mmzone.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <asm/atomic.h>
  17. #include <asm/page.h>
  18. /* Free memory management - zoned buddy allocator. */
  19. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  20. #define MAX_ORDER 11
  21. #else
  22. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  23. #endif
  24. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  25. /*
  26. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  27. * costly to service. That is between allocation orders which should
  28. * coelesce naturally under reasonable reclaim pressure and those which
  29. * will not.
  30. */
  31. #define PAGE_ALLOC_COSTLY_ORDER 3
  32. #define MIGRATE_UNMOVABLE 0
  33. #define MIGRATE_RECLAIMABLE 1
  34. #define MIGRATE_MOVABLE 2
  35. #define MIGRATE_RESERVE 3
  36. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  37. #define MIGRATE_TYPES 5
  38. #define for_each_migratetype_order(order, type) \
  39. for (order = 0; order < MAX_ORDER; order++) \
  40. for (type = 0; type < MIGRATE_TYPES; type++)
  41. extern int page_group_by_mobility_disabled;
  42. static inline int get_pageblock_migratetype(struct page *page)
  43. {
  44. if (unlikely(page_group_by_mobility_disabled))
  45. return MIGRATE_UNMOVABLE;
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_INACTIVE,
  71. NR_ACTIVE,
  72. NR_ANON_PAGES, /* Mapped anonymous pages */
  73. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  74. only modified from process context */
  75. NR_FILE_PAGES,
  76. NR_FILE_DIRTY,
  77. NR_WRITEBACK,
  78. /* Second 128 byte cacheline */
  79. NR_SLAB_RECLAIMABLE,
  80. NR_SLAB_UNRECLAIMABLE,
  81. NR_PAGETABLE, /* used for pagetables */
  82. NR_UNSTABLE_NFS, /* NFS unstable pages */
  83. NR_BOUNCE,
  84. NR_VMSCAN_WRITE,
  85. #ifdef CONFIG_NUMA
  86. NUMA_HIT, /* allocated in intended node */
  87. NUMA_MISS, /* allocated in non intended node */
  88. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  89. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  90. NUMA_LOCAL, /* allocation from local node */
  91. NUMA_OTHER, /* allocation from other node */
  92. #endif
  93. NR_VM_ZONE_STAT_ITEMS };
  94. struct per_cpu_pages {
  95. int count; /* number of pages in the list */
  96. int high; /* high watermark, emptying needed */
  97. int batch; /* chunk size for buddy add/remove */
  98. struct list_head list; /* the list of pages */
  99. };
  100. struct per_cpu_pageset {
  101. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  102. #ifdef CONFIG_NUMA
  103. s8 expire;
  104. #endif
  105. #ifdef CONFIG_SMP
  106. s8 stat_threshold;
  107. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  108. #endif
  109. } ____cacheline_aligned_in_smp;
  110. #ifdef CONFIG_NUMA
  111. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  112. #else
  113. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  114. #endif
  115. enum zone_type {
  116. #ifdef CONFIG_ZONE_DMA
  117. /*
  118. * ZONE_DMA is used when there are devices that are not able
  119. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  120. * carve out the portion of memory that is needed for these devices.
  121. * The range is arch specific.
  122. *
  123. * Some examples
  124. *
  125. * Architecture Limit
  126. * ---------------------------
  127. * parisc, ia64, sparc <4G
  128. * s390 <2G
  129. * arm Various
  130. * alpha Unlimited or 0-16MB.
  131. *
  132. * i386, x86_64 and multiple other arches
  133. * <16M.
  134. */
  135. ZONE_DMA,
  136. #endif
  137. #ifdef CONFIG_ZONE_DMA32
  138. /*
  139. * x86_64 needs two ZONE_DMAs because it supports devices that are
  140. * only able to do DMA to the lower 16M but also 32 bit devices that
  141. * can only do DMA areas below 4G.
