any more work, flush any
  371. * outstanding tasks. As we are called on the RPS idle path,
  372. * we will reset the GPU to minimum frequencies, so the current
  373. * state of the worker can be discarded.
  374. */
  375. cancel_work_sync(&rps->work);
  376. gen6_reset_rps_interrupts(dev_priv);
  377. }
  378. void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
  379. {
  380. spin_lock_irq(&dev_priv->irq_lock);
  381. gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
  382. spin_unlock_irq(&dev_priv->irq_lock);
  383. }
  384. void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
  385. {
  386. spin_lock_irq(&dev_priv->irq_lock);
  387. if (!dev_priv->guc.interrupts_enabled) {
  388. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
  389. dev_priv->pm_guc_events);
  390. dev_priv->guc.interrupts_enabled = true;
  391. gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  392. }
  393. spin_unlock_irq(&dev_priv->irq_lock);
  394. }
  395. void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
  396. {
  397. spin_lock_irq(&dev_priv->irq_lock);
  398. dev_priv->guc.interrupts_enabled = false;
  399. gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  400. spin_unlock_irq(&dev_priv->irq_lock);
  401. synchronize_irq(dev_priv->drm.irq);
  402. gen9_reset_guc_interrupts(dev_priv);
  403. }
  404. /**
  405. * bdw_update_port_irq - update DE port interrupt
  406. * @dev_priv: driver private
  407. * @interrupt_mask: mask of interrupt bits to update
  408. * @enabled_irq_mask: mask of interrupt bits to enable
  409. */
  410. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  411. uint32_t interrupt_mask,
  412. uint32_t enabled_irq_mask)
  413. {
  414. uint32_t new_val;
  415. uint32_t old_val;
  416. lockdep_assert_held(&dev_priv->irq_lock);
  417. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  418. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  419. return;
  420. old_val = I915_READ(GEN8_DE_PORT_IMR);
  421. new_val = old_val;
  422. new_val &= ~interrupt_mask;
  423. new_val |= (~enabled_irq_mask & interrupt_mask);
  424. if (new_val != old_val) {
  425. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  426. POSTING_READ(GEN8_DE_PORT_IMR);
  427. }
  428. }
  429. /**
  430. * bdw_update_pipe_irq - update DE pipe interrupt
  431. * @dev_priv: driver private
  432. * @pipe: pipe whose interrupt to update
  433. * @interrupt_mask: mask of interrupt bits to update
  434. * @enabled_irq_mask: mask of interrupt bits to enable
  435. */
  436. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  437. enum pipe pipe,
  438. uint32_t interrupt_mask,
  439. uint32_t enabled_irq_mask)
  440. {
  441. uint32_t new_val;
  442. lockdep_assert_held(&dev_priv->irq_lock);
  443. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  444. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  445. return;
  446. new_val = dev_priv->de_irq_mask[pipe];
  447. new_val &= ~interrupt_mask;
  448. new_val |= (~enabled_irq_mask & interrupt_mask);
  449. if (new_val != dev_priv->de_irq_mask[pipe]) {
  450. dev_priv->de_irq_mask[pipe] = new_val;
  451. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  452. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  453. }
  454. }
  455. /**
  456. * ibx_display_interrupt_update - update SDEIMR
  457. * @dev_priv: driver private
  458. * @interrupt_mask: mask of interrupt bits to update
  459. * @enabled_irq_mask: mask of interrupt bits to enable
  460. */
  461. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  462. uint32_t interrupt_mask,
  463. uint32_t enabled_irq_mask)
  464. {
  465. uint32_t sdeimr = I915_READ(SDEIMR);
  466. sdeimr &= ~interrupt_mask;
  467. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  468. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  469. lockdep_assert_held(&dev_priv->irq_lock);
  470. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  471. return;
  472. I915_WRITE(SDEIMR, sdeimr);
  473. POSTING_READ(SDEIMR);
  474. }
  475. u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
  476. enum pipe pipe)
  477. {
  478. u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
  479. u32 enable_mask = status_mask << 16;
  480. lockdep_assert_held(&dev_priv->irq_lock);
  481. if (INTEL_GEN(dev_priv) < 5)
  482. goto out;
  483. /*
  484. * On pipe A we don't support the PSR interrupt yet,
  485. * on pipe B and C the same bit MBZ.
  486. */
  487. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  488. return 0;
  489. /*
  490. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  491. * A the same bit is for perf counters which we don't use either.
  492. */
  493. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  494. return 0;
  495. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  496. SPRITE0_FLIP_DONE_INT_EN_VLV |
  497. SPRITE1_FLIP_DONE_INT_EN_VLV);
  498. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  499. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  500. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  501. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  502. out:
  503. WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  504. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  505. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  506. pipe_name(pipe), enable_mask, status_mask);
  507. return enable_mask;
  508. }
  509. void i915_enable_pipestat(struct drm_i915_private *dev_priv,
  510. enum pipe pipe, u32 status_mask)
  511. {
  512. i915_reg_t reg = PIPESTAT(pipe);
  513. u32 enable_mask;
  514. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  515. "pipe %c: status_mask=0x%x\n",
  516. pipe_name(pipe), status_mask);
  517. lockdep_assert_held(&dev_priv->irq_lock);
  518. WARN_ON(!intel_irqs_enabled(dev_priv));
  519. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
  520. return;
  521. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  522. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  523. I915_WRITE(reg, enable_mask | status_mask);
  524. POSTING_READ(reg);
  525. }
  526. void i915_disable_pipestat(struct drm_i915_private *dev_priv,
  527. enum pipe pipe, u32 status_mask)
  528. {
  529. i915_reg_t reg = PIPESTAT(pipe);
  530. u32 enable_mask;
  531. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  532. "pipe %c: status_mask=0x%x\n",
  533. pipe_name(pipe), status_mask);
  534. lockdep_assert_held(&dev_priv->irq_lock);
  535. WARN_ON(!intel_irqs_enabled(dev_priv));
  536. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
  537. return;
  538. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  539. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  540. I915_WRITE(reg, enable_mask | status_mask);
  541. POSTING_READ(reg);
  542. }
  543. /**
  544. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  545. * @dev_priv: i915 device private
  546. */
  547. static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
  548. {
  549. if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
  550. return;
  551. spin_lock_irq(&dev_priv->irq_lock);
  552. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  553. if (INTEL_GEN(dev_priv) >= 4)
  554. i915_enable_pipestat(dev_priv, PIPE_A,
  555. PIPE_LEGACY_BLC_EVENT_STATUS);
  556. spin_unlock_irq(&dev_priv->irq_lock);
  557. }
  558. /*
  559. * This timing diagram depicts the video signal in and
  560. * around the vertical blanking period.
  561. *
  562. * Assumptions about the fictitious mode used in this example:
  563. * vblank_start >= 3
  564. * vsync_start = vblank_start + 1
  565. * vsync_end = vblank_start + 2
  566. * vtotal = vblank_start + 3
  567. *
  568. * start of vblank:
  569. * latch double buffered registers
  570. * increment frame counter (ctg+)
  571. * generate start of vblank interrupt (gen4+)
  572. * |
  573. * | frame start:
  574. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  575. * | may be shifted forward 1-3 extra lines via PIPECONF
  576. * | |
  577. * | | start of vsync:
  578. * | | generate vsync interrupt
  579. * | | |
  580. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  581. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  582. * ----va---> <-----------------vb--------------------> <--------va-------------
  583. * | | <----vs-----> |
  584. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  585. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  586. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  587. * | | |
  588. * last visible pixel first visible pixel
  589. * | increment frame counter (gen3/4)
  590. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  591. *
  592. * x = horizontal active
  593. * _ = horizontal blanking
  594. * hs = horizontal sync
  595. * va = vertical active
  596. * vb = vertical blanking
  597. * vs = vertical sync
  598. * vbs = vblank_start (number)
  599. *
  600. * Summary:
  601. * - most events happen at the start of horizontal sync
  602. * - frame start happens at the start of horizontal blank, 1-4 lines
  603. * (depending on PIPECONF settings) after the start of vblank
  604. * - gen3/4 pixel and frame counter are synchronized with the start
  605. * of horizontal active on the first line of vertical active
  606. */
  607. /* Called from drm generic code, passed a 'crtc', which
  608. * we use as a pipe index
  609. */
  610. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  611. {
  612. struct drm_i915_private *dev_priv = to_i915(dev);
  613. i915_reg_t high_frame, low_frame;
  614. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  615. const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
  616. unsigned long irqflags;
  617. htotal = mode->crtc_htotal;
  618. hsync_start = mode->crtc_hsync_start;
  619. vbl_start = mode->crtc_vblank_start;
  620. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  621. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  622. /* Convert to pixel count */
  623. vbl_start *= htotal;
  624. /* Start of vblank event occurs at start of hsync */
  625. vbl_start -= htotal - hsync_start;
  626. high_frame = PIPEFRAME(pipe);
  627. low_frame = PIPEFRAMEPIXEL(pipe);
  628. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  629. /*
  630. * High & low register fields aren't synchronized, so make sure
  631. * we get a low value that's stable across two reads of the high
  632. * register.
  633. */
  634. do {
  635. high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  636. low = I915_READ_FW(low_frame);
  637. high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  638. } while (high1 != high2);
  639. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  640. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  641. pixel = low & PIPE_PIXEL_MASK;
  642. low >>= PIPE_FRAME_LOW_SHIFT;
  643. /*
  644. * The frame counter increments at beginning of active.
  645. * Cook up a vblank counter by also checking the pixel
  646. * counter against vblank start.
  647. */
  648. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  649. }
  650. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  651. {
  652. struct drm_i915_private *dev_priv = to_i915(dev);
  653. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  654. }
  655. /*
  656. * On certain encoders on certain platforms, pipe
  657. * scanline register will not work to get the scanline,
  658. * since the timings are driven from the PORT or issues
  659. * with scanline register updates.
  660. * This function will use Framestamp and current
  661. * timestamp registers to calculate the scanline.
  662. */
  663. static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
  664. {
  665. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  666. struct drm_vblank_crtc *vblank =
  667. &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  668. const struct drm_display_mode *mode = &vblank->hwmode;
  669. u32 vblank_start = mode->crtc_vblank_start;
  670. u32 vtotal = mode->crtc_vtotal;
  671. u32 htotal = mode->crtc_htotal;
  672. u32 clock = mode->crtc_clock;
  673. u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
  674. /*
  675. * To avoid the race condition where we might cross into the
  676. * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
  677. * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
  678. * during the same frame.
  679. */
  680. do {
  681. /*
  682. * This field provides read back of the display
  683. * pipe frame time stamp. The time stamp value
  684. * is sampled at every start of vertical blank.
  685. */
  686. scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  687. /*
  688. * The TIMESTAMP_CTR register has the current
  689. * time stamp value.
  690. */
  691. scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
  692. scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  693. } while (scan_post_time != scan_prev_time);
  694. scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
  695. clock), 1000 * htotal);
  696. scanline = min(scanline, vtotal - 1);
  697. scanline = (scanline + vblank_start) % vtotal;
  698. return scanline;
  699. }
  700. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  701. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  702. {
  703. struct drm_device *dev = crtc->base.dev;
  704. struct drm_i915_private *dev_priv = to_i915(dev);
  705. const struct drm_display_mode *mode;
  706. struct drm_vblank_crtc *vblank;
  707. enum pipe pipe = crtc->pipe;
  708. int position, vtotal;
  709. if (!crtc->active)
  710. return -1;
  711. vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  712. mode = &vblank->hwmode;
  713. if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
  714. return __intel_get_crtc_scanline_from_timestamp(crtc);
  715. vtotal = mode->crtc_vtotal;
  716. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  717. vtotal /= 2;
  718. if (IS_GEN2(dev_priv))
  719. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  720. else
  721. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  722. /*
  723. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  724. * read it just before the start of vblank. So try it again
  725. * so we don't accidentally end up spanning a vblank frame
  726. * increment, causing the pipe_update_end() code to squak at us.
  727. *
  728. * The nature of this problem means we can't simply check the ISR
  729. * bit and return the vblank start value; nor can we use the scanline
  730. * debug register in the transcoder as it appears to have the same
  731. * problem. We may need to extend this to include other platforms,
  732. * but so far testing only shows the problem on HSW.
  733. */
  734. if (HAS_DDI(dev_priv) && !position) {
  735. int i, temp;
  736. for (i = 0; i < 100; i++) {
  737. udelay(1);
  738. temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  739. if (temp != position) {
  740. position = temp;
  741. break;
  742. }
  743. }
  744. }
  745. /*
  746. * See update_scanline_offset() for the details on the
  747. * scanline_offset adjustment.
  748. */
  749. return (position + crtc->scanline_offset) % vtotal;
  750. }
  751. static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  752. bool in_vblank_irq, int *vpos, int *hpos,
  753. ktime_t *stime, ktime_t *etime,
  754. const struct drm_display_mode *mode)
  755. {
  756. struct drm_i915_private *dev_priv = to_i915(dev);
  757. struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
  758. pipe);
  759. int position;
  760. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  761. unsigned long irqflags;
  762. if (WARN_ON(!mode->crtc_clock)) {
  763. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  764. "pipe %c\n", pipe_name(pipe));
  765. return false;
  766. }
  767. htotal = mode->crtc_htotal;
  768. hsync_start = mode->crtc_hsync_start;
  769. vtotal = mode->crtc_vtotal;
  770. vbl_start = mode->crtc_vblank_start;
  771. vbl_end = mode->crtc_vblank_end;
  772. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  773. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  774. vbl_end /= 2;
  775. vtotal /= 2;
  776. }
  777. /*
  778. * Lock uncore.lock, as we will do multiple timing critical raw
  779. * register reads, potentially with preemption disabled, so the
  780. * following code must not block on uncore.lock.
