udp.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/inetdevice.h>
  92. #include <linux/in.h>
  93. #include <linux/errno.h>
  94. #include <linux/timer.h>
  95. #include <linux/mm.h>
  96. #include <linux/inet.h>
  97. #include <linux/netdevice.h>
  98. #include <linux/slab.h>
  99. #include <net/tcp_states.h>
  100. #include <linux/skbuff.h>
  101. #include <linux/proc_fs.h>
  102. #include <linux/seq_file.h>
  103. #include <net/net_namespace.h>
  104. #include <net/icmp.h>
  105. #include <net/inet_hashtables.h>
  106. #include <net/route.h>
  107. #include <net/checksum.h>
  108. #include <net/xfrm.h>
  109. #include <trace/events/udp.h>
  110. #include <linux/static_key.h>
  111. #include <trace/events/skb.h>
  112. #include <net/busy_poll.h>
  113. #include "udp_impl.h"
  114. #include <net/sock_reuseport.h>
  115. struct udp_table udp_table __read_mostly;
  116. EXPORT_SYMBOL(udp_table);
  117. long sysctl_udp_mem[3] __read_mostly;
  118. EXPORT_SYMBOL(sysctl_udp_mem);
  119. int sysctl_udp_rmem_min __read_mostly;
  120. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  121. int sysctl_udp_wmem_min __read_mostly;
  122. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  123. atomic_long_t udp_memory_allocated;
  124. EXPORT_SYMBOL(udp_memory_allocated);
  125. #define MAX_UDP_PORTS 65536
  126. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  127. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  128. const struct udp_hslot *hslot,
  129. unsigned long *bitmap,
  130. struct sock *sk,
  131. int (*saddr_comp)(const struct sock *sk1,
  132. const struct sock *sk2,
  133. bool match_wildcard),
  134. unsigned int log)
  135. {
  136. struct sock *sk2;
  137. struct hlist_nulls_node *node;
  138. kuid_t uid = sock_i_uid(sk);
  139. sk_nulls_for_each(sk2, node, &hslot->head) {
  140. if (net_eq(sock_net(sk2), net) &&
  141. sk2 != sk &&
  142. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  143. (!sk2->sk_reuse || !sk->sk_reuse) &&
  144. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  145. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  146. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  147. rcu_access_pointer(sk->sk_reuseport_cb) ||
  148. !uid_eq(uid, sock_i_uid(sk2))) &&
  149. saddr_comp(sk, sk2, true)) {
  150. if (!bitmap)
  151. return 1;
  152. __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
  153. }
  154. }
  155. return 0;
  156. }
  157. /*
  158. * Note: we still hold spinlock of primary hash chain, so no other writer
  159. * can insert/delete a socket with local_port == num
  160. */
  161. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  162. struct udp_hslot *hslot2,
  163. struct sock *sk,
  164. int (*saddr_comp)(const struct sock *sk1,
  165. const struct sock *sk2,
  166. bool match_wildcard))
  167. {
  168. struct sock *sk2;
  169. struct hlist_nulls_node *node;
  170. kuid_t uid = sock_i_uid(sk);
  171. int res = 0;
  172. spin_lock(&hslot2->lock);
  173. udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
  174. if (net_eq(sock_net(sk2), net) &&
  175. sk2 != sk &&
  176. (udp_sk(sk2)->udp_port_hash == num) &&
  177. (!sk2->sk_reuse || !sk->sk_reuse) &&
  178. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  179. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  180. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  181. rcu_access_pointer(sk->sk_reuseport_cb) ||
  182. !uid_eq(uid, sock_i_uid(sk2))) &&
  183. saddr_comp(sk, sk2, true)) {
  184. res = 1;
  185. break;
  186. }
  187. }
  188. spin_unlock(&hslot2->lock);
  189. return res;
  190. }
  191. static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
  192. int (*saddr_same)(const struct sock *sk1,
  193. const struct sock *sk2,
  194. bool match_wildcard))
  195. {
  196. struct net *net = sock_net(sk);
  197. struct hlist_nulls_node *node;
  198. kuid_t uid = sock_i_uid(sk);
  199. struct sock *sk2;
  200. sk_nulls_for_each(sk2, node, &hslot->head) {
  201. if (net_eq(sock_net(sk2), net) &&
  202. sk2 != sk &&
  203. sk2->sk_family == sk->sk_family &&
  204. ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
  205. (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
  206. (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  207. sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