  142. */
  143. ZONE_DMA32,
  144. #endif
  145. /*
  146. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  147. * performed on pages in ZONE_NORMAL if the DMA devices support
  148. * transfers to all addressable memory.
  149. */
  150. ZONE_NORMAL,
  151. #ifdef CONFIG_HIGHMEM
  152. /*
  153. * A memory area that is only addressable by the kernel through
  154. * mapping portions into its own address space. This is for example
  155. * used by i386 to allow the kernel to address the memory beyond
  156. * 900MB. The kernel will set up special mappings (page
  157. * table entries on i386) for each page that the kernel needs to
  158. * access.
  159. */
  160. ZONE_HIGHMEM,
  161. #endif
  162. ZONE_MOVABLE,
  163. MAX_NR_ZONES
  164. };
  165. /*
  166. * When a memory allocation must conform to specific limitations (such
  167. * as being suitable for DMA) the caller will pass in hints to the
  168. * allocator in the gfp_mask, in the zone modifier bits. These bits
  169. * are used to select a priority ordered list of memory zones which
  170. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  171. */
  172. /*
  173. * Count the active zones. Note that the use of defined(X) outside
  174. * #if and family is not necessarily defined so ensure we cannot use
  175. * it later. Use __ZONE_COUNT to work out how many shift bits we need.
  176. */
  177. #define __ZONE_COUNT ( \
  178. defined(CONFIG_ZONE_DMA) \
  179. + defined(CONFIG_ZONE_DMA32) \
  180. + 1 \
  181. + defined(CONFIG_HIGHMEM) \
  182. + 1 \
  183. )
  184. #if __ZONE_COUNT < 2
  185. #define ZONES_SHIFT 0
  186. #elif __ZONE_COUNT <= 2
  187. #define ZONES_SHIFT 1
  188. #elif __ZONE_COUNT <= 4
  189. #define ZONES_SHIFT 2
  190. #else
  191. #error ZONES_SHIFT -- too many zones configured adjust calculation
  192. #endif
  193. #undef __ZONE_COUNT
  194. struct zone {
  195. /* Fields commonly accessed by the page allocator */
  196. unsigned long pages_min, pages_low, pages_high;
  197. /*
  198. * We don't know if the memory that we're going to allocate will be freeable
  199. * or/and it will be released eventually, so to avoid totally wasting several
  200. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  201. * to run OOM on the lower zones despite there's tons of freeable ram
  202. * on the higher zones). This array is recalculated at runtime if the
  203. * sysctl_lowmem_reserve_ratio sysctl changes.
  204. */
  205. unsigned long lowmem_reserve[MAX_NR_ZONES];
  206. #ifdef CONFIG_NUMA
  207. int node;
  208. /*
  209. * zone reclaim becomes active if more unmapped pages exist.
  210. */
  211. unsigned long min_unmapped_pages;
  212. unsigned long min_slab_pages;
  213. struct per_cpu_pageset *pageset[NR_CPUS];
  214. #else
  215. struct per_cpu_pageset pageset[NR_CPUS];
  216. #endif
  217. /*
  218. * free areas of different sizes
  219. */
  220. spinlock_t lock;
  221. #ifdef CONFIG_MEMORY_HOTPLUG
  222. /* see spanned/present_pages for more description */
  223. seqlock_t span_seqlock;
  224. #endif
  225. struct free_area free_area[MAX_ORDER];
  226. #ifndef CONFIG_SPARSEMEM
  227. /*
  228. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  229. * In SPARSEMEM, this map is stored in struct mem_section
  230. */
  231. unsigned long *pageblock_flags;
  232. #endif /* CONFIG_SPARSEMEM */
  233. ZONE_PADDING(_pad1_)
  234. /* Fields commonly accessed by the page reclaim scanner */
  235. spinlock_t lru_lock;
  236. struct list_head active_list;
  237. struct list_head inactive_list;
  238. unsigned long nr_scan_active;
  239. unsigned long nr_scan_inactive;
  240. unsigned long pages_scanned; /* since last reclaim */
  241. unsigned long flags; /* zone flags, see below */
  242. /* Zone statistics */
  243. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  244. /*
  245. * prev_priority holds the scanning priority for this zone. It is
  246. * defined as the scanning priority at which we achieved our reclaim
  247. * target at the previous try_to_free_pages() or balance_pgdat()
  248. * invokation.