  781. */
  782. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  783. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  784. /* Get optional system timestamp before query. */
  785. if (stime)
  786. *stime = ktime_get();
  787. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  788. /* No obvious pixelcount register. Only query vertical
  789. * scanout position from Display scan line register.
  790. */
  791. position = __intel_get_crtc_scanline(intel_crtc);
  792. } else {
  793. /* Have access to pixelcount since start of frame.
  794. * We can split this into vertical and horizontal
  795. * scanout position.
  796. */
  797. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  798. /* convert to pixel counts */
  799. vbl_start *= htotal;
  800. vbl_end *= htotal;
  801. vtotal *= htotal;
  802. /*
  803. * In interlaced modes, the pixel counter counts all pixels,
  804. * so one field will have htotal more pixels. In order to avoid
  805. * the reported position from jumping backwards when the pixel
  806. * counter is beyond the length of the shorter field, just
  807. * clamp the position the length of the shorter field. This
  808. * matches how the scanline counter based position works since
  809. * the scanline counter doesn't count the two half lines.
  810. */
  811. if (position >= vtotal)
  812. position = vtotal - 1;
  813. /*
  814. * Start of vblank interrupt is triggered at start of hsync,
  815. * just prior to the first active line of vblank. However we
  816. * consider lines to start at the leading edge of horizontal
  817. * active. So, should we get here before we've crossed into
  818. * the horizontal active of the first line in vblank, we would
  819. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  820. * always add htotal-hsync_start to the current pixel position.
  821. */
  822. position = (position + htotal - hsync_start) % vtotal;
  823. }
  824. /* Get optional system timestamp after query. */
  825. if (etime)
  826. *etime = ktime_get();
  827. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  828. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  829. /*
  830. * While in vblank, position will be negative
  831. * counting up towards 0 at vbl_end. And outside
  832. * vblank, position will be positive counting
  833. * up since vbl_end.
  834. */
  835. if (position >= vbl_start)
  836. position -= vbl_end;
  837. else
  838. position += vtotal - vbl_end;
  839. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  840. *vpos = position;
  841. *hpos = 0;
  842. } else {
  843. *vpos = position / htotal;
  844. *hpos = position - (*vpos * htotal);
  845. }
  846. return true;
  847. }
  848. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  849. {
  850. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  851. unsigned long irqflags;
  852. int position;
  853. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  854. position = __intel_get_crtc_scanline(crtc);
  855. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  856. return position;
  857. }
  858. static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
  859. {
  860. u32 busy_up, busy_down, max_avg, min_avg;
  861. u8 new_delay;
  862. spin_lock(&mchdev_lock);
  863. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  864. new_delay = dev_priv->ips.cur_delay;
  865. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  866. busy_up = I915_READ(RCPREVBSYTUPAVG);
  867. busy_down = I915_READ(RCPREVBSYTDNAVG);
  868. max_avg = I915_READ(RCBMAXAVG);
  869. min_avg = I915_READ(RCBMINAVG);
  870. /* Handle RCS change request from hw */
  871. if (busy_up > max_avg) {
  872. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  873. new_delay = dev_priv->ips.cur_delay - 1;
  874. if (new_delay < dev_priv->ips.max_delay)
  875. new_delay = dev_priv->ips.max_delay;
  876. } else if (busy_down < min_avg) {
  877. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  878. new_delay = dev_priv->ips.cur_delay + 1;
  879. if (new_delay > dev_priv->ips.min_delay)
  880. new_delay = dev_priv->ips.min_delay;
  881. }
  882. if (ironlake_set_drps(dev_priv, new_delay))
  883. dev_priv->ips.cur_delay = new_delay;
  884. spin_unlock(&mchdev_lock);
  885. return;
  886. }
  887. static void notify_ring(struct intel_engine_cs *engine)
  888. {
  889. struct drm_i915_gem_request *rq = NULL;
  890. struct intel_wait *wait;
  891. if (!engine->breadcrumbs.irq_armed)
  892. return;
  893. atomic_inc(&engine->irq_count);
  894. set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  895. spin_lock(&engine->breadcrumbs.irq_lock);
  896. wait = engine->breadcrumbs.irq_wait;
  897. if (wait) {
  898. bool wakeup = engine->irq_seqno_barrier;
  899. /* We use a callback from the dma-fence to submit
  900. * requests after waiting on our own requests. To
  901. * ensure minimum delay in queuing the next request to
  902. * hardware, signal the fence now rather than wait for
  903. * the signaler to be woken up. We still wake up the
  904. * waiter in order to handle the irq-seqno coherency
  905. * issues (we may receive the interrupt before the
  906. * seqno is written, see __i915_request_irq_complete())
  907. * and to handle coalescing of multiple seqno updates
  908. * and many waiters.
  909. */
  910. if (i915_seqno_passed(intel_engine_get_seqno(engine),
  911. wait->seqno)) {
  912. struct drm_i915_gem_request *waiter = wait->request;
  913. wakeup = true;
  914. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
  915. &waiter->fence.flags) &&
  916. intel_wait_check_request(wait, waiter))
  917. rq = i915_gem_request_get(waiter);
  918. }
  919. if (wakeup)
  920. wake_up_process(wait->tsk);
  921. } else {
  922. if (engine->breadcrumbs.irq_armed)
  923. __intel_engine_disarm_breadcrumbs(engine);
  924. }
  925. spin_unlock(&engine->breadcrumbs.irq_lock);
  926. if (rq) {
  927. dma_fence_signal(&rq->fence);
  928. i915_gem_request_put(rq);
  929. }
  930. trace_intel_engine_notify(engine, wait);
  931. }
  932. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  933. struct intel_rps_ei *ei)
  934. {
  935. ei->ktime = ktime_get_raw();
  936. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  937. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  938. }
  939. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  940. {
  941. memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
  942. }
  943. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  944. {
  945. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  946. const struct intel_rps_ei *prev = &rps->ei;
  947. struct intel_rps_ei now;
  948. u32 events = 0;
  949. if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
  950. return 0;
  951. vlv_c0_read(dev_priv, &now);
  952. if (prev->ktime) {
  953. u64 time, c0;
  954. u32 render, media;
  955. time = ktime_us_delta(now.ktime, prev->ktime);
  956. time *= dev_priv->czclk_freq;
  957. /* Workload can be split between render + media,
  958. * e.g. SwapBuffers being blitted in X after being rendered in
  959. * mesa. To account for this we need to combine both engines
  960. * into our activity counter.
  961. */
  962. render = now.render_c0 - prev->render_c0;
  963. media = now.media_c0 - prev->media_c0;
  964. c0 = max(render, media);
  965. c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
  966. if (c0 > time * rps->up_threshold)
  967. events = GEN6_PM_RP_UP_THRESHOLD;
  968. else if (c0 < time * rps->down_threshold)
  969. events = GEN6_PM_RP_DOWN_THRESHOLD;
  970. }
  971. rps->ei = now;
  972. return events;
  973. }
  974. static void gen6_pm_rps_work(struct work_struct *work)
  975. {
  976. struct drm_i915_private *dev_priv =
  977. container_of(work, struct drm_i915_private, gt_pm.rps.work);
  978. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  979. bool client_boost = false;
  980. int new_delay, adj, min, max;
  981. u32 pm_iir = 0;
  982. spin_lock_irq(&dev_priv->irq_lock);
  983. if (rps->interrupts_enabled) {
  984. pm_iir = fetch_and_zero(&rps->pm_iir);
  985. client_boost = atomic_read(&rps->num_waiters);
  986. }
  987. spin_unlock_irq(&dev_priv->irq_lock);
  988. /* Make sure we didn't queue anything we're not going to process. */
  989. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  990. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  991. goto out;
  992. mutex_lock(&dev_priv->pcu_lock);
  993. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  994. adj = rps->last_adj;
  995. new_delay = rps->cur_freq;
  996. min = rps->min_freq_softlimit;
  997. max = rps->max_freq_softlimit;
  998. if (client_boost)
  999. max = rps->max_freq;
  1000. if (client_boost && new_delay < rps->boost_freq) {
  1001. new_delay = rps->boost_freq;
  1002. adj = 0;
  1003. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  1004. if (adj > 0)
  1005. adj *= 2;
  1006. else /* CHV needs even encode values */
  1007. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  1008. if (new_delay >= rps->max_freq_softlimit)
  1009. adj = 0;
  1010. } else if (client_boost) {
  1011. adj = 0;
  1012. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  1013. if (rps->cur_freq > rps->efficient_freq)
  1014. new_delay = rps->efficient_freq;
  1015. else if (rps->cur_freq > rps->min_freq_softlimit)
  1016. new_delay = rps->min_freq_softlimit;
  1017. adj = 0;
  1018. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  1019. if (adj < 0)
  1020. adj *= 2;
  1021. else /* CHV needs even encode values */
  1022. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  1023. if (new_delay <= rps->min_freq_softlimit)
  1024. adj = 0;
  1025. } else { /* unknown event */
  1026. adj = 0;
  1027. }
  1028. rps->last_adj = adj;
  1029. /* sysfs frequency interfaces may have snuck in while servicing the
  1030. * interrupt
  1031. */
  1032. new_delay += adj;
  1033. new_delay = clamp_t(int, new_delay, min, max);
  1034. if (intel_set_rps(dev_priv, new_delay)) {
  1035. DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
  1036. rps->last_adj = 0;
  1037. }
  1038. mutex_unlock(&dev_priv->pcu_lock);
  1039. out:
  1040. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  1041. spin_lock_irq(&dev_priv->irq_lock);
  1042. if (rps->interrupts_enabled)
  1043. gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
  1044. spin_unlock_irq(&dev_priv->irq_lock);
  1045. }
  1046. /**
  1047. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  1048. * occurred.
  1049. * @work: workqueue struct
  1050. *
  1051. * Doesn't actually do anything except notify userspace. As a consequence of
  1052. * this event, userspace should try to remap the bad rows since statistically
  1053. * it is likely the same row is more likely to go bad again.
  1054. */
  1055. static void ivybridge_parity_work(struct work_struct *work)
  1056. {
  1057. struct drm_i915_private *dev_priv =
  1058. container_of(work, typeof(*dev_priv), l3_parity.error_work);
  1059. u32 error_status, row, bank, subbank;
  1060. char *parity_event[6];
  1061. uint32_t misccpctl;
  1062. uint8_t slice = 0;
  1063. /* We must turn off DOP level clock gating to access the L3 registers.
  1064. * In order to prevent a get/put style interface, acquire struct mutex
  1065. * any time we access those registers.
  1066. */
  1067. mutex_lock(&dev_priv->drm.struct_mutex);
  1068. /* If we've screwed up tracking, just let the interrupt fire again */
  1069. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  1070. goto out;
  1071. misccpctl = I915_READ(GEN7_MISCCPCTL);
  1072. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  1073. POSTING_READ(GEN7_MISCCPCTL);
  1074. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  1075. i915_reg_t reg;
  1076. slice--;
  1077. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  1078. break;
  1079. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1080. reg = GEN7_L3CDERRST1(slice);
  1081. error_status = I915_READ(reg);
  1082. row = GEN7_PARITY_ERROR_ROW(error_status);
  1083. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1084. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1085. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1086. POSTING_READ(reg);
  1087. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1088. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1089. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1090. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1091. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1092. parity_event[5] = NULL;
  1093. kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
  1094. KOBJ_CHANGE, parity_event);
  1095. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1096. slice, row, bank, subbank);
  1097. kfree(parity_event[4]);
  1098. kfree(parity_event[3]);
  1099. kfree(parity_event[2]);
  1100. kfree(parity_event[1]);
  1101. }
  1102. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1103. out:
  1104. WARN_ON(dev_priv->l3_parity.which_slice);
  1105. spin_lock_irq(&dev_priv->irq_lock);
  1106. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1107. spin_unlock_irq(&dev_priv->irq_lock);
  1108. mutex_unlock(&dev_priv->drm.struct_mutex);
  1109. }
  1110. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1111. u32 iir)
  1112. {
  1113. if (!HAS_L3_DPF(dev_priv))
  1114. return;
  1115. spin_lock(&dev_priv->irq_lock);
  1116. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1117. spin_unlock(&dev_priv->irq_lock);
  1118. iir &= GT_PARITY_ERROR(dev_priv);
  1119. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1120. dev_priv->l3_parity.which_slice |= 1 << 1;
  1121. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1122. dev_priv->l3_parity.which_slice |= 1 << 0;
  1123. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1124. }
  1125. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1126. u32 gt_iir)
  1127. {
  1128. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1129. notify_ring(dev_priv->engine[RCS]);
  1130. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1131. notify_ring(dev_priv->engine[VCS]);
  1132. }
  1133. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1134. u32 gt_iir)
  1135. {
  1136. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1137. notify_ring(dev_priv->engine[RCS]);
  1138. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1139. notify_ring(dev_priv->engine[VCS]);
  1140. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1141. notify_ring(dev_priv->engine[BCS]);
  1142. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1143. GT_BSD_CS_ERROR_INTERRUPT |
  1144. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1145. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1146. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1147. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1148. }
  1149. static void
  1150. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
  1151. {
  1152. struct intel_engine_execlists * const execlists = &engine->execlists;
  1153. bool tasklet = false;
  1154. if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
  1155. if (READ_ONCE(engine->execlists.active)) {
  1156. __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
  1157. tasklet = true;
  1158. }
  1159. }
  1160. if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
  1161. notify_ring(engine);
  1162. tasklet |= USES_GUC_SUBMISSION(engine->i915);
  1163. }
  1164. if (tasklet)
  1165. tasklet_hi_schedule(&execlists->tasklet);
  1166. }
  1167. static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
  1168. u32 master_ctl,
  1169. u32 gt_iir[4])
  1170. {
  1171. irqreturn_t ret = IRQ_NONE;
  1172. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1173. gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
  1174. if (gt_iir[0]) {
  1175. I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
  1176. ret = IRQ_HANDLED;
  1177. } else
  1178. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1179. }
  1180. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1181. gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
  1182. if (gt_iir[1]) {
  1183. I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
  1184. ret = IRQ_HANDLED;
  1185. } else
  1186. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1187. }
  1188. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1189. gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
  1190. if (gt_iir[3]) {
  1191. I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
  1192. ret = IRQ_HANDLED;
  1193. } else
  1194. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1195. }
  1196. if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
  1197. gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
  1198. if (gt_iir[2] & (dev_priv->pm_rps_events |
  1199. dev_priv->pm_guc_events)) {
  1200. I915_WRITE_FW(GEN8_GT_IIR(2),
  1201. gt_iir[2] & (dev_priv->pm_rps_events |
  1202. dev_priv->pm_guc_events));
  1203. ret = IRQ_HANDLED;
  1204. } else
  1205. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1206. }
  1207. return ret;
  1208. }
  1209. static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1210. u32 gt_iir[4])
  1211. {
  1212. if (gt_iir[0]) {
  1213. gen8_cs_irq_handler(dev_priv->engine[RCS],
  1214. gt_iir[0], GEN8_RCS_IRQ_SHIFT);
  1215. gen8_cs_irq_handler(dev_priv->engine[BCS],
  1216. gt_iir[0], GEN8_BCS_IRQ_SHIFT);
  1217. }
  1218. if (gt_iir[1]) {
  1219. gen8_cs_irq_handler(dev_priv->engine[VCS],
  1220. gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
  1221. gen8_cs_irq_handler(dev_priv->engine[VCS2],
  1222. gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
  1223. }
  1224. if (gt_iir[3])
  1225. gen8_cs_irq_handler(dev_priv->engine[VECS],
  1226. gt_iir[3], GEN8_VECS_IRQ_SHIFT);
  1227. if (gt_iir[2] & dev_priv->pm_rps_events)
  1228. gen6_rps_irq_handler(dev_priv, gt_iir[2]);
  1229. if (gt_iir[2] & dev_priv->pm_guc_events)
  1230. gen9_guc_irq_handler(dev_priv, gt_iir[2]);
  1231. }
  1232. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1233. {
  1234. switch (port) {
  1235. case PORT_A:
  1236. return val & PORTA_HOTPLUG_LONG_DETECT;
  1237. case PORT_B:
  1238. return val & PORTB_HOTPLUG_LONG_DETECT;
  1239. case PORT_C:
  1240. return val & PORTC_HOTPLUG_LONG_DETECT;
  1241. default:
  1242. return false;
  1243. }
  1244. }
  1245. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1246. {
  1247. switch (port) {
  1248. case PORT_E:
  1249. return val & PORTE_HOTPLUG_LONG_DETECT;
  1250. default:
  1251. return false;
  1252. }
  1253. }
  1254. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1255. {
  1256. switch (port) {
  1257. case PORT_A:
  1258. return val & PORTA_HOTPLUG_LONG_DETECT;
  1259. case PORT_B:
  1260. return val & PORTB_HOTPLUG_LONG_DETECT;
  1261. case PORT_C:
  1262. return val & PORTC_HOTPLUG_LONG_DETECT;
  1263. case PORT_D:
  1264. return val & PORTD_HOTPLUG_LONG_DETECT;
  1265. default:
  1266. return false;
  1267. }
  1268. }
  1269. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1270. {
  1271. switch (port) {
  1272. case PORT_A:
  1273. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1274. default:
  1275. return false;
  1276. }
  1277. }
  1278. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1279. {
  1280. switch (port) {
  1281. case PORT_B:
  1282. return val & PORTB_HOTPLUG_LONG_DETECT;
  1283. case PORT_C:
  1284. return val & PORTC_HOTPLUG_LONG_DETECT;
  1285. case PORT_D:
  1286. return val & PORTD_HOTPLUG_LONG_DETECT;
  1287. default:
  1288. return false;
  1289. }
  1290. }
  1291. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1292. {
  1293. switch (port) {
  1294. case PORT_B:
  1295. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1296. case PORT_C:
  1297. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1298. case PORT_D:
  1299. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1300. default:
  1301. return false;
  1302. }
  1303. }
  1304. /*
  1305. * Get a bit mask of pins that have triggered, and which ones may be long.
  1306. * This can be called multiple times with the same masks to accumulate
  1307. * hotplug detection results from several registers.
  1308. *
  1309. * Note that the caller is expected to zero out the masks initially.
  1310. */
  1311. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1312. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1313. const u32 hpd[HPD_NUM_PINS],
  1314. bool long_pulse_detect(enum port port, u32 val))
  1315. {
  1316. enum port port;
  1317. int i;
  1318. for_each_hpd_pin(i) {
  1319. if ((hpd[i] & hotplug_trigger) == 0)
  1320. continue;
  1321. *pin_mask |= BIT(i);
  1322. port = intel_hpd_pin_to_port(i);
  1323. if (port == PORT_NONE)
  1324. continue;
  1325. if (long_pulse_detect(port, dig_hotplug_reg))
  1326. *long_mask |= BIT(i);
  1327. }
  1328. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1329. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1330. }
  1331. static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
  1332. {
  1333. wake_up_all(&dev_priv->gmbus_wait_queue);
  1334. }
  1335. static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
  1336. {
  1337. wake_up_all(&dev_priv->gmbus_wait_queue);
  1338. }
  1339. #if defined(CONFIG_DEBUG_FS)
  1340. static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1341. enum pipe pipe,
  1342. uint32_t crc0, uint32_t crc1,
  1343. uint32_t crc2, uint32_t crc3,
  1344. uint32_t crc4)
  1345. {
  1346. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1347. struct intel_pipe_crc_entry *entry;
  1348. struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  1349. struct drm_driver *driver = dev_priv->drm.driver;
  1350. uint32_t crcs[5];
  1351. int head, tail;
  1352. spin_lock(&pipe_crc->lock);
  1353. if (pipe_crc->source) {
  1354. if (!pipe_crc->entries) {
  1355. spin_unlock(&pipe_crc->lock);
  1356. DRM_DEBUG_KMS("spurious interrupt\n");
  1357. return;
  1358. }
  1359. head = pipe_crc->head;
  1360. tail = pipe_crc->tail;
  1361. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1362. spin_unlock(&pipe_crc->lock);
  1363. DRM_ERROR("CRC buffer overflowing\n");
  1364. return;
  1365. }
  1366. entry = &pipe_crc->entries[head];
  1367. entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
  1368. entry->crc[0] = crc0;
  1369. entry->crc[1] = crc1;
  1370. entry->crc[2] = crc2;
  1371. entry->crc[3] = crc3;
  1372. entry->crc[4] = crc4;
  1373. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1374. pipe_crc->head = head;
  1375. spin_unlock(&pipe_crc->lock);
  1376. wake_up_interruptible(&pipe_crc->wq);
  1377. } else {
  1378. /*
  1379. * For some not yet identified reason, the first CRC is
  1380. * bonkers. So let's just wait for the next vblank and read
  1381. * out the buggy result.
  1382. *
  1383. * On GEN8+ sometimes the second CRC is bonkers as well, so
  1384. * don't trust that one either.
  1385. */
  1386. if (pipe_crc->skipped == 0 ||
  1387. (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
  1388. pipe_crc->skipped++;
  1389. spin_unlock(&pipe_crc->lock);
  1390. return;
  1391. }
  1392. spin_unlock(&pipe_crc->lock);
  1393. crcs[0] = crc0;
  1394. crcs[1] = crc1;
  1395. crcs[2] = crc2;
  1396. crcs[3] = crc3;
  1397. crcs[4] = crc4;
  1398. drm_crtc_add_crc_entry(&crtc->base, true,
  1399. drm_crtc_accurate_vblank_count(&crtc->base),
  1400. crcs);
  1401. }
  1402. }
  1403. #else
  1404. static inline void
  1405. display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1406. enum pipe pipe,
  1407. uint32_t crc0, uint32_t crc1,
  1408. uint32_t crc2, uint32_t crc3,
  1409. uint32_t crc4) {}
  1410. #endif
  1411. static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1412. enum pipe pipe)
  1413. {
  1414. display_pipe_crc_irq_handler(dev_priv, pipe,
  1415. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1416. 0, 0, 0, 0);
  1417. }
  1418. static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1419. enum pipe pipe)
  1420. {
  1421. display_pipe_crc_irq_handler(dev_priv, pipe,
  1422. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1423. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1424. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1425. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1426. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1427. }
  1428. static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1429. enum pipe pipe)
  1430. {
  1431. uint32_t res1, res2;
  1432. if (INTEL_GEN(dev_priv) >= 3)
  1433. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1434. else
  1435. res1 = 0;
  1436. if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
  1437. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1438. else
  1439. res2 = 0;
  1440. display_pipe_crc_irq_handler(dev_priv, pipe,
  1441. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1442. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1443. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1444. res1, res2);
  1445. }
  1446. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1447. * IMR bits until the work is done. Other interrupts can be processed without
  1448. * the work queue. */
  1449. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1450. {
  1451. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1452. if (pm_iir & dev_priv->pm_rps_events) {
  1453. spin_lock(&dev_priv->irq_lock);
  1454. gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1455. if (rps->interrupts_enabled) {
  1456. rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1457. schedule_work(&rps->work);
  1458. }
  1459. spin_unlock(&dev_priv->irq_lock);
  1460. }
  1461. if (INTEL_GEN(dev_priv) >= 8)
  1462. return;
  1463. if (HAS_VEBOX(dev_priv)) {
  1464. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1465. notify_ring(dev_priv->engine[VECS]);
  1466. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1467. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1468. }
  1469. }
  1470. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
  1471. {
  1472. if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
  1473. /* Sample the log buffer flush related bits & clear them out now
  1474. * itself from the message identity register to minimize the
  1475. * probability of losing a flush interrupt, when there are back
  1476. * to back flush interrupts.
  1477. * There can be a new flush interrupt, for different log buffer
  1478. * type (like for ISR), whilst Host is handling one (for DPC).
  1479. * Since same bit is used in message register for ISR & DPC, it
  1480. * could happen that GuC sets the bit for 2nd interrupt but Host
  1481. * clears out the bit on handling the 1st interrupt.
  1482. */
  1483. u32 msg, flush;
  1484. msg = I915_READ(SOFT_SCRATCH(15));
  1485. flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
  1486. INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
  1487. if (flush) {
  1488. /* Clear the message bits that are handled */
  1489. I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
  1490. /* Handle flush interrupt in bottom half */
  1491. queue_work(dev_priv->guc.log.runtime.flush_wq,
  1492. &dev_priv->guc.log.runtime.flush_work);
  1493. dev_priv->guc.log.flush_interrupt_count++;
  1494. } else {
  1495. /* Not clearing of unhandled event bits won't result in
  1496. * re-triggering of the interrupt.
  1497. */
  1498. }
  1499. }
  1500. }
  1501. static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
  1502. {
  1503. enum pipe pipe;
  1504. for_each_pipe(dev_priv, pipe) {
  1505. I915_WRITE(PIPESTAT(pipe),
  1506. PIPESTAT_INT_STATUS_MASK |
  1507. PIPE_FIFO_UNDERRUN_STATUS);
  1508. dev_priv->pipestat_irq_mask[pipe] = 0;
  1509. }
  1510. }
  1511. static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
  1512. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1513. {
  1514. int pipe;
  1515. spin_lock(&dev_priv->irq_lock);
  1516. if (!dev_priv->display_irqs_enabled) {
  1517. spin_unlock(&dev_priv->irq_lock);
  1518. return;
  1519. }
  1520. for_each_pipe(dev_priv, pipe) {
  1521. i915_reg_t reg;
  1522. u32 status_mask, enable_mask, iir_bit = 0;
  1523. /*
  1524. * PIPESTAT bits get signalled even when the interrupt is
  1525. * disabled with the mask bits, and some of the status bits do
  1526. * not generate interrupts at all (like the underrun bit). Hence
  1527. * we need to be careful that we only handle what we want to
  1528. * handle.
  1529. */
  1530. /* fifo underruns are filterered in the underrun handler. */
  1531. status_mask = PIPE_FIFO_UNDERRUN_STATUS;
  1532. switch (pipe) {
  1533. case PIPE_A:
  1534. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1535. break;
  1536. case PIPE_B:
  1537. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1538. break;
  1539. case PIPE_C:
  1540. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1541. break;
  1542. }
  1543. if (iir & iir_bit)
  1544. status_mask |= dev_priv->pipestat_irq_mask[pipe];
  1545. if (!status_mask)
  1546. continue;
  1547. reg = PIPESTAT(pipe);
  1548. pipe_stats[pipe] = I915_READ(reg) & status_mask;
  1549. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  1550. /*
  1551. * Clear the PIPE*STAT regs before the IIR
  1552. */
  1553. if (pipe_stats[pipe])
  1554. I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
  1555. }
  1556. spin_unlock(&dev_priv->irq_lock);
  1557. }
  1558. static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1559. u16 iir, u32 pipe_stats[I915_MAX_PIPES])
  1560. {
  1561. enum pipe pipe;
  1562. for_each_pipe(dev_priv, pipe) {
  1563. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1564. drm_handle_vblank(&dev_priv->drm, pipe);
  1565. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1566. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1567. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1568. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1569. }
  1570. }
  1571. static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1572. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1573. {
  1574. bool blc_event = false;
  1575. enum pipe pipe;
  1576. for_each_pipe(dev_priv, pipe) {
  1577. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1578. drm_handle_vblank(&dev_priv->drm, pipe);
  1579. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1580. blc_event = true;
  1581. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1582. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1583. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1584. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1585. }
  1586. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1587. intel_opregion_asle_intr(dev_priv);
  1588. }
  1589. static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1590. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1591. {
  1592. bool blc_event = false;
  1593. enum pipe pipe;
  1594. for_each_pipe(dev_priv, pipe) {
  1595. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1596. drm_handle_vblank(&dev_priv->drm, pipe);
  1597. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1598. blc_event = true;
  1599. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1600. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1601. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1602. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1603. }
  1604. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1605. intel_opregion_asle_intr(dev_priv);
  1606. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1607. gmbus_irq_handler(dev_priv);
  1608. }
  1609. static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1610. u32 pipe_stats[I915_MAX_PIPES])
  1611. {
  1612. enum pipe pipe;
  1613. for_each_pipe(dev_priv, pipe) {
  1614. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1615. drm_handle_vblank(&dev_priv->drm, pipe);
  1616. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1617. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1618. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1619. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1620. }
  1621. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1622. gmbus_irq_handler(dev_priv);
  1623. }
  1624. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1625. {
  1626. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1627. if (hotplug_status)
  1628. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1629. return hotplug_status;
  1630. }
  1631. static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1632. u32 hotplug_status)
  1633. {
  1634. u32 pin_mask = 0, long_mask = 0;
  1635. if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
  1636. IS_CHERRYVIEW(dev_priv)) {
  1637. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1638. if (hotplug_trigger) {
  1639. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1640. hotplug_trigger, hpd_status_g4x,
  1641. i9xx_port_hotplug_long_detect);
  1642. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1643. }
  1644. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1645. dp_aux_irq_handler(dev_priv);
  1646. } else {
  1647. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1648. if (hotplug_trigger) {
  1649. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1650. hotplug_trigger, hpd_status_i915,
  1651. i9xx_port_hotplug_long_detect);
  1652. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1653. }
  1654. }
  1655. }
  1656. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1657. {
  1658. struct drm_device *dev = arg;
  1659. struct drm_i915_private *dev_priv = to_i915(dev);
  1660. irqreturn_t ret = IRQ_NONE;
  1661. if (!intel_irqs_enabled(dev_priv))
  1662. return IRQ_NONE;
  1663. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1664. disable_rpm_wakeref_asserts(dev_priv);
  1665. do {
  1666. u32 iir, gt_iir, pm_iir;
  1667. u32 pipe_stats[I915_MAX_PIPES] = {};
  1668. u32 hotplug_status = 0;
  1669. u32 ier = 0;
  1670. gt_iir = I915_READ(GTIIR);
  1671. pm_iir = I915_READ(GEN6_PMIIR);
  1672. iir = I915_READ(VLV_IIR);
  1673. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1674. break;
  1675. ret = IRQ_HANDLED;
  1676. /*
  1677. * Theory on interrupt generation, based on empirical evidence:
  1678. *
  1679. * x = ((VLV_IIR & VLV_IER) ||
  1680. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1681. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1682. *
  1683. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1684. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1685. * guarantee the CPU interrupt will be raised again even if we
  1686. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1687. * bits this time around.
  1688. */
  1689. I915_WRITE(VLV_MASTER_IER, 0);
  1690. ier = I915_READ(VLV_IER);
  1691. I915_WRITE(VLV_IER, 0);
  1692. if (gt_iir)
  1693. I915_WRITE(GTIIR, gt_iir);
  1694. if (pm_iir)
  1695. I915_WRITE(GEN6_PMIIR, pm_iir);
  1696. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1697. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1698. /* Call regardless, as some status bits might not be
  1699. * signalled in iir */
  1700. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1701. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1702. I915_LPE_PIPE_B_INTERRUPT))
  1703. intel_lpe_audio_irq_handler(dev_priv);
  1704. /*
  1705. * VLV_IIR is single buffered, and reflects the level
  1706. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1707. */
  1708. if (iir)
  1709. I915_WRITE(VLV_IIR, iir);
  1710. I915_WRITE(VLV_IER, ier);
  1711. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1712. POSTING_READ(VLV_MASTER_IER);
  1713. if (gt_iir)
  1714. snb_gt_irq_handler(dev_priv, gt_iir);
  1715. if (pm_iir)
  1716. gen6_rps_irq_handler(dev_priv, pm_iir);
  1717. if (hotplug_status)
  1718. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1719. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1720. } while (0);
  1721. enable_rpm_wakeref_asserts(dev_priv);
  1722. return ret;
  1723. }
  1724. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1725. {
  1726. struct drm_device *dev = arg;
  1727. struct drm_i915_private *dev_priv = to_i915(dev);
  1728. irqreturn_t ret = IRQ_NONE;
  1729. if (!intel_irqs_enabled(dev_priv))
  1730. return IRQ_NONE;
  1731. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1732. disable_rpm_wakeref_asserts(dev_priv);
  1733. do {
  1734. u32 master_ctl, iir;
  1735. u32 gt_iir[4] = {};
  1736. u32 pipe_stats[I915_MAX_PIPES] = {};
  1737. u32 hotplug_status = 0;
  1738. u32 ier = 0;
  1739. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1740. iir = I915_READ(VLV_IIR);
  1741. if (master_ctl == 0 && iir == 0)
  1742. break;
  1743. ret = IRQ_HANDLED;
  1744. /*
  1745. * Theory on interrupt generation, based on empirical evidence:
  1746. *
  1747. * x = ((VLV_IIR & VLV_IER) ||
  1748. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1749. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1750. *
  1751. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1752. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1753. * guarantee the CPU interrupt will be raised again even if we
  1754. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1755. * bits this time around.
  1756. */
  1757. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1758. ier = I915_READ(VLV_IER);
  1759. I915_WRITE(VLV_IER, 0);
  1760. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1761. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1762. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1763. /* Call regardless, as some status bits might not be
  1764. * signalled in iir */
  1765. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1766. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1767. I915_LPE_PIPE_B_INTERRUPT |
  1768. I915_LPE_PIPE_C_INTERRUPT))
  1769. intel_lpe_audio_irq_handler(dev_priv);
  1770. /*
  1771. * VLV_IIR is single buffered, and reflects the level
  1772. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1773. */
  1774. if (iir)
  1775. I915_WRITE(VLV_IIR, iir);
  1776. I915_WRITE(VLV_IER, ier);
  1777. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1778. POSTING_READ(GEN8_MASTER_IRQ);
  1779. gen8_gt_irq_handler(dev_priv, gt_iir);
  1780. if (hotplug_status)
  1781. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1782. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1783. } while (0);
  1784. enable_rpm_wakeref_asserts(dev_priv);
  1785. return ret;
  1786. }
  1787. static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1788. u32 hotplug_trigger,
  1789. const u32 hpd[HPD_NUM_PINS])
  1790. {
  1791. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1792. /*
  1793. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1794. * unless we touch the hotplug register, even if hotplug_trigger is
  1795. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1796. * errors.
  1797. */
  1798. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1799. if (!hotplug_trigger) {
  1800. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1801. PORTD_HOTPLUG_STATUS_MASK |
  1802. PORTC_HOTPLUG_STATUS_MASK |
  1803. PORTB_HOTPLUG_STATUS_MASK;
  1804. dig_hotplug_reg &= ~mask;
  1805. }
  1806. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1807. if (!hotplug_trigger)
  1808. return;
  1809. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1810. dig_hotplug_reg, hpd,
  1811. pch_port_hotplug_long_detect);
  1812. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1813. }
  1814. static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1815. {
  1816. int pipe;
  1817. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1818. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
  1819. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1820. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1821. SDE_AUDIO_POWER_SHIFT);
  1822. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1823. port_name(port));
  1824. }
  1825. if (pch_iir & SDE_AUX_MASK)
  1826. dp_aux_irq_handler(dev_priv);
  1827. if (pch_iir & SDE_GMBUS)
  1828. gmbus_irq_handler(dev_priv);
  1829. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1830. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1831. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1832. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1833. if (pch_iir & SDE_POISON)
  1834. DRM_ERROR("PCH poison interrupt\n");
  1835. if (pch_iir & SDE_FDI_MASK)
  1836. for_each_pipe(dev_priv, pipe)
  1837. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1838. pipe_name(pipe),
  1839. I915_READ(FDI_RX_IIR(pipe)));
  1840. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1841. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1842. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1843. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1844. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1845. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
  1846. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1847. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
  1848. }
  1849. static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
  1850. {
  1851. u32 err_int = I915_READ(GEN7_ERR_INT);
  1852. enum pipe pipe;
  1853. if (err_int & ERR_INT_POISON)
  1854. DRM_ERROR("Poison interrupt\n");
  1855. for_each_pipe(dev_priv, pipe) {
  1856. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1857. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1858. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1859. if (IS_IVYBRIDGE(dev_priv))
  1860. ivb_pipe_crc_irq_handler(dev_priv, pipe);
  1861. else
  1862. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1863. }
  1864. }
  1865. I915_WRITE(GEN7_ERR_INT, err_int);
  1866. }
  1867. static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
  1868. {
  1869. u32 serr_int = I915_READ(SERR_INT);
  1870. enum pipe pipe;
  1871. if (serr_int & SERR_INT_POISON)
  1872. DRM_ERROR("PCH poison interrupt\n");
  1873. for_each_pipe(dev_priv, pipe)
  1874. if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
  1875. intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
  1876. I915_WRITE(SERR_INT, serr_int);
  1877. }
  1878. static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1879. {
  1880. int pipe;
  1881. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1882. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
  1883. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1884. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1885. SDE_AUDIO_POWER_SHIFT_CPT);
  1886. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1887. port_name(port));
  1888. }
  1889. if (pch_iir & SDE_AUX_MASK_CPT)
  1890. dp_aux_irq_handler(dev_priv);
  1891. if (pch_iir & SDE_GMBUS_CPT)
  1892. gmbus_irq_handler(dev_priv);
  1893. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1894. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1895. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1896. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1897. if (pch_iir & SDE_FDI_MASK_CPT)
  1898. for_each_pipe(dev_priv, pipe)
  1899. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1900. pipe_name(pipe),
  1901. I915_READ(FDI_RX_IIR(pipe)));
  1902. if (pch_iir & SDE_ERROR_CPT)
  1903. cpt_serr_int_handler(dev_priv);
  1904. }
  1905. static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1906. {
  1907. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1908. ~SDE_PORTE_HOTPLUG_SPT;
  1909. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1910. u32 pin_mask = 0, long_mask = 0;
  1911. if (hotplug_trigger) {
  1912. u32 dig_hotplug_reg;
  1913. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1914. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1915. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1916. dig_hotplug_reg, hpd_spt,
  1917. spt_port_hotplug_long_detect);
  1918. }
  1919. if (hotplug2_trigger) {
  1920. u32 dig_hotplug_reg;
  1921. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1922. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1923. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1924. dig_hotplug_reg, hpd_spt,
  1925. spt_port_hotplug2_long_detect);
  1926. }
  1927. if (pin_mask)
  1928. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1929. if (pch_iir & SDE_GMBUS_CPT)
  1930. gmbus_irq_handler(dev_priv);
  1931. }
  1932. static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1933. u32 hotplug_trigger,
  1934. const u32 hpd[HPD_NUM_PINS])
  1935. {
  1936. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1937. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1938. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1939. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1940. dig_hotplug_reg, hpd,
  1941. ilk_port_hotplug_long_detect);
  1942. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1943. }
  1944. static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
  1945. u32 de_iir)
  1946. {
  1947. enum pipe pipe;
  1948. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1949. if (hotplug_trigger)
  1950. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
  1951. if (de_iir & DE_AUX_CHANNEL_A)
  1952. dp_aux_irq_handler(dev_priv);
  1953. if (de_iir & DE_GSE)
  1954. intel_opregion_asle_intr(dev_priv);
  1955. if (de_iir & DE_POISON)
  1956. DRM_ERROR("Poison interrupt\n");
  1957. for_each_pipe(dev_priv, pipe) {
  1958. if (de_iir & DE_PIPE_VBLANK(pipe))
  1959. drm_handle_vblank(&dev_priv->drm, pipe);
  1960. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1961. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1962. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1963. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1964. }
  1965. /* check event from PCH */
  1966. if (de_iir & DE_PCH_EVENT) {
  1967. u32 pch_iir = I915_READ(SDEIIR);
  1968. if (HAS_PCH_CPT(dev_priv))
  1969. cpt_irq_handler(dev_priv, pch_iir);
  1970. else
  1971. ibx_irq_handler(dev_priv, pch_iir);
  1972. /* should clear PCH hotplug event before clear CPU irq */
  1973. I915_WRITE(SDEIIR, pch_iir);
  1974. }
  1975. if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
  1976. ironlake_rps_change_irq_handler(dev_priv);
  1977. }
  1978. static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
  1979. u32 de_iir)
  1980. {
  1981. enum pipe pipe;
  1982. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1983. if (hotplug_trigger)
  1984. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
  1985. if (de_iir & DE_ERR_INT_IVB)
  1986. ivb_err_int_handler(dev_priv);
  1987. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1988. dp_aux_irq_handler(dev_priv);
  1989. if (de_iir & DE_GSE_IVB)
  1990. intel_opregion_asle_intr(dev_priv);
  1991. for_each_pipe(dev_priv, pipe) {
  1992. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
  1993. drm_handle_vblank(&dev_priv->drm, pipe);
  1994. }
  1995. /* check event from PCH */
  1996. if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
  1997. u32 pch_iir = I915_READ(SDEIIR);
  1998. cpt_irq_handler(dev_priv, pch_iir);
  1999. /* clear PCH hotplug event before clear CPU irq */
  2000. I915_WRITE(SDEIIR, pch_iir);
  2001. }
  2002. }
  2003. /*
  2004. * To handle irqs with the minimum potential races with fresh interrupts, we:
  2005. * 1 - Disable Master Interrupt Control.
  2006. * 2 - Find the source(s) of the interrupt.
  2007. * 3 - Clear the Interrupt Identity bits (IIR).
  2008. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  2009. * 5 - Re-enable Master Interrupt Control.
  2010. */
  2011. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  2012. {
  2013. struct drm_device *dev = arg;
  2014. struct drm_i915_private *dev_priv = to_i915(dev);
  2015. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  2016. irqreturn_t ret = IRQ_NONE;
  2017. if (!intel_irqs_enabled(dev_priv))
  2018. return IRQ_NONE;
  2019. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2020. disable_rpm_wakeref_asserts(dev_priv);
  2021. /* disable master interrupt before clearing iir */
  2022. de_ier = I915_READ(DEIER);
  2023. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  2024. POSTING_READ(DEIER);
  2025. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  2026. * interrupts will will be stored on its back queue, and then we'll be
  2027. * able to process them after we restore SDEIER (as soon as we restore
  2028. * it, we'll get an interrupt if SDEIIR still has something to process
  2029. * due to its back queue). */
  2030. if (!HAS_PCH_NOP(dev_priv)) {
  2031. sde_ier = I915_READ(SDEIER);
  2032. I915_WRITE(SDEIER, 0);
  2033. POSTING_READ(SDEIER);
  2034. }
  2035. /* Find, clear, then process each source of interrupt */
  2036. gt_iir = I915_READ(GTIIR);
  2037. if (gt_iir) {
  2038. I915_WRITE(GTIIR, gt_iir);
  2039. ret = IRQ_HANDLED;
  2040. if (INTEL_GEN(dev_priv) >= 6)
  2041. snb_gt_irq_handler(dev_priv, gt_iir);
  2042. else
  2043. ilk_gt_irq_handler(dev_priv, gt_iir);
  2044. }
  2045. de_iir = I915_READ(DEIIR);
  2046. if (de_iir) {
  2047. I915_WRITE(DEIIR, de_iir);
  2048. ret = IRQ_HANDLED;
  2049. if (INTEL_GEN(dev_priv) >= 7)
  2050. ivb_display_irq_handler(dev_priv, de_iir);
  2051. else
  2052. ilk_display_irq_handler(dev_priv, de_iir);
  2053. }
  2054. if (INTEL_GEN(dev_priv) >= 6) {
  2055. u32 pm_iir = I915_READ(GEN6_PMIIR);
  2056. if (pm_iir) {
  2057. I915_WRITE(GEN6_PMIIR, pm_iir);
  2058. ret = IRQ_HANDLED;
  2059. gen6_rps_irq_handler(dev_priv, pm_iir);
  2060. }
  2061. }
  2062. I915_WRITE(DEIER, de_ier);
  2063. POSTING_READ(DEIER);
  2064. if (!HAS_PCH_NOP(dev_priv)) {
  2065. I915_WRITE(SDEIER, sde_ier);
  2066. POSTING_READ(SDEIER);
  2067. }
  2068. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2069. enable_rpm_wakeref_asserts(dev_priv);
  2070. return ret;
  2071. }
  2072. static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
  2073. u32 hotplug_trigger,
  2074. const u32 hpd[HPD_NUM_PINS])
  2075. {
  2076. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  2077. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  2078. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  2079. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  2080. dig_hotplug_reg, hpd,
  2081. bxt_port_hotplug_long_detect);
  2082. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  2083. }
  2084. static irqreturn_t
  2085. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  2086. {
  2087. irqreturn_t ret = IRQ_NONE;
  2088. u32 iir;
  2089. enum pipe pipe;
  2090. if (master_ctl & GEN8_DE_MISC_IRQ) {
  2091. iir = I915_READ(GEN8_DE_MISC_IIR);
  2092. if (iir) {
  2093. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  2094. ret = IRQ_HANDLED;
  2095. if (iir & GEN8_DE_MISC_GSE)
  2096. intel_opregion_asle_intr(dev_priv);
  2097. else
  2098. DRM_ERROR("Unexpected DE Misc interrupt\n");
  2099. }
  2100. else
  2101. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  2102. }
  2103. if (master_ctl & GEN8_DE_PORT_IRQ) {
  2104. iir = I915_READ(GEN8_DE_PORT_IIR);
  2105. if (iir) {
  2106. u32 tmp_mask;
  2107. bool found = false;
  2108. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  2109. ret = IRQ_HANDLED;
  2110. tmp_mask = GEN8_AUX_CHANNEL_A;
  2111. if (INTEL_GEN(dev_priv) >= 9)
  2112. tmp_mask |= GEN9_AUX_CHANNEL_B |
  2113. GEN9_AUX_CHANNEL_C |
  2114. GEN9_AUX_CHANNEL_D;
  2115. if (iir & tmp_mask) {
  2116. dp_aux_irq_handler(dev_priv);
  2117. found = true;
  2118. }
  2119. if (IS_GEN9_LP(dev_priv)) {
  2120. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  2121. if (tmp_mask) {
  2122. bxt_hpd_irq_handler(dev_priv, tmp_mask,
  2123. hpd_bxt);
  2124. found = true;
  2125. }
  2126. } else if (IS_BROADWELL(dev_priv)) {
  2127. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  2128. if (tmp_mask) {
  2129. ilk_hpd_irq_handler(dev_priv,
  2130. tmp_mask, hpd_bdw);
  2131. found = true;
  2132. }
  2133. }
  2134. if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
  2135. gmbus_irq_handler(dev_priv);
  2136. found = true;
  2137. }
  2138. if (!found)
  2139. DRM_ERROR("Unexpected DE Port interrupt\n");
  2140. }
  2141. else
  2142. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  2143. }
  2144. for_each_pipe(dev_priv, pipe) {
  2145. u32 fault_errors;
  2146. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  2147. continue;
  2148. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  2149. if (!iir) {
  2150. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  2151. continue;
  2152. }
  2153. ret = IRQ_HANDLED;
  2154. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  2155. if (iir & GEN8_PIPE_VBLANK)
  2156. drm_handle_vblank(&dev_priv->drm, pipe);
  2157. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  2158. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  2159. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  2160. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  2161. fault_errors = iir;
  2162. if (INTEL_GEN(dev_priv) >= 9)
  2163. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2164. else
  2165. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2166. if (fault_errors)
  2167. DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
  2168. pipe_name(pipe),
  2169. fault_errors);
  2170. }
  2171. if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
  2172. master_ctl & GEN8_DE_PCH_IRQ) {
  2173. /*
  2174. * FIXME(BDW): Assume for now that the new interrupt handling
  2175. * scheme also closed the SDE interrupt handling race we've seen
  2176. * on older pch-split platforms. But this needs testing.
  2177. */
  2178. iir = I915_READ(SDEIIR);
  2179. if (iir) {
  2180. I915_WRITE(SDEIIR, iir);
  2181. ret = IRQ_HANDLED;
  2182. if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  2183. HAS_PCH_CNP(dev_priv))
  2184. spt_irq_handler(dev_priv, iir);
  2185. else
  2186. cpt_irq_handler(dev_priv, iir);
  2187. } else {
  2188. /*
  2189. * Like on previous PCH there seems to be something
  2190. * fishy going on with forwarding PCH interrupts.
  2191. */
  2192. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2193. }
  2194. }
  2195. return ret;
  2196. }
  2197. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2198. {
  2199. struct drm_device *dev = arg;
  2200. struct drm_i915_private *dev_priv = to_i915(dev);
  2201. u32 master_ctl;
  2202. u32 gt_iir[4] = {};
  2203. irqreturn_t ret;
  2204. if (!intel_irqs_enabled(dev_priv))
  2205. return IRQ_NONE;
  2206. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2207. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2208. if (!master_ctl)
  2209. return IRQ_NONE;
  2210. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2211. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2212. disable_rpm_wakeref_asserts(dev_priv);
  2213. /* Find, clear, then process each source of interrupt */
  2214. ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2215. gen8_gt_irq_handler(dev_priv, gt_iir);
  2216. ret |= gen8_de_irq_handler(dev_priv, master_ctl);
  2217. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2218. POSTING_READ_FW(GEN8_MASTER_IRQ);
  2219. enable_rpm_wakeref_asserts(dev_priv);
  2220. return ret;
  2221. }
  2222. struct wedge_me {
  2223. struct delayed_work work;
  2224. struct drm_i915_private *i915;
  2225. const char *name;
  2226. };
  2227. static void wedge_me(struct work_struct *work)
  2228. {
  2229. struct wedge_me *w = container_of(work, typeof(*w), work.work);
  2230. dev_err(w->i915->drm.dev,
  2231. "%s timed out, cancelling all in-flight rendering.\n",
  2232. w->name);
  2233. i915_gem_set_wedged(w->i915);
  2234. }
  2235. static void __init_wedge(struct wedge_me *w,
  2236. struct drm_i915_private *i915,
  2237. long timeout,
  2238. const char *name)
  2239. {
  2240. w->i915 = i915;
  2241. w->name = name;
  2242. INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
  2243. schedule_delayed_work(&w->work, timeout);
  2244. }
  2245. static void __fini_wedge(struct wedge_me *w)
  2246. {
  2247. cancel_delayed_work_sync(&w->work);
  2248. destroy_delayed_work_on_stack(&w->work);
  2249. w->i915 = NULL;
  2250. }
  2251. #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
  2252. for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
  2253. (W)->i915; \
  2254. __fini_wedge((W)))
  2255. /**
  2256. * i915_reset_device - do process context error handling work
  2257. * @dev_priv: i915 device private
  2258. *
  2259. * Fire an error uevent so userspace can see that a hang or error
  2260. * was detected.
  2261. */
  2262. static void i915_reset_device(struct drm_i915_private *dev_priv)
  2263. {
  2264. struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
  2265. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2266. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2267. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2268. struct wedge_me w;
  2269. kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
  2270. DRM_DEBUG_DRIVER("resetting chip\n");
  2271. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
  2272. /* Use a watchdog to ensure that our reset completes */
  2273. i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
  2274. intel_prepare_reset(dev_priv);
  2275. /* Signal that locked waiters should reset the GPU */
  2276. set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
  2277. wake_up_all(&dev_priv->gpu_error.wait_queue);
  2278. /* Wait for anyone holding the lock to wakeup, without
  2279. * blocking indefinitely on struct_mutex.
  2280. */
  2281. do {
  2282. if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
  2283. i915_reset(dev_priv, 0);
  2284. mutex_unlock(&dev_priv->drm.struct_mutex);
  2285. }
  2286. } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
  2287. I915_RESET_HANDOFF,
  2288. TASK_UNINTERRUPTIBLE,
  2289. 1));
  2290. intel_finish_reset(dev_priv);
  2291. }
  2292. if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  2293. kobject_uevent_env(kobj,
  2294. KOBJ_CHANGE, reset_done_event);
  2295. }
  2296. static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
  2297. {
  2298. u32 eir;
  2299. if (!IS_GEN2(dev_priv))
  2300. I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
  2301. if (INTEL_GEN(dev_priv) < 4)
  2302. I915_WRITE(IPEIR, I915_READ(IPEIR));
  2303. else
  2304. I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
  2305. I915_WRITE(EIR, I915_READ(EIR));
  2306. eir = I915_READ(EIR);
  2307. if (eir) {
  2308. /*
  2309. * some errors might have become stuck,
  2310. * mask them.
  2311. */
  2312. DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
  2313. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2314. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2315. }
  2316. }
  2317. /**
  2318. * i915_handle_error - handle a gpu error
  2319. * @dev_priv: i915 device private
  2320. * @engine_mask: mask representing engines that are hung
  2321. * @fmt: Error message format string
  2322. *
  2323. * Do some basic checking of register state at error time and
  2324. * dump it to the syslog. Also call i915_capture_error_state() to make
  2325. * sure we get a record and make it available in debugfs. Fire a uevent
  2326. * so userspace knows something bad happened (should trigger collection
  2327. * of a ring dump etc.).
  2328. */
  2329. void i915_handle_error(struct drm_i915_private *dev_priv,
  2330. u32 engine_mask,
  2331. const char *fmt, ...)
  2332. {
  2333. struct intel_engine_cs *engine;
  2334. unsigned int tmp;
  2335. va_list args;
  2336. char error_msg[80];
  2337. va_start(args, fmt);
  2338. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2339. va_end(args);
  2340. /*
  2341. * In most cases it's guaranteed that we get here with an RPM
  2342. * reference held, for example because there is a pending GPU
  2343. * request that won't finish until the reset is done. This
  2344. * isn't the case at least when we get here by doing a
  2345. * simulated reset via debugfs, so get an RPM reference.
  2346. */
  2347. intel_runtime_pm_get(dev_priv);
  2348. i915_capture_error_state(dev_priv, engine_mask, error_msg);
  2349. i915_clear_error_registers(dev_priv);
  2350. /*
  2351. * Try engine reset when available. We fall back to full reset if
  2352. * single reset fails.
  2353. */
  2354. if (intel_has_reset_engine(dev_priv)) {
  2355. for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
  2356. BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
  2357. if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2358. &dev_priv->gpu_error.flags))
  2359. continue;
  2360. if (i915_reset_engine(engine, 0) == 0)
  2361. engine_mask &= ~intel_engine_flag(engine);
  2362. clear_bit(I915_RESET_ENGINE + engine->id,
  2363. &dev_priv->gpu_error.flags);
  2364. wake_up_bit(&dev_priv->gpu_error.flags,
  2365. I915_RESET_ENGINE + engine->id);
  2366. }
  2367. }
  2368. if (!engine_mask)
  2369. goto out;
  2370. /* Full reset needs the mutex, stop any other user trying to do so. */
  2371. if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
  2372. wait_event(dev_priv->gpu_error.reset_queue,
  2373. !test_bit(I915_RESET_BACKOFF,
  2374. &dev_priv->gpu_error.flags));
  2375. goto out;
  2376. }
  2377. /* Prevent any other reset-engine attempt. */
  2378. for_each_engine(engine, dev_priv, tmp) {
  2379. while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2380. &dev_priv->gpu_error.flags))
  2381. wait_on_bit(&dev_priv->gpu_error.flags,
  2382. I915_RESET_ENGINE + engine->id,
  2383. TASK_UNINTERRUPTIBLE);
  2384. }
  2385. i915_reset_device(dev_priv);
  2386. for_each_engine(engine, dev_priv, tmp) {
  2387. clear_bit(I915_RESET_ENGINE + engine->id,
  2388. &dev_priv->gpu_error.flags);
  2389. }
  2390. clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
  2391. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2392. out:
  2393. intel_runtime_pm_put(dev_priv);
  2394. }
  2395. /* Called from drm generic code, passed 'crtc' which
  2396. * we use as a pipe index
  2397. */
  2398. static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2399. {
  2400. struct drm_i915_private *dev_priv = to_i915(dev);
  2401. unsigned long irqflags;
  2402. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2403. i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2404. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2405. return 0;
  2406. }
  2407. static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2408. {
  2409. struct drm_i915_private *dev_priv = to_i915(dev);
  2410. unsigned long irqflags;
  2411. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2412. i915_enable_pipestat(dev_priv, pipe,
  2413. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2414. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2415. return 0;
  2416. }
  2417. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2418. {
  2419. struct drm_i915_private *dev_priv = to_i915(dev);
  2420. unsigned long irqflags;
  2421. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2422. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2423. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2424. ilk_enable_display_irq(dev_priv, bit);
  2425. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2426. return 0;
  2427. }
  2428. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2429. {
  2430. struct drm_i915_private *dev_priv = to_i915(dev);
  2431. unsigned long irqflags;
  2432. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2433. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2434. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2435. return 0;
  2436. }
  2437. /* Called from drm generic code, passed 'crtc' which
  2438. * we use as a pipe index
  2439. */
  2440. static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2441. {
  2442. struct drm_i915_private *dev_priv = to_i915(dev);
  2443. unsigned long irqflags;
  2444. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2445. i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2446. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2447. }
  2448. static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2449. {
  2450. struct drm_i915_private *dev_priv = to_i915(dev);
  2451. unsigned long irqflags;
  2452. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2453. i915_disable_pipestat(dev_priv, pipe,
  2454. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2455. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2456. }
  2457. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2458. {
  2459. struct drm_i915_private *dev_priv = to_i915(dev);
  2460. unsigned long irqflags;
  2461. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2462. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2463. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2464. ilk_disable_display_irq(dev_priv, bit);
  2465. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2466. }
  2467. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2468. {
  2469. struct drm_i915_private *dev_priv = to_i915(dev);
  2470. unsigned long irqflags;
  2471. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2472. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2473. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2474. }
  2475. static void ibx_irq_reset(struct drm_i915_private *dev_priv)
  2476. {
  2477. if (HAS_PCH_NOP(dev_priv))
  2478. return;
  2479. GEN3_IRQ_RESET(SDE);
  2480. if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  2481. I915_WRITE(SERR_INT, 0xffffffff);
  2482. }
  2483. /*
  2484. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2485. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2486. * instead we unconditionally enable all PCH interrupt sources here, but then
  2487. * only unmask them as needed with SDEIMR.
  2488. *
  2489. * This function needs to be called before interrupts are enabled.
  2490. */
  2491. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2492. {
  2493. struct drm_i915_private *dev_priv = to_i915(dev);
  2494. if (HAS_PCH_NOP(dev_priv))
  2495. return;
  2496. WARN_ON(I915_READ(SDEIER) != 0);
  2497. I915_WRITE(SDEIER, 0xffffffff);
  2498. POSTING_READ(SDEIER);
  2499. }
  2500. static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
  2501. {
  2502. GEN3_IRQ_RESET(GT);
  2503. if (INTEL_GEN(dev_priv) >= 6)
  2504. GEN3_IRQ_RESET(GEN6_PM);
  2505. }
  2506. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2507. {
  2508. if (IS_CHERRYVIEW(dev_priv))
  2509. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2510. else
  2511. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2512. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2513. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2514. i9xx_pipestat_irq_reset(dev_priv);
  2515. GEN3_IRQ_RESET(VLV_);
  2516. dev_priv->irq_mask = ~0u;
  2517. }
  2518. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2519. {
  2520. u32 pipestat_mask;
  2521. u32 enable_mask;
  2522. enum pipe pipe;
  2523. pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
  2524. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2525. for_each_pipe(dev_priv, pipe)
  2526. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2527. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2528. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2529. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2530. I915_LPE_PIPE_A_INTERRUPT |
  2531. I915_LPE_PIPE_B_INTERRUPT;
  2532. if (IS_CHERRYVIEW(dev_priv))
  2533. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
  2534. I915_LPE_PIPE_C_INTERRUPT;
  2535. WARN_ON(dev_priv->irq_mask != ~0u);
  2536. dev_priv->irq_mask = ~enable_mask;
  2537. GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2538. }
  2539. /* drm_dma.h hooks
  2540. */
  2541. static void ironlake_irq_reset(struct drm_device *dev)
  2542. {
  2543. struct drm_i915_private *dev_priv = to_i915(dev);
  2544. if (IS_GEN5(dev_priv))
  2545. I915_WRITE(HWSTAM, 0xffffffff);
  2546. GEN3_IRQ_RESET(DE);
  2547. if (IS_GEN7(dev_priv))
  2548. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2549. gen5_gt_irq_reset(dev_priv);
  2550. ibx_irq_reset(dev_priv);
  2551. }
  2552. static void valleyview_irq_reset(struct drm_device *dev)
  2553. {
  2554. struct drm_i915_private *dev_priv = to_i915(dev);
  2555. I915_WRITE(VLV_MASTER_IER, 0);
  2556. POSTING_READ(VLV_MASTER_IER);
  2557. gen5_gt_irq_reset(dev_priv);
  2558. spin_lock_irq(&dev_priv->irq_lock);
  2559. if (dev_priv->display_irqs_enabled)
  2560. vlv_display_irq_reset(dev_priv);
  2561. spin_unlock_irq(&dev_priv->irq_lock);
  2562. }
  2563. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2564. {
  2565. GEN8_IRQ_RESET_NDX(GT, 0);
  2566. GEN8_IRQ_RESET_NDX(GT, 1);
  2567. GEN8_IRQ_RESET_NDX(GT, 2);
  2568. GEN8_IRQ_RESET_NDX(GT, 3);
  2569. }
  2570. static void gen8_irq_reset(struct drm_device *dev)
  2571. {
  2572. struct drm_i915_private *dev_priv = to_i915(dev);
  2573. int pipe;
  2574. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2575. POSTING_READ(GEN8_MASTER_IRQ);
  2576. gen8_gt_irq_reset(dev_priv);
  2577. for_each_pipe(dev_priv, pipe)
  2578. if (intel_display_power_is_enabled(dev_priv,
  2579. POWER_DOMAIN_PIPE(pipe)))
  2580. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2581. GEN3_IRQ_RESET(GEN8_DE_PORT_);
  2582. GEN3_IRQ_RESET(GEN8_DE_MISC_);
  2583. GEN3_IRQ_RESET(GEN8_PCU_);
  2584. if (HAS_PCH_SPLIT(dev_priv))
  2585. ibx_irq_reset(dev_priv);
  2586. }
  2587. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2588. u8 pipe_mask)
  2589. {
  2590. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2591. enum pipe pipe;
  2592. spin_lock_irq(&dev_priv->irq_lock);
  2593. if (!intel_irqs_enabled(dev_priv)) {
  2594. spin_unlock_irq(&dev_priv->irq_lock);
  2595. return;
  2596. }
  2597. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2598. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2599. dev_priv->de_irq_mask[pipe],
  2600. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2601. spin_unlock_irq(&dev_priv->irq_lock);
  2602. }
  2603. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2604. u8 pipe_mask)
  2605. {
  2606. enum pipe pipe;
  2607. spin_lock_irq(&dev_priv->irq_lock);
  2608. if (!intel_irqs_enabled(dev_priv)) {
  2609. spin_unlock_irq(&dev_priv->irq_lock);
  2610. return;
  2611. }
  2612. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2613. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2614. spin_unlock_irq(&dev_priv->irq_lock);
  2615. /* make sure we're done processing display irqs */
  2616. synchronize_irq(dev_priv->drm.irq);
  2617. }
  2618. static void cherryview_irq_reset(struct drm_device *dev)
  2619. {
  2620. struct drm_i915_private *dev_priv = to_i915(dev);
  2621. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2622. POSTING_READ(GEN8_MASTER_IRQ);
  2623. gen8_gt_irq_reset(dev_priv);
  2624. GEN3_IRQ_RESET(GEN8_PCU_);
  2625. spin_lock_irq(&dev_priv->irq_lock);
  2626. if (dev_priv->display_irqs_enabled)
  2627. vlv_display_irq_reset(dev_priv);
  2628. spin_unlock_irq(&dev_priv->irq_lock);
  2629. }
  2630. static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
  2631. const u32 hpd[HPD_NUM_PINS])
  2632. {
  2633. struct intel_encoder *encoder;
  2634. u32 enabled_irqs = 0;
  2635. for_each_intel_encoder(&dev_priv->drm, encoder)
  2636. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2637. enabled_irqs |= hpd[encoder->hpd_pin];
  2638. return enabled_irqs;
  2639. }
  2640. static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2641. {
  2642. u32 hotplug;
  2643. /*
  2644. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2645. * duration to 2ms (which is the minimum in the Display Port spec).
  2646. * The pulse duration bits are reserved on LPT+.
  2647. */
  2648. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2649. hotplug &= ~(PORTB_PULSE_DURATION_MASK |
  2650. PORTC_PULSE_DURATION_MASK |
  2651. PORTD_PULSE_DURATION_MASK);
  2652. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2653. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2654. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2655. /*
  2656. * When CPU and PCH are on the same package, port A
  2657. * HPD must be enabled in both north and south.
  2658. */
  2659. if (HAS_PCH_LPT_LP(dev_priv))
  2660. hotplug |= PORTA_HOTPLUG_ENABLE;
  2661. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2662. }
  2663. static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2664. {
  2665. u32 hotplug_irqs, enabled_irqs;
  2666. if (HAS_PCH_IBX(dev_priv)) {
  2667. hotplug_irqs = SDE_HOTPLUG_MASK;
  2668. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
  2669. } else {
  2670. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2671. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
  2672. }
  2673. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2674. ibx_hpd_detection_setup(dev_priv);
  2675. }
  2676. static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2677. {
  2678. u32 val, hotplug;
  2679. /* Display WA #1179 WaHardHangonHotPlug: cnp */
  2680. if (HAS_PCH_CNP(dev_priv)) {
  2681. val = I915_READ(SOUTH_CHICKEN1);
  2682. val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
  2683. val |= CHASSIS_CLK_REQ_DURATION(0xf);
  2684. I915_WRITE(SOUTH_CHICKEN1, val);
  2685. }
  2686. /* Enable digital hotplug on the PCH */
  2687. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2688. hotplug |= PORTA_HOTPLUG_ENABLE |
  2689. PORTB_HOTPLUG_ENABLE |
  2690. PORTC_HOTPLUG_ENABLE |
  2691. PORTD_HOTPLUG_ENABLE;
  2692. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2693. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2694. hotplug |= PORTE_HOTPLUG_ENABLE;
  2695. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2696. }
  2697. static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2698. {
  2699. u32 hotplug_irqs, enabled_irqs;
  2700. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2701. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
  2702. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2703. spt_hpd_detection_setup(dev_priv);
  2704. }
  2705. static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2706. {
  2707. u32 hotplug;
  2708. /*
  2709. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2710. * duration to 2ms (which is the minimum in the Display Port spec)
  2711. * The pulse duration bits are reserved on HSW+.
  2712. */
  2713. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2714. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2715. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
  2716. DIGITAL_PORTA_PULSE_DURATION_2ms;
  2717. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2718. }
  2719. static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2720. {
  2721. u32 hotplug_irqs, enabled_irqs;
  2722. if (INTEL_GEN(dev_priv) >= 8) {
  2723. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2724. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
  2725. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2726. } else if (INTEL_GEN(dev_priv) >= 7) {
  2727. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2728. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
  2729. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2730. } else {
  2731. hotplug_irqs = DE_DP_A_HOTPLUG;
  2732. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
  2733. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2734. }
  2735. ilk_hpd_detection_setup(dev_priv);
  2736. ibx_hpd_irq_setup(dev_priv);
  2737. }
  2738. static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
  2739. u32 enabled_irqs)
  2740. {
  2741. u32 hotplug;
  2742. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2743. hotplug |= PORTA_HOTPLUG_ENABLE |
  2744. PORTB_HOTPLUG_ENABLE |
  2745. PORTC_HOTPLUG_ENABLE;
  2746. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2747. hotplug, enabled_irqs);
  2748. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2749. /*
  2750. * For BXT invert bit has to be set based on AOB design
  2751. * for HPD detection logic, update it based on VBT fields.
  2752. */
  2753. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2754. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2755. hotplug |= BXT_DDIA_HPD_INVERT;
  2756. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2757. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2758. hotplug |= BXT_DDIB_HPD_INVERT;
  2759. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2760. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2761. hotplug |= BXT_DDIC_HPD_INVERT;
  2762. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2763. }
  2764. static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2765. {
  2766. __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
  2767. }
  2768. static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2769. {
  2770. u32 hotplug_irqs, enabled_irqs;
  2771. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
  2772. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2773. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2774. __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
  2775. }
  2776. static void ibx_irq_postinstall(struct drm_device *dev)
  2777. {
  2778. struct drm_i915_private *dev_priv = to_i915(dev);
  2779. u32 mask;
  2780. if (HAS_PCH_NOP(dev_priv))
  2781. return;
  2782. if (HAS_PCH_IBX(dev_priv))
  2783. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2784. else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  2785. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2786. else
  2787. mask = SDE_GMBUS_CPT;
  2788. gen3_assert_iir_is_zero(dev_priv, SDEIIR);
  2789. I915_WRITE(SDEIMR, ~mask);
  2790. if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
  2791. HAS_PCH_LPT(dev_priv))
  2792. ibx_hpd_detection_setup(dev_priv);
  2793. else
  2794. spt_hpd_detection_setup(dev_priv);
  2795. }
  2796. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2797. {
  2798. struct drm_i915_private *dev_priv = to_i915(dev);
  2799. u32 pm_irqs, gt_irqs;
  2800. pm_irqs = gt_irqs = 0;
  2801. dev_priv->gt_irq_mask = ~0;
  2802. if (HAS_L3_DPF(dev_priv)) {
  2803. /* L3 parity interrupt is always unmasked. */
  2804. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
  2805. gt_irqs |= GT_PARITY_ERROR(dev_priv);
  2806. }
  2807. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2808. if (IS_GEN5(dev_priv)) {
  2809. gt_irqs |= ILK_BSD_USER_INTERRUPT;
  2810. } else {
  2811. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2812. }
  2813. GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2814. if (INTEL_GEN(dev_priv) >= 6) {
  2815. /*
  2816. * RPS interrupts will get enabled/disabled on demand when RPS
  2817. * itself is enabled/disabled.
  2818. */
  2819. if (HAS_VEBOX(dev_priv)) {
  2820. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2821. dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
  2822. }
  2823. dev_priv->pm_imr = 0xffffffff;
  2824. GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
  2825. }
  2826. }
  2827. static int ironlake_irq_postinstall(struct drm_device *dev)
  2828. {
  2829. struct drm_i915_private *dev_priv = to_i915(dev);
  2830. u32 display_mask, extra_mask;
  2831. if (INTEL_GEN(dev_priv) >= 7) {
  2832. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2833. DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
  2834. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2835. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  2836. DE_DP_A_HOTPLUG_IVB);
  2837. } else {
  2838. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  2839. DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
  2840. DE_PIPEA_CRC_DONE | DE_POISON);
  2841. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  2842. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  2843. DE_DP_A_HOTPLUG);
  2844. }
  2845. dev_priv->irq_mask = ~display_mask;
  2846. ibx_irq_pre_postinstall(dev);
  2847. GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  2848. gen5_gt_irq_postinstall(dev);
  2849. ilk_hpd_detection_setup(dev_priv);
  2850. ibx_irq_postinstall(dev);
  2851. if (IS_IRONLAKE_M(dev_priv)) {
  2852. /* Enable PCU event interrupts
  2853. *
  2854. * spinlocking not required here for correctness since interrupt
  2855. * setup is guaranteed to run in single-threaded context. But we
  2856. * need it to make the assert_spin_locked happy. */
  2857. spin_lock_irq(&dev_priv->irq_lock);
  2858. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  2859. spin_unlock_irq(&dev_priv->irq_lock);
  2860. }
  2861. return 0;
  2862. }
  2863. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  2864. {
  2865. lockdep_assert_held(&dev_priv->irq_lock);
  2866. if (dev_priv->display_irqs_enabled)
  2867. return;
  2868. dev_priv->display_irqs_enabled = true;
  2869. if (intel_irqs_enabled(dev_priv)) {
  2870. vlv_display_irq_reset(dev_priv);
  2871. vlv_display_irq_postinstall(dev_priv);
  2872. }
  2873. }
  2874. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  2875. {
  2876. lockdep_assert_held(&dev_priv->irq_lock);
  2877. if (!dev_priv->display_irqs_enabled)
  2878. return;
  2879. dev_priv->display_irqs_enabled = false;
  2880. if (intel_irqs_enabled(dev_priv))
  2881. vlv_display_irq_reset(dev_priv);
  2882. }
  2883. static int valleyview_irq_postinstall(struct drm_device *dev)
  2884. {
  2885. struct drm_i915_private *dev_priv = to_i915(dev);
  2886. gen5_gt_irq_postinstall(dev);
  2887. spin_lock_irq(&dev_priv->irq_lock);
  2888. if (dev_priv->display_irqs_enabled)
  2889. vlv_display_irq_postinstall(dev_priv);
  2890. spin_unlock_irq(&dev_priv->irq_lock);
  2891. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  2892. POSTING_READ(VLV_MASTER_IER);
  2893. return 0;
  2894. }
  2895. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  2896. {
  2897. /* These are interrupts we'll toggle with the ring mask register */
  2898. uint32_t gt_interrupts[] = {
  2899. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2900. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2901. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  2902. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  2903. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2904. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2905. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  2906. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  2907. 0,
  2908. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  2909. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  2910. };
  2911. if (HAS_L3_DPF(dev_priv))
  2912. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2913. dev_priv->pm_ier = 0x0;
  2914. dev_priv->pm_imr = ~dev_priv->pm_ier;
  2915. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  2916. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  2917. /*
  2918. * RPS interrupts will get enabled/disabled on demand when RPS itself
  2919. * is enabled/disabled. Same wil be the case for GuC interrupts.
  2920. */
  2921. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
  2922. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  2923. }
  2924. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  2925. {
  2926. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  2927. uint32_t de_pipe_enables;
  2928. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  2929. u32 de_port_enables;
  2930. u32 de_misc_masked = GEN8_DE_MISC_GSE;
  2931. enum pipe pipe;
  2932. if (INTEL_GEN(dev_priv) >= 9) {
  2933. de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2934. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  2935. GEN9_AUX_CHANNEL_D;
  2936. if (IS_GEN9_LP(dev_priv))
  2937. de_port_masked |= BXT_DE_PORT_GMBUS;
  2938. } else {
  2939. de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2940. }
  2941. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  2942. GEN8_PIPE_FIFO_UNDERRUN;
  2943. de_port_enables = de_port_masked;
  2944. if (IS_GEN9_LP(dev_priv))
  2945. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  2946. else if (IS_BROADWELL(dev_priv))
  2947. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  2948. for_each_pipe(dev_priv, pipe) {
  2949. dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
  2950. if (intel_display_power_is_enabled(dev_priv,
  2951. POWER_DOMAIN_PIPE(pipe)))
  2952. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2953. dev_priv->de_irq_mask[pipe],
  2954. de_pipe_enables);
  2955. }
  2956. GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  2957. GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
  2958. if (IS_GEN9_LP(dev_priv))
  2959. bxt_hpd_detection_setup(dev_priv);
  2960. else if (IS_BROADWELL(dev_priv))
  2961. ilk_hpd_detection_setup(dev_priv);
  2962. }
  2963. static int gen8_irq_postinstall(struct drm_device *dev)
  2964. {
  2965. struct drm_i915_private *dev_priv = to_i915(dev);
  2966. if (HAS_PCH_SPLIT(dev_priv))
  2967. ibx_irq_pre_postinstall(dev);
  2968. gen8_gt_irq_postinstall(dev_priv);
  2969. gen8_de_irq_postinstall(dev_priv);
  2970. if (HAS_PCH_SPLIT(dev_priv))
  2971. ibx_irq_postinstall(dev);
  2972. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2973. POSTING_READ(GEN8_MASTER_IRQ);
  2974. return 0;
  2975. }
  2976. static int cherryview_irq_postinstall(struct drm_device *dev)
  2977. {
  2978. struct drm_i915_private *dev_priv = to_i915(dev);
  2979. gen8_gt_irq_postinstall(dev_priv);
  2980. spin_lock_irq(&dev_priv->irq_lock);
  2981. if (dev_priv->display_irqs_enabled)
  2982. vlv_display_irq_postinstall(dev_priv);
  2983. spin_unlock_irq(&dev_priv->irq_lock);
  2984. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2985. POSTING_READ(GEN8_MASTER_IRQ);
  2986. return 0;
  2987. }
  2988. static void i8xx_irq_reset(struct drm_device *dev)
  2989. {
  2990. struct drm_i915_private *dev_priv = to_i915(dev);
  2991. i9xx_pipestat_irq_reset(dev_priv);
  2992. I915_WRITE16(HWSTAM, 0xffff);
  2993. GEN2_IRQ_RESET();
  2994. }
  2995. static int i8xx_irq_postinstall(struct drm_device *dev)
  2996. {
  2997. struct drm_i915_private *dev_priv = to_i915(dev);
  2998. u16 enable_mask;
  2999. I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
  3000. I915_ERROR_MEMORY_REFRESH));
  3001. /* Unmask the interrupts that we always want on. */
  3002. dev_priv->irq_mask =
  3003. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3004. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3005. enable_mask =
  3006. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3007. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3008. I915_USER_INTERRUPT;
  3009. GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3010. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3011. * just to make the assert_spin_locked check happy. */
  3012. spin_lock_irq(&dev_priv->irq_lock);
  3013. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3014. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3015. spin_unlock_irq(&dev_priv->irq_lock);
  3016. return 0;
  3017. }
  3018. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3019. {
  3020. struct drm_device *dev = arg;
  3021. struct drm_i915_private *dev_priv = to_i915(dev);
  3022. irqreturn_t ret = IRQ_NONE;
  3023. if (!intel_irqs_enabled(dev_priv))
  3024. return IRQ_NONE;
  3025. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3026. disable_rpm_wakeref_asserts(dev_priv);
  3027. do {
  3028. u32 pipe_stats[I915_MAX_PIPES] = {};
  3029. u16 iir;
  3030. iir = I915_READ16(IIR);
  3031. if (iir == 0)
  3032. break;
  3033. ret = IRQ_HANDLED;
  3034. /* Call regardless, as some status bits might not be
  3035. * signalled in iir */
  3036. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3037. I915_WRITE16(IIR, iir);
  3038. if (iir & I915_USER_INTERRUPT)
  3039. notify_ring(dev_priv->engine[RCS]);
  3040. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3041. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3042. i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3043. } while (0);
  3044. enable_rpm_wakeref_asserts(dev_priv);
  3045. return ret;
  3046. }
  3047. static void i915_irq_reset(struct drm_device *dev)
  3048. {
  3049. struct drm_i915_private *dev_priv = to_i915(dev);
  3050. if (I915_HAS_HOTPLUG(dev_priv)) {
  3051. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3052. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3053. }
  3054. i9xx_pipestat_irq_reset(dev_priv);
  3055. I915_WRITE(HWSTAM, 0xffffffff);
  3056. GEN3_IRQ_RESET();
  3057. }
  3058. static int i915_irq_postinstall(struct drm_device *dev)
  3059. {
  3060. struct drm_i915_private *dev_priv = to_i915(dev);
  3061. u32 enable_mask;
  3062. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
  3063. I915_ERROR_MEMORY_REFRESH));
  3064. /* Unmask the interrupts that we always want on. */
  3065. dev_priv->irq_mask =
  3066. ~(I915_ASLE_INTERRUPT |
  3067. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3068. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3069. enable_mask =
  3070. I915_ASLE_INTERRUPT |
  3071. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3072. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3073. I915_USER_INTERRUPT;
  3074. if (I915_HAS_HOTPLUG(dev_priv)) {
  3075. /* Enable in IER... */
  3076. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3077. /* and unmask in IMR */
  3078. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3079. }
  3080. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3081. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3082. * just to make the assert_spin_locked check happy. */
  3083. spin_lock_irq(&dev_priv->irq_lock);
  3084. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3085. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3086. spin_unlock_irq(&dev_priv->irq_lock);
  3087. i915_enable_asle_pipestat(dev_priv);
  3088. return 0;
  3089. }
  3090. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3091. {
  3092. struct drm_device *dev = arg;
  3093. struct drm_i915_private *dev_priv = to_i915(dev);
  3094. irqreturn_t ret = IRQ_NONE;
  3095. if (!intel_irqs_enabled(dev_priv))
  3096. return IRQ_NONE;
  3097. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3098. disable_rpm_wakeref_asserts(dev_priv);
  3099. do {
  3100. u32 pipe_stats[I915_MAX_PIPES] = {};
  3101. u32 hotplug_status = 0;
  3102. u32 iir;
  3103. iir = I915_READ(IIR);
  3104. if (iir == 0)
  3105. break;
  3106. ret = IRQ_HANDLED;
  3107. if (I915_HAS_HOTPLUG(dev_priv) &&
  3108. iir & I915_DISPLAY_PORT_INTERRUPT)
  3109. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3110. /* Call regardless, as some status bits might not be
  3111. * signalled in iir */
  3112. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3113. I915_WRITE(IIR, iir);
  3114. if (iir & I915_USER_INTERRUPT)
  3115. notify_ring(dev_priv->engine[RCS]);
  3116. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3117. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3118. if (hotplug_status)
  3119. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3120. i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3121. } while (0);
  3122. enable_rpm_wakeref_asserts(dev_priv);
  3123. return ret;
  3124. }
  3125. static void i965_irq_reset(struct drm_device *dev)
  3126. {
  3127. struct drm_i915_private *dev_priv = to_i915(dev);
  3128. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3129. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3130. i9xx_pipestat_irq_reset(dev_priv);
  3131. I915_WRITE(HWSTAM, 0xffffffff);
  3132. GEN3_IRQ_RESET();
  3133. }
  3134. static int i965_irq_postinstall(struct drm_device *dev)
  3135. {
  3136. struct drm_i915_private *dev_priv = to_i915(dev);
  3137. u32 enable_mask;
  3138. u32 error_mask;
  3139. /*
  3140. * Enable some error detection, note the instruction error mask
  3141. * bit is reserved, so we leave it masked.
  3142. */
  3143. if (IS_G4X(dev_priv)) {
  3144. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3145. GM45_ERROR_MEM_PRIV |
  3146. GM45_ERROR_CP_PRIV |
  3147. I915_ERROR_MEMORY_REFRESH);
  3148. } else {
  3149. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3150. I915_ERROR_MEMORY_REFRESH);
  3151. }
  3152. I915_WRITE(EMR, error_mask);
  3153. /* Unmask the interrupts that we always want on. */
  3154. dev_priv->irq_mask =
  3155. ~(I915_ASLE_INTERRUPT |
  3156. I915_DISPLAY_PORT_INTERRUPT |
  3157. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3158. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3159. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3160. enable_mask =
  3161. I915_ASLE_INTERRUPT |
  3162. I915_DISPLAY_PORT_INTERRUPT |
  3163. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3164. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3165. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
  3166. I915_USER_INTERRUPT;
  3167. if (IS_G4X(dev_priv))
  3168. enable_mask |= I915_BSD_USER_INTERRUPT;
  3169. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3170. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3171. * just to make the assert_spin_locked check happy. */
  3172. spin_lock_irq(&dev_priv->irq_lock);
  3173. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3174. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3175. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3176. spin_unlock_irq(&dev_priv->irq_lock);
  3177. i915_enable_asle_pipestat(dev_priv);
  3178. return 0;
  3179. }
  3180. static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
  3181. {
  3182. u32 hotplug_en;
  3183. lockdep_assert_held(&dev_priv->irq_lock);
  3184. /* Note HDMI and DP share hotplug bits */
  3185. /* enable bits are the same for all generations */
  3186. hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
  3187. /* Programming the CRT detection parameters tends
  3188. to generate a spurious hotplug event about three
  3189. seconds later. So just do it once.
  3190. */
  3191. if (IS_G4X(dev_priv))
  3192. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3193. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3194. /* Ignore TV since it's buggy */
  3195. i915_hotplug_interrupt_update_locked(dev_priv,
  3196. HOTPLUG_INT_EN_MASK |
  3197. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3198. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3199. hotplug_en);
  3200. }
  3201. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3202. {
  3203. struct drm_device *dev = arg;
  3204. struct drm_i915_private *dev_priv = to_i915(dev);
  3205. irqreturn_t ret = IRQ_NONE;
  3206. if (!intel_irqs_enabled(dev_priv))
  3207. return IRQ_NONE;
  3208. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3209. disable_rpm_wakeref_asserts(dev_priv);
  3210. do {
  3211. u32 pipe_stats[I915_MAX_PIPES] = {};
  3212. u32 hotplug_status = 0;
  3213. u32 iir;
  3214. iir = I915_READ(IIR);
  3215. if (iir == 0)
  3216. break;
  3217. ret = IRQ_HANDLED;
  3218. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3219. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3220. /* Call regardless, as some status bits might not be
  3221. * signalled in iir */
  3222. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3223. I915_WRITE(IIR, iir);
  3224. if (iir & I915_USER_INTERRUPT)
  3225. notify_ring(dev_priv->engine[RCS]);
  3226. if (iir & I915_BSD_USER_INTERRUPT)
  3227. notify_ring(dev_priv->engine[VCS]);
  3228. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3229. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3230. if (hotplug_status)
  3231. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3232. i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3233. } while (0);
  3234. enable_rpm_wakeref_asserts(dev_priv);
  3235. return ret;
  3236. }
  3237. /**
  3238. * intel_irq_init - initializes irq support
  3239. * @dev_priv: i915 device instance
  3240. *
  3241. * This function initializes all the irq support including work items, timers
  3242. * and all the vtables. It does not setup the interrupt itself though.
  3243. */
  3244. void intel_irq_init(struct drm_i915_private *dev_priv)
  3245. {
  3246. struct drm_device *dev = &dev_priv->drm;
  3247. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3248. int i;
  3249. intel_hpd_init_work(dev_priv);
  3250. INIT_WORK(&rps->work, gen6_pm_rps_work);
  3251. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3252. for (i = 0; i < MAX_L3_SLICES; ++i)
  3253. dev_priv->l3_parity.remap_info[i] = NULL;
  3254. if (HAS_GUC_SCHED(dev_priv))
  3255. dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
  3256. /* Let's track the enabled rps events */
  3257. if (IS_VALLEYVIEW(dev_priv))
  3258. /* WaGsvRC0ResidencyMethod:vlv */
  3259. dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
  3260. else
  3261. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3262. rps->pm_intrmsk_mbz = 0;
  3263. /*
  3264. * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
  3265. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3266. *
  3267. * TODO: verify if this can be reproduced on VLV,CHV.
  3268. */
  3269. if (INTEL_GEN(dev_priv) <= 7)
  3270. rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
  3271. if (INTEL_GEN(dev_priv) >= 8)
  3272. rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
  3273. if (IS_GEN2(dev_priv)) {
  3274. /* Gen2 doesn't have a hardware frame counter */
  3275. dev->max_vblank_count = 0;
  3276. } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  3277. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3278. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3279. } else {
  3280. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3281. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3282. }
  3283. /*
  3284. * Opt out of the vblank disable timer on everything except gen2.
  3285. * Gen2 doesn't have a hardware frame counter and so depends on
  3286. * vblank interrupts to produce sane vblank seuquence numbers.
  3287. */
  3288. if (!IS_GEN2(dev_priv))
  3289. dev->vblank_disable_immediate = true;
  3290. /* Most platforms treat the display irq block as an always-on
  3291. * power domain. vlv/chv can disable it at runtime and need
  3292. * special care to avoid writing any of the display block registers
  3293. * outside of the power domain. We defer setting up the display irqs
  3294. * in this case to the runtime pm.
  3295. */
  3296. dev_priv->display_irqs_enabled = true;
  3297. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3298. dev_priv->display_irqs_enabled = false;
  3299. dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3300. dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
  3301. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3302. if (IS_CHERRYVIEW(dev_priv)) {
  3303. dev->driver->irq_handler = cherryview_irq_handler;
  3304. dev->driver->irq_preinstall = cherryview_irq_reset;
  3305. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3306. dev->driver->irq_uninstall = cherryview_irq_reset;
  3307. dev->driver->enable_vblank = i965_enable_vblank;
  3308. dev->driver->disable_vblank = i965_disable_vblank;
  3309. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3310. } else if (IS_VALLEYVIEW(dev_priv)) {
  3311. dev->driver->irq_handler = valleyview_irq_handler;
  3312. dev->driver->irq_preinstall = valleyview_irq_reset;
  3313. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3314. dev->driver->irq_uninstall = valleyview_irq_reset;
  3315. dev->driver->enable_vblank = i965_enable_vblank;
  3316. dev->driver->disable_vblank = i965_disable_vblank;
  3317. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3318. } else if (INTEL_GEN(dev_priv) >= 8) {
  3319. dev->driver->irq_handler = gen8_irq_handler;
  3320. dev->driver->irq_preinstall = gen8_irq_reset;
  3321. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3322. dev->driver->irq_uninstall = gen8_irq_reset;
  3323. dev->driver->enable_vblank = gen8_enable_vblank;
  3324. dev->driver->disable_vblank = gen8_disable_vblank;
  3325. if (IS_GEN9_LP(dev_priv))
  3326. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3327. else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  3328. HAS_PCH_CNP(dev_priv))
  3329. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3330. else
  3331. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3332. } else if (HAS_PCH_SPLIT(dev_priv)) {
  3333. dev->driver->irq_handler = ironlake_irq_handler;
  3334. dev->driver->irq_preinstall = ironlake_irq_reset;
  3335. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3336. dev->driver->irq_uninstall = ironlake_irq_reset;
  3337. dev->driver->enable_vblank = ironlake_enable_vblank;
  3338. dev->driver->disable_vblank = ironlake_disable_vblank;
  3339. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3340. } else {
  3341. if (IS_GEN2(dev_priv)) {
  3342. dev->driver->irq_preinstall = i8xx_irq_reset;
  3343. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3344. dev->driver->irq_handler = i8xx_irq_handler;
  3345. dev->driver->irq_uninstall = i8xx_irq_reset;
  3346. dev->driver->enable_vblank = i8xx_enable_vblank;
  3347. dev->driver->disable_vblank = i8xx_disable_vblank;
  3348. } else if (IS_GEN3(dev_priv)) {
  3349. dev->driver->irq_preinstall = i915_irq_reset;
  3350. dev->driver->irq_postinstall = i915_irq_postinstall;
  3351. dev->driver->irq_uninstall = i915_irq_reset;
  3352. dev->driver->irq_handler = i915_irq_handler;
  3353. dev->driver->enable_vblank = i8xx_enable_vblank;
  3354. dev->driver->disable_vblank = i8xx_disable_vblank;
  3355. } else {
  3356. dev->driver->irq_preinstall = i965_irq_reset;
  3357. dev->driver->irq_postinstall = i965_irq_postinstall;
  3358. dev->driver->irq_uninstall = i965_irq_reset;
  3359. dev->driver->irq_handler = i965_irq_handler;
  3360. dev->driver->enable_vblank = i965_enable_vblank;
  3361. dev->driver->disable_vblank = i965_disable_vblank;
  3362. }
  3363. if (I915_HAS_HOTPLUG(dev_priv))
  3364. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3365. }
  3366. }
  3367. /**
  3368. * intel_irq_fini - deinitializes IRQ support
  3369. * @i915: i915 device instance
  3370. *
  3371. * This function deinitializes all the IRQ support.
  3372. */
  3373. void intel_irq_fini(struct drm_i915_private *i915)
  3374. {
  3375. int i;
  3376. for (i = 0; i < MAX_L3_SLICES; ++i)
  3377. kfree(i915->l3_parity.remap_info[i]);
  3378. }
  3379. /**
  3380. * intel_irq_install - enables the hardware interrupt
  3381. * @dev_priv: i915 device instance
  3382. *
  3383. * This function enables the hardware interrupt handling, but leaves the hotplug
  3384. * handling still disabled. It is called after intel_irq_init().
  3385. *
  3386. * In the driver load and resume code we need working interrupts in a few places
  3387. * but don't want to deal with the hassle of concurrent probe and hotplug
  3388. * workers. Hence the split into this two-stage approach.
  3389. */
  3390. int intel_irq_install(struct drm_i915_private *dev_priv)
  3391. {
  3392. /*
  3393. * We enable some interrupt sources in our postinstall hooks, so mark
  3394. * interrupts as enabled _before_ actually enabling them to avoid
  3395. * special cases in our ordering checks.
  3396. */
  3397. dev_priv->runtime_pm.irqs_enabled = true;
  3398. return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
  3399. }
  3400. /**
  3401. * intel_irq_uninstall - finilizes all irq handling
  3402. * @dev_priv: i915 device instance
  3403. *
  3404. * This stops interrupt and hotplug handling and unregisters and frees all
  3405. * resources acquired in the init functions.
  3406. */
  3407. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3408. {
  3409. drm_irq_uninstall(&dev_priv->drm);
  3410. intel_hpd_cancel_work(dev_priv);
  3411. dev_priv->runtime_pm.irqs_enabled = false;
  3412. }
  3413. /**
  3414. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3415. * @dev_priv: i915 device instance
  3416. *
  3417. * This function is used to disable interrupts at runtime, both in the runtime
  3418. * pm and the system suspend/resume code.
  3419. */
  3420. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3421. {
  3422. dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
  3423. dev_priv->runtime_pm.irqs_enabled = false;
  3424. synchronize_irq(dev_priv->drm.irq);
  3425. }
  3426. /**
  3427. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3428. * @dev_priv: i915 device instance
  3429. *
  3430. * This function is used to enable interrupts at runtime, both in the runtime
  3431. * pm and the system suspend/resume code.
  3432. */
  3433. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3434. {
  3435. dev_priv->runtime_pm.irqs_enabled = true;
  3436. dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
  3437. dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
  3438. }