i915_debugfs.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include <linux/sched/mm.h>
  31. #include "intel_drv.h"
  32. #include "intel_guc_submission.h"
  33. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  34. {
  35. return to_i915(node->minor->dev);
  36. }
  37. static int i915_capabilities(struct seq_file *m, void *data)
  38. {
  39. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  40. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  41. struct drm_printer p = drm_seq_file_printer(m);
  42. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  43. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  44. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  45. intel_device_info_dump_flags(info, &p);
  46. kernel_param_lock(THIS_MODULE);
  47. i915_params_dump(&i915_modparams, &p);
  48. kernel_param_unlock(THIS_MODULE);
  49. return 0;
  50. }
  51. static char get_active_flag(struct drm_i915_gem_object *obj)
  52. {
  53. return i915_gem_object_is_active(obj) ? '*' : ' ';
  54. }
  55. static char get_pin_flag(struct drm_i915_gem_object *obj)
  56. {
  57. return obj->pin_global ? 'p' : ' ';
  58. }
  59. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  60. {
  61. switch (i915_gem_object_get_tiling(obj)) {
  62. default:
  63. case I915_TILING_NONE: return ' ';
  64. case I915_TILING_X: return 'X';
  65. case I915_TILING_Y: return 'Y';
  66. }
  67. }
  68. static char get_global_flag(struct drm_i915_gem_object *obj)
  69. {
  70. return obj->userfault_count ? 'g' : ' ';
  71. }
  72. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  73. {
  74. return obj->mm.mapping ? 'M' : ' ';
  75. }
  76. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  77. {
  78. u64 size = 0;
  79. struct i915_vma *vma;
  80. for_each_ggtt_vma(vma, obj) {
  81. if (drm_mm_node_allocated(&vma->node))
  82. size += vma->node.size;
  83. }
  84. return size;
  85. }
  86. static const char *
  87. stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
  88. {
  89. size_t x = 0;
  90. switch (page_sizes) {
  91. case 0:
  92. return "";
  93. case I915_GTT_PAGE_SIZE_4K:
  94. return "4K";
  95. case I915_GTT_PAGE_SIZE_64K:
  96. return "64K";
  97. case I915_GTT_PAGE_SIZE_2M:
  98. return "2M";
  99. default:
  100. if (!buf)
  101. return "M";
  102. if (page_sizes & I915_GTT_PAGE_SIZE_2M)
  103. x += snprintf(buf + x, len - x, "2M, ");
  104. if (page_sizes & I915_GTT_PAGE_SIZE_64K)
  105. x += snprintf(buf + x, len - x, "64K, ");
  106. if (page_sizes & I915_GTT_PAGE_SIZE_4K)
  107. x += snprintf(buf + x, len - x, "4K, ");
  108. buf[x-2] = '\0';
  109. return buf;
  110. }
  111. }
  112. static void
  113. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  114. {
  115. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  116. struct intel_engine_cs *engine;
  117. struct i915_vma *vma;
  118. unsigned int frontbuffer_bits;
  119. int pin_count = 0;
  120. lockdep_assert_held(&obj->base.dev->struct_mutex);
  121. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  122. &obj->base,
  123. get_active_flag(obj),
  124. get_pin_flag(obj),
  125. get_tiling_flag(obj),
  126. get_global_flag(obj),
  127. get_pin_mapped_flag(obj),
  128. obj->base.size / 1024,
  129. obj->base.read_domains,
  130. obj->base.write_domain,
  131. i915_cache_level_str(dev_priv, obj->cache_level),
  132. obj->mm.dirty ? " dirty" : "",
  133. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  134. if (obj->base.name)
  135. seq_printf(m, " (name: %d)", obj->base.name);
  136. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  137. if (i915_vma_is_pinned(vma))
  138. pin_count++;
  139. }
  140. seq_printf(m, " (pinned x %d)", pin_count);
  141. if (obj->pin_global)
  142. seq_printf(m, " (global)");
  143. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  144. if (!drm_mm_node_allocated(&vma->node))
  145. continue;
  146. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
  147. i915_vma_is_ggtt(vma) ? "g" : "pp",
  148. vma->node.start, vma->node.size,
  149. stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
  150. if (i915_vma_is_ggtt(vma)) {
  151. switch (vma->ggtt_view.type) {
  152. case I915_GGTT_VIEW_NORMAL:
  153. seq_puts(m, ", normal");
  154. break;
  155. case I915_GGTT_VIEW_PARTIAL:
  156. seq_printf(m, ", partial [%08llx+%x]",
  157. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  158. vma->ggtt_view.partial.size << PAGE_SHIFT);
  159. break;
  160. case I915_GGTT_VIEW_ROTATED:
  161. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  162. vma->ggtt_view.rotated.plane[0].width,
  163. vma->ggtt_view.rotated.plane[0].height,
  164. vma->ggtt_view.rotated.plane[0].stride,
  165. vma->ggtt_view.rotated.plane[0].offset,
  166. vma->ggtt_view.rotated.plane[1].width,
  167. vma->ggtt_view.rotated.plane[1].height,
  168. vma->ggtt_view.rotated.plane[1].stride,
  169. vma->ggtt_view.rotated.plane[1].offset);
  170. break;
  171. default:
  172. MISSING_CASE(vma->ggtt_view.type);
  173. break;
  174. }
  175. }
  176. if (vma->fence)
  177. seq_printf(m, " , fence: %d%s",
  178. vma->fence->id,
  179. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  180. seq_puts(m, ")");
  181. }
  182. if (obj->stolen)
  183. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  184. engine = i915_gem_object_last_write_engine(obj);
  185. if (engine)
  186. seq_printf(m, " (%s)", engine->name);
  187. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  188. if (frontbuffer_bits)
  189. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  190. }
  191. static int obj_rank_by_stolen(const void *A, const void *B)
  192. {
  193. const struct drm_i915_gem_object *a =
  194. *(const struct drm_i915_gem_object **)A;
  195. const struct drm_i915_gem_object *b =
  196. *(const struct drm_i915_gem_object **)B;
  197. if (a->stolen->start < b->stolen->start)
  198. return -1;
  199. if (a->stolen->start > b->stolen->start)
  200. return 1;
  201. return 0;
  202. }
  203. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  204. {
  205. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  206. struct drm_device *dev = &dev_priv->drm;
  207. struct drm_i915_gem_object **objects;
  208. struct drm_i915_gem_object *obj;
  209. u64 total_obj_size, total_gtt_size;
  210. unsigned long total, count, n;
  211. int ret;
  212. total = READ_ONCE(dev_priv->mm.object_count);
  213. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  214. if (!objects)
  215. return -ENOMEM;
  216. ret = mutex_lock_interruptible(&dev->struct_mutex);
  217. if (ret)
  218. goto out;
  219. total_obj_size = total_gtt_size = count = 0;
  220. spin_lock(&dev_priv->mm.obj_lock);
  221. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  222. if (count == total)
  223. break;
  224. if (obj->stolen == NULL)
  225. continue;
  226. objects[count++] = obj;
  227. total_obj_size += obj->base.size;
  228. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  229. }
  230. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  231. if (count == total)
  232. break;
  233. if (obj->stolen == NULL)
  234. continue;
  235. objects[count++] = obj;
  236. total_obj_size += obj->base.size;
  237. }
  238. spin_unlock(&dev_priv->mm.obj_lock);
  239. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  240. seq_puts(m, "Stolen:\n");
  241. for (n = 0; n < count; n++) {
  242. seq_puts(m, " ");
  243. describe_obj(m, objects[n]);
  244. seq_putc(m, '\n');
  245. }
  246. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  247. count, total_obj_size, total_gtt_size);
  248. mutex_unlock(&dev->struct_mutex);
  249. out:
  250. kvfree(objects);
  251. return ret;
  252. }
  253. struct file_stats {
  254. struct drm_i915_file_private *file_priv;
  255. unsigned long count;
  256. u64 total, unbound;
  257. u64 global, shared;
  258. u64 active, inactive;
  259. };
  260. static int per_file_stats(int id, void *ptr, void *data)
  261. {
  262. struct drm_i915_gem_object *obj = ptr;
  263. struct file_stats *stats = data;
  264. struct i915_vma *vma;
  265. lockdep_assert_held(&obj->base.dev->struct_mutex);
  266. stats->count++;
  267. stats->total += obj->base.size;
  268. if (!obj->bind_count)
  269. stats->unbound += obj->base.size;
  270. if (obj->base.name || obj->base.dma_buf)
  271. stats->shared += obj->base.size;
  272. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  273. if (!drm_mm_node_allocated(&vma->node))
  274. continue;
  275. if (i915_vma_is_ggtt(vma)) {
  276. stats->global += vma->node.size;
  277. } else {
  278. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  279. if (ppgtt->base.file != stats->file_priv)
  280. continue;
  281. }
  282. if (i915_vma_is_active(vma))
  283. stats->active += vma->node.size;
  284. else
  285. stats->inactive += vma->node.size;
  286. }
  287. return 0;
  288. }
  289. #define print_file_stats(m, name, stats) do { \
  290. if (stats.count) \
  291. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  292. name, \
  293. stats.count, \
  294. stats.total, \
  295. stats.active, \
  296. stats.inactive, \
  297. stats.global, \
  298. stats.shared, \
  299. stats.unbound); \
  300. } while (0)
  301. static void print_batch_pool_stats(struct seq_file *m,
  302. struct drm_i915_private *dev_priv)
  303. {
  304. struct drm_i915_gem_object *obj;
  305. struct file_stats stats;
  306. struct intel_engine_cs *engine;
  307. enum intel_engine_id id;
  308. int j;
  309. memset(&stats, 0, sizeof(stats));
  310. for_each_engine(engine, dev_priv, id) {
  311. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  312. list_for_each_entry(obj,
  313. &engine->batch_pool.cache_list[j],
  314. batch_pool_link)
  315. per_file_stats(0, obj, &stats);
  316. }
  317. }
  318. print_file_stats(m, "[k]batch pool", stats);
  319. }
  320. static int per_file_ctx_stats(int id, void *ptr, void *data)
  321. {
  322. struct i915_gem_context *ctx = ptr;
  323. int n;
  324. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  325. if (ctx->engine[n].state)
  326. per_file_stats(0, ctx->engine[n].state->obj, data);
  327. if (ctx->engine[n].ring)
  328. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  329. }
  330. return 0;
  331. }
  332. static void print_context_stats(struct seq_file *m,
  333. struct drm_i915_private *dev_priv)
  334. {
  335. struct drm_device *dev = &dev_priv->drm;
  336. struct file_stats stats;
  337. struct drm_file *file;
  338. memset(&stats, 0, sizeof(stats));
  339. mutex_lock(&dev->struct_mutex);
  340. if (dev_priv->kernel_context)
  341. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  342. list_for_each_entry(file, &dev->filelist, lhead) {
  343. struct drm_i915_file_private *fpriv = file->driver_priv;
  344. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  345. }
  346. mutex_unlock(&dev->struct_mutex);
  347. print_file_stats(m, "[k]contexts", stats);
  348. }
  349. static int i915_gem_object_info(struct seq_file *m, void *data)
  350. {
  351. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  352. struct drm_device *dev = &dev_priv->drm;
  353. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  354. u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
  355. u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
  356. struct drm_i915_gem_object *obj;
  357. unsigned int page_sizes = 0;
  358. struct drm_file *file;
  359. char buf[80];
  360. int ret;
  361. ret = mutex_lock_interruptible(&dev->struct_mutex);
  362. if (ret)
  363. return ret;
  364. seq_printf(m, "%u objects, %llu bytes\n",
  365. dev_priv->mm.object_count,
  366. dev_priv->mm.object_memory);
  367. size = count = 0;
  368. mapped_size = mapped_count = 0;
  369. purgeable_size = purgeable_count = 0;
  370. huge_size = huge_count = 0;
  371. spin_lock(&dev_priv->mm.obj_lock);
  372. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  373. size += obj->base.size;
  374. ++count;
  375. if (obj->mm.madv == I915_MADV_DONTNEED) {
  376. purgeable_size += obj->base.size;
  377. ++purgeable_count;
  378. }
  379. if (obj->mm.mapping) {
  380. mapped_count++;
  381. mapped_size += obj->base.size;
  382. }
  383. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  384. huge_count++;
  385. huge_size += obj->base.size;
  386. page_sizes |= obj->mm.page_sizes.sg;
  387. }
  388. }
  389. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  390. size = count = dpy_size = dpy_count = 0;
  391. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  392. size += obj->base.size;
  393. ++count;
  394. if (obj->pin_global) {
  395. dpy_size += obj->base.size;
  396. ++dpy_count;
  397. }
  398. if (obj->mm.madv == I915_MADV_DONTNEED) {
  399. purgeable_size += obj->base.size;
  400. ++purgeable_count;
  401. }
  402. if (obj->mm.mapping) {
  403. mapped_count++;
  404. mapped_size += obj->base.size;
  405. }
  406. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  407. huge_count++;
  408. huge_size += obj->base.size;
  409. page_sizes |= obj->mm.page_sizes.sg;
  410. }
  411. }
  412. spin_unlock(&dev_priv->mm.obj_lock);
  413. seq_printf(m, "%u bound objects, %llu bytes\n",
  414. count, size);
  415. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  416. purgeable_count, purgeable_size);
  417. seq_printf(m, "%u mapped objects, %llu bytes\n",
  418. mapped_count, mapped_size);
  419. seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
  420. huge_count,
  421. stringify_page_sizes(page_sizes, buf, sizeof(buf)),
  422. huge_size);
  423. seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
  424. dpy_count, dpy_size);
  425. seq_printf(m, "%llu [%pa] gtt total\n",
  426. ggtt->base.total, &ggtt->mappable_end);
  427. seq_printf(m, "Supported page sizes: %s\n",
  428. stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
  429. buf, sizeof(buf)));
  430. seq_putc(m, '\n');
  431. print_batch_pool_stats(m, dev_priv);
  432. mutex_unlock(&dev->struct_mutex);
  433. mutex_lock(&dev->filelist_mutex);
  434. print_context_stats(m, dev_priv);
  435. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  436. struct file_stats stats;
  437. struct drm_i915_file_private *file_priv = file->driver_priv;
  438. struct drm_i915_gem_request *request;
  439. struct task_struct *task;
  440. mutex_lock(&dev->struct_mutex);
  441. memset(&stats, 0, sizeof(stats));
  442. stats.file_priv = file->driver_priv;
  443. spin_lock(&file->table_lock);
  444. idr_for_each(&file->object_idr, per_file_stats, &stats);
  445. spin_unlock(&file->table_lock);
  446. /*
  447. * Although we have a valid reference on file->pid, that does
  448. * not guarantee that the task_struct who called get_pid() is
  449. * still alive (e.g. get_pid(current) => fork() => exit()).
  450. * Therefore, we need to protect this ->comm access using RCU.
  451. */
  452. request = list_first_entry_or_null(&file_priv->mm.request_list,
  453. struct drm_i915_gem_request,
  454. client_link);
  455. rcu_read_lock();
  456. task = pid_task(request && request->ctx->pid ?