  208. (*saddr_same)(sk, sk2, false)) {
  209. return reuseport_add_sock(sk, sk2);
  210. }
  211. }
  212. /* Initial allocation may have already happened via setsockopt */
  213. if (!rcu_access_pointer(sk->sk_reuseport_cb))
  214. return reuseport_alloc(sk);
  215. return 0;
  216. }
  217. /**
  218. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  219. *
  220. * @sk: socket struct in question
  221. * @snum: port number to look up
  222. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  223. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  224. * with NULL address
  225. */
  226. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  227. int (*saddr_comp)(const struct sock *sk1,
  228. const struct sock *sk2,
  229. bool match_wildcard),
  230. unsigned int hash2_nulladdr)
  231. {
  232. struct udp_hslot *hslot, *hslot2;
  233. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  234. int error = 1;
  235. struct net *net = sock_net(sk);
  236. if (!snum) {
  237. int low, high, remaining;
  238. unsigned int rand;
  239. unsigned short first, last;
  240. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  241. inet_get_local_port_range(net, &low, &high);
  242. remaining = (high - low) + 1;
  243. rand = prandom_u32();
  244. first = reciprocal_scale(rand, remaining) + low;
  245. /*
  246. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  247. */
  248. rand = (rand | 1) * (udptable->mask + 1);
  249. last = first + udptable->mask + 1;
  250. do {
  251. hslot = udp_hashslot(udptable, net, first);
  252. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  253. spin_lock_bh(&hslot->lock);
  254. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  255. saddr_comp, udptable->log);
  256. snum = first;
  257. /*
  258. * Iterate on all possible values of snum for this hash.
  259. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  260. * give us randomization and full range coverage.
  261. */
  262. do {
  263. if (low <= snum && snum <= high &&
  264. !test_bit(snum >> udptable->log, bitmap) &&
  265. !inet_is_local_reserved_port(net, snum))
  266. goto found;
  267. snum += rand;
  268. } while (snum != first);
  269. spin_unlock_bh(&hslot->lock);
  270. } while (++first != last);
  271. goto fail;
  272. } else {
  273. hslot = udp_hashslot(udptable, net, snum);
  274. spin_lock_bh(&hslot->lock);
  275. if (hslot->count > 10) {
  276. int exist;
  277. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  278. slot2 &= udptable->mask;
  279. hash2_nulladdr &= udptable->mask;
  280. hslot2 = udp_hashslot2(udptable, slot2);
  281. if (hslot->count < hslot2->count)
  282. goto scan_primary_hash;
  283. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  284. sk, saddr_comp);
  285. if (!exist && (hash2_nulladdr != slot2)) {
  286. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  287. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  288. sk, saddr_comp);
  289. }
  290. if (exist)
  291. goto fail_unlock;
  292. else
  293. goto found;
  294. }
  295. scan_primary_hash:
  296. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  297. saddr_comp, 0))
  298. goto fail_unlock;
  299. }
  300. found:
  301. inet_sk(sk)->inet_num = snum;
  302. udp_sk(sk)->udp_port_hash = snum;
  303. udp_sk(sk)->udp_portaddr_hash ^= snum;
  304. if (sk_unhashed(sk)) {
  305. if (sk->sk_reuseport &&
  306. udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
  307. inet_sk(sk)->inet_num = 0;
  308. udp_sk(sk)->udp_port_hash = 0;
  309. udp_sk(sk)->udp_portaddr_hash ^= snum;
  310. goto fail_unlock;
  311. }
  312. sk_nulls_add_node_rcu(sk, &hslot->head);
  313. hslot->count++;
  314. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  315. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  316. spin_lock(&hslot2->lock);
  317. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  318. &hslot2->head);
  319. hslot2->count++;
  320. spin_unlock(&hslot2->lock);
  321. }
  322. error = 0;
  323. fail_unlock:
  324. spin_unlock_bh(&hslot->lock);
  325. fail:
  326. return error;
  327. }
  328. EXPORT_SYMBOL(udp_lib_get_port);
  329. /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
  330. * match_wildcard == false: addresses must be exactly the same, i.e.
  331. * 0.0.0.0 only equals to 0.0.0.0
  332. */
  333. static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
  334. bool match_wildcard)
  335. {
  336. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  337. if (!ipv6_only_sock(sk2)) {
  338. if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
  339. return 1;
  340. if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
  341. return match_wildcard;
  342. }
  343. return 0;
  344. }
  345. static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
  346. unsigned int port)
  347. {
  348. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  349. }
  350. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  351. {
  352. unsigned int hash2_nulladdr =
  353. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  354. unsigned int hash2_partial =
  355. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  356. /* precompute partial secondary hash */
  357. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  358. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  359. }
  360. static inline int compute_score(struct sock *sk, struct net *net,
  361. __be32 saddr, unsigned short hnum, __be16 sport,
  362. __be32 daddr, __be16 dport, int dif)
  363. {
  364. int score;
  365. struct inet_sock *inet;
  366. if (!net_eq(sock_net(sk), net) ||
  367. udp_sk(sk)->udp_port_hash != hnum ||
  368. ipv6_only_sock(sk))
  369. return -1;
  370. score = (sk->sk_family == PF_INET) ? 2 : 1;
  371. inet = inet_sk(sk);
  372. if (inet->inet_rcv_saddr) {
  373. if (inet->inet_rcv_saddr != daddr)
  374. return -1;
  375. score += 4;
  376. }
  377. if (inet->inet_daddr) {
  378. if (inet->inet_daddr != saddr)
  379. return -1;
  380. score += 4;
  381. }
  382. if (inet->inet_dport) {
  383. if (inet->inet_dport != sport)
  384. return -1;
  385. score += 4;
  386. }
  387. if (sk->sk_bound_dev_if) {
  388. if (sk->sk_bound_dev_if != dif)
  389. return -1;
  390. score += 4;
  391. }
  392. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  393. score++;
  394. return score;
  395. }
  396. /*
  397. * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
  398. */
  399. static inline int compute_score2(struct sock *sk, struct net *net,
  400. __be32 saddr, __be16 sport,
  401. __be32 daddr, unsigned int hnum, int dif)
  402. {
  403. int score;
  404. struct inet_sock *inet;
  405. if (!net_eq(sock_net(sk), net) ||
  406. ipv6_only_sock(sk))
  407. return -1;
  408. inet = inet_sk(sk);
  409. if (inet->inet_rcv_saddr != daddr ||
  410. inet->inet_num != hnum)
  411. return -1;
  412. score = (sk->sk_family == PF_INET) ? 2 : 1;
  413. if (inet->inet_daddr) {
  414. if (inet->inet_daddr != saddr)
  415. return -1;
  416. score += 4;
  417. }
  418. if (inet->inet_dport) {
  419. if (inet->inet_dport != sport)
  420. return -1;
  421. score += 4;
  422. }
  423. if (sk->sk_bound_dev_if) {
  424. if (sk->sk_bound_dev_if != dif)
  425. return -1;
  426. score += 4;
  427. }
  428. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  429. score++;
  430. return score;
  431. }
  432. static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
  433. const __u16 lport, const __be32 faddr,
  434. const __be16 fport)
  435. {
  436. static u32 udp_ehash_secret __read_mostly;
  437. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  438. return __inet_ehashfn(laddr, lport, faddr, fport,
  439. udp_ehash_secret + net_hash_mix(net));
  440. }
  441. /* called with read_rcu_lock() */
  442. static struct sock *udp4_lib_lookup2(struct net *net,
  443. __be32 saddr, __be16 sport,
  444. __be32 daddr, unsigned int hnum, int dif,
  445. struct udp_hslot *hslot2, unsigned int slot2,
  446. struct sk_buff *skb)
  447. {
  448. struct sock *sk, *result;
  449. struct hlist_nulls_node *node;
  450. int score, badness, matches = 0, reuseport = 0;