  249. *
  250. * We use prev_priority as a measure of how much stress page reclaim is
  251. * under - it drives the swappiness decision: whether to unmap mapped
  252. * pages.
  253. *
  254. * Access to both this field is quite racy even on uniprocessor. But
  255. * it is expected to average out OK.
  256. */
  257. int prev_priority;
  258. ZONE_PADDING(_pad2_)
  259. /* Rarely used or read-mostly fields */
  260. /*
  261. * wait_table -- the array holding the hash table
  262. * wait_table_hash_nr_entries -- the size of the hash table array
  263. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  264. *
  265. * The purpose of all these is to keep track of the people
  266. * waiting for a page to become available and make them
  267. * runnable again when possible. The trouble is that this
  268. * consumes a lot of space, especially when so few things
  269. * wait on pages at a given time. So instead of using
  270. * per-page waitqueues, we use a waitqueue hash table.
  271. *
  272. * The bucket discipline is to sleep on the same queue when
  273. * colliding and wake all in that wait queue when removing.
  274. * When something wakes, it must check to be sure its page is
  275. * truly available, a la thundering herd. The cost of a
  276. * collision is great, but given the expected load of the
  277. * table, they should be so rare as to be outweighed by the
  278. * benefits from the saved space.
  279. *
  280. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  281. * primary users of these fields, and in mm/page_alloc.c
  282. * free_area_init_core() performs the initialization of them.
  283. */
  284. wait_queue_head_t * wait_table;
  285. unsigned long wait_table_hash_nr_entries;
  286. unsigned long wait_table_bits;
  287. /*
  288. * Discontig memory support fields.
  289. */
  290. struct pglist_data *zone_pgdat;
  291. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  292. unsigned long zone_start_pfn;
  293. /*
  294. * zone_start_pfn, spanned_pages and present_pages are all
  295. * protected by span_seqlock. It is a seqlock because it has
  296. * to be read outside of zone->lock, and it is done in the main
  297. * allocator path. But, it is written quite infrequently.
  298. *
  299. * The lock is declared along with zone->lock because it is
  300. * frequently read in proximity to zone->lock. It's good to
  301. * give them a chance of being in the same cacheline.
  302. */
  303. unsigned long spanned_pages; /* total size, including holes */
  304. unsigned long present_pages; /* amount of memory (excluding holes) */
  305. /*
  306. * rarely used fields:
  307. */
  308. const char *name;
  309. } ____cacheline_internodealigned_in_smp;
  310. typedef enum {
  311. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  312. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  313. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  314. } zone_flags_t;
  315. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  316. {
  317. set_bit(flag, &zone->flags);
  318. }
  319. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  320. {
  321. clear_bit(flag, &zone->flags);
  322. }
  323. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  324. {
  325. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  326. }
  327. static inline int zone_is_reclaim_locked(const struct zone *zone)
  328. {
  329. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  330. }
  331. static inline int zone_is_oom_locked(const struct zone *zone)
  332. {
  333. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  334. }
  335. /*
  336. * The "priority" of VM scanning is how much of the queues we will scan in one
  337. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  338. * queues ("queue_length >> 12") during an aging round.
  339. */
  340. #define DEF_PRIORITY 12
  341. /* Maximum number of zones on a zonelist */
  342. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  343. #ifdef CONFIG_NUMA
  344. /*
  345. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  346. * allocations to a single node for GFP_THISNODE.
  347. *
  348. * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
  349. * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
  350. */
  351. #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
  352. /*
  353. * We cache key information from each zonelist for smaller cache
  354. * footprint when scanning for free pages in get_page_from_freelist().
  355. *
  356. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  357. * up short of free memory since the last time (last_fullzone_zap)
  358. * we zero'd fullzones.
  359. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  360. * id, so that we can efficiently evaluate whether that node is
  361. * set in the current tasks mems_allowed.
  362. *
  363. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  364. * indexed by a zones offset in the zonelist zones[] array.
  365. *
  366. * The get_page_from_freelist() routine does two scans. During the
  367. * first scan, we skip zones whose corresponding bit in 'fullzones'
  368. * is set or whose corresponding node in current->mems_allowed (which
  369. * comes from cpusets) is not set. During the second scan, we bypass
  370. * this zonelist_cache, to ensure we look methodically at each zone.
  371. *
  372. * Once per second, we zero out (zap) fullzones, forcing us to
  373. * reconsider nodes that might have regained more free memory.
  374. * The field last_full_zap is the time we last zapped fullzones.
  375. *
  376. * This mechanism reduces the amount of time we waste repeatedly
  377. * reexaming zones for free memory when they just came up low on
  378. * memory momentarilly ago.
  379. *
  380. * The zonelist_cache struct members logically belong in struct
  381. * zonelist. However, the mempolicy zonelists constructed for
  382. * MPOL_BIND are intentionally variable length (and usually much
  383. * shorter). A general purpose mechanism for handling structs with
  384. * multiple variable length members is more mechanism than we want
  385. * here. We resort to some special case hackery instead.
  386. *
  387. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  388. * part because they are shorter), so we put the fixed length stuff
  389. * at the front of the zonelist struct, ending in a variable length
  390. * zones[], as is needed by MPOL_BIND.
  391. *
  392. * Then we put the optional zonelist cache on the end of the zonelist
  393. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  394. * the fixed length portion at the front of the struct. This pointer
  395. * both enables us to find the zonelist cache, and in the case of
  396. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  397. * to know that the zonelist cache is not there.
  398. *
  399. * The end result is that struct zonelists come in two flavors:
  400. * 1) The full, fixed length version, shown below, and
  401. * 2) The custom zonelists for MPOL_BIND.
  402. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  403. *
  404. * Even though there may be multiple CPU cores on a node modifying
  405. * fullzones or last_full_zap in the same zonelist_cache at the same
  406. * time, we don't lock it. This is just hint data - if it is wrong now
  407. * and then, the allocator will still function, perhaps a bit slower.
  408. */
  409. struct zonelist_cache {
  410. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  411. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  412. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  413. };
  414. #else
  415. #define MAX_ZONELISTS MAX_NR_ZONES
  416. struct zonelist_cache;
  417. #endif
  418. /*
  419. * One allocation request operates on a zonelist. A zonelist
  420. * is a list of zones, the first one is the 'goal' of the
  421. * allocation, the other zones are fallback zones, in decreasing
  422. * priority.
  423. *
  424. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  425. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  426. */
  427. struct zonelist {
  428. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  429. struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
  430. #ifdef CONFIG_NUMA
  431. struct zonelist_cache zlcache; // optional ...
  432. #endif
  433. };
  434. #ifdef CONFIG_NUMA
  435. /*
  436. * Only custom zonelists like MPOL_BIND need to be filtered as part of
  437. * policies. As described in the comment for struct zonelist_cache, these
  438. * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
  439. * that to determine if the zonelists needs to be filtered or not.
  440. */
  441. static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
  442. {
  443. return !zonelist->zlcache_ptr;
  444. }
  445. #else
  446. static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
  447. {
  448. return 0;
  449. }
  450. #endif /* CONFIG_NUMA */
  451. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  452. struct node_active_region {
  453. unsigned long start_pfn;
  454. unsigned long end_pfn;
  455. int nid;
  456. };
  457. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  458. #ifndef CONFIG_DISCONTIGMEM
  459. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  460. extern struct page *mem_map;
  461. #endif
  462. /*
  463. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  464. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  465. * zone denotes.
  466. *
  467. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  468. * it's memory layout.
  469. *
  470. * Memory statistics and page replacement data structures are maintained on a
  471. * per-zone basis.
  472. */
  473. struct bootmem_data;
  474. typedef struct pglist_data {
  475. struct zone node_zones[MAX_NR_ZONES];
  476. struct zonelist node_zonelists[MAX_ZONELISTS];
  477. int nr_zones;
  478. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  479. struct page *node_mem_map;
  480. #endif
  481. struct bootmem_data *bdata;
  482. #ifdef CONFIG_MEMORY_HOTPLUG
  483. /*
  484. * Must be held any time you expect node_start_pfn, node_present_pages
  485. * or node_spanned_pages stay constant. Holding this will also
  486. * guarantee that any pfn_valid() stays that way.
  487. *
  488. * Nests above zone->lock and zone->size_seqlock.
  489. */
  490. spinlock_t node_size_lock;
  491. #endif
  492. unsigned long node_start_pfn;
  493. unsigned long node_present_pages; /* total number of physical pages */
  494. unsigned long node_spanned_pages; /* total size of physical page
  495. range, including holes */
  496. int node_id;
  497. wait_queue_head_t kswapd_wait;
  498. struct task_struct *kswapd;
  499. int kswapd_max_order;
  500. } pg_data_t;
  501. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  502. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  503. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  504. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  505. #else
  506. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  507. #endif
  508. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  509. #include <linux/memory_hotplug.h>
  510. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  511. unsigned long *free);
  512. void build_all_zonelists(void);
  513. void wakeup_kswapd(struct zone *zone, int order);
  514. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  515. int classzone_idx, int alloc_flags);
  516. enum memmap_context {
  517. MEMMAP_EARLY,
  518. MEMMAP_HOTPLUG,
  519. };
  520. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  521. unsigned long size,
  522. enum memmap_context context);
  523. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  524. void memory_present(int nid, unsigned long start, unsigned long end);
  525. #else
  526. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  527. #endif
  528. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  529. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  530. #endif
  531. /*
  532. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  533. */
  534. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  535. static inline int populated_zone(struct zone *zone)
  536. {
  537. return (!!zone->present_pages);
  538. }
  539. extern int movable_zone;
  540. static inline int zone_movable_is_highmem(void)
  541. {
  542. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  543. return movable_zone == ZONE_HIGHMEM;
  544. #else
  545. return 0;
  546. #endif
  547. }
  548. static inline int is_highmem_idx(enum zone_type idx)
  549. {
  550. #ifdef CONFIG_HIGHMEM
  551. return (idx == ZONE_HIGHMEM ||
  552. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  553. #else
  554. return 0;
  555. #endif
  556. }
  557. static inline int is_normal_idx(enum zone_type idx)
  558. {
  559. return (idx == ZONE_NORMAL);
  560. }
  561. /**
  562. * is_highmem - helper function to quickly check if a struct zone is a
  563. * highmem zone or not. This is an attempt to keep references
  564. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  565. * @zone - pointer to struct zone variable
  566. */
  567. static inline int is_highmem(struct zone *zone)
  568. {
  569. #ifdef CONFIG_HIGHMEM
  570. int zone_idx = zone - zone->zone_pgdat->node_zones;
  571. return zone_idx == ZONE_HIGHMEM ||
  572. (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
  573. #else
  574. return 0;
  575. #endif
  576. }
  577. static inline int is_normal(struct zone *zone)
  578. {
  579. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  580. }
  581. static inline int is_dma32(struct zone *zone)
  582. {
  583. #ifdef CONFIG_ZONE_DMA32
  584. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  585. #else
  586. return 0;
  587. #endif
  588. }
  589. static inline int is_dma(struct zone *zone)
  590. {
  591. #ifdef CONFIG_ZONE_DMA
  592. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  593. #else
  594. return 0;
  595. #endif
  596. }
  597. /* These two functions are used to setup the per zone pages min values */
  598. struct ctl_table;
  599. struct file;
  600. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  601. void __user *, size_t *, loff_t *);
  602. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  603. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  604. void __user *, size_t *, loff_t *);
  605. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  606. void __user *, size_t *, loff_t *);
  607. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  608. struct file *, void __user *, size_t *, loff_t *);
  609. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  610. struct file *, void __user *, size_t *, loff_t *);
  611. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  612. struct file *, void __user *, size_t *, loff_t *);
  613. extern char numa_zonelist_order[];
  614. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  615. #include <linux/topology.h>
  616. /* Returns the number of the current Node. */
  617. #ifndef numa_node_id
  618. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  619. #endif
  620. #ifndef CONFIG_NEED_MULTIPLE_NODES
  621. extern struct pglist_data contig_page_data;
  622. #define NODE_DATA(nid) (&contig_page_data)
  623. #define NODE_MEM_MAP(nid) mem_map
  624. #define MAX_NODES_SHIFT 1
  625. #else /* CONFIG_NEED_MULTIPLE_NODES */
  626. #include <asm/mmzone.h>
  627. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  628. extern struct pglist_data *first_online_pgdat(void);
  629. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  630. extern struct zone *next_zone(struct zone *zone);
  631. /**
  632. * for_each_pgdat - helper macro to iterate over all nodes
  633. * @pgdat - pointer to a pg_data_t variable
  634. */
  635. #define for_each_online_pgdat(pgdat) \
  636. for (pgdat = first_online_pgdat(); \
  637. pgdat; \
  638. pgdat = next_online_pgdat(pgdat))
  639. /**
  640. * for_each_zone - helper macro to iterate over all memory zones
  641. * @zone - pointer to struct zone variable
  642. *
  643. * The user only needs to declare the zone variable, for_each_zone
  644. * fills it in.
  645. */
  646. #define for_each_zone(zone) \
  647. for (zone = (first_online_pgdat())->node_zones; \
  648. zone; \
  649. zone = next_zone(zone))
  650. #ifdef CONFIG_SPARSEMEM
  651. #include <asm/sparsemem.h>
  652. #endif
  653. #if BITS_PER_LONG == 32
  654. /*
  655. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  656. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  657. */
  658. #define FLAGS_RESERVED 9
  659. #elif BITS_PER_LONG == 64
  660. /*
  661. * with 64 bit flags field, there's plenty of room.
  662. */
  663. #define FLAGS_RESERVED 32
  664. #else
  665. #error BITS_PER_LONG not defined
  666. #endif
  667. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  668. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  669. #define early_pfn_to_nid(nid) (0UL)
  670. #endif
  671. #ifdef CONFIG_FLATMEM
  672. #define pfn_to_nid(pfn) (0)
  673. #endif
  674. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  675. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  676. #ifdef CONFIG_SPARSEMEM
  677. /*
  678. * SECTION_SHIFT #bits space required to store a section #
  679. *
  680. * PA_SECTION_SHIFT physical address to/from section number
  681. * PFN_SECTION_SHIFT pfn to/from section number
  682. */
  683. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  684. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  685. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  686. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  687. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  688. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  689. #define SECTION_BLOCKFLAGS_BITS \
  690. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  691. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  692. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  693. #endif
  694. struct page;
  695. struct mem_section {
  696. /*
  697. * This is, logically, a pointer to an array of struct
  698. * pages. However, it is stored with some other magic.
  699. * (see sparse.c::sparse_init_one_section())
  700. *
  701. * Additionally during early boot we encode node id of
  702. * the location of the section here to guide allocation.
  703. * (see sparse.c::memory_present())
  704. *
  705. * Making it a UL at least makes someone do a cast
  706. * before using it wrong.
  707. */
  708. unsigned long section_mem_map;
  709. /* See declaration of similar field in struct zone */
  710. unsigned long *pageblock_flags;
  711. };
  712. #ifdef CONFIG_SPARSEMEM_EXTREME
  713. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  714. #else
  715. #define SECTIONS_PER_ROOT 1
  716. #endif
  717. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  718. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  719. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  720. #ifdef CONFIG_SPARSEMEM_EXTREME
  721. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  722. #else
  723. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  724. #endif
  725. static inline struct mem_section *__nr_to_section(unsigned long nr)
  726. {
  727. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  728. return NULL;
  729. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  730. }
  731. extern int __section_nr(struct mem_section* ms);
  732. /*
  733. * We use the lower bits of the mem_map pointer to store
  734. * a little bit of information. There should be at least
  735. * 3 bits here due to 32-bit alignment.
  736. */
  737. #define SECTION_MARKED_PRESENT (1UL<<0)
  738. #define SECTION_HAS_MEM_MAP (1UL<<1)
  739. #define SECTION_MAP_LAST_BIT (1UL<<2)
  740. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  741. #define SECTION_NID_SHIFT 2
  742. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  743. {
  744. unsigned long map = section->section_mem_map;
  745. map &= SECTION_MAP_MASK;
  746. return (struct page *)map;
  747. }
  748. static inline int present_section(struct mem_section *section)
  749. {
  750. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  751. }
  752. static inline int present_section_nr(unsigned long nr)
  753. {
  754. return present_section(__nr_to_section(nr));
  755. }
  756. static inline int valid_section(struct mem_section *section)
  757. {
  758. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  759. }
  760. static inline int valid_section_nr(unsigned long nr)
  761. {
  762. return valid_section(__nr_to_section(nr));
  763. }
  764. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  765. {
  766. return __nr_to_section(pfn_to_section_nr(pfn));
  767. }
  768. static inline int pfn_valid(unsigned long pfn)
  769. {
  770. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  771. return 0;
  772. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  773. }
  774. static inline int pfn_present(unsigned long pfn)
  775. {
  776. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  777. return 0;
  778. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  779. }
  780. /*
  781. * These are _only_ used during initialisation, therefore they
  782. * can use __initdata ... They could have names to indicate
  783. * this restriction.
  784. */
  785. #ifdef CONFIG_NUMA
  786. #define pfn_to_nid(pfn) \
  787. ({ \
  788. unsigned long __pfn_to_nid_pfn = (pfn); \
  789. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  790. })
  791. #else
  792. #define pfn_to_nid(pfn) (0)
  793. #endif
  794. #define early_pfn_valid(pfn) pfn_valid(pfn)
  795. void sparse_init(void);
  796. #else
  797. #define sparse_init() do {} while (0)
  798. #define sparse_index_init(_sec, _nid) do {} while (0)
  799. #endif /* CONFIG_SPARSEMEM */
  800. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  801. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  802. #else
  803. #define early_pfn_in_nid(pfn, nid) (1)
  804. #endif
  805. #ifndef early_pfn_valid
  806. #define early_pfn_valid(pfn) (1)
  807. #endif
  808. void memory_present(int nid, unsigned long start, unsigned long end);
  809. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  810. /*
  811. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  812. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  813. * pfn_valid_within() should be used in this case; we optimise this away
  814. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  815. */
  816. #ifdef CONFIG_HOLES_IN_ZONE
  817. #define pfn_valid_within(pfn) pfn_valid(pfn)
  818. #else
  819. #define pfn_valid_within(pfn) (1)
  820. #endif
  821. #endif /* !__ASSEMBLY__ */
  822. #endif /* __KERNEL__ */
  823. #endif /* _LINUX_MMZONE_H */