  457. request->ctx->pid : file->pid,
  458. PIDTYPE_PID);
  459. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  460. rcu_read_unlock();
  461. mutex_unlock(&dev->struct_mutex);
  462. }
  463. mutex_unlock(&dev->filelist_mutex);
  464. return 0;
  465. }
  466. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  467. {
  468. struct drm_info_node *node = m->private;
  469. struct drm_i915_private *dev_priv = node_to_i915(node);
  470. struct drm_device *dev = &dev_priv->drm;
  471. struct drm_i915_gem_object **objects;
  472. struct drm_i915_gem_object *obj;
  473. u64 total_obj_size, total_gtt_size;
  474. unsigned long nobject, n;
  475. int count, ret;
  476. nobject = READ_ONCE(dev_priv->mm.object_count);
  477. objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
  478. if (!objects)
  479. return -ENOMEM;
  480. ret = mutex_lock_interruptible(&dev->struct_mutex);
  481. if (ret)
  482. return ret;
  483. count = 0;
  484. spin_lock(&dev_priv->mm.obj_lock);
  485. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  486. objects[count++] = obj;
  487. if (count == nobject)
  488. break;
  489. }
  490. spin_unlock(&dev_priv->mm.obj_lock);
  491. total_obj_size = total_gtt_size = 0;
  492. for (n = 0; n < count; n++) {
  493. obj = objects[n];
  494. seq_puts(m, " ");
  495. describe_obj(m, obj);
  496. seq_putc(m, '\n');
  497. total_obj_size += obj->base.size;
  498. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  499. }
  500. mutex_unlock(&dev->struct_mutex);
  501. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  502. count, total_obj_size, total_gtt_size);
  503. kvfree(objects);
  504. return 0;
  505. }
  506. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  507. {
  508. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  509. struct drm_device *dev = &dev_priv->drm;
  510. struct drm_i915_gem_object *obj;
  511. struct intel_engine_cs *engine;
  512. enum intel_engine_id id;
  513. int total = 0;
  514. int ret, j;
  515. ret = mutex_lock_interruptible(&dev->struct_mutex);
  516. if (ret)
  517. return ret;
  518. for_each_engine(engine, dev_priv, id) {
  519. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  520. int count;
  521. count = 0;
  522. list_for_each_entry(obj,
  523. &engine->batch_pool.cache_list[j],
  524. batch_pool_link)
  525. count++;
  526. seq_printf(m, "%s cache[%d]: %d objects\n",
  527. engine->name, j, count);
  528. list_for_each_entry(obj,
  529. &engine->batch_pool.cache_list[j],
  530. batch_pool_link) {
  531. seq_puts(m, " ");
  532. describe_obj(m, obj);
  533. seq_putc(m, '\n');
  534. }
  535. total += count;
  536. }
  537. }
  538. seq_printf(m, "total: %d\n", total);
  539. mutex_unlock(&dev->struct_mutex);
  540. return 0;
  541. }
  542. static int i915_interrupt_info(struct seq_file *m, void *data)
  543. {
  544. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  545. struct intel_engine_cs *engine;
  546. enum intel_engine_id id;
  547. int i, pipe;
  548. intel_runtime_pm_get(dev_priv);
  549. if (IS_CHERRYVIEW(dev_priv)) {
  550. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  551. I915_READ(GEN8_MASTER_IRQ));
  552. seq_printf(m, "Display IER:\t%08x\n",
  553. I915_READ(VLV_IER));
  554. seq_printf(m, "Display IIR:\t%08x\n",
  555. I915_READ(VLV_IIR));
  556. seq_printf(m, "Display IIR_RW:\t%08x\n",
  557. I915_READ(VLV_IIR_RW));
  558. seq_printf(m, "Display IMR:\t%08x\n",
  559. I915_READ(VLV_IMR));
  560. for_each_pipe(dev_priv, pipe) {
  561. enum intel_display_power_domain power_domain;
  562. power_domain = POWER_DOMAIN_PIPE(pipe);
  563. if (!intel_display_power_get_if_enabled(dev_priv,
  564. power_domain)) {
  565. seq_printf(m, "Pipe %c power disabled\n",
  566. pipe_name(pipe));
  567. continue;
  568. }
  569. seq_printf(m, "Pipe %c stat:\t%08x\n",
  570. pipe_name(pipe),
  571. I915_READ(PIPESTAT(pipe)));
  572. intel_display_power_put(dev_priv, power_domain);
  573. }
  574. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  575. seq_printf(m, "Port hotplug:\t%08x\n",
  576. I915_READ(PORT_HOTPLUG_EN));
  577. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  578. I915_READ(VLV_DPFLIPSTAT));
  579. seq_printf(m, "DPINVGTT:\t%08x\n",
  580. I915_READ(DPINVGTT));
  581. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  582. for (i = 0; i < 4; i++) {
  583. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  584. i, I915_READ(GEN8_GT_IMR(i)));
  585. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  586. i, I915_READ(GEN8_GT_IIR(i)));
  587. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  588. i, I915_READ(GEN8_GT_IER(i)));
  589. }
  590. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  591. I915_READ(GEN8_PCU_IMR));
  592. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  593. I915_READ(GEN8_PCU_IIR));
  594. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  595. I915_READ(GEN8_PCU_IER));
  596. } else if (INTEL_GEN(dev_priv) >= 8) {
  597. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  598. I915_READ(GEN8_MASTER_IRQ));
  599. for (i = 0; i < 4; i++) {
  600. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  601. i, I915_READ(GEN8_GT_IMR(i)));
  602. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  603. i, I915_READ(GEN8_GT_IIR(i)));
  604. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  605. i, I915_READ(GEN8_GT_IER(i)));
  606. }
  607. for_each_pipe(dev_priv, pipe) {
  608. enum intel_display_power_domain power_domain;
  609. power_domain = POWER_DOMAIN_PIPE(pipe);
  610. if (!intel_display_power_get_if_enabled(dev_priv,
  611. power_domain)) {
  612. seq_printf(m, "Pipe %c power disabled\n",
  613. pipe_name(pipe));
  614. continue;
  615. }
  616. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  617. pipe_name(pipe),
  618. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  619. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  620. pipe_name(pipe),
  621. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  622. seq_printf(m, "Pipe %c IER:\t%08x\n",
  623. pipe_name(pipe),
  624. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  625. intel_display_power_put(dev_priv, power_domain);
  626. }
  627. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  628. I915_READ(GEN8_DE_PORT_IMR));
  629. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  630. I915_READ(GEN8_DE_PORT_IIR));
  631. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  632. I915_READ(GEN8_DE_PORT_IER));
  633. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  634. I915_READ(GEN8_DE_MISC_IMR));
  635. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  636. I915_READ(GEN8_DE_MISC_IIR));
  637. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  638. I915_READ(GEN8_DE_MISC_IER));
  639. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  640. I915_READ(GEN8_PCU_IMR));
  641. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  642. I915_READ(GEN8_PCU_IIR));
  643. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  644. I915_READ(GEN8_PCU_IER));
  645. } else if (IS_VALLEYVIEW(dev_priv)) {
  646. seq_printf(m, "Display IER:\t%08x\n",
  647. I915_READ(VLV_IER));
  648. seq_printf(m, "Display IIR:\t%08x\n",
  649. I915_READ(VLV_IIR));
  650. seq_printf(m, "Display IIR_RW:\t%08x\n",
  651. I915_READ(VLV_IIR_RW));
  652. seq_printf(m, "Display IMR:\t%08x\n",
  653. I915_READ(VLV_IMR));
  654. for_each_pipe(dev_priv, pipe) {
  655. enum intel_display_power_domain power_domain;
  656. power_domain = POWER_DOMAIN_PIPE(pipe);
  657. if (!intel_display_power_get_if_enabled(dev_priv,
  658. power_domain)) {
  659. seq_printf(m, "Pipe %c power disabled\n",
  660. pipe_name(pipe));
  661. continue;
  662. }
  663. seq_printf(m, "Pipe %c stat:\t%08x\n",
  664. pipe_name(pipe),
  665. I915_READ(PIPESTAT(pipe)));
  666. intel_display_power_put(dev_priv, power_domain);
  667. }
  668. seq_printf(m, "Master IER:\t%08x\n",
  669. I915_READ(VLV_MASTER_IER));
  670. seq_printf(m, "Render IER:\t%08x\n",
  671. I915_READ(GTIER));
  672. seq_printf(m, "Render IIR:\t%08x\n",
  673. I915_READ(GTIIR));
  674. seq_printf(m, "Render IMR:\t%08x\n",
  675. I915_READ(GTIMR));
  676. seq_printf(m, "PM IER:\t\t%08x\n",
  677. I915_READ(GEN6_PMIER));
  678. seq_printf(m, "PM IIR:\t\t%08x\n",
  679. I915_READ(GEN6_PMIIR));
  680. seq_printf(m, "PM IMR:\t\t%08x\n",
  681. I915_READ(GEN6_PMIMR));
  682. seq_printf(m, "Port hotplug:\t%08x\n",
  683. I915_READ(PORT_HOTPLUG_EN));
  684. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  685. I915_READ(VLV_DPFLIPSTAT));
  686. seq_printf(m, "DPINVGTT:\t%08x\n",
  687. I915_READ(DPINVGTT));
  688. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  689. seq_printf(m, "Interrupt enable: %08x\n",
  690. I915_READ(IER));
  691. seq_printf(m, "Interrupt identity: %08x\n",
  692. I915_READ(IIR));
  693. seq_printf(m, "Interrupt mask: %08x\n",
  694. I915_READ(IMR));
  695. for_each_pipe(dev_priv, pipe)
  696. seq_printf(m, "Pipe %c stat: %08x\n",
  697. pipe_name(pipe),
  698. I915_READ(PIPESTAT(pipe)));
  699. } else {
  700. seq_printf(m, "North Display Interrupt enable: %08x\n",
  701. I915_READ(DEIER));
  702. seq_printf(m, "North Display Interrupt identity: %08x\n",
  703. I915_READ(DEIIR));
  704. seq_printf(m, "North Display Interrupt mask: %08x\n",
  705. I915_READ(DEIMR));
  706. seq_printf(m, "South Display Interrupt enable: %08x\n",
  707. I915_READ(SDEIER));
  708. seq_printf(m, "South Display Interrupt identity: %08x\n",
  709. I915_READ(SDEIIR));
  710. seq_printf(m, "South Display Interrupt mask: %08x\n",
  711. I915_READ(SDEIMR));
  712. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  713. I915_READ(GTIER));
  714. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  715. I915_READ(GTIIR));
  716. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  717. I915_READ(GTIMR));
  718. }
  719. if (INTEL_GEN(dev_priv) >= 6) {
  720. for_each_engine(engine, dev_priv, id) {
  721. seq_printf(m,
  722. "Graphics Interrupt mask (%s): %08x\n",
  723. engine->name, I915_READ_IMR(engine));
  724. }
  725. }
  726. intel_runtime_pm_put(dev_priv);
  727. return 0;
  728. }
  729. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  730. {
  731. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  732. struct drm_device *dev = &dev_priv->drm;
  733. int i, ret;
  734. ret = mutex_lock_interruptible(&dev->struct_mutex);
  735. if (ret)
  736. return ret;
  737. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  738. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  739. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  740. seq_printf(m, "Fence %d, pin count = %d, object = ",
  741. i, dev_priv->fence_regs[i].pin_count);
  742. if (!vma)
  743. seq_puts(m, "unused");
  744. else
  745. describe_obj(m, vma->obj);
  746. seq_putc(m, '\n');
  747. }
  748. mutex_unlock(&dev->struct_mutex);
  749. return 0;
  750. }
  751. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  752. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  753. size_t count, loff_t *pos)
  754. {
  755. struct i915_gpu_state *error = file->private_data;
  756. struct drm_i915_error_state_buf str;
  757. ssize_t ret;
  758. loff_t tmp;
  759. if (!error)
  760. return 0;
  761. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  762. if (ret)
  763. return ret;
  764. ret = i915_error_state_to_str(&str, error);
  765. if (ret)
  766. goto out;
  767. tmp = 0;
  768. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  769. if (ret < 0)
  770. goto out;
  771. *pos = str.start + ret;
  772. out:
  773. i915_error_state_buf_release(&str);
  774. return ret;
  775. }
  776. static int gpu_state_release(struct inode *inode, struct file *file)
  777. {
  778. i915_gpu_state_put(file->private_data);
  779. return 0;
  780. }
  781. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  782. {
  783. struct drm_i915_private *i915 = inode->i_private;
  784. struct i915_gpu_state *gpu;
  785. intel_runtime_pm_get(i915);
  786. gpu = i915_capture_gpu_state(i915);
  787. intel_runtime_pm_put(i915);
  788. if (!gpu)
  789. return -ENOMEM;
  790. file->private_data = gpu;
  791. return 0;
  792. }
  793. static const struct file_operations i915_gpu_info_fops = {
  794. .owner = THIS_MODULE,
  795. .open = i915_gpu_info_open,
  796. .read = gpu_state_read,
  797. .llseek = default_llseek,
  798. .release = gpu_state_release,
  799. };
  800. static ssize_t
  801. i915_error_state_write(struct file *filp,
  802. const char __user *ubuf,
  803. size_t cnt,
  804. loff_t *ppos)
  805. {
  806. struct i915_gpu_state *error = filp->private_data;
  807. if (!error)
  808. return 0;
  809. DRM_DEBUG_DRIVER("Resetting error state\n");
  810. i915_reset_error_state(error->i915);
  811. return cnt;
  812. }
  813. static int i915_error_state_open(struct inode *inode, struct file *file)
  814. {
  815. file->private_data = i915_first_error_state(inode->i_private);
  816. return 0;
  817. }
  818. static const struct file_operations i915_error_state_fops = {
  819. .owner = THIS_MODULE,
  820. .open = i915_error_state_open,
  821. .read = gpu_state_read,
  822. .write = i915_error_state_write,
  823. .llseek = default_llseek,
  824. .release = gpu_state_release,
  825. };
  826. #endif
  827. static int
  828. i915_next_seqno_set(void *data, u64 val)
  829. {
  830. struct drm_i915_private *dev_priv = data;
  831. struct drm_device *dev = &dev_priv->drm;
  832. int ret;
  833. ret = mutex_lock_interruptible(&dev->struct_mutex);
  834. if (ret)
  835. return ret;
  836. ret = i915_gem_set_global_seqno(dev, val);
  837. mutex_unlock(&dev->struct_mutex);
  838. return ret;
  839. }
  840. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  841. NULL, i915_next_seqno_set,
  842. "0x%llx\n");
  843. static int i915_frequency_info(struct seq_file *m, void *unused)
  844. {
  845. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  846. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  847. int ret = 0;
  848. intel_runtime_pm_get(dev_priv);
  849. if (IS_GEN5(dev_priv)) {
  850. u16 rgvswctl = I915_READ16(MEMSWCTL);
  851. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  852. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  853. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  854. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  855. MEMSTAT_VID_SHIFT);
  856. seq_printf(m, "Current P-state: %d\n",
  857. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  858. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  859. u32 rpmodectl, freq_sts;
  860. mutex_lock(&dev_priv->pcu_lock);
  861. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  862. seq_printf(m, "Video Turbo Mode: %s\n",
  863. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  864. seq_printf(m, "HW control enabled: %s\n",
  865. yesno(rpmodectl & GEN6_RP_ENABLE));
  866. seq_printf(m, "SW control enabled: %s\n",
  867. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  868. GEN6_RP_MEDIA_SW_MODE));
  869. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  870. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  871. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  872. seq_printf(m, "actual GPU freq: %d MHz\n",
  873. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  874. seq_printf(m, "current GPU freq: %d MHz\n",
  875. intel_gpu_freq(dev_priv, rps->cur_freq));
  876. seq_printf(m, "max GPU freq: %d MHz\n",
  877. intel_gpu_freq(dev_priv, rps->max_freq));
  878. seq_printf(m, "min GPU freq: %d MHz\n",
  879. intel_gpu_freq(dev_priv, rps->min_freq));
  880. seq_printf(m, "idle GPU freq: %d MHz\n",
  881. intel_gpu_freq(dev_priv, rps->idle_freq));
  882. seq_printf(m,
  883. "efficient (RPe) frequency: %d MHz\n",
  884. intel_gpu_freq(dev_priv, rps->efficient_freq));
  885. mutex_unlock(&dev_priv->pcu_lock);
  886. } else if (INTEL_GEN(dev_priv) >= 6) {
  887. u32 rp_state_limits;
  888. u32 gt_perf_status;
  889. u32 rp_state_cap;
  890. u32 rpmodectl, rpinclimit, rpdeclimit;
  891. u32 rpstat, cagf, reqf;
  892. u32 rpupei, rpcurup, rpprevup;
  893. u32 rpdownei, rpcurdown, rpprevdown;
  894. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  895. int max_freq;
  896. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  897. if (IS_GEN9_LP(dev_priv)) {
  898. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  899. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  900. } else {
  901. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  902. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  903. }
  904. /* RPSTAT1 is in the GT power well */
  905. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  906. reqf = I915_READ(GEN6_RPNSWREQ);
  907. if (INTEL_GEN(dev_priv) >= 9)
  908. reqf >>= 23;
  909. else {
  910. reqf &= ~GEN6_TURBO_DISABLE;
  911. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  912. reqf >>= 24;
  913. else
  914. reqf >>= 25;
  915. }
  916. reqf = intel_gpu_freq(dev_priv, reqf);
  917. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  918. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  919. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  920. rpstat = I915_READ(GEN6_RPSTAT1);
  921. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  922. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  923. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  924. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  925. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  926. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  927. cagf = intel_gpu_freq(dev_priv,
  928. intel_get_cagf(dev_priv, rpstat));
  929. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  930. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  931. pm_ier = I915_READ(GEN6_PMIER);
  932. pm_imr = I915_READ(GEN6_PMIMR);
  933. pm_isr = I915_READ(GEN6_PMISR);
  934. pm_iir = I915_READ(GEN6_PMIIR);
  935. pm_mask = I915_READ(GEN6_PMINTRMSK);
  936. } else {
  937. pm_ier = I915_READ(GEN8_GT_IER(2));
  938. pm_imr = I915_READ(GEN8_GT_IMR(2));
  939. pm_isr = I915_READ(GEN8_GT_ISR(2));
  940. pm_iir = I915_READ(GEN8_GT_IIR(2));
  941. pm_mask = I915_READ(GEN6_PMINTRMSK);
  942. }
  943. seq_printf(m, "Video Turbo Mode: %s\n",
  944. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  945. seq_printf(m, "HW control enabled: %s\n",
  946. yesno(rpmodectl & GEN6_RP_ENABLE));
  947. seq_printf(m, "SW control enabled: %s\n",
  948. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  949. GEN6_RP_MEDIA_SW_MODE));
  950. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  951. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  952. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  953. rps->pm_intrmsk_mbz);
  954. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  955. seq_printf(m, "Render p-state ratio: %d\n",
  956. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  957. seq_printf(m, "Render p-state VID: %d\n",
  958. gt_perf_status & 0xff);
  959. seq_printf(m, "Render p-state limit: %d\n",
  960. rp_state_limits & 0xff);
  961. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  962. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  963. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  964. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  965. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  966. seq_printf(m, "CAGF: %dMHz\n", cagf);
  967. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  968. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  969. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  970. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  971. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  972. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  973. seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
  974. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  975. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  976. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  977. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  978. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  979. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  980. seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
  981. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  982. rp_state_cap >> 16) & 0xff;
  983. max_freq *= (IS_GEN9_BC(dev_priv) ||
  984. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  985. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  986. intel_gpu_freq(dev_priv, max_freq));
  987. max_freq = (rp_state_cap & 0xff00) >> 8;
  988. max_freq *= (IS_GEN9_BC(dev_priv) ||
  989. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  990. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  991. intel_gpu_freq(dev_priv, max_freq));
  992. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  993. rp_state_cap >> 0) & 0xff;
  994. max_freq *= (IS_GEN9_BC(dev_priv) ||
  995. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  996. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  997. intel_gpu_freq(dev_priv, max_freq));
  998. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  999. intel_gpu_freq(dev_priv, rps->max_freq));
  1000. seq_printf(m, "Current freq: %d MHz\n",
  1001. intel_gpu_freq(dev_priv, rps->cur_freq));
  1002. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1003. seq_printf(m, "Idle freq: %d MHz\n",
  1004. intel_gpu_freq(dev_priv, rps->idle_freq));
  1005. seq_printf(m, "Min freq: %d MHz\n",
  1006. intel_gpu_freq(dev_priv, rps->min_freq));
  1007. seq_printf(m, "Boost freq: %d MHz\n",
  1008. intel_gpu_freq(dev_priv, rps->boost_freq));
  1009. seq_printf(m, "Max freq: %d MHz\n",
  1010. intel_gpu_freq(dev_priv, rps->max_freq));
  1011. seq_printf(m,
  1012. "efficient (RPe) frequency: %d MHz\n",
  1013. intel_gpu_freq(dev_priv, rps->efficient_freq));
  1014. } else {
  1015. seq_puts(m, "no P-state info available\n");
  1016. }
  1017. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1018. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1019. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1020. intel_runtime_pm_put(dev_priv);
  1021. return ret;
  1022. }
  1023. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1024. struct seq_file *m,
  1025. struct intel_instdone *instdone)
  1026. {
  1027. int slice;
  1028. int subslice;
  1029. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1030. instdone->instdone);
  1031. if (INTEL_GEN(dev_priv) <= 3)
  1032. return;
  1033. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1034. instdone->slice_common);
  1035. if (INTEL_GEN(dev_priv) <= 6)
  1036. return;
  1037. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1038. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1039. slice, subslice, instdone->sampler[slice][subslice]);
  1040. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1041. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1042. slice, subslice, instdone->row[slice][subslice]);
  1043. }
  1044. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1045. {
  1046. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1047. struct intel_engine_cs *engine;
  1048. u64 acthd[I915_NUM_ENGINES];
  1049. u32 seqno[I915_NUM_ENGINES];
  1050. struct intel_instdone instdone;
  1051. enum intel_engine_id id;
  1052. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1053. seq_puts(m, "Wedged\n");
  1054. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1055. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1056. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1057. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1058. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1059. seq_puts(m, "Waiter holding struct mutex\n");
  1060. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1061. seq_puts(m, "struct_mutex blocked for reset\n");
  1062. if (!i915_modparams.enable_hangcheck) {
  1063. seq_puts(m, "Hangcheck disabled\n");
  1064. return 0;
  1065. }
  1066. intel_runtime_pm_get(dev_priv);
  1067. for_each_engine(engine, dev_priv, id) {
  1068. acthd[id] = intel_engine_get_active_head(engine);
  1069. seqno[id] = intel_engine_get_seqno(engine);
  1070. }
  1071. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1072. intel_runtime_pm_put(dev_priv);
  1073. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1074. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1075. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1076. jiffies));
  1077. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1078. seq_puts(m, "Hangcheck active, work pending\n");
  1079. else
  1080. seq_puts(m, "Hangcheck inactive\n");
  1081. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1082. for_each_engine(engine, dev_priv, id) {
  1083. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1084. struct rb_node *rb;
  1085. seq_printf(m, "%s:\n", engine->name);
  1086. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1087. engine->hangcheck.seqno, seqno[id],
  1088. intel_engine_last_submit(engine),
  1089. engine->timeline->inflight_seqnos);
  1090. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1091. yesno(intel_engine_has_waiter(engine)),
  1092. yesno(test_bit(engine->id,
  1093. &dev_priv->gpu_error.missed_irq_rings)),
  1094. yesno(engine->hangcheck.stalled));
  1095. spin_lock_irq(&b->rb_lock);
  1096. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1097. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1098. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1099. w->tsk->comm, w->tsk->pid, w->seqno);
  1100. }
  1101. spin_unlock_irq(&b->rb_lock);
  1102. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1103. (long long)engine->hangcheck.acthd,
  1104. (long long)acthd[id]);
  1105. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1106. hangcheck_action_to_str(engine->hangcheck.action),
  1107. engine->hangcheck.action,
  1108. jiffies_to_msecs(jiffies -
  1109. engine->hangcheck.action_timestamp));
  1110. if (engine->id == RCS) {
  1111. seq_puts(m, "\tinstdone read =\n");
  1112. i915_instdone_info(dev_priv, m, &instdone);
  1113. seq_puts(m, "\tinstdone accu =\n");
  1114. i915_instdone_info(dev_priv, m,
  1115. &engine->hangcheck.instdone);
  1116. }
  1117. }
  1118. return 0;
  1119. }
  1120. static int i915_reset_info(struct seq_file *m, void *unused)
  1121. {
  1122. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1123. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1124. struct intel_engine_cs *engine;
  1125. enum intel_engine_id id;
  1126. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1127. for_each_engine(engine, dev_priv, id) {
  1128. seq_printf(m, "%s = %u\n", engine->name,
  1129. i915_reset_engine_count(error, engine));
  1130. }
  1131. return 0;
  1132. }
  1133. static int ironlake_drpc_info(struct seq_file *m)
  1134. {
  1135. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1136. u32 rgvmodectl, rstdbyctl;
  1137. u16 crstandvid;
  1138. rgvmodectl = I915_READ(MEMMODECTL);
  1139. rstdbyctl = I915_READ(RSTDBYCTL);
  1140. crstandvid = I915_READ16(CRSTANDVID);
  1141. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1142. seq_printf(m, "Boost freq: %d\n",
  1143. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1144. MEMMODE_BOOST_FREQ_SHIFT);
  1145. seq_printf(m, "HW control enabled: %s\n",
  1146. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1147. seq_printf(m, "SW control enabled: %s\n",
  1148. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1149. seq_printf(m, "Gated voltage change: %s\n",
  1150. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1151. seq_printf(m, "Starting frequency: P%d\n",
  1152. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1153. seq_printf(m, "Max P-state: P%d\n",
  1154. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1155. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1156. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1157. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1158. seq_printf(m, "Render standby enabled: %s\n",
  1159. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1160. seq_puts(m, "Current RS state: ");
  1161. switch (rstdbyctl & RSX_STATUS_MASK) {
  1162. case RSX_STATUS_ON:
  1163. seq_puts(m, "on\n");
  1164. break;
  1165. case RSX_STATUS_RC1:
  1166. seq_puts(m, "RC1\n");
  1167. break;
  1168. case RSX_STATUS_RC1E:
  1169. seq_puts(m, "RC1E\n");
  1170. break;
  1171. case RSX_STATUS_RS1:
  1172. seq_puts(m, "RS1\n");
  1173. break;
  1174. case RSX_STATUS_RS2:
  1175. seq_puts(m, "RS2 (RC6)\n");
  1176. break;
  1177. case RSX_STATUS_RS3:
  1178. seq_puts(m, "RC3 (RC6+)\n");
  1179. break;
  1180. default:
  1181. seq_puts(m, "unknown\n");
  1182. break;
  1183. }
  1184. return 0;
  1185. }
  1186. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1187. {
  1188. struct drm_i915_private *i915 = node_to_i915(m->private);
  1189. struct intel_uncore_forcewake_domain *fw_domain;
  1190. unsigned int tmp;
  1191. seq_printf(m, "user.bypass_count = %u\n",
  1192. i915->uncore.user_forcewake.count);
  1193. for_each_fw_domain(fw_domain, i915, tmp)
  1194. seq_printf(m, "%s.wake_count = %u\n",
  1195. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1196. READ_ONCE(fw_domain->wake_count));
  1197. return 0;
  1198. }
  1199. static void print_rc6_res(struct seq_file *m,
  1200. const char *title,
  1201. const i915_reg_t reg)
  1202. {
  1203. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1204. seq_printf(m, "%s %u (%llu us)\n",
  1205. title, I915_READ(reg),
  1206. intel_rc6_residency_us(dev_priv, reg));
  1207. }
  1208. static int vlv_drpc_info(struct seq_file *m)
  1209. {
  1210. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1211. u32 rcctl1, pw_status;
  1212. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1213. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1214. seq_printf(m, "RC6 Enabled: %s\n",
  1215. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1216. GEN6_RC_CTL_EI_MODE(1))));
  1217. seq_printf(m, "Render Power Well: %s\n",
  1218. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1219. seq_printf(m, "Media Power Well: %s\n",
  1220. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1221. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1222. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1223. return i915_forcewake_domains(m, NULL);
  1224. }
  1225. static int gen6_drpc_info(struct seq_file *m)
  1226. {
  1227. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1228. u32 gt_core_status, rcctl1, rc6vids = 0;
  1229. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1230. unsigned forcewake_count;
  1231. int count = 0;
  1232. forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
  1233. if (forcewake_count) {
  1234. seq_puts(m, "RC information inaccurate because somebody "
  1235. "holds a forcewake reference \n");
  1236. } else {
  1237. /* NB: we cannot use forcewake, else we read the wrong values */
  1238. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1239. udelay(10);
  1240. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1241. }
  1242. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1243. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1244. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1245. if (INTEL_GEN(dev_priv) >= 9) {
  1246. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1247. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1248. }
  1249. mutex_lock(&dev_priv->pcu_lock);
  1250. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1251. mutex_unlock(&dev_priv->pcu_lock);
  1252. seq_printf(m, "RC1e Enabled: %s\n",
  1253. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1254. seq_printf(m, "RC6 Enabled: %s\n",
  1255. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1256. if (INTEL_GEN(dev_priv) >= 9) {
  1257. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1258. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1259. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1260. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1261. }
  1262. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1263. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1264. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1265. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1266. seq_puts(m, "Current RC state: ");
  1267. switch (gt_core_status & GEN6_RCn_MASK) {
  1268. case GEN6_RC0:
  1269. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1270. seq_puts(m, "Core Power Down\n");
  1271. else
  1272. seq_puts(m, "on\n");
  1273. break;
  1274. case GEN6_RC3:
  1275. seq_puts(m, "RC3\n");
  1276. break;
  1277. case GEN6_RC6:
  1278. seq_puts(m, "RC6\n");
  1279. break;
  1280. case GEN6_RC7:
  1281. seq_puts(m, "RC7\n");
  1282. break;
  1283. default:
  1284. seq_puts(m, "Unknown\n");
  1285. break;
  1286. }
  1287. seq_printf(m, "Core Power Down: %s\n",
  1288. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1289. if (INTEL_GEN(dev_priv) >= 9) {
  1290. seq_printf(m, "Render Power Well: %s\n",
  1291. (gen9_powergate_status &
  1292. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1293. seq_printf(m, "Media Power Well: %s\n",
  1294. (gen9_powergate_status &
  1295. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1296. }
  1297. /* Not exactly sure what this is */
  1298. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1299. GEN6_GT_GFX_RC6_LOCKED);
  1300. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1301. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1302. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1303. seq_printf(m, "RC6 voltage: %dmV\n",
  1304. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1305. seq_printf(m, "RC6+ voltage: %dmV\n",
  1306. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1307. seq_printf(m, "RC6++ voltage: %dmV\n",
  1308. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1309. return i915_forcewake_domains(m, NULL);
  1310. }
  1311. static int i915_drpc_info(struct seq_file *m, void *unused)
  1312. {
  1313. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1314. int err;
  1315. intel_runtime_pm_get(dev_priv);
  1316. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1317. err = vlv_drpc_info(m);
  1318. else if (INTEL_GEN(dev_priv) >= 6)
  1319. err = gen6_drpc_info(m);
  1320. else
  1321. err = ironlake_drpc_info(m);
  1322. intel_runtime_pm_put(dev_priv);
  1323. return err;
  1324. }
  1325. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1326. {
  1327. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1328. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1329. dev_priv->fb_tracking.busy_bits);
  1330. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1331. dev_priv->fb_tracking.flip_bits);
  1332. return 0;
  1333. }
  1334. static int i915_fbc_status(struct seq_file *m, void *unused)
  1335. {
  1336. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1337. struct intel_fbc *fbc = &dev_priv->fbc;
  1338. if (!HAS_FBC(dev_priv))
  1339. return -ENODEV;
  1340. intel_runtime_pm_get(dev_priv);
  1341. mutex_lock(&fbc->lock);
  1342. if (intel_fbc_is_active(dev_priv))
  1343. seq_puts(m, "FBC enabled\n");
  1344. else
  1345. seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
  1346. if (fbc->work.scheduled)
  1347. seq_printf(m, "FBC worker scheduled on vblank %u, now %llu\n",
  1348. fbc->work.scheduled_vblank,
  1349. drm_crtc_vblank_count(&fbc->crtc->base));
  1350. if (intel_fbc_is_active(dev_priv)) {
  1351. u32 mask;
  1352. if (INTEL_GEN(dev_priv) >= 8)
  1353. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1354. else if (INTEL_GEN(dev_priv) >= 7)
  1355. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1356. else if (INTEL_GEN(dev_priv) >= 5)
  1357. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1358. else if (IS_G4X(dev_priv))
  1359. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1360. else
  1361. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1362. FBC_STAT_COMPRESSED);
  1363. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1364. }
  1365. mutex_unlock(&fbc->lock);
  1366. intel_runtime_pm_put(dev_priv);
  1367. return 0;
  1368. }
  1369. static int i915_fbc_false_color_get(void *data, u64 *val)
  1370. {
  1371. struct drm_i915_private *dev_priv = data;
  1372. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1373. return -ENODEV;
  1374. *val = dev_priv->fbc.false_color;
  1375. return 0;
  1376. }
  1377. static int i915_fbc_false_color_set(void *data, u64 val)
  1378. {
  1379. struct drm_i915_private *dev_priv = data;
  1380. u32 reg;
  1381. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1382. return -ENODEV;
  1383. mutex_lock(&dev_priv->fbc.lock);
  1384. reg = I915_READ(ILK_DPFC_CONTROL);
  1385. dev_priv->fbc.false_color = val;
  1386. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1387. (reg | FBC_CTL_FALSE_COLOR) :
  1388. (reg & ~FBC_CTL_FALSE_COLOR));
  1389. mutex_unlock(&dev_priv->fbc.lock);
  1390. return 0;
  1391. }
  1392. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1393. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1394. "%llu\n");
  1395. static int i915_ips_status(struct seq_file *m, void *unused)
  1396. {
  1397. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1398. if (!HAS_IPS(dev_priv))
  1399. return -ENODEV;
  1400. intel_runtime_pm_get(dev_priv);
  1401. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1402. yesno(i915_modparams.enable_ips));
  1403. if (INTEL_GEN(dev_priv) >= 8) {
  1404. seq_puts(m, "Currently: unknown\n");
  1405. } else {
  1406. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1407. seq_puts(m, "Currently: enabled\n");
  1408. else
  1409. seq_puts(m, "Currently: disabled\n");
  1410. }
  1411. intel_runtime_pm_put(dev_priv);
  1412. return 0;
  1413. }
  1414. static int i915_sr_status(struct seq_file *m, void *unused)
  1415. {
  1416. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1417. bool sr_enabled = false;
  1418. intel_runtime_pm_get(dev_priv);
  1419. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1420. if (INTEL_GEN(dev_priv) >= 9)
  1421. /* no global SR status; inspect per-plane WM */;
  1422. else if (HAS_PCH_SPLIT(dev_priv))
  1423. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1424. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1425. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1426. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1427. else if (IS_I915GM(dev_priv))
  1428. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1429. else if (IS_PINEVIEW(dev_priv))
  1430. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1431. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1432. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1433. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1434. intel_runtime_pm_put(dev_priv);
  1435. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1436. return 0;
  1437. }
  1438. static int i915_emon_status(struct seq_file *m, void *unused)
  1439. {
  1440. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1441. struct drm_device *dev = &dev_priv->drm;
  1442. unsigned long temp, chipset, gfx;
  1443. int ret;
  1444. if (!IS_GEN5(dev_priv))
  1445. return -ENODEV;
  1446. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1447. if (ret)
  1448. return ret;
  1449. temp = i915_mch_val(dev_priv);
  1450. chipset = i915_chipset_val(dev_priv);
  1451. gfx = i915_gfx_val(dev_priv);
  1452. mutex_unlock(&dev->struct_mutex);
  1453. seq_printf(m, "GMCH temp: %ld\n", temp);
  1454. seq_printf(m, "Chipset power: %ld\n", chipset);
  1455. seq_printf(m, "GFX power: %ld\n", gfx);
  1456. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1457. return 0;
  1458. }
  1459. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1460. {
  1461. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1462. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1463. int ret = 0;
  1464. int gpu_freq, ia_freq;
  1465. unsigned int max_gpu_freq, min_gpu_freq;
  1466. if (!HAS_LLC(dev_priv))
  1467. return -ENODEV;
  1468. intel_runtime_pm_get(dev_priv);
  1469. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  1470. if (ret)
  1471. goto out;
  1472. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  1473. /* Convert GT frequency to 50 HZ units */
  1474. min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
  1475. max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
  1476. } else {
  1477. min_gpu_freq = rps->min_freq_softlimit;
  1478. max_gpu_freq = rps->max_freq_softlimit;
  1479. }
  1480. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1481. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1482. ia_freq = gpu_freq;
  1483. sandybridge_pcode_read(dev_priv,
  1484. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1485. &ia_freq);
  1486. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1487. intel_gpu_freq(dev_priv, (gpu_freq *
  1488. (IS_GEN9_BC(dev_priv) ||
  1489. IS_CANNONLAKE(dev_priv) ?
  1490. GEN9_FREQ_SCALER : 1))),
  1491. ((ia_freq >> 0) & 0xff) * 100,
  1492. ((ia_freq >> 8) & 0xff) * 100);
  1493. }
  1494. mutex_unlock(&dev_priv->pcu_lock);
  1495. out:
  1496. intel_runtime_pm_put(dev_priv);
  1497. return ret;
  1498. }
  1499. static int i915_opregion(struct seq_file *m, void *unused)
  1500. {
  1501. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1502. struct drm_device *dev = &dev_priv->drm;
  1503. struct intel_opregion *opregion = &dev_priv->opregion;
  1504. int ret;
  1505. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1506. if (ret)
  1507. goto out;
  1508. if (opregion->header)
  1509. seq_write(m, opregion->header, OPREGION_SIZE);
  1510. mutex_unlock(&dev->struct_mutex);
  1511. out:
  1512. return 0;
  1513. }
  1514. static int i915_vbt(struct seq_file *m, void *unused)
  1515. {
  1516. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1517. if (opregion->vbt)
  1518. seq_write(m, opregion->vbt, opregion->vbt_size);
  1519. return 0;
  1520. }
  1521. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1522. {
  1523. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1524. struct drm_device *dev = &dev_priv->drm;
  1525. struct intel_framebuffer *fbdev_fb = NULL;
  1526. struct drm_framebuffer *drm_fb;
  1527. int ret;
  1528. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1529. if (ret)
  1530. return ret;
  1531. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1532. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1533. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1534. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1535. fbdev_fb->base.width,
  1536. fbdev_fb->base.height,
  1537. fbdev_fb->base.format->depth,
  1538. fbdev_fb->base.format->cpp[0] * 8,
  1539. fbdev_fb->base.modifier,
  1540. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1541. describe_obj(m, fbdev_fb->obj);
  1542. seq_putc(m, '\n');
  1543. }
  1544. #endif
  1545. mutex_lock(&dev->mode_config.fb_lock);
  1546. drm_for_each_fb(drm_fb, dev) {
  1547. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1548. if (fb == fbdev_fb)
  1549. continue;
  1550. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1551. fb->base.width,
  1552. fb->base.height,
  1553. fb->base.format->depth,
  1554. fb->base.format->cpp[0] * 8,
  1555. fb->base.modifier,
  1556. drm_framebuffer_read_refcount(&fb->base));
  1557. describe_obj(m, fb->obj);
  1558. seq_putc(m, '\n');
  1559. }
  1560. mutex_unlock(&dev->mode_config.fb_lock);
  1561. mutex_unlock(&dev->struct_mutex);
  1562. return 0;
  1563. }
  1564. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1565. {
  1566. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1567. ring->space, ring->head, ring->tail);
  1568. }
  1569. static int i915_context_status(struct seq_file *m, void *unused)
  1570. {
  1571. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1572. struct drm_device *dev = &dev_priv->drm;
  1573. struct intel_engine_cs *engine;
  1574. struct i915_gem_context *ctx;
  1575. enum intel_engine_id id;
  1576. int ret;
  1577. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1578. if (ret)
  1579. return ret;
  1580. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1581. seq_printf(m, "HW context %u ", ctx->hw_id);
  1582. if (ctx->pid) {
  1583. struct task_struct *task;
  1584. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1585. if (task) {
  1586. seq_printf(m, "(%s [%d]) ",
  1587. task->comm, task->pid);
  1588. put_task_struct(task);
  1589. }
  1590. } else if (IS_ERR(ctx->file_priv)) {
  1591. seq_puts(m, "(deleted) ");
  1592. } else {
  1593. seq_puts(m, "(kernel) ");
  1594. }
  1595. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1596. seq_putc(m, '\n');
  1597. for_each_engine(engine, dev_priv, id) {
  1598. struct intel_context *ce = &ctx->engine[engine->id];
  1599. seq_printf(m, "%s: ", engine->name);
  1600. if (ce->state)
  1601. describe_obj(m, ce->state->obj);
  1602. if (ce->ring)
  1603. describe_ctx_ring(m, ce->ring);
  1604. seq_putc(m, '\n');
  1605. }
  1606. seq_putc(m, '\n');
  1607. }
  1608. mutex_unlock(&dev->struct_mutex);
  1609. return 0;
  1610. }
  1611. static const char *swizzle_string(unsigned swizzle)
  1612. {
  1613. switch (swizzle) {
  1614. case I915_BIT_6_SWIZZLE_NONE:
  1615. return "none";
  1616. case I915_BIT_6_SWIZZLE_9:
  1617. return "bit9";
  1618. case I915_BIT_6_SWIZZLE_9_10:
  1619. return "bit9/bit10";
  1620. case I915_BIT_6_SWIZZLE_9_11:
  1621. return "bit9/bit11";
  1622. case I915_BIT_6_SWIZZLE_9_10_11:
  1623. return "bit9/bit10/bit11";
  1624. case I915_BIT_6_SWIZZLE_9_17:
  1625. return "bit9/bit17";
  1626. case I915_BIT_6_SWIZZLE_9_10_17:
  1627. return "bit9/bit10/bit17";
  1628. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1629. return "unknown";
  1630. }
  1631. return "bug";
  1632. }
  1633. static int i915_swizzle_info(struct seq_file *m, void *data)
  1634. {
  1635. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1636. intel_runtime_pm_get(dev_priv);
  1637. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1638. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1639. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1640. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1641. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1642. seq_printf(m, "DDC = 0x%08x\n",
  1643. I915_READ(DCC));
  1644. seq_printf(m, "DDC2 = 0x%08x\n",
  1645. I915_READ(DCC2));
  1646. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1647. I915_READ16(C0DRB3));
  1648. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1649. I915_READ16(C1DRB3));
  1650. } else if (INTEL_GEN(dev_priv) >= 6) {
  1651. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1652. I915_READ(MAD_DIMM_C0));
  1653. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1654. I915_READ(MAD_DIMM_C1));
  1655. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1656. I915_READ(MAD_DIMM_C2));
  1657. seq_printf(m, "TILECTL = 0x%08x\n",
  1658. I915_READ(TILECTL));
  1659. if (INTEL_GEN(dev_priv) >= 8)
  1660. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1661. I915_READ(GAMTARBMODE));
  1662. else
  1663. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1664. I915_READ(ARB_MODE));
  1665. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1666. I915_READ(DISP_ARB_CTL));
  1667. }
  1668. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1669. seq_puts(m, "L-shaped memory detected\n");
  1670. intel_runtime_pm_put(dev_priv);
  1671. return 0;
  1672. }
  1673. static int per_file_ctx(int id, void *ptr, void *data)
  1674. {
  1675. struct i915_gem_context *ctx = ptr;
  1676. struct seq_file *m = data;
  1677. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1678. if (!ppgtt) {
  1679. seq_printf(m, " no ppgtt for context %d\n",
  1680. ctx->user_handle);
  1681. return 0;
  1682. }
  1683. if (i915_gem_context_is_default(ctx))
  1684. seq_puts(m, " default context:\n");
  1685. else
  1686. seq_printf(m, " context %d:\n", ctx->user_handle);
  1687. ppgtt->debug_dump(ppgtt, m);
  1688. return 0;
  1689. }
  1690. static void gen8_ppgtt_info(struct seq_file *m,
  1691. struct drm_i915_private *dev_priv)
  1692. {
  1693. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1694. struct intel_engine_cs *engine;
  1695. enum intel_engine_id id;
  1696. int i;
  1697. if (!ppgtt)
  1698. return;
  1699. for_each_engine(engine, dev_priv, id) {
  1700. seq_printf(m, "%s\n", engine->name);
  1701. for (i = 0; i < 4; i++) {
  1702. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1703. pdp <<= 32;
  1704. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1705. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1706. }
  1707. }
  1708. }
  1709. static void gen6_ppgtt_info(struct seq_file *m,
  1710. struct drm_i915_private *dev_priv)
  1711. {
  1712. struct intel_engine_cs *engine;
  1713. enum intel_engine_id id;
  1714. if (IS_GEN6(dev_priv))
  1715. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1716. for_each_engine(engine, dev_priv, id) {
  1717. seq_printf(m, "%s\n", engine->name);
  1718. if (IS_GEN7(dev_priv))
  1719. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1720. I915_READ(RING_MODE_GEN7(engine)));
  1721. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1722. I915_READ(RING_PP_DIR_BASE(engine)));
  1723. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1724. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1725. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1726. I915_READ(RING_PP_DIR_DCLV(engine)));
  1727. }
  1728. if (dev_priv->mm.aliasing_ppgtt) {
  1729. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1730. seq_puts(m, "aliasing PPGTT:\n");
  1731. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1732. ppgtt->debug_dump(ppgtt, m);
  1733. }
  1734. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1735. }
  1736. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1737. {
  1738. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1739. struct drm_device *dev = &dev_priv->drm;
  1740. struct drm_file *file;
  1741. int ret;
  1742. mutex_lock(&dev->filelist_mutex);
  1743. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1744. if (ret)
  1745. goto out_unlock;
  1746. intel_runtime_pm_get(dev_priv);
  1747. if (INTEL_GEN(dev_priv) >= 8)
  1748. gen8_ppgtt_info(m, dev_priv);
  1749. else if (INTEL_GEN(dev_priv) >= 6)
  1750. gen6_ppgtt_info(m, dev_priv);
  1751. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1752. struct drm_i915_file_private *file_priv = file->driver_priv;
  1753. struct task_struct *task;
  1754. task = get_pid_task(file->pid, PIDTYPE_PID);
  1755. if (!task) {
  1756. ret = -ESRCH;
  1757. goto out_rpm;
  1758. }
  1759. seq_printf(m, "\nproc: %s\n", task->comm);
  1760. put_task_struct(task);
  1761. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1762. (void *)(unsigned long)m);
  1763. }
  1764. out_rpm:
  1765. intel_runtime_pm_put(dev_priv);
  1766. mutex_unlock(&dev->struct_mutex);
  1767. out_unlock:
  1768. mutex_unlock(&dev->filelist_mutex);
  1769. return ret;
  1770. }
  1771. static int count_irq_waiters(struct drm_i915_private *i915)
  1772. {
  1773. struct intel_engine_cs *engine;
  1774. enum intel_engine_id id;
  1775. int count = 0;
  1776. for_each_engine(engine, i915, id)
  1777. count += intel_engine_has_waiter(engine);
  1778. return count;
  1779. }
  1780. static const char *rps_power_to_str(unsigned int power)
  1781. {
  1782. static const char * const strings[] = {
  1783. [LOW_POWER] = "low power",
  1784. [BETWEEN] = "mixed",
  1785. [HIGH_POWER] = "high power",
  1786. };
  1787. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1788. return "unknown";
  1789. return strings[power];
  1790. }
  1791. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1792. {
  1793. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1794. struct drm_device *dev = &dev_priv->drm;
  1795. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1796. struct drm_file *file;
  1797. seq_printf(m, "RPS enabled? %d\n", rps->enabled);
  1798. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1799. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1800. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1801. seq_printf(m, "Boosts outstanding? %d\n",
  1802. atomic_read(&rps->num_waiters));
  1803. seq_printf(m, "Frequency requested %d\n",
  1804. intel_gpu_freq(dev_priv, rps->cur_freq));
  1805. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1806. intel_gpu_freq(dev_priv, rps->min_freq),
  1807. intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
  1808. intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
  1809. intel_gpu_freq(dev_priv, rps->max_freq));
  1810. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1811. intel_gpu_freq(dev_priv, rps->idle_freq),
  1812. intel_gpu_freq(dev_priv, rps->efficient_freq),
  1813. intel_gpu_freq(dev_priv, rps->boost_freq));
  1814. mutex_lock(&dev->filelist_mutex);
  1815. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1816. struct drm_i915_file_private *file_priv = file->driver_priv;
  1817. struct task_struct *task;
  1818. rcu_read_lock();
  1819. task = pid_task(file->pid, PIDTYPE_PID);
  1820. seq_printf(m, "%s [%d]: %d boosts\n",
  1821. task ? task->comm : "<unknown>",
  1822. task ? task->pid : -1,
  1823. atomic_read(&file_priv->rps_client.boosts));
  1824. rcu_read_unlock();
  1825. }
  1826. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1827. atomic_read(&rps->boosts));
  1828. mutex_unlock(&dev->filelist_mutex);
  1829. if (INTEL_GEN(dev_priv) >= 6 &&
  1830. rps->enabled &&
  1831. dev_priv->gt.active_requests) {
  1832. u32 rpup, rpupei;
  1833. u32 rpdown, rpdownei;
  1834. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1835. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1836. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1837. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1838. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1839. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1840. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1841. rps_power_to_str(rps->power));
  1842. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1843. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1844. rps->up_threshold);
  1845. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1846. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1847. rps->down_threshold);
  1848. } else {
  1849. seq_puts(m, "\nRPS Autotuning inactive\n");
  1850. }
  1851. return 0;
  1852. }
  1853. static int i915_llc(struct seq_file *m, void *data)
  1854. {
  1855. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1856. const bool edram = INTEL_GEN(dev_priv) > 8;
  1857. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1858. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1859. intel_uncore_edram_size(dev_priv)/1024/1024);
  1860. return 0;
  1861. }
  1862. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1863. {
  1864. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1865. struct drm_printer p;
  1866. if (!HAS_HUC(dev_priv))
  1867. return -ENODEV;
  1868. p = drm_seq_file_printer(m);
  1869. intel_uc_fw_dump(&dev_priv->huc.fw, &p);
  1870. intel_runtime_pm_get(dev_priv);
  1871. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1872. intel_runtime_pm_put(dev_priv);
  1873. return 0;
  1874. }
  1875. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1876. {
  1877. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1878. struct drm_printer p;
  1879. u32 tmp, i;
  1880. if (!HAS_GUC(dev_priv))
  1881. return -ENODEV;
  1882. p = drm_seq_file_printer(m);
  1883. intel_uc_fw_dump(&dev_priv->guc.fw, &p);
  1884. intel_runtime_pm_get(dev_priv);
  1885. tmp = I915_READ(GUC_STATUS);
  1886. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  1887. seq_printf(m, "\tBootrom status = 0x%x\n",
  1888. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  1889. seq_printf(m, "\tuKernel status = 0x%x\n",
  1890. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  1891. seq_printf(m, "\tMIA Core status = 0x%x\n",
  1892. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  1893. seq_puts(m, "\nScratch registers:\n");
  1894. for (i = 0; i < 16; i++)
  1895. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  1896. intel_runtime_pm_put(dev_priv);
  1897. return 0;
  1898. }
  1899. static void i915_guc_log_info(struct seq_file *m,
  1900. struct drm_i915_private *dev_priv)
  1901. {
  1902. struct intel_guc *guc = &dev_priv->guc;
  1903. seq_puts(m, "\nGuC logging stats:\n");
  1904. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  1905. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  1906. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  1907. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  1908. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  1909. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  1910. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  1911. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  1912. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  1913. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  1914. guc->log.flush_interrupt_count);
  1915. seq_printf(m, "\tCapture miss count: %u\n",
  1916. guc->log.capture_miss_count);
  1917. }
  1918. static void i915_guc_client_info(struct seq_file *m,
  1919. struct drm_i915_private *dev_priv,
  1920. struct intel_guc_client *client)
  1921. {
  1922. struct intel_engine_cs *engine;
  1923. enum intel_engine_id id;
  1924. uint64_t tot = 0;
  1925. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  1926. client->priority, client->stage_id, client->proc_desc_offset);
  1927. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
  1928. client->doorbell_id, client->doorbell_offset);
  1929. for_each_engine(engine, dev_priv, id) {
  1930. u64 submissions = client->submissions[id];
  1931. tot += submissions;
  1932. seq_printf(m, "\tSubmissions: %llu %s\n",
  1933. submissions, engine->name);
  1934. }
  1935. seq_printf(m, "\tTotal: %llu\n", tot);
  1936. }
  1937. static int i915_guc_info(struct seq_file *m, void *data)
  1938. {
  1939. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1940. const struct intel_guc *guc = &dev_priv->guc;
  1941. if (!USES_GUC_SUBMISSION(dev_priv))
  1942. return -ENODEV;
  1943. GEM_BUG_ON(!guc->execbuf_client);
  1944. GEM_BUG_ON(!guc->preempt_client);
  1945. seq_printf(m, "Doorbell map:\n");
  1946. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  1947. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  1948. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  1949. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  1950. seq_printf(m, "\nGuC preempt client @ %p:\n", guc->preempt_client);
  1951. i915_guc_client_info(m, dev_priv, guc->preempt_client);
  1952. i915_guc_log_info(m, dev_priv);
  1953. /* Add more as required ... */
  1954. return 0;
  1955. }
  1956. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  1957. {
  1958. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1959. const struct intel_guc *guc = &dev_priv->guc;
  1960. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  1961. struct intel_guc_client *client = guc->execbuf_client;
  1962. unsigned int tmp;
  1963. int index;
  1964. if (!USES_GUC_SUBMISSION(dev_priv))
  1965. return -ENODEV;
  1966. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  1967. struct intel_engine_cs *engine;
  1968. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  1969. continue;
  1970. seq_printf(m, "GuC stage descriptor %u:\n", index);
  1971. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  1972. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  1973. seq_printf(m, "\tPriority: %d\n", desc->priority);
  1974. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  1975. seq_printf(m, "\tEngines used: 0x%x\n",
  1976. desc->engines_used);
  1977. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  1978. desc->db_trigger_phy,
  1979. desc->db_trigger_cpu,
  1980. desc->db_trigger_uk);
  1981. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  1982. desc->process_desc);
  1983. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  1984. desc->wq_addr, desc->wq_size);
  1985. seq_putc(m, '\n');
  1986. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  1987. u32 guc_engine_id = engine->guc_id;
  1988. struct guc_execlist_context *lrc =
  1989. &desc->lrc[guc_engine_id];
  1990. seq_printf(m, "\t%s LRC:\n", engine->name);
  1991. seq_printf(m, "\t\tContext desc: 0x%x\n",
  1992. lrc->context_desc);
  1993. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  1994. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  1995. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  1996. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  1997. seq_putc(m, '\n');
  1998. }
  1999. }
  2000. return 0;
  2001. }
  2002. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2003. {
  2004. struct drm_info_node *node = m->private;
  2005. struct drm_i915_private *dev_priv = node_to_i915(node);
  2006. bool dump_load_err = !!node->info_ent->data;
  2007. struct drm_i915_gem_object *obj = NULL;
  2008. u32 *log;
  2009. int i = 0;
  2010. if (!HAS_GUC(dev_priv))
  2011. return -ENODEV;
  2012. if (dump_load_err)
  2013. obj = dev_priv->guc.load_err_log;
  2014. else if (dev_priv->guc.log.vma)
  2015. obj = dev_priv->guc.log.vma->obj;
  2016. if (!obj)
  2017. return 0;
  2018. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2019. if (IS_ERR(log)) {
  2020. DRM_DEBUG("Failed to pin object\n");
  2021. seq_puts(m, "(log data unaccessible)\n");
  2022. return PTR_ERR(log);
  2023. }
  2024. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2025. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2026. *(log + i), *(log + i + 1),
  2027. *(log + i + 2), *(log + i + 3));
  2028. seq_putc(m, '\n');
  2029. i915_gem_object_unpin_map(obj);
  2030. return 0;
  2031. }
  2032. static int i915_guc_log_control_get(void *data, u64 *val)
  2033. {
  2034. struct drm_i915_private *dev_priv = data;
  2035. if (!HAS_GUC(dev_priv))
  2036. return -ENODEV;
  2037. if (!dev_priv->guc.log.vma)
  2038. return -EINVAL;
  2039. *val = i915_modparams.guc_log_level;
  2040. return 0;
  2041. }
  2042. static int i915_guc_log_control_set(void *data, u64 val)
  2043. {
  2044. struct drm_i915_private *dev_priv = data;
  2045. int ret;
  2046. if (!HAS_GUC(dev_priv))
  2047. return -ENODEV;
  2048. if (!dev_priv->guc.log.vma)
  2049. return -EINVAL;
  2050. ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
  2051. if (ret)
  2052. return ret;
  2053. intel_runtime_pm_get(dev_priv);
  2054. ret = i915_guc_log_control(dev_priv, val);
  2055. intel_runtime_pm_put(dev_priv);
  2056. mutex_unlock(&dev_priv->drm.struct_mutex);
  2057. return ret;
  2058. }
  2059. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2060. i915_guc_log_control_get, i915_guc_log_control_set,
  2061. "%lld\n");
  2062. static const char *psr2_live_status(u32 val)
  2063. {
  2064. static const char * const live_status[] = {
  2065. "IDLE",
  2066. "CAPTURE",
  2067. "CAPTURE_FS",
  2068. "SLEEP",
  2069. "BUFON_FW",
  2070. "ML_UP",
  2071. "SU_STANDBY",
  2072. "FAST_SLEEP",
  2073. "DEEP_SLEEP",
  2074. "BUF_ON",
  2075. "TG_ON"
  2076. };
  2077. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2078. if (val < ARRAY_SIZE(live_status))
  2079. return live_status[val];
  2080. return "unknown";
  2081. }
  2082. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2083. {
  2084. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2085. u32 psrperf = 0;
  2086. u32 stat[3];
  2087. enum pipe pipe;
  2088. bool enabled = false;
  2089. if (!HAS_PSR(dev_priv))
  2090. return -ENODEV;
  2091. intel_runtime_pm_get(dev_priv);
  2092. mutex_lock(&dev_priv->psr.lock);
  2093. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2094. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2095. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2096. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2097. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2098. dev_priv->psr.busy_frontbuffer_bits);
  2099. seq_printf(m, "Re-enable work scheduled: %s\n",
  2100. yesno(work_busy(&dev_priv->psr.work.work)));
  2101. if (HAS_DDI(dev_priv)) {
  2102. if (dev_priv->psr.psr2_support)
  2103. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2104. else
  2105. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2106. } else {
  2107. for_each_pipe(dev_priv, pipe) {
  2108. enum transcoder cpu_transcoder =
  2109. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2110. enum intel_display_power_domain power_domain;
  2111. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2112. if (!intel_display_power_get_if_enabled(dev_priv,
  2113. power_domain))
  2114. continue;
  2115. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2116. VLV_EDP_PSR_CURR_STATE_MASK;
  2117. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2118. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2119. enabled = true;
  2120. intel_display_power_put(dev_priv, power_domain);
  2121. }
  2122. }
  2123. seq_printf(m, "Main link in standby mode: %s\n",
  2124. yesno(dev_priv->psr.link_standby));
  2125. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2126. if (!HAS_DDI(dev_priv))
  2127. for_each_pipe(dev_priv, pipe) {
  2128. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2129. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2130. seq_printf(m, " pipe %c", pipe_name(pipe));
  2131. }
  2132. seq_puts(m, "\n");
  2133. /*
  2134. * VLV/CHV PSR has no kind of performance counter
  2135. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2136. */
  2137. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2138. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2139. EDP_PSR_PERF_CNT_MASK;
  2140. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2141. }
  2142. if (dev_priv->psr.psr2_support) {
  2143. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2144. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2145. psr2, psr2_live_status(psr2));
  2146. }
  2147. mutex_unlock(&dev_priv->psr.lock);
  2148. intel_runtime_pm_put(dev_priv);
  2149. return 0;
  2150. }
  2151. static int i915_sink_crc(struct seq_file *m, void *data)
  2152. {
  2153. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2154. struct drm_device *dev = &dev_priv->drm;
  2155. struct intel_connector *connector;
  2156. struct drm_connector_list_iter conn_iter;
  2157. struct intel_dp *intel_dp = NULL;
  2158. struct drm_modeset_acquire_ctx ctx;
  2159. int ret;
  2160. u8 crc[6];
  2161. drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
  2162. drm_connector_list_iter_begin(dev, &conn_iter);
  2163. for_each_intel_connector_iter(connector, &conn_iter) {
  2164. struct drm_crtc *crtc;
  2165. struct drm_connector_state *state;
  2166. struct intel_crtc_state *crtc_state;
  2167. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2168. continue;
  2169. retry:
  2170. ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
  2171. if (ret)
  2172. goto err;
  2173. state = connector->base.state;
  2174. if (!state->best_encoder)
  2175. continue;
  2176. crtc = state->crtc;
  2177. ret = drm_modeset_lock(&crtc->mutex, &ctx);
  2178. if (ret)
  2179. goto err;
  2180. crtc_state = to_intel_crtc_state(crtc->state);
  2181. if (!crtc_state->base.active)
  2182. continue;
  2183. /*
  2184. * We need to wait for all crtc updates to complete, to make
  2185. * sure any pending modesets and plane updates are completed.
  2186. */
  2187. if (crtc_state->base.commit) {
  2188. ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
  2189. if (ret)
  2190. goto err;
  2191. }
  2192. intel_dp = enc_to_intel_dp(state->best_encoder);
  2193. ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
  2194. if (ret)
  2195. goto err;
  2196. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2197. crc[0], crc[1], crc[2],
  2198. crc[3], crc[4], crc[5]);
  2199. goto out;
  2200. err:
  2201. if (ret == -EDEADLK) {
  2202. ret = drm_modeset_backoff(&ctx);
  2203. if (!ret)
  2204. goto retry;
  2205. }
  2206. goto out;
  2207. }
  2208. ret = -ENODEV;
  2209. out:
  2210. drm_connector_list_iter_end(&conn_iter);
  2211. drm_modeset_drop_locks(&ctx);
  2212. drm_modeset_acquire_fini(&ctx);
  2213. return ret;
  2214. }
  2215. static int i915_energy_uJ(struct seq_file *m, void *data)
  2216. {
  2217. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2218. unsigned long long power;
  2219. u32 units;
  2220. if (INTEL_GEN(dev_priv) < 6)
  2221. return -ENODEV;
  2222. intel_runtime_pm_get(dev_priv);
  2223. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2224. intel_runtime_pm_put(dev_priv);
  2225. return -ENODEV;
  2226. }
  2227. units = (power & 0x1f00) >> 8;
  2228. power = I915_READ(MCH_SECP_NRG_STTS);
  2229. power = (1000000 * power) >> units; /* convert to uJ */
  2230. intel_runtime_pm_put(dev_priv);
  2231. seq_printf(m, "%llu", power);
  2232. return 0;
  2233. }
  2234. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2235. {
  2236. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2237. struct pci_dev *pdev = dev_priv->drm.pdev;
  2238. if (!HAS_RUNTIME_PM(dev_priv))
  2239. seq_puts(m, "Runtime power management not supported\n");
  2240. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2241. seq_printf(m, "IRQs disabled: %s\n",
  2242. yesno(!intel_irqs_enabled(dev_priv)));
  2243. #ifdef CONFIG_PM
  2244. seq_printf(m, "Usage count: %d\n",
  2245. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2246. #else
  2247. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2248. #endif
  2249. seq_printf(m, "PCI device power state: %s [%d]\n",
  2250. pci_power_name(pdev->current_state),
  2251. pdev->current_state);
  2252. return 0;
  2253. }
  2254. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2255. {
  2256. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2257. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2258. int i;
  2259. mutex_lock(&power_domains->lock);
  2260. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2261. for (i = 0; i < power_domains->power_well_count; i++) {
  2262. struct i915_power_well *power_well;
  2263. enum intel_display_power_domain power_domain;
  2264. power_well = &power_domains->power_wells[i];
  2265. seq_printf(m, "%-25s %d\n", power_well->name,
  2266. power_well->count);
  2267. for_each_power_domain(power_domain, power_well->domains)
  2268. seq_printf(m, " %-23s %d\n",
  2269. intel_display_power_domain_str(power_domain),
  2270. power_domains->domain_use_count[power_domain]);
  2271. }
  2272. mutex_unlock(&power_domains->lock);
  2273. return 0;
  2274. }
  2275. static int i915_dmc_info(struct seq_file *m, void *unused)
  2276. {
  2277. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2278. struct intel_csr *csr;
  2279. if (!HAS_CSR(dev_priv))
  2280. return -ENODEV;
  2281. csr = &dev_priv->csr;
  2282. intel_runtime_pm_get(dev_priv);
  2283. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2284. seq_printf(m, "path: %s\n", csr->fw_path);
  2285. if (!csr->dmc_payload)
  2286. goto out;
  2287. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2288. CSR_VERSION_MINOR(csr->version));
  2289. if (IS_KABYLAKE(dev_priv) ||
  2290. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2291. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2292. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2293. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2294. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2295. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2296. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2297. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2298. }
  2299. out:
  2300. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2301. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2302. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2303. intel_runtime_pm_put(dev_priv);
  2304. return 0;
  2305. }
  2306. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2307. struct drm_display_mode *mode)
  2308. {
  2309. int i;
  2310. for (i = 0; i < tabs; i++)
  2311. seq_putc(m, '\t');
  2312. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2313. mode->base.id, mode->name,
  2314. mode->vrefresh, mode->clock,
  2315. mode->hdisplay, mode->hsync_start,
  2316. mode->hsync_end, mode->htotal,
  2317. mode->vdisplay, mode->vsync_start,
  2318. mode->vsync_end, mode->vtotal,
  2319. mode->type, mode->flags);
  2320. }
  2321. static void intel_encoder_info(struct seq_file *m,
  2322. struct intel_crtc *intel_crtc,
  2323. struct intel_encoder *intel_encoder)
  2324. {
  2325. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2326. struct drm_device *dev = &dev_priv->drm;
  2327. struct drm_crtc *crtc = &intel_crtc->base;
  2328. struct intel_connector *intel_connector;
  2329. struct drm_encoder *encoder;
  2330. encoder = &intel_encoder->base;
  2331. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2332. encoder->base.id, encoder->name);
  2333. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2334. struct drm_connector *connector = &intel_connector->base;
  2335. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2336. connector->base.id,
  2337. connector->name,
  2338. drm_get_connector_status_name(connector->status));
  2339. if (connector->status == connector_status_connected) {
  2340. struct drm_display_mode *mode = &crtc->mode;
  2341. seq_printf(m, ", mode:\n");
  2342. intel_seq_print_mode(m, 2, mode);
  2343. } else {
  2344. seq_putc(m, '\n');
  2345. }
  2346. }
  2347. }
  2348. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2349. {
  2350. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2351. struct drm_device *dev = &dev_priv->drm;
  2352. struct drm_crtc *crtc = &intel_crtc->base;
  2353. struct intel_encoder *intel_encoder;
  2354. struct drm_plane_state *plane_state = crtc->primary->state;
  2355. struct drm_framebuffer *fb = plane_state->fb;
  2356. if (fb)
  2357. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2358. fb->base.id, plane_state->src_x >> 16,
  2359. plane_state->src_y >> 16, fb->width, fb->height);
  2360. else
  2361. seq_puts(m, "\tprimary plane disabled\n");
  2362. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2363. intel_encoder_info(m, intel_crtc, intel_encoder);
  2364. }
  2365. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2366. {
  2367. struct drm_display_mode *mode = panel->fixed_mode;
  2368. seq_printf(m, "\tfixed mode:\n");
  2369. intel_seq_print_mode(m, 2, mode);
  2370. }
  2371. static void intel_dp_info(struct seq_file *m,
  2372. struct intel_connector *intel_connector)
  2373. {
  2374. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2375. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2376. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2377. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2378. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2379. intel_panel_info(m, &intel_connector->panel);
  2380. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2381. &intel_dp->aux);
  2382. }
  2383. static void intel_dp_mst_info(struct seq_file *m,
  2384. struct intel_connector *intel_connector)
  2385. {
  2386. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2387. struct intel_dp_mst_encoder *intel_mst =
  2388. enc_to_mst(&intel_encoder->base);
  2389. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2390. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2391. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2392. intel_connector->port);
  2393. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2394. }
  2395. static void intel_hdmi_info(struct seq_file *m,
  2396. struct intel_connector *intel_connector)
  2397. {
  2398. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2399. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2400. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2401. }
  2402. static void intel_lvds_info(struct seq_file *m,
  2403. struct intel_connector *intel_connector)
  2404. {
  2405. intel_panel_info(m, &intel_connector->panel);
  2406. }
  2407. static void intel_connector_info(struct seq_file *m,
  2408. struct drm_connector *connector)
  2409. {
  2410. struct intel_connector *intel_connector = to_intel_connector(connector);
  2411. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2412. struct drm_display_mode *mode;
  2413. seq_printf(m, "connector %d: type %s, status: %s\n",
  2414. connector->base.id, connector->name,
  2415. drm_get_connector_status_name(connector->status));
  2416. if (connector->status == connector_status_connected) {
  2417. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2418. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2419. connector->display_info.width_mm,
  2420. connector->display_info.height_mm);
  2421. seq_printf(m, "\tsubpixel order: %s\n",
  2422. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2423. seq_printf(m, "\tCEA rev: %d\n",
  2424. connector->display_info.cea_rev);
  2425. }
  2426. if (!intel_encoder)
  2427. return;
  2428. switch (connector->connector_type) {
  2429. case DRM_MODE_CONNECTOR_DisplayPort:
  2430. case DRM_MODE_CONNECTOR_eDP:
  2431. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2432. intel_dp_mst_info(m, intel_connector);
  2433. else
  2434. intel_dp_info(m, intel_connector);
  2435. break;
  2436. case DRM_MODE_CONNECTOR_LVDS:
  2437. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2438. intel_lvds_info(m, intel_connector);
  2439. break;
  2440. case DRM_MODE_CONNECTOR_HDMIA:
  2441. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2442. intel_encoder->type == INTEL_OUTPUT_DDI)
  2443. intel_hdmi_info(m, intel_connector);
  2444. break;
  2445. default:
  2446. break;
  2447. }
  2448. seq_printf(m, "\tmodes:\n");
  2449. list_for_each_entry(mode, &connector->modes, head)
  2450. intel_seq_print_mode(m, 2, mode);
  2451. }
  2452. static const char *plane_type(enum drm_plane_type type)
  2453. {
  2454. switch (type) {
  2455. case DRM_PLANE_TYPE_OVERLAY:
  2456. return "OVL";
  2457. case DRM_PLANE_TYPE_PRIMARY:
  2458. return "PRI";
  2459. case DRM_PLANE_TYPE_CURSOR:
  2460. return "CUR";
  2461. /*
  2462. * Deliberately omitting default: to generate compiler warnings
  2463. * when a new drm_plane_type gets added.
  2464. */
  2465. }
  2466. return "unknown";
  2467. }
  2468. static const char *plane_rotation(unsigned int rotation)
  2469. {
  2470. static char buf[48];
  2471. /*
  2472. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2473. * will print them all to visualize if the values are misused
  2474. */
  2475. snprintf(buf, sizeof(buf),
  2476. "%s%s%s%s%s%s(0x%08x)",
  2477. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2478. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2479. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2480. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2481. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2482. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2483. rotation);
  2484. return buf;
  2485. }
  2486. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2487. {
  2488. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2489. struct drm_device *dev = &dev_priv->drm;
  2490. struct intel_plane *intel_plane;
  2491. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2492. struct drm_plane_state *state;
  2493. struct drm_plane *plane = &intel_plane->base;
  2494. struct drm_format_name_buf format_name;
  2495. if (!plane->state) {
  2496. seq_puts(m, "plane->state is NULL!\n");
  2497. continue;
  2498. }
  2499. state = plane->state;
  2500. if (state->fb) {
  2501. drm_get_format_name(state->fb->format->format,
  2502. &format_name);
  2503. } else {
  2504. sprintf(format_name.str, "N/A");
  2505. }
  2506. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2507. plane->base.id,
  2508. plane_type(intel_plane->base.type),
  2509. state->crtc_x, state->crtc_y,
  2510. state->crtc_w, state->crtc_h,
  2511. (state->src_x >> 16),
  2512. ((state->src_x & 0xffff) * 15625) >> 10,
  2513. (state->src_y >> 16),
  2514. ((state->src_y & 0xffff) * 15625) >> 10,
  2515. (state->src_w >> 16),
  2516. ((state->src_w & 0xffff) * 15625) >> 10,
  2517. (state->src_h >> 16),
  2518. ((state->src_h & 0xffff) * 15625) >> 10,
  2519. format_name.str,
  2520. plane_rotation(state->rotation));
  2521. }
  2522. }
  2523. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2524. {
  2525. struct intel_crtc_state *pipe_config;
  2526. int num_scalers = intel_crtc->num_scalers;
  2527. int i;
  2528. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2529. /* Not all platformas have a scaler */
  2530. if (num_scalers) {
  2531. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2532. num_scalers,
  2533. pipe_config->scaler_state.scaler_users,
  2534. pipe_config->scaler_state.scaler_id);
  2535. for (i = 0; i < num_scalers; i++) {
  2536. struct intel_scaler *sc =
  2537. &pipe_config->scaler_state.scalers[i];
  2538. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2539. i, yesno(sc->in_use), sc->mode);
  2540. }
  2541. seq_puts(m, "\n");
  2542. } else {
  2543. seq_puts(m, "\tNo scalers available on this platform\n");
  2544. }
  2545. }
  2546. static int i915_display_info(struct seq_file *m, void *unused)
  2547. {
  2548. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2549. struct drm_device *dev = &dev_priv->drm;
  2550. struct intel_crtc *crtc;
  2551. struct drm_connector *connector;
  2552. struct drm_connector_list_iter conn_iter;
  2553. intel_runtime_pm_get(dev_priv);
  2554. seq_printf(m, "CRTC info\n");
  2555. seq_printf(m, "---------\n");
  2556. for_each_intel_crtc(dev, crtc) {
  2557. struct intel_crtc_state *pipe_config;
  2558. drm_modeset_lock(&crtc->base.mutex, NULL);
  2559. pipe_config = to_intel_crtc_state(crtc->base.state);
  2560. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2561. crtc->base.base.id, pipe_name(crtc->pipe),
  2562. yesno(pipe_config->base.active),
  2563. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2564. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2565. if (pipe_config->base.active) {
  2566. struct intel_plane *cursor =
  2567. to_intel_plane(crtc->base.cursor);
  2568. intel_crtc_info(m, crtc);
  2569. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2570. yesno(cursor->base.state->visible),
  2571. cursor->base.state->crtc_x,
  2572. cursor->base.state->crtc_y,
  2573. cursor->base.state->crtc_w,
  2574. cursor->base.state->crtc_h,
  2575. cursor->cursor.base);
  2576. intel_scaler_info(m, crtc);
  2577. intel_plane_info(m, crtc);
  2578. }
  2579. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2580. yesno(!crtc->cpu_fifo_underrun_disabled),
  2581. yesno(!crtc->pch_fifo_underrun_disabled));
  2582. drm_modeset_unlock(&crtc->base.mutex);
  2583. }
  2584. seq_printf(m, "\n");
  2585. seq_printf(m, "Connector info\n");
  2586. seq_printf(m, "--------------\n");
  2587. mutex_lock(&dev->mode_config.mutex);
  2588. drm_connector_list_iter_begin(dev, &conn_iter);
  2589. drm_for_each_connector_iter(connector, &conn_iter)
  2590. intel_connector_info(m, connector);
  2591. drm_connector_list_iter_end(&conn_iter);
  2592. mutex_unlock(&dev->mode_config.mutex);
  2593. intel_runtime_pm_put(dev_priv);
  2594. return 0;
  2595. }
  2596. static int i915_engine_info(struct seq_file *m, void *unused)
  2597. {
  2598. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2599. struct intel_engine_cs *engine;
  2600. enum intel_engine_id id;
  2601. struct drm_printer p;
  2602. intel_runtime_pm_get(dev_priv);
  2603. seq_printf(m, "GT awake? %s\n",
  2604. yesno(dev_priv->gt.awake));
  2605. seq_printf(m, "Global active requests: %d\n",
  2606. dev_priv->gt.active_requests);
  2607. seq_printf(m, "CS timestamp frequency: %u kHz\n",
  2608. dev_priv->info.cs_timestamp_frequency_khz);
  2609. p = drm_seq_file_printer(m);
  2610. for_each_engine(engine, dev_priv, id)
  2611. intel_engine_dump(engine, &p, "%s\n", engine->name);
  2612. intel_runtime_pm_put(dev_priv);
  2613. return 0;
  2614. }
  2615. static int i915_shrinker_info(struct seq_file *m, void *unused)
  2616. {
  2617. struct drm_i915_private *i915 = node_to_i915(m->private);
  2618. seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
  2619. seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
  2620. return 0;
  2621. }
  2622. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2623. {
  2624. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2625. struct drm_device *dev = &dev_priv->drm;
  2626. int i;
  2627. drm_modeset_lock_all(dev);
  2628. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2629. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2630. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2631. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2632. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2633. seq_printf(m, " tracked hardware state:\n");
  2634. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2635. seq_printf(m, " dpll_md: 0x%08x\n",
  2636. pll->state.hw_state.dpll_md);
  2637. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2638. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2639. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2640. }
  2641. drm_modeset_unlock_all(dev);
  2642. return 0;
  2643. }
  2644. static int i915_wa_registers(struct seq_file *m, void *unused)
  2645. {
  2646. int i;
  2647. int ret;
  2648. struct intel_engine_cs *engine;
  2649. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2650. struct drm_device *dev = &dev_priv->drm;
  2651. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2652. enum intel_engine_id id;
  2653. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2654. if (ret)
  2655. return ret;
  2656. intel_runtime_pm_get(dev_priv);
  2657. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2658. for_each_engine(engine, dev_priv, id)
  2659. seq_printf(m, "HW whitelist count for %s: %d\n",
  2660. engine->name, workarounds->hw_whitelist_count[id]);
  2661. for (i = 0; i < workarounds->count; ++i) {
  2662. i915_reg_t addr;
  2663. u32 mask, value, read;
  2664. bool ok;
  2665. addr = workarounds->reg[i].addr;
  2666. mask = workarounds->reg[i].mask;
  2667. value = workarounds->reg[i].value;
  2668. read = I915_READ(addr);
  2669. ok = (value & mask) == (read & mask);
  2670. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2671. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2672. }
  2673. intel_runtime_pm_put(dev_priv);
  2674. mutex_unlock(&dev->struct_mutex);
  2675. return 0;
  2676. }
  2677. static int i915_ipc_status_show(struct seq_file *m, void *data)
  2678. {
  2679. struct drm_i915_private *dev_priv = m->private;
  2680. seq_printf(m, "Isochronous Priority Control: %s\n",
  2681. yesno(dev_priv->ipc_enabled));
  2682. return 0;
  2683. }
  2684. static int i915_ipc_status_open(struct inode *inode, struct file *file)
  2685. {
  2686. struct drm_i915_private *dev_priv = inode->i_private;
  2687. if (!HAS_IPC(dev_priv))
  2688. return -ENODEV;
  2689. return single_open(file, i915_ipc_status_show, dev_priv);
  2690. }
  2691. static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
  2692. size_t len, loff_t *offp)
  2693. {
  2694. struct seq_file *m = file->private_data;
  2695. struct drm_i915_private *dev_priv = m->private;
  2696. int ret;
  2697. bool enable;
  2698. ret = kstrtobool_from_user(ubuf, len, &enable);
  2699. if (ret < 0)
  2700. return ret;
  2701. intel_runtime_pm_get(dev_priv);
  2702. if (!dev_priv->ipc_enabled && enable)
  2703. DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
  2704. dev_priv->wm.distrust_bios_wm = true;
  2705. dev_priv->ipc_enabled = enable;
  2706. intel_enable_ipc(dev_priv);
  2707. intel_runtime_pm_put(dev_priv);
  2708. return len;
  2709. }
  2710. static const struct file_operations i915_ipc_status_fops = {
  2711. .owner = THIS_MODULE,
  2712. .open = i915_ipc_status_open,
  2713. .read = seq_read,
  2714. .llseek = seq_lseek,
  2715. .release = single_release,
  2716. .write = i915_ipc_status_write
  2717. };
  2718. static int i915_ddb_info(struct seq_file *m, void *unused)
  2719. {
  2720. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2721. struct drm_device *dev = &dev_priv->drm;
  2722. struct skl_ddb_allocation *ddb;
  2723. struct skl_ddb_entry *entry;
  2724. enum pipe pipe;
  2725. int plane;
  2726. if (INTEL_GEN(dev_priv) < 9)
  2727. return -ENODEV;
  2728. drm_modeset_lock_all(dev);
  2729. ddb = &dev_priv->wm.skl_hw.ddb;
  2730. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2731. for_each_pipe(dev_priv, pipe) {
  2732. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2733. for_each_universal_plane(dev_priv, pipe, plane) {
  2734. entry = &ddb->plane[pipe][plane];
  2735. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2736. entry->start, entry->end,
  2737. skl_ddb_entry_size(entry));
  2738. }
  2739. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2740. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2741. entry->end, skl_ddb_entry_size(entry));
  2742. }
  2743. drm_modeset_unlock_all(dev);
  2744. return 0;
  2745. }
  2746. static void drrs_status_per_crtc(struct seq_file *m,
  2747. struct drm_device *dev,
  2748. struct intel_crtc *intel_crtc)
  2749. {
  2750. struct drm_i915_private *dev_priv = to_i915(dev);
  2751. struct i915_drrs *drrs = &dev_priv->drrs;
  2752. int vrefresh = 0;
  2753. struct drm_connector *connector;
  2754. struct drm_connector_list_iter conn_iter;
  2755. drm_connector_list_iter_begin(dev, &conn_iter);
  2756. drm_for_each_connector_iter(connector, &conn_iter) {
  2757. if (connector->state->crtc != &intel_crtc->base)
  2758. continue;
  2759. seq_printf(m, "%s:\n", connector->name);
  2760. }
  2761. drm_connector_list_iter_end(&conn_iter);
  2762. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2763. seq_puts(m, "\tVBT: DRRS_type: Static");
  2764. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2765. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2766. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2767. seq_puts(m, "\tVBT: DRRS_type: None");
  2768. else
  2769. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2770. seq_puts(m, "\n\n");
  2771. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2772. struct intel_panel *panel;
  2773. mutex_lock(&drrs->mutex);
  2774. /* DRRS Supported */
  2775. seq_puts(m, "\tDRRS Supported: Yes\n");
  2776. /* disable_drrs() will make drrs->dp NULL */
  2777. if (!drrs->dp) {
  2778. seq_puts(m, "Idleness DRRS: Disabled");
  2779. mutex_unlock(&drrs->mutex);
  2780. return;
  2781. }
  2782. panel = &drrs->dp->attached_connector->panel;
  2783. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2784. drrs->busy_frontbuffer_bits);
  2785. seq_puts(m, "\n\t\t");
  2786. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2787. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2788. vrefresh = panel->fixed_mode->vrefresh;
  2789. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2790. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2791. vrefresh = panel->downclock_mode->vrefresh;
  2792. } else {
  2793. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2794. drrs->refresh_rate_type);
  2795. mutex_unlock(&drrs->mutex);
  2796. return;
  2797. }
  2798. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2799. seq_puts(m, "\n\t\t");
  2800. mutex_unlock(&drrs->mutex);
  2801. } else {
  2802. /* DRRS not supported. Print the VBT parameter*/
  2803. seq_puts(m, "\tDRRS Supported : No");
  2804. }
  2805. seq_puts(m, "\n");
  2806. }
  2807. static int i915_drrs_status(struct seq_file *m, void *unused)
  2808. {
  2809. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2810. struct drm_device *dev = &dev_priv->drm;
  2811. struct intel_crtc *intel_crtc;
  2812. int active_crtc_cnt = 0;
  2813. drm_modeset_lock_all(dev);
  2814. for_each_intel_crtc(dev, intel_crtc) {
  2815. if (intel_crtc->base.state->active) {
  2816. active_crtc_cnt++;
  2817. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2818. drrs_status_per_crtc(m, dev, intel_crtc);
  2819. }
  2820. }
  2821. drm_modeset_unlock_all(dev);
  2822. if (!active_crtc_cnt)
  2823. seq_puts(m, "No active crtc found\n");
  2824. return 0;
  2825. }
  2826. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2827. {
  2828. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2829. struct drm_device *dev = &dev_priv->drm;
  2830. struct intel_encoder *intel_encoder;
  2831. struct intel_digital_port *intel_dig_port;
  2832. struct drm_connector *connector;
  2833. struct drm_connector_list_iter conn_iter;
  2834. drm_connector_list_iter_begin(dev, &conn_iter);
  2835. drm_for_each_connector_iter(connector, &conn_iter) {
  2836. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2837. continue;
  2838. intel_encoder = intel_attached_encoder(connector);
  2839. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2840. continue;
  2841. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2842. if (!intel_dig_port->dp.can_mst)
  2843. continue;
  2844. seq_printf(m, "MST Source Port %c\n",
  2845. port_name(intel_dig_port->base.port));
  2846. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2847. }
  2848. drm_connector_list_iter_end(&conn_iter);
  2849. return 0;
  2850. }
  2851. static ssize_t i915_displayport_test_active_write(struct file *file,
  2852. const char __user *ubuf,
  2853. size_t len, loff_t *offp)
  2854. {
  2855. char *input_buffer;
  2856. int status = 0;
  2857. struct drm_device *dev;
  2858. struct drm_connector *connector;
  2859. struct drm_connector_list_iter conn_iter;
  2860. struct intel_dp *intel_dp;
  2861. int val = 0;
  2862. dev = ((struct seq_file *)file->private_data)->private;
  2863. if (len == 0)
  2864. return 0;
  2865. input_buffer = memdup_user_nul(ubuf, len);
  2866. if (IS_ERR(input_buffer))
  2867. return PTR_ERR(input_buffer);
  2868. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  2869. drm_connector_list_iter_begin(dev, &conn_iter);
  2870. drm_for_each_connector_iter(connector, &conn_iter) {
  2871. struct intel_encoder *encoder;
  2872. if (connector->connector_type !=
  2873. DRM_MODE_CONNECTOR_DisplayPort)
  2874. continue;
  2875. encoder = to_intel_encoder(connector->encoder);
  2876. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  2877. continue;
  2878. if (encoder && connector->status == connector_status_connected) {
  2879. intel_dp = enc_to_intel_dp(&encoder->base);
  2880. status = kstrtoint(input_buffer, 10, &val);
  2881. if (status < 0)
  2882. break;
  2883. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  2884. /* To prevent erroneous activation of the compliance
  2885. * testing code, only accept an actual value of 1 here
  2886. */
  2887. if (val == 1)
  2888. intel_dp->compliance.test_active = 1;
  2889. else
  2890. intel_dp->compliance.test_active = 0;
  2891. }
  2892. }
  2893. drm_connector_list_iter_end(&conn_iter);
  2894. kfree(input_buffer);
  2895. if (status < 0)
  2896. return status;
  2897. *offp += len;
  2898. return len;
  2899. }
  2900. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  2901. {
  2902. struct drm_device *dev = m->private;
  2903. struct drm_connector *connector;
  2904. struct drm_connector_list_iter conn_iter;
  2905. struct intel_dp *intel_dp;
  2906. drm_connector_list_iter_begin(dev, &conn_iter);
  2907. drm_for_each_connector_iter(connector, &conn_iter) {
  2908. struct intel_encoder *encoder;
  2909. if (connector->connector_type !=
  2910. DRM_MODE_CONNECTOR_DisplayPort)
  2911. continue;
  2912. encoder = to_intel_encoder(connector->encoder);
  2913. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  2914. continue;
  2915. if (encoder && connector->status == connector_status_connected) {
  2916. intel_dp = enc_to_intel_dp(&encoder->base);
  2917. if (intel_dp->compliance.test_active)
  2918. seq_puts(m, "1");
  2919. else
  2920. seq_puts(m, "0");
  2921. } else
  2922. seq_puts(m, "0");
  2923. }
  2924. drm_connector_list_iter_end(&conn_iter);
  2925. return 0;
  2926. }
  2927. static int i915_displayport_test_active_open(struct inode *inode,
  2928. struct file *file)
  2929. {
  2930. struct drm_i915_private *dev_priv = inode->i_private;
  2931. return single_open(file, i915_displayport_test_active_show,
  2932. &dev_priv->drm);
  2933. }
  2934. static const struct file_operations i915_displayport_test_active_fops = {
  2935. .owner = THIS_MODULE,
  2936. .open = i915_displayport_test_active_open,
  2937. .read = seq_read,
  2938. .llseek = seq_lseek,
  2939. .release = single_release,
  2940. .write = i915_displayport_test_active_write
  2941. };
  2942. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  2943. {
  2944. struct drm_device *dev = m->private;
  2945. struct drm_connector *connector;
  2946. struct drm_connector_list_iter conn_iter;
  2947. struct intel_dp *intel_dp;
  2948. drm_connector_list_iter_begin(dev, &conn_iter);
  2949. drm_for_each_connector_iter(connector, &conn_iter) {
  2950. struct intel_encoder *encoder;
  2951. if (connector->connector_type !=
  2952. DRM_MODE_CONNECTOR_DisplayPort)
  2953. continue;
  2954. encoder = to_intel_encoder(connector->encoder);
  2955. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  2956. continue;
  2957. if (encoder && connector->status == connector_status_connected) {
  2958. intel_dp = enc_to_intel_dp(&encoder->base);
  2959. if (intel_dp->compliance.test_type ==
  2960. DP_TEST_LINK_EDID_READ)
  2961. seq_printf(m, "%lx",
  2962. intel_dp->compliance.test_data.edid);
  2963. else if (intel_dp->compliance.test_type ==
  2964. DP_TEST_LINK_VIDEO_PATTERN) {
  2965. seq_printf(m, "hdisplay: %d\n",
  2966. intel_dp->compliance.test_data.hdisplay);
  2967. seq_printf(m, "vdisplay: %d\n",
  2968. intel_dp->compliance.test_data.vdisplay);
  2969. seq_printf(m, "bpc: %u\n",
  2970. intel_dp->compliance.test_data.bpc);
  2971. }
  2972. } else
  2973. seq_puts(m, "0");
  2974. }
  2975. drm_connector_list_iter_end(&conn_iter);
  2976. return 0;
  2977. }
  2978. static int i915_displayport_test_data_open(struct inode *inode,
  2979. struct file *file)
  2980. {
  2981. struct drm_i915_private *dev_priv = inode->i_private;
  2982. return single_open(file, i915_displayport_test_data_show,
  2983. &dev_priv->drm);
  2984. }
  2985. static const struct file_operations i915_displayport_test_data_fops = {
  2986. .owner = THIS_MODULE,
  2987. .open = i915_displayport_test_data_open,
  2988. .read = seq_read,
  2989. .llseek = seq_lseek,
  2990. .release = single_release
  2991. };
  2992. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  2993. {
  2994. struct drm_device *dev = m->private;
  2995. struct drm_connector *connector;
  2996. struct drm_connector_list_iter conn_iter;
  2997. struct intel_dp *intel_dp;
  2998. drm_connector_list_iter_begin(dev, &conn_iter);
  2999. drm_for_each_connector_iter(connector, &conn_iter) {
  3000. struct intel_encoder *encoder;
  3001. if (connector->connector_type !=
  3002. DRM_MODE_CONNECTOR_DisplayPort)
  3003. continue;
  3004. encoder = to_intel_encoder(connector->encoder);
  3005. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3006. continue;
  3007. if (encoder && connector->status == connector_status_connected) {
  3008. intel_dp = enc_to_intel_dp(&encoder->base);
  3009. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3010. } else
  3011. seq_puts(m, "0");
  3012. }
  3013. drm_connector_list_iter_end(&conn_iter);
  3014. return 0;
  3015. }
  3016. static int i915_displayport_test_type_open(struct inode *inode,
  3017. struct file *file)
  3018. {
  3019. struct drm_i915_private *dev_priv = inode->i_private;
  3020. return single_open(file, i915_displayport_test_type_show,
  3021. &dev_priv->drm);
  3022. }
  3023. static const struct file_operations i915_displayport_test_type_fops = {
  3024. .owner = THIS_MODULE,
  3025. .open = i915_displayport_test_type_open,
  3026. .read = seq_read,
  3027. .llseek = seq_lseek,
  3028. .release = single_release
  3029. };
  3030. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3031. {
  3032. struct drm_i915_private *dev_priv = m->private;
  3033. struct drm_device *dev = &dev_priv->drm;
  3034. int level;
  3035. int num_levels;
  3036. if (IS_CHERRYVIEW(dev_priv))
  3037. num_levels = 3;
  3038. else if (IS_VALLEYVIEW(dev_priv))
  3039. num_levels = 1;
  3040. else if (IS_G4X(dev_priv))
  3041. num_levels = 3;
  3042. else
  3043. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3044. drm_modeset_lock_all(dev);
  3045. for (level = 0; level < num_levels; level++) {
  3046. unsigned int latency = wm[level];
  3047. /*
  3048. * - WM1+ latency values in 0.5us units
  3049. * - latencies are in us on gen9/vlv/chv
  3050. */
  3051. if (INTEL_GEN(dev_priv) >= 9 ||
  3052. IS_VALLEYVIEW(dev_priv) ||
  3053. IS_CHERRYVIEW(dev_priv) ||
  3054. IS_G4X(dev_priv))
  3055. latency *= 10;
  3056. else if (level > 0)
  3057. latency *= 5;
  3058. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3059. level, wm[level], latency / 10, latency % 10);
  3060. }
  3061. drm_modeset_unlock_all(dev);
  3062. }
  3063. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3064. {
  3065. struct drm_i915_private *dev_priv = m->private;
  3066. const uint16_t *latencies;
  3067. if (INTEL_GEN(dev_priv) >= 9)
  3068. latencies = dev_priv->wm.skl_latency;
  3069. else
  3070. latencies = dev_priv->wm.pri_latency;
  3071. wm_latency_show(m, latencies);
  3072. return 0;
  3073. }
  3074. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3075. {
  3076. struct drm_i915_private *dev_priv = m->private;
  3077. const uint16_t *latencies;
  3078. if (INTEL_GEN(dev_priv) >= 9)
  3079. latencies = dev_priv->wm.skl_latency;
  3080. else
  3081. latencies = dev_priv->wm.spr_latency;
  3082. wm_latency_show(m, latencies);
  3083. return 0;
  3084. }
  3085. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3086. {
  3087. struct drm_i915_private *dev_priv = m->private;
  3088. const uint16_t *latencies;
  3089. if (INTEL_GEN(dev_priv) >= 9)
  3090. latencies = dev_priv->wm.skl_latency;
  3091. else
  3092. latencies = dev_priv->wm.cur_latency;
  3093. wm_latency_show(m, latencies);
  3094. return 0;
  3095. }
  3096. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3097. {
  3098. struct drm_i915_private *dev_priv = inode->i_private;
  3099. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3100. return -ENODEV;
  3101. return single_open(file, pri_wm_latency_show, dev_priv);
  3102. }
  3103. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3104. {
  3105. struct drm_i915_private *dev_priv = inode->i_private;
  3106. if (HAS_GMCH_DISPLAY(dev_priv))
  3107. return -ENODEV;
  3108. return single_open(file, spr_wm_latency_show, dev_priv);
  3109. }
  3110. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3111. {
  3112. struct drm_i915_private *dev_priv = inode->i_private;
  3113. if (HAS_GMCH_DISPLAY(dev_priv))
  3114. return -ENODEV;
  3115. return single_open(file, cur_wm_latency_show, dev_priv);
  3116. }
  3117. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3118. size_t len, loff_t *offp, uint16_t wm[8])
  3119. {
  3120. struct seq_file *m = file->private_data;
  3121. struct drm_i915_private *dev_priv = m->private;
  3122. struct drm_device *dev = &dev_priv->drm;
  3123. uint16_t new[8] = { 0 };
  3124. int num_levels;
  3125. int level;
  3126. int ret;
  3127. char tmp[32];
  3128. if (IS_CHERRYVIEW(dev_priv))
  3129. num_levels = 3;
  3130. else if (IS_VALLEYVIEW(dev_priv))
  3131. num_levels = 1;
  3132. else if (IS_G4X(dev_priv))
  3133. num_levels = 3;
  3134. else
  3135. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3136. if (len >= sizeof(tmp))
  3137. return -EINVAL;
  3138. if (copy_from_user(tmp, ubuf, len))
  3139. return -EFAULT;
  3140. tmp[len] = '\0';
  3141. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3142. &new[0], &new[1], &new[2], &new[3],
  3143. &new[4], &new[5], &new[6], &new[7]);
  3144. if (ret != num_levels)
  3145. return -EINVAL;
  3146. drm_modeset_lock_all(dev);
  3147. for (level = 0; level < num_levels; level++)
  3148. wm[level] = new[level];
  3149. drm_modeset_unlock_all(dev);
  3150. return len;
  3151. }
  3152. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3153. size_t len, loff_t *offp)
  3154. {
  3155. struct seq_file *m = file->private_data;
  3156. struct drm_i915_private *dev_priv = m->private;
  3157. uint16_t *latencies;
  3158. if (INTEL_GEN(dev_priv) >= 9)
  3159. latencies = dev_priv->wm.skl_latency;
  3160. else
  3161. latencies = dev_priv->wm.pri_latency;
  3162. return wm_latency_write(file, ubuf, len, offp, latencies);
  3163. }
  3164. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3165. size_t len, loff_t *offp)
  3166. {
  3167. struct seq_file *m = file->private_data;
  3168. struct drm_i915_private *dev_priv = m->private;
  3169. uint16_t *latencies;
  3170. if (INTEL_GEN(dev_priv) >= 9)
  3171. latencies = dev_priv->wm.skl_latency;
  3172. else
  3173. latencies = dev_priv->wm.spr_latency;
  3174. return wm_latency_write(file, ubuf, len, offp, latencies);
  3175. }
  3176. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3177. size_t len, loff_t *offp)
  3178. {
  3179. struct seq_file *m = file->private_data;
  3180. struct drm_i915_private *dev_priv = m->private;
  3181. uint16_t *latencies;
  3182. if (INTEL_GEN(dev_priv) >= 9)
  3183. latencies = dev_priv->wm.skl_latency;
  3184. else
  3185. latencies = dev_priv->wm.cur_latency;
  3186. return wm_latency_write(file, ubuf, len, offp, latencies);
  3187. }
  3188. static const struct file_operations i915_pri_wm_latency_fops = {
  3189. .owner = THIS_MODULE,
  3190. .open = pri_wm_latency_open,
  3191. .read = seq_read,
  3192. .llseek = seq_lseek,
  3193. .release = single_release,
  3194. .write = pri_wm_latency_write
  3195. };
  3196. static const struct file_operations i915_spr_wm_latency_fops = {
  3197. .owner = THIS_MODULE,
  3198. .open = spr_wm_latency_open,
  3199. .read = seq_read,
  3200. .llseek = seq_lseek,
  3201. .release = single_release,
  3202. .write = spr_wm_latency_write
  3203. };
  3204. static const struct file_operations i915_cur_wm_latency_fops = {
  3205. .owner = THIS_MODULE,
  3206. .open = cur_wm_latency_open,
  3207. .read = seq_read,
  3208. .llseek = seq_lseek,
  3209. .release = single_release,
  3210. .write = cur_wm_latency_write
  3211. };
  3212. static int
  3213. i915_wedged_get(void *data, u64 *val)
  3214. {
  3215. struct drm_i915_private *dev_priv = data;
  3216. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3217. return 0;
  3218. }
  3219. static int
  3220. i915_wedged_set(void *data, u64 val)
  3221. {
  3222. struct drm_i915_private *i915 = data;
  3223. struct intel_engine_cs *engine;
  3224. unsigned int tmp;
  3225. /*
  3226. * There is no safeguard against this debugfs entry colliding
  3227. * with the hangcheck calling same i915_handle_error() in
  3228. * parallel, causing an explosion. For now we assume that the
  3229. * test harness is responsible enough not to inject gpu hangs
  3230. * while it is writing to 'i915_wedged'
  3231. */
  3232. if (i915_reset_backoff(&i915->gpu_error))
  3233. return -EAGAIN;
  3234. for_each_engine_masked(engine, i915, val, tmp) {
  3235. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3236. engine->hangcheck.stalled = true;
  3237. }
  3238. i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
  3239. wait_on_bit(&i915->gpu_error.flags,
  3240. I915_RESET_HANDOFF,
  3241. TASK_UNINTERRUPTIBLE);
  3242. return 0;
  3243. }
  3244. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3245. i915_wedged_get, i915_wedged_set,
  3246. "%llu\n");
  3247. static int
  3248. fault_irq_set(struct drm_i915_private *i915,
  3249. unsigned long *irq,
  3250. unsigned long val)
  3251. {
  3252. int err;
  3253. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3254. if (err)
  3255. return err;
  3256. err = i915_gem_wait_for_idle(i915,
  3257. I915_WAIT_LOCKED |
  3258. I915_WAIT_INTERRUPTIBLE);
  3259. if (err)
  3260. goto err_unlock;
  3261. *irq = val;
  3262. mutex_unlock(&i915->drm.struct_mutex);
  3263. /* Flush idle worker to disarm irq */
  3264. drain_delayed_work(&i915->gt.idle_work);
  3265. return 0;
  3266. err_unlock:
  3267. mutex_unlock(&i915->drm.struct_mutex);
  3268. return err;
  3269. }
  3270. static int
  3271. i915_ring_missed_irq_get(void *data, u64 *val)
  3272. {
  3273. struct drm_i915_private *dev_priv = data;
  3274. *val = dev_priv->gpu_error.missed_irq_rings;
  3275. return 0;
  3276. }
  3277. static int
  3278. i915_ring_missed_irq_set(void *data, u64 val)
  3279. {
  3280. struct drm_i915_private *i915 = data;
  3281. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3282. }
  3283. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3284. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3285. "0x%08llx\n");
  3286. static int
  3287. i915_ring_test_irq_get(void *data, u64 *val)
  3288. {
  3289. struct drm_i915_private *dev_priv = data;
  3290. *val = dev_priv->gpu_error.test_irq_rings;
  3291. return 0;
  3292. }
  3293. static int
  3294. i915_ring_test_irq_set(void *data, u64 val)
  3295. {
  3296. struct drm_i915_private *i915 = data;
  3297. val &= INTEL_INFO(i915)->ring_mask;
  3298. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3299. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3300. }
  3301. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3302. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3303. "0x%08llx\n");
  3304. #define DROP_UNBOUND BIT(0)
  3305. #define DROP_BOUND BIT(1)
  3306. #define DROP_RETIRE BIT(2)
  3307. #define DROP_ACTIVE BIT(3)
  3308. #define DROP_FREED BIT(4)
  3309. #define DROP_SHRINK_ALL BIT(5)
  3310. #define DROP_IDLE BIT(6)
  3311. #define DROP_ALL (DROP_UNBOUND | \
  3312. DROP_BOUND | \
  3313. DROP_RETIRE | \
  3314. DROP_ACTIVE | \
  3315. DROP_FREED | \
  3316. DROP_SHRINK_ALL |\
  3317. DROP_IDLE)
  3318. static int
  3319. i915_drop_caches_get(void *data, u64 *val)
  3320. {
  3321. *val = DROP_ALL;
  3322. return 0;
  3323. }
  3324. static int
  3325. i915_drop_caches_set(void *data, u64 val)
  3326. {
  3327. struct drm_i915_private *dev_priv = data;
  3328. struct drm_device *dev = &dev_priv->drm;
  3329. int ret = 0;
  3330. DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
  3331. val, val & DROP_ALL);
  3332. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3333. * on ioctls on -EAGAIN. */
  3334. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3335. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3336. if (ret)
  3337. return ret;
  3338. if (val & DROP_ACTIVE)
  3339. ret = i915_gem_wait_for_idle(dev_priv,
  3340. I915_WAIT_INTERRUPTIBLE |
  3341. I915_WAIT_LOCKED);
  3342. if (val & DROP_RETIRE)
  3343. i915_gem_retire_requests(dev_priv);
  3344. mutex_unlock(&dev->struct_mutex);
  3345. }
  3346. fs_reclaim_acquire(GFP_KERNEL);
  3347. if (val & DROP_BOUND)
  3348. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
  3349. if (val & DROP_UNBOUND)
  3350. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
  3351. if (val & DROP_SHRINK_ALL)
  3352. i915_gem_shrink_all(dev_priv);
  3353. fs_reclaim_release(GFP_KERNEL);
  3354. if (val & DROP_IDLE)
  3355. drain_delayed_work(&dev_priv->gt.idle_work);
  3356. if (val & DROP_FREED) {
  3357. synchronize_rcu();
  3358. i915_gem_drain_freed_objects(dev_priv);
  3359. }
  3360. return ret;
  3361. }
  3362. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3363. i915_drop_caches_get, i915_drop_caches_set,
  3364. "0x%08llx\n");
  3365. static int
  3366. i915_max_freq_get(void *data, u64 *val)
  3367. {
  3368. struct drm_i915_private *dev_priv = data;
  3369. if (INTEL_GEN(dev_priv) < 6)
  3370. return -ENODEV;
  3371. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
  3372. return 0;
  3373. }
  3374. static int
  3375. i915_max_freq_set(void *data, u64 val)
  3376. {
  3377. struct drm_i915_private *dev_priv = data;
  3378. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3379. u32 hw_max, hw_min;
  3380. int ret;
  3381. if (INTEL_GEN(dev_priv) < 6)
  3382. return -ENODEV;
  3383. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3384. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3385. if (ret)
  3386. return ret;
  3387. /*
  3388. * Turbo will still be enabled, but won't go above the set value.
  3389. */
  3390. val = intel_freq_opcode(dev_priv, val);
  3391. hw_max = rps->max_freq;
  3392. hw_min = rps->min_freq;
  3393. if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
  3394. mutex_unlock(&dev_priv->pcu_lock);
  3395. return -EINVAL;
  3396. }
  3397. rps->max_freq_softlimit = val;
  3398. if (intel_set_rps(dev_priv, val))
  3399. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3400. mutex_unlock(&dev_priv->pcu_lock);
  3401. return 0;
  3402. }
  3403. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3404. i915_max_freq_get, i915_max_freq_set,
  3405. "%llu\n");
  3406. static int
  3407. i915_min_freq_get(void *data, u64 *val)
  3408. {
  3409. struct drm_i915_private *dev_priv = data;
  3410. if (INTEL_GEN(dev_priv) < 6)
  3411. return -ENODEV;
  3412. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
  3413. return 0;
  3414. }
  3415. static int
  3416. i915_min_freq_set(void *data, u64 val)
  3417. {
  3418. struct drm_i915_private *dev_priv = data;
  3419. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3420. u32 hw_max, hw_min;
  3421. int ret;
  3422. if (INTEL_GEN(dev_priv) < 6)
  3423. return -ENODEV;
  3424. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3425. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3426. if (ret)
  3427. return ret;
  3428. /*
  3429. * Turbo will still be enabled, but won't go below the set value.
  3430. */
  3431. val = intel_freq_opcode(dev_priv, val);
  3432. hw_max = rps->max_freq;
  3433. hw_min = rps->min_freq;
  3434. if (val < hw_min ||
  3435. val > hw_max || val > rps->max_freq_softlimit) {
  3436. mutex_unlock(&dev_priv->pcu_lock);
  3437. return -EINVAL;
  3438. }
  3439. rps->min_freq_softlimit = val;
  3440. if (intel_set_rps(dev_priv, val))
  3441. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3442. mutex_unlock(&dev_priv->pcu_lock);
  3443. return 0;
  3444. }
  3445. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3446. i915_min_freq_get, i915_min_freq_set,
  3447. "%llu\n");
  3448. static int
  3449. i915_cache_sharing_get(void *data, u64 *val)
  3450. {
  3451. struct drm_i915_private *dev_priv = data;
  3452. u32 snpcr;
  3453. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3454. return -ENODEV;
  3455. intel_runtime_pm_get(dev_priv);
  3456. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3457. intel_runtime_pm_put(dev_priv);
  3458. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3459. return 0;
  3460. }
  3461. static int
  3462. i915_cache_sharing_set(void *data, u64 val)
  3463. {
  3464. struct drm_i915_private *dev_priv = data;
  3465. u32 snpcr;
  3466. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3467. return -ENODEV;
  3468. if (val > 3)
  3469. return -EINVAL;
  3470. intel_runtime_pm_get(dev_priv);
  3471. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3472. /* Update the cache sharing policy here as well */
  3473. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3474. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3475. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3476. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3477. intel_runtime_pm_put(dev_priv);
  3478. return 0;
  3479. }
  3480. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3481. i915_cache_sharing_get, i915_cache_sharing_set,
  3482. "%llu\n");
  3483. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3484. struct sseu_dev_info *sseu)
  3485. {
  3486. int ss_max = 2;
  3487. int ss;
  3488. u32 sig1[ss_max], sig2[ss_max];
  3489. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3490. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3491. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3492. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3493. for (ss = 0; ss < ss_max; ss++) {
  3494. unsigned int eu_cnt;
  3495. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3496. /* skip disabled subslice */
  3497. continue;
  3498. sseu->slice_mask = BIT(0);
  3499. sseu->subslice_mask |= BIT(ss);
  3500. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3501. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3502. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3503. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3504. sseu->eu_total += eu_cnt;
  3505. sseu->eu_per_subslice = max_t(unsigned int,
  3506. sseu->eu_per_subslice, eu_cnt);
  3507. }
  3508. }
  3509. static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
  3510. struct sseu_dev_info *sseu)
  3511. {
  3512. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3513. int s_max = 6, ss_max = 4;
  3514. int s, ss;
  3515. u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
  3516. for (s = 0; s < s_max; s++) {
  3517. /*
  3518. * FIXME: Valid SS Mask respects the spec and read
  3519. * only valid bits for those registers, excluding reserverd
  3520. * although this seems wrong because it would leave many
  3521. * subslices without ACK.
  3522. */
  3523. s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
  3524. GEN10_PGCTL_VALID_SS_MASK(s);
  3525. eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
  3526. eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
  3527. }
  3528. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3529. GEN9_PGCTL_SSA_EU19_ACK |
  3530. GEN9_PGCTL_SSA_EU210_ACK |
  3531. GEN9_PGCTL_SSA_EU311_ACK;
  3532. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3533. GEN9_PGCTL_SSB_EU19_ACK |
  3534. GEN9_PGCTL_SSB_EU210_ACK |
  3535. GEN9_PGCTL_SSB_EU311_ACK;
  3536. for (s = 0; s < s_max; s++) {
  3537. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3538. /* skip disabled slice */
  3539. continue;
  3540. sseu->slice_mask |= BIT(s);
  3541. sseu->subslice_mask = info->sseu.subslice_mask;
  3542. for (ss = 0; ss < ss_max; ss++) {
  3543. unsigned int eu_cnt;
  3544. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3545. /* skip disabled subslice */
  3546. continue;
  3547. eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
  3548. eu_mask[ss % 2]);
  3549. sseu->eu_total += eu_cnt;
  3550. sseu->eu_per_subslice = max_t(unsigned int,
  3551. sseu->eu_per_subslice,
  3552. eu_cnt);
  3553. }
  3554. }
  3555. }
  3556. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3557. struct sseu_dev_info *sseu)
  3558. {
  3559. int s_max = 3, ss_max = 4;
  3560. int s, ss;
  3561. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3562. /* BXT has a single slice and at most 3 subslices. */
  3563. if (IS_GEN9_LP(dev_priv)) {
  3564. s_max = 1;
  3565. ss_max = 3;
  3566. }
  3567. for (s = 0; s < s_max; s++) {
  3568. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3569. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3570. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3571. }
  3572. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3573. GEN9_PGCTL_SSA_EU19_ACK |
  3574. GEN9_PGCTL_SSA_EU210_ACK |
  3575. GEN9_PGCTL_SSA_EU311_ACK;
  3576. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3577. GEN9_PGCTL_SSB_EU19_ACK |
  3578. GEN9_PGCTL_SSB_EU210_ACK |
  3579. GEN9_PGCTL_SSB_EU311_ACK;
  3580. for (s = 0; s < s_max; s++) {
  3581. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3582. /* skip disabled slice */
  3583. continue;
  3584. sseu->slice_mask |= BIT(s);
  3585. if (IS_GEN9_BC(dev_priv))
  3586. sseu->subslice_mask =
  3587. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3588. for (ss = 0; ss < ss_max; ss++) {
  3589. unsigned int eu_cnt;
  3590. if (IS_GEN9_LP(dev_priv)) {
  3591. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3592. /* skip disabled subslice */
  3593. continue;
  3594. sseu->subslice_mask |= BIT(ss);
  3595. }
  3596. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3597. eu_mask[ss%2]);
  3598. sseu->eu_total += eu_cnt;
  3599. sseu->eu_per_subslice = max_t(unsigned int,
  3600. sseu->eu_per_subslice,
  3601. eu_cnt);
  3602. }
  3603. }
  3604. }
  3605. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3606. struct sseu_dev_info *sseu)
  3607. {
  3608. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3609. int s;
  3610. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3611. if (sseu->slice_mask) {
  3612. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3613. sseu->eu_per_subslice =
  3614. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3615. sseu->eu_total = sseu->eu_per_subslice *
  3616. sseu_subslice_total(sseu);
  3617. /* subtract fused off EU(s) from enabled slice(s) */
  3618. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3619. u8 subslice_7eu =
  3620. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3621. sseu->eu_total -= hweight8(subslice_7eu);
  3622. }
  3623. }
  3624. }
  3625. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3626. const struct sseu_dev_info *sseu)
  3627. {
  3628. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3629. const char *type = is_available_info ? "Available" : "Enabled";
  3630. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3631. sseu->slice_mask);
  3632. seq_printf(m, " %s Slice Total: %u\n", type,
  3633. hweight8(sseu->slice_mask));
  3634. seq_printf(m, " %s Subslice Total: %u\n", type,
  3635. sseu_subslice_total(sseu));
  3636. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3637. sseu->subslice_mask);
  3638. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3639. hweight8(sseu->subslice_mask));
  3640. seq_printf(m, " %s EU Total: %u\n", type,
  3641. sseu->eu_total);
  3642. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3643. sseu->eu_per_subslice);
  3644. if (!is_available_info)
  3645. return;
  3646. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3647. if (HAS_POOLED_EU(dev_priv))
  3648. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3649. seq_printf(m, " Has Slice Power Gating: %s\n",
  3650. yesno(sseu->has_slice_pg));
  3651. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3652. yesno(sseu->has_subslice_pg));
  3653. seq_printf(m, " Has EU Power Gating: %s\n",
  3654. yesno(sseu->has_eu_pg));
  3655. }
  3656. static int i915_sseu_status(struct seq_file *m, void *unused)
  3657. {
  3658. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3659. struct sseu_dev_info sseu;
  3660. if (INTEL_GEN(dev_priv) < 8)
  3661. return -ENODEV;
  3662. seq_puts(m, "SSEU Device Info\n");
  3663. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3664. seq_puts(m, "SSEU Device Status\n");
  3665. memset(&sseu, 0, sizeof(sseu));
  3666. intel_runtime_pm_get(dev_priv);
  3667. if (IS_CHERRYVIEW(dev_priv)) {
  3668. cherryview_sseu_device_status(dev_priv, &sseu);
  3669. } else if (IS_BROADWELL(dev_priv)) {
  3670. broadwell_sseu_device_status(dev_priv, &sseu);
  3671. } else if (IS_GEN9(dev_priv)) {
  3672. gen9_sseu_device_status(dev_priv, &sseu);
  3673. } else if (INTEL_GEN(dev_priv) >= 10) {
  3674. gen10_sseu_device_status(dev_priv, &sseu);
  3675. }
  3676. intel_runtime_pm_put(dev_priv);
  3677. i915_print_sseu_info(m, false, &sseu);
  3678. return 0;
  3679. }
  3680. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3681. {
  3682. struct drm_i915_private *i915 = inode->i_private;
  3683. if (INTEL_GEN(i915) < 6)
  3684. return 0;
  3685. intel_runtime_pm_get(i915);
  3686. intel_uncore_forcewake_user_get(i915);
  3687. return 0;
  3688. }
  3689. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3690. {
  3691. struct drm_i915_private *i915 = inode->i_private;
  3692. if (INTEL_GEN(i915) < 6)
  3693. return 0;
  3694. intel_uncore_forcewake_user_put(i915);
  3695. intel_runtime_pm_put(i915);
  3696. return 0;
  3697. }
  3698. static const struct file_operations i915_forcewake_fops = {
  3699. .owner = THIS_MODULE,
  3700. .open = i915_forcewake_open,
  3701. .release = i915_forcewake_release,
  3702. };
  3703. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3704. {
  3705. struct drm_i915_private *dev_priv = m->private;
  3706. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3707. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3708. seq_printf(m, "Detected: %s\n",
  3709. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3710. return 0;
  3711. }
  3712. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3713. const char __user *ubuf, size_t len,
  3714. loff_t *offp)
  3715. {
  3716. struct seq_file *m = file->private_data;
  3717. struct drm_i915_private *dev_priv = m->private;
  3718. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3719. unsigned int new_threshold;
  3720. int i;
  3721. char *newline;
  3722. char tmp[16];
  3723. if (len >= sizeof(tmp))
  3724. return -EINVAL;
  3725. if (copy_from_user(tmp, ubuf, len))
  3726. return -EFAULT;
  3727. tmp[len] = '\0';
  3728. /* Strip newline, if any */
  3729. newline = strchr(tmp, '\n');
  3730. if (newline)
  3731. *newline = '\0';
  3732. if (strcmp(tmp, "reset") == 0)
  3733. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3734. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3735. return -EINVAL;
  3736. if (new_threshold > 0)
  3737. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3738. new_threshold);
  3739. else
  3740. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3741. spin_lock_irq(&dev_priv->irq_lock);
  3742. hotplug->hpd_storm_threshold = new_threshold;
  3743. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3744. for_each_hpd_pin(i)
  3745. hotplug->stats[i].count = 0;
  3746. spin_unlock_irq(&dev_priv->irq_lock);
  3747. /* Re-enable hpd immediately if we were in an irq storm */
  3748. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3749. return len;
  3750. }
  3751. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3752. {
  3753. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3754. }
  3755. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3756. .owner = THIS_MODULE,
  3757. .open = i915_hpd_storm_ctl_open,
  3758. .read = seq_read,
  3759. .llseek = seq_lseek,
  3760. .release = single_release,
  3761. .write = i915_hpd_storm_ctl_write
  3762. };
  3763. static const struct drm_info_list i915_debugfs_list[] = {
  3764. {"i915_capabilities", i915_capabilities, 0},
  3765. {"i915_gem_objects", i915_gem_object_info, 0},
  3766. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3767. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3768. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3769. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3770. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3771. {"i915_guc_info", i915_guc_info, 0},
  3772. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3773. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3774. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3775. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3776. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3777. {"i915_frequency_info", i915_frequency_info, 0},
  3778. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3779. {"i915_reset_info", i915_reset_info, 0},
  3780. {"i915_drpc_info", i915_drpc_info, 0},
  3781. {"i915_emon_status", i915_emon_status, 0},
  3782. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3783. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3784. {"i915_fbc_status", i915_fbc_status, 0},
  3785. {"i915_ips_status", i915_ips_status, 0},
  3786. {"i915_sr_status", i915_sr_status, 0},
  3787. {"i915_opregion", i915_opregion, 0},
  3788. {"i915_vbt", i915_vbt, 0},
  3789. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3790. {"i915_context_status", i915_context_status, 0},
  3791. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3792. {"i915_swizzle_info", i915_swizzle_info, 0},
  3793. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3794. {"i915_llc", i915_llc, 0},
  3795. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3796. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3797. {"i915_energy_uJ", i915_energy_uJ, 0},
  3798. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3799. {"i915_power_domain_info", i915_power_domain_info, 0},
  3800. {"i915_dmc_info", i915_dmc_info, 0},
  3801. {"i915_display_info", i915_display_info, 0},
  3802. {"i915_engine_info", i915_engine_info, 0},
  3803. {"i915_shrinker_info", i915_shrinker_info, 0},
  3804. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3805. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3806. {"i915_wa_registers", i915_wa_registers, 0},
  3807. {"i915_ddb_info", i915_ddb_info, 0},
  3808. {"i915_sseu_status", i915_sseu_status, 0},
  3809. {"i915_drrs_status", i915_drrs_status, 0},
  3810. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3811. };
  3812. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3813. static const struct i915_debugfs_files {
  3814. const char *name;
  3815. const struct file_operations *fops;
  3816. } i915_debugfs_files[] = {
  3817. {"i915_wedged", &i915_wedged_fops},
  3818. {"i915_max_freq", &i915_max_freq_fops},
  3819. {"i915_min_freq", &i915_min_freq_fops},
  3820. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3821. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3822. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3823. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3824. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3825. {"i915_error_state", &i915_error_state_fops},
  3826. {"i915_gpu_info", &i915_gpu_info_fops},
  3827. #endif
  3828. {"i915_next_seqno", &i915_next_seqno_fops},
  3829. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3830. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3831. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3832. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3833. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  3834. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3835. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3836. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3837. {"i915_guc_log_control", &i915_guc_log_control_fops},
  3838. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
  3839. {"i915_ipc_status", &i915_ipc_status_fops}
  3840. };
  3841. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3842. {
  3843. struct drm_minor *minor = dev_priv->drm.primary;
  3844. struct dentry *ent;
  3845. int ret, i;
  3846. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  3847. minor->debugfs_root, to_i915(minor->dev),
  3848. &i915_forcewake_fops);
  3849. if (!ent)
  3850. return -ENOMEM;
  3851. ret = intel_pipe_crc_create(minor);
  3852. if (ret)
  3853. return ret;
  3854. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3855. ent = debugfs_create_file(i915_debugfs_files[i].name,
  3856. S_IRUGO | S_IWUSR,
  3857. minor->debugfs_root,
  3858. to_i915(minor->dev),
  3859. i915_debugfs_files[i].fops);
  3860. if (!ent)
  3861. return -ENOMEM;
  3862. }
  3863. return drm_debugfs_create_files(i915_debugfs_list,
  3864. I915_DEBUGFS_ENTRIES,
  3865. minor->debugfs_root, minor);
  3866. }
  3867. struct dpcd_block {
  3868. /* DPCD dump start address. */
  3869. unsigned int offset;
  3870. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  3871. unsigned int end;
  3872. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  3873. size_t size;
  3874. /* Only valid for eDP. */
  3875. bool edp;
  3876. };
  3877. static const struct dpcd_block i915_dpcd_debug[] = {
  3878. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  3879. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  3880. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  3881. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  3882. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  3883. { .offset = DP_SET_POWER },
  3884. { .offset = DP_EDP_DPCD_REV },
  3885. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  3886. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  3887. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  3888. };
  3889. static int i915_dpcd_show(struct seq_file *m, void *data)
  3890. {
  3891. struct drm_connector *connector = m->private;
  3892. struct intel_dp *intel_dp =
  3893. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3894. uint8_t buf[16];
  3895. ssize_t err;
  3896. int i;
  3897. if (connector->status != connector_status_connected)
  3898. return -ENODEV;
  3899. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  3900. const struct dpcd_block *b = &i915_dpcd_debug[i];
  3901. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  3902. if (b->edp &&
  3903. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  3904. continue;
  3905. /* low tech for now */
  3906. if (WARN_ON(size > sizeof(buf)))
  3907. continue;
  3908. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  3909. if (err <= 0) {
  3910. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  3911. size, b->offset, err);
  3912. continue;
  3913. }
  3914. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  3915. }
  3916. return 0;
  3917. }
  3918. static int i915_dpcd_open(struct inode *inode, struct file *file)
  3919. {
  3920. return single_open(file, i915_dpcd_show, inode->i_private);
  3921. }
  3922. static const struct file_operations i915_dpcd_fops = {
  3923. .owner = THIS_MODULE,
  3924. .open = i915_dpcd_open,
  3925. .read = seq_read,
  3926. .llseek = seq_lseek,
  3927. .release = single_release,
  3928. };
  3929. static int i915_panel_show(struct seq_file *m, void *data)
  3930. {
  3931. struct drm_connector *connector = m->private;
  3932. struct intel_dp *intel_dp =
  3933. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3934. if (connector->status != connector_status_connected)
  3935. return -ENODEV;
  3936. seq_printf(m, "Panel power up delay: %d\n",
  3937. intel_dp->panel_power_up_delay);
  3938. seq_printf(m, "Panel power down delay: %d\n",
  3939. intel_dp->panel_power_down_delay);
  3940. seq_printf(m, "Backlight on delay: %d\n",
  3941. intel_dp->backlight_on_delay);
  3942. seq_printf(m, "Backlight off delay: %d\n",
  3943. intel_dp->backlight_off_delay);
  3944. return 0;
  3945. }
  3946. static int i915_panel_open(struct inode *inode, struct file *file)
  3947. {
  3948. return single_open(file, i915_panel_show, inode->i_private);
  3949. }
  3950. static const struct file_operations i915_panel_fops = {
  3951. .owner = THIS_MODULE,
  3952. .open = i915_panel_open,
  3953. .read = seq_read,
  3954. .llseek = seq_lseek,
  3955. .release = single_release,
  3956. };
  3957. /**
  3958. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  3959. * @connector: pointer to a registered drm_connector
  3960. *
  3961. * Cleanup will be done by drm_connector_unregister() through a call to
  3962. * drm_debugfs_connector_remove().
  3963. *
  3964. * Returns 0 on success, negative error codes on error.
  3965. */
  3966. int i915_debugfs_connector_add(struct drm_connector *connector)
  3967. {
  3968. struct dentry *root = connector->debugfs_entry;
  3969. /* The connector must have been registered beforehands. */
  3970. if (!root)
  3971. return -ENODEV;
  3972. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  3973. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  3974. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  3975. connector, &i915_dpcd_fops);
  3976. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  3977. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  3978. connector, &i915_panel_fops);
  3979. return 0;
  3980. }