  451. bool select_ok = true;
  452. u32 hash = 0;
  453. begin:
  454. result = NULL;
  455. badness = 0;
  456. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  457. score = compute_score2(sk, net, saddr, sport,
  458. daddr, hnum, dif);
  459. if (score > badness) {
  460. result = sk;
  461. badness = score;
  462. reuseport = sk->sk_reuseport;
  463. if (reuseport) {
  464. hash = udp_ehashfn(net, daddr, hnum,
  465. saddr, sport);
  466. if (select_ok) {
  467. struct sock *sk2;
  468. sk2 = reuseport_select_sock(sk, hash, skb,
  469. sizeof(struct udphdr));
  470. if (sk2) {
  471. result = sk2;
  472. select_ok = false;
  473. goto found;
  474. }
  475. }
  476. matches = 1;
  477. }
  478. } else if (score == badness && reuseport) {
  479. matches++;
  480. if (reciprocal_scale(hash, matches) == 0)
  481. result = sk;
  482. hash = next_pseudo_random32(hash);
  483. }
  484. }
  485. /*
  486. * if the nulls value we got at the end of this lookup is
  487. * not the expected one, we must restart lookup.
  488. * We probably met an item that was moved to another chain.
  489. */
  490. if (get_nulls_value(node) != slot2)
  491. goto begin;
  492. if (result) {
  493. found:
  494. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  495. result = NULL;
  496. else if (unlikely(compute_score2(result, net, saddr, sport,
  497. daddr, hnum, dif) < badness)) {
  498. sock_put(result);
  499. goto begin;
  500. }
  501. }
  502. return result;
  503. }
  504. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  505. * harder than this. -DaveM
  506. */
  507. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  508. __be16 sport, __be32 daddr, __be16 dport,
  509. int dif, struct udp_table *udptable, struct sk_buff *skb)
  510. {
  511. struct sock *sk, *result;
  512. struct hlist_nulls_node *node;
  513. unsigned short hnum = ntohs(dport);
  514. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  515. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  516. int score, badness, matches = 0, reuseport = 0;
  517. bool select_ok = true;
  518. u32 hash = 0;
  519. rcu_read_lock();
  520. if (hslot->count > 10) {
  521. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  522. slot2 = hash2 & udptable->mask;
  523. hslot2 = &udptable->hash2[slot2];
  524. if (hslot->count < hslot2->count)
  525. goto begin;
  526. result = udp4_lib_lookup2(net, saddr, sport,
  527. daddr, hnum, dif,
  528. hslot2, slot2, skb);
  529. if (!result) {
  530. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  531. slot2 = hash2 & udptable->mask;
  532. hslot2 = &udptable->hash2[slot2];
  533. if (hslot->count < hslot2->count)
  534. goto begin;
  535. result = udp4_lib_lookup2(net, saddr, sport,
  536. htonl(INADDR_ANY), hnum, dif,
  537. hslot2, slot2, skb);
  538. }
  539. rcu_read_unlock();
  540. return result;
  541. }
  542. begin:
  543. result = NULL;
  544. badness = 0;
  545. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  546. score = compute_score(sk, net, saddr, hnum, sport,
  547. daddr, dport, dif);
  548. if (score > badness) {
  549. result = sk;
  550. badness = score;
  551. reuseport = sk->sk_reuseport;
  552. if (reuseport) {
  553. hash = udp_ehashfn(net, daddr, hnum,
  554. saddr, sport);
  555. if (select_ok) {
  556. struct sock *sk2;
  557. sk2 = reuseport_select_sock(sk, hash, skb,
  558. sizeof(struct udphdr));
  559. if (sk2) {
  560. result = sk2;
  561. select_ok = false;
  562. goto found;
  563. }
  564. }
  565. matches = 1;
  566. }
  567. } else if (score == badness && reuseport) {
  568. matches++;
  569. if (reciprocal_scale(hash, matches) == 0)
  570. result = sk;
  571. hash = next_pseudo_random32(hash);
  572. }
  573. }
  574. /*
  575. * if the nulls value we got at the end of this lookup is
  576. * not the expected one, we must restart lookup.
  577. * We probably met an item that was moved to another chain.
  578. */
  579. if (get_nulls_value(node) != slot)
  580. goto begin;
  581. if (result) {
  582. found:
  583. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  584. result = NULL;
  585. else if (unlikely(compute_score(result, net, saddr, hnum, sport,
  586. daddr, dport, dif) < badness)) {
  587. sock_put(result);
  588. goto begin;
  589. }
  590. }
  591. rcu_read_unlock();
  592. return result;
  593. }
  594. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  595. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  596. __be16 sport, __be16 dport,
  597. struct udp_table *udptable)
  598. {
  599. const struct iphdr *iph = ip_hdr(skb);
  600. return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
  601. iph->daddr, dport, inet_iif(skb),
  602. udptable, skb);
  603. }
  604. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  605. __be32 daddr, __be16 dport, int dif)
  606. {
  607. return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif,
  608. &udp_table, NULL);
  609. }
  610. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  611. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  612. __be16 loc_port, __be32 loc_addr,
  613. __be16 rmt_port, __be32 rmt_addr,
  614. int dif, unsigned short hnum)
  615. {
  616. struct inet_sock *inet = inet_sk(sk);
  617. if (!net_eq(sock_net(sk), net) ||
  618. udp_sk(sk)->udp_port_hash != hnum ||
  619. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  620. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  621. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  622. ipv6_only_sock(sk) ||
  623. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
  624. return false;
  625. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
  626. return false;
  627. return true;
  628. }
  629. /*
  630. * This routine is called by the ICMP module when it gets some
  631. * sort of error condition. If err < 0 then the socket should
  632. * be closed and the error returned to the user. If err > 0
  633. * it's just the icmp type << 8 | icmp code.
  634. * Header points to the ip header of the error packet. We move
  635. * on past this. Then (as it used to claim before adjustment)
  636. * header points to the first 8 bytes of the udp header. We need
  637. * to find the appropriate port.
  638. */
  639. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  640. {
  641. struct inet_sock *inet;
  642. const struct iphdr *iph = (const struct iphdr *)skb->data;
  643. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  644. const int type = icmp_hdr(skb)->type;
  645. const int code = icmp_hdr(skb)->code;
  646. struct sock *sk;
  647. int harderr;
  648. int err;
  649. struct net *net = dev_net(skb->dev);
  650. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  651. iph->saddr, uh->source, skb->dev->ifindex, udptable,
  652. NULL);
  653. if (!sk) {
  654. ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
  655. return; /* No socket for error */
  656. }
  657. err = 0;
  658. harderr = 0;
  659. inet = inet_sk(sk);
  660. switch (type) {
  661. default:
  662. case ICMP_TIME_EXCEEDED:
  663. err = EHOSTUNREACH;
  664. break;
  665. case ICMP_SOURCE_QUENCH:
  666. goto out;
  667. case ICMP_PARAMETERPROB:
  668. err = EPROTO;
  669. harderr = 1;
  670. break;
  671. case ICMP_DEST_UNREACH:
  672. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  673. ipv4_sk_update_pmtu(skb, sk, info);
  674. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  675. err = EMSGSIZE;
  676. harderr = 1;
  677. break;
  678. }
  679. goto out;
  680. }
  681. err = EHOSTUNREACH;
  682. if (code <= NR_ICMP_UNREACH) {
  683. harderr = icmp_err_convert[code].fatal;
  684. err = icmp_err_convert[code].errno;
  685. }
  686. break;
  687. case ICMP_REDIRECT:
  688. ipv4_sk_redirect(skb, sk);
  689. goto out;
  690. }
  691. /*
  692. * RFC1122: OK. Passes ICMP errors back to application, as per
  693. * 4.1.3.3.
  694. */
  695. if (!inet->recverr) {
  696. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  697. goto out;
  698. } else
  699. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  700. sk->sk_err = err;
  701. sk->sk_error_report(sk);
  702. out:
  703. sock_put(sk);
  704. }
  705. void udp_err(struct sk_buff *skb, u32 info)
  706. {
  707. __udp4_lib_err(skb, info, &udp_table);
  708. }
  709. /*
  710. * Throw away all pending data and cancel the corking. Socket is locked.
  711. */
  712. void udp_flush_pending_frames(struct sock *sk)
  713. {
  714. struct udp_sock *up = udp_sk(sk);
  715. if (up->pending) {
  716. up->len = 0;
  717. up->pending = 0;
  718. ip_flush_pending_frames(sk);
  719. }
  720. }
  721. EXPORT_SYMBOL(udp_flush_pending_frames);
  722. /**
  723. * udp4_hwcsum - handle outgoing HW checksumming
  724. * @skb: sk_buff containing the filled-in UDP header
  725. * (checksum field must be zeroed out)
  726. * @src: source IP address
  727. * @dst: destination IP address
  728. */
  729. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  730. {
  731. struct udphdr *uh = udp_hdr(skb);
  732. int offset = skb_transport_offset(skb);
  733. int len = skb->len - offset;
  734. int hlen = len;
  735. __wsum csum = 0;
  736. if (!skb_has_frag_list(skb)) {
  737. /*
  738. * Only one fragment on the socket.
  739. */
  740. skb->csum_start = skb_transport_header(skb) - skb->head;
  741. skb->csum_offset = offsetof(struct udphdr, check);
  742. uh->check = ~csum_tcpudp_magic(src, dst, len,
  743. IPPROTO_UDP, 0);
  744. } else {
  745. struct sk_buff *frags;
  746. /*
  747. * HW-checksum won't work as there are two or more
  748. * fragments on the socket so that all csums of sk_buffs
  749. * should be together
  750. */
  751. skb_walk_frags(skb, frags) {
  752. csum = csum_add(csum, frags->csum);
  753. hlen -= frags->len;
  754. }
  755. csum = skb_checksum(skb, offset, hlen, csum);
  756. skb->ip_summed = CHECKSUM_NONE;
  757. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  758. if (uh->check == 0)
  759. uh->check = CSUM_MANGLED_0;
  760. }
  761. }
  762. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  763. /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
  764. * for the simple case like when setting the checksum for a UDP tunnel.
  765. */
  766. void udp_set_csum(bool nocheck, struct sk_buff *skb,
  767. __be32 saddr, __be32 daddr, int len)
  768. {
  769. struct udphdr *uh = udp_hdr(skb);
  770. if (nocheck)
  771. uh->check = 0;
  772. else if (skb_is_gso(skb))
  773. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  774. else if (skb_dst(skb) && skb_dst(skb)->dev &&
  775. (skb_dst(skb)->dev->features &
  776. (NETIF_F_IP_CSUM | NETIF_F_HW_CSUM))) {
  777. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  778. skb->ip_summed = CHECKSUM_PARTIAL;
  779. skb->csum_start = skb_transport_header(skb) - skb->head;
  780. skb->csum_offset = offsetof(struct udphdr, check);
  781. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  782. } else {
  783. __wsum csum;
  784. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  785. uh->check = 0;
  786. csum = skb_checksum(skb, 0, len, 0);
  787. uh->check = udp_v4_check(len, saddr, daddr, csum);
  788. if (uh->check == 0)
  789. uh->check = CSUM_MANGLED_0;
  790. skb->ip_summed = CHECKSUM_UNNECESSARY;
  791. }
  792. }
  793. EXPORT_SYMBOL(udp_set_csum);
  794. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  795. {
  796. struct sock *sk = skb->sk;
  797. struct inet_sock *inet = inet_sk(sk);
  798. struct udphdr *uh;
  799. int err = 0;
  800. int is_udplite = IS_UDPLITE(sk);
  801. int offset = skb_transport_offset(skb);
  802. int len = skb->len - offset;
  803. __wsum csum = 0;
  804. /*
  805. * Create a UDP header
  806. */
  807. uh = udp_hdr(skb);
  808. uh->source = inet->inet_sport;
  809. uh->dest = fl4->fl4_dport;
  810. uh->len = htons(len);
  811. uh->check = 0;
  812. if (is_udplite) /* UDP-Lite */
  813. csum = udplite_csum(skb);
  814. else if (sk->sk_no_check_tx) { /* UDP csum disabled */
  815. skb->ip_summed = CHECKSUM_NONE;
  816. goto send;
  817. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  818. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  819. goto send;
  820. } else
  821. csum = udp_csum(skb);
  822. /* add protocol-dependent pseudo-header */
  823. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  824. sk->sk_protocol, csum);
  825. if (uh->check == 0)
  826. uh->check = CSUM_MANGLED_0;
  827. send:
  828. err = ip_send_skb(sock_net(sk), skb);
  829. if (err) {
  830. if (err == -ENOBUFS && !inet->recverr) {
  831. UDP_INC_STATS_USER(sock_net(sk),
  832. UDP_MIB_SNDBUFERRORS, is_udplite);
  833. err = 0;
  834. }
  835. } else
  836. UDP_INC_STATS_USER(sock_net(sk),
  837. UDP_MIB_OUTDATAGRAMS, is_udplite);
  838. return err;
  839. }
  840. /*
  841. * Push out all pending data as one UDP datagram. Socket is locked.
  842. */
  843. int udp_push_pending_frames(struct sock *sk)
  844. {
  845. struct udp_sock *up = udp_sk(sk);
  846. struct inet_sock *inet = inet_sk(sk);
  847. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  848. struct sk_buff *skb;
  849. int err = 0;
  850. skb = ip_finish_skb(sk, fl4);
  851. if (!skb)
  852. goto out;
  853. err = udp_send_skb(skb, fl4);
  854. out:
  855. up->len = 0;
  856. up->pending = 0;
  857. return err;
  858. }
  859. EXPORT_SYMBOL(udp_push_pending_frames);
  860. int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  861. {
  862. struct inet_sock *inet = inet_sk(sk);
  863. struct udp_sock *up = udp_sk(sk);
  864. struct flowi4 fl4_stack;
  865. struct flowi4 *fl4;
  866. int ulen = len;
  867. struct ipcm_cookie ipc;
  868. struct rtable *rt = NULL;
  869. int free = 0;
  870. int connected = 0;
  871. __be32 daddr, faddr, saddr;
  872. __be16 dport;
  873. u8 tos;
  874. int err, is_udplite = IS_UDPLITE(sk);
  875. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  876. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  877. struct sk_buff *skb;
  878. struct ip_options_data opt_copy;
  879. if (len > 0xFFFF)
  880. return -EMSGSIZE;
  881. /*
  882. * Check the flags.
  883. */
  884. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  885. return -EOPNOTSUPP;
  886. ipc.opt = NULL;
  887. ipc.tx_flags = 0;
  888. ipc.ttl = 0;
  889. ipc.tos = -1;
  890. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  891. fl4 = &inet->cork.fl.u.ip4;
  892. if (up->pending) {
  893. /*
  894. * There are pending frames.
  895. * The socket lock must be held while it's corked.
  896. */
  897. lock_sock(sk);
  898. if (likely(up->pending)) {
  899. if (unlikely(up->pending != AF_INET)) {
  900. release_sock(sk);
  901. return -EINVAL;
  902. }
  903. goto do_append_data;
  904. }
  905. release_sock(sk);
  906. }
  907. ulen += sizeof(struct udphdr);
  908. /*
  909. * Get and verify the address.
  910. */
  911. if (msg->msg_name) {
  912. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  913. if (msg->msg_namelen < sizeof(*usin))
  914. return -EINVAL;
  915. if (usin->sin_family != AF_INET) {
  916. if (usin->sin_family != AF_UