amdgpu_amdkfd_gfx_v7.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  91. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  92. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  93. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  94. uint32_t queue_id, uint32_t __user *wptr,
  95. uint32_t wptr_shift, uint32_t wptr_mask,
  96. struct mm_struct *mm);
  97. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  98. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  99. uint32_t pipe_id, uint32_t queue_id);
  100. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  101. enum kfd_preempt_type reset_type,
  102. unsigned int utimeout, uint32_t pipe_id,
  103. uint32_t queue_id);
  104. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  105. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  106. unsigned int utimeout);
  107. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  108. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  109. unsigned int watch_point_id,
  110. uint32_t cntl_val,
  111. uint32_t addr_hi,
  112. uint32_t addr_lo);
  113. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  114. uint32_t gfx_index_val,
  115. uint32_t sq_cmd);
  116. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  117. unsigned int watch_point_id,
  118. unsigned int reg_offset);
  119. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  120. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  121. uint8_t vmid);
  122. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  123. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  124. static void set_scratch_backing_va(struct kgd_dev *kgd,
  125. uint64_t va, uint32_t vmid);
  126. /* Because of REG_GET_FIELD() being used, we put this function in the
  127. * asic specific file.
  128. */
  129. static int get_tile_config(struct kgd_dev *kgd,
  130. struct tile_config *config)
  131. {
  132. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  133. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  134. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  135. MC_ARB_RAMCFG, NOOFBANK);
  136. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  137. MC_ARB_RAMCFG, NOOFRANKS);
  138. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  139. config->num_tile_configs =
  140. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  141. config->macro_tile_config_ptr =
  142. adev->gfx.config.macrotile_mode_array;
  143. config->num_macro_tile_configs =
  144. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  145. return 0;
  146. }
  147. static const struct kfd2kgd_calls kfd2kgd = {
  148. .init_gtt_mem_allocation = alloc_gtt_mem,
  149. .free_gtt_mem = free_gtt_mem,
  150. .get_vmem_size = get_vmem_size,
  151. .get_gpu_clock_counter = get_gpu_clock_counter,
  152. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  153. .alloc_pasid = amdgpu_vm_alloc_pasid,
  154. .free_pasid = amdgpu_vm_free_pasid,
  155. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  156. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  157. .init_pipeline = kgd_init_pipeline,
  158. .init_interrupts = kgd_init_interrupts,
  159. .hqd_load = kgd_hqd_load,
  160. .hqd_sdma_load = kgd_hqd_sdma_load,
  161. .hqd_is_occupied = kgd_hqd_is_occupied,
  162. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  163. .hqd_destroy = kgd_hqd_destroy,
  164. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  165. .address_watch_disable = kgd_address_watch_disable,
  166. .address_watch_execute = kgd_address_watch_execute,
  167. .wave_control_execute = kgd_wave_control_execute,
  168. .address_watch_get_offset = kgd_address_watch_get_offset,
  169. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  170. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  171. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  172. .get_fw_version = get_fw_version,
  173. .set_scratch_backing_va = set_scratch_backing_va,
  174. .get_tile_config = get_tile_config,
  175. };
  176. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  177. {
  178. return (struct kfd2kgd_calls *)&kfd2kgd;
  179. }
  180. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  181. {
  182. return (struct amdgpu_device *)kgd;
  183. }
  184. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  185. uint32_t queue, uint32_t vmid)
  186. {
  187. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  188. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  189. mutex_lock(&adev->srbm_mutex);
  190. WREG32(mmSRBM_GFX_CNTL, value);
  191. }
  192. static void unlock_srbm(struct kgd_dev *kgd)
  193. {
  194. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  195. WREG32(mmSRBM_GFX_CNTL, 0);
  196. mutex_unlock(&adev->srbm_mutex);
  197. }
  198. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  199. uint32_t queue_id)
  200. {
  201. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  202. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  203. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  204. lock_srbm(kgd, mec, pipe, queue_id, 0);
  205. }
  206. static void release_queue(struct kgd_dev *kgd)
  207. {
  208. unlock_srbm(kgd);
  209. }
  210. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  211. uint32_t sh_mem_config,
  212. uint32_t sh_mem_ape1_base,
  213. uint32_t sh_mem_ape1_limit,
  214. uint32_t sh_mem_bases)
  215. {
  216. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  217. lock_srbm(kgd, 0, 0, 0, vmid);
  218. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  219. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  220. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  221. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  222. unlock_srbm(kgd);
  223. }
  224. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  225. unsigned int vmid)
  226. {
  227. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  228. /*
  229. * We have to assume that there is no outstanding mapping.
  230. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  231. * a mapping is in progress or because a mapping finished and the
  232. * SW cleared it. So the protocol is to always wait & clear.
  233. */
  234. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  235. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  236. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  237. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  238. cpu_relax();
  239. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  240. /* Mapping vmid to pasid also for IH block */
  241. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  242. return 0;
  243. }
  244. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  245. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  246. {
  247. /* amdgpu owns the per-pipe state */
  248. return 0;
  249. }
  250. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  251. {
  252. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  253. uint32_t mec;
  254. uint32_t pipe;
  255. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  256. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  257. lock_srbm(kgd, mec, pipe, 0, 0);
  258. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  259. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  260. unlock_srbm(kgd);
  261. return 0;
  262. }
  263. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  264. {
  265. uint32_t retval;
  266. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  267. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  268. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  269. return retval;
  270. }
  271. static inline struct cik_mqd *get_mqd(void *mqd)
  272. {
  273. return (struct cik_mqd *)mqd;
  274. }
  275. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  276. {
  277. return (struct cik_sdma_rlc_registers *)mqd;
  278. }
  279. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  280. uint32_t queue_id, uint32_t __user *wptr,
  281. uint32_t wptr_shift, uint32_t wptr_mask,
  282. struct mm_struct *mm)
  283. {
  284. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  285. struct cik_mqd *m;
  286. uint32_t *mqd_hqd;
  287. uint32_t reg, wptr_val, data;
  288. bool valid_wptr = false;
  289. m = get_mqd(mqd);
  290. acquire_queue(kgd, pipe_id, queue_id);
  291. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  292. mqd_hqd = &m->cp_mqd_base_addr_lo;
  293. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  294. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  295. /* Copy userspace write pointer value to register.
  296. * Activate doorbell logic to monitor subsequent changes.
  297. */
  298. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  299. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  300. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  301. /* read_user_ptr may take the mm->mmap_sem.
  302. * release srbm_mutex to avoid circular dependency between
  303. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  304. */
  305. release_queue(kgd);
  306. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  307. acquire_queue(kgd, pipe_id, queue_id);
  308. if (valid_wptr)
  309. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  310. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  311. WREG32(mmCP_HQD_ACTIVE, data);
  312. release_queue(kgd);
  313. return 0;
  314. }
  315. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  316. {
  317. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  318. struct cik_sdma_rlc_registers *m;
  319. unsigned long end_jiffies;
  320. uint32_t sdma_base_addr;
  321. uint32_t data;
  322. m = get_sdma_mqd(mqd);
  323. sdma_base_addr = get_sdma_base_addr(m);
  324. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  325. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  326. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  327. while (true) {
  328. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  329. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  330. break;
  331. if (time_after(jiffies, end_jiffies))
  332. return -ETIME;
  333. usleep_range(500, 1000);
  334. }
  335. if (m->sdma_engine_id) {
  336. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  337. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  338. RESUME_CTX, 0);
  339. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  340. } else {
  341. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  342. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  343. RESUME_CTX, 0);
  344. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  345. }
  346. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
  347. m->sdma_rlc_doorbell);
  348. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  349. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  350. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  351. m->sdma_rlc_virtual_addr);
  352. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  353. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  354. m->sdma_rlc_rb_base_hi);
  355. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  356. m->sdma_rlc_rb_rptr_addr_lo);
  357. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  358. m->sdma_rlc_rb_rptr_addr_hi);
  359. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  360. m->sdma_rlc_rb_cntl);
  361. return 0;
  362. }
  363. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  364. uint32_t pipe_id, uint32_t queue_id)
  365. {
  366. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  367. uint32_t act;
  368. bool retval = false;
  369. uint32_t low, high;
  370. acquire_queue(kgd, pipe_id, queue_id);
  371. act = RREG32(mmCP_HQD_ACTIVE);
  372. if (act) {
  373. low = lower_32_bits(queue_address >> 8);
  374. high = upper_32_bits(queue_address >> 8);
  375. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  376. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  377. retval = true;
  378. }
  379. release_queue(kgd);
  380. return retval;
  381. }
  382. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  383. {
  384. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  385. struct cik_sdma_rlc_registers *m;
  386. uint32_t sdma_base_addr;
  387. uint32_t sdma_rlc_rb_cntl;
  388. m = get_sdma_mqd(mqd);
  389. sdma_base_addr = get_sdma_base_addr(m);
  390. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  391. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  392. return true;
  393. return false;
  394. }
  395. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  396. enum kfd_preempt_type reset_type,
  397. unsigned int utimeout, uint32_t pipe_id,
  398. uint32_t queue_id)
  399. {
  400. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  401. uint32_t temp;
  402. enum hqd_dequeue_request_type type;
  403. unsigned long flags, end_jiffies;
  404. int retry;
  405. acquire_queue(kgd, pipe_id, queue_id);
  406. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  407. switch (reset_type) {
  408. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  409. type = DRAIN_PIPE;
  410. break;
  411. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  412. type = RESET_WAVES;
  413. break;
  414. default:
  415. type = DRAIN_PIPE;
  416. break;
  417. }
  418. /* Workaround: If IQ timer is active and the wait time is close to or
  419. * equal to 0, dequeueing is not safe. Wait until either the wait time
  420. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  421. * cleared before continuing. Also, ensure wait times are set to at
  422. * least 0x3.
  423. */
  424. local_irq_save(flags);
  425. preempt_disable();
  426. retry = 5000; /* wait for 500 usecs at maximum */
  427. while (true) {
  428. temp = RREG32(mmCP_HQD_IQ_TIMER);
  429. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  430. pr_debug("HW is processing IQ\n");
  431. goto loop;
  432. }
  433. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  434. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  435. == 3) /* SEM-rearm is safe */
  436. break;
  437. /* Wait time 3 is safe for CP, but our MMIO read/write
  438. * time is close to 1 microsecond, so check for 10 to
  439. * leave more buffer room
  440. */
  441. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  442. >= 10)
  443. break;
  444. pr_debug("IQ timer is active\n");
  445. } else
  446. break;
  447. loop:
  448. if (!retry) {
  449. pr_err("CP HQD IQ timer status time out\n");
  450. break;
  451. }
  452. ndelay(100);
  453. --retry;
  454. }
  455. retry = 1000;
  456. while (true) {
  457. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  458. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  459. break;
  460. pr_debug("Dequeue request is pending\n");
  461. if (!retry) {
  462. pr_err("CP HQD dequeue request time out\n");
  463. break;
  464. }
  465. ndelay(100);
  466. --retry;
  467. }
  468. local_irq_restore(flags);
  469. preempt_enable();
  470. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  471. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  472. while (true) {
  473. temp = RREG32(mmCP_HQD_ACTIVE);
  474. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  475. break;
  476. if (time_after(jiffies, end_jiffies)) {
  477. pr_err("cp queue preemption time out\n");
  478. release_queue(kgd);
  479. return -ETIME;
  480. }
  481. usleep_range(500, 1000);
  482. }
  483. release_queue(kgd);
  484. return 0;
  485. }
  486. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  487. unsigned int utimeout)
  488. {
  489. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  490. struct cik_sdma_rlc_registers *m;
  491. uint32_t sdma_base_addr;
  492. uint32_t temp;
  493. int timeout = utimeout;
  494. m = get_sdma_mqd(mqd);
  495. sdma_base_addr = get_sdma_base_addr(m);
  496. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  497. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  498. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  499. while (true) {
  500. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  501. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  502. break;
  503. if (timeout <= 0)
  504. return -ETIME;
  505. msleep(20);
  506. timeout -= 20;
  507. }
  508. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  509. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  510. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  511. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  512. return 0;
  513. }
  514. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  515. {
  516. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  517. union TCP_WATCH_CNTL_BITS cntl;
  518. unsigned int i;
  519. cntl.u32All = 0;
  520. cntl.bitfields.valid = 0;
  521. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  522. cntl.bitfields.atc = 1;
  523. /* Turning off this address until we set all the registers */
  524. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  525. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  526. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  527. return 0;
  528. }
  529. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  530. unsigned int watch_point_id,
  531. uint32_t cntl_val,
  532. uint32_t addr_hi,
  533. uint32_t addr_lo)
  534. {
  535. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  536. union TCP_WATCH_CNTL_BITS cntl;
  537. cntl.u32All = cntl_val;
  538. /* Turning off this watch point until we set all the registers */
  539. cntl.bitfields.valid = 0;
  540. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  541. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  542. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  543. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  544. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  545. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  546. /* Enable the watch point */
  547. cntl.bitfields.valid = 1;
  548. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  549. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  550. return 0;
  551. }
  552. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  553. uint32_t gfx_index_val,
  554. uint32_t sq_cmd)
  555. {
  556. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  557. uint32_t data;
  558. mutex_lock(&adev->grbm_idx_mutex);
  559. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  560. WREG32(mmSQ_CMD, sq_cmd);
  561. /* Restore the GRBM_GFX_INDEX register */
  562. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  563. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  564. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  565. WREG32(mmGRBM_GFX_INDEX, data);
  566. mutex_unlock(&adev->grbm_idx_mutex);
  567. return 0;
  568. }
  569. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  570. unsigned int watch_point_id,
  571. unsigned int reg_offset)
  572. {
  573. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  574. }
  575. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  576. uint8_t vmid)
  577. {
  578. uint32_t reg;
  579. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  580. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  581. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  582. }
  583. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  584. uint8_t vmid)
  585. {
  586. uint32_t reg;
  587. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  588. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  589. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  590. }
  591. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  592. {
  593. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  594. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  595. }
  596. static void set_scratch_backing_va(struct kgd_dev *kgd,
  597. uint64_t va, uint32_t vmid)
  598. {
  599. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  600. lock_srbm(kgd, 0, 0, 0, vmid);
  601. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  602. unlock_srbm(kgd);
  603. }
  604. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  605. {
  606. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  607. const union amdgpu_firmware_header *hdr;
  608. BUG_ON(kgd == NULL);
  609. switch (type) {
  610. case KGD_ENGINE_PFP:
  611. hdr = (const union amdgpu_firmware_header *)
  612. adev->gfx.pfp_fw->data;
  613. break;
  614. case KGD_ENGINE_ME:
  615. hdr = (const union amdgpu_firmware_header *)
  616. adev->gfx.me_fw->data;
  617. break;
  618. case KGD_ENGINE_CE:
  619. hdr = (const union amdgpu_firmware_header *)
  620. adev->gfx.ce_fw->data;
  621. break;
  622. case KGD_ENGINE_MEC1:
  623. hdr = (const union amdgpu_firmware_header *)
  624. adev->gfx.mec_fw->data;
  625. break;
  626. case KGD_ENGINE_MEC2:
  627. hdr = (const union amdgpu_firmware_header *)
  628. adev->gfx.mec2_fw->data;
  629. break;
  630. case KGD_ENGINE_RLC:
  631. hdr = (const union amdgpu_firmware_header *)
  632. adev->gfx.rlc_fw->data;
  633. break;
  634. case KGD_ENGINE_SDMA1:
  635. hdr = (const union amdgpu_firmware_header *)
  636. adev->sdma.instance[0].fw->data;
  637. break;
  638. case KGD_ENGINE_SDMA2:
  639. hdr = (const union amdgpu_firmware_header *)
  640. adev->sdma.instance[1].fw->data;
  641. break;
  642. default:
  643. return 0;
  644. }
  645. if (hdr == NULL)
  646. return 0;
  647. /* Only 12 bit in use*/
  648. return hdr->common.ucode_version;
  649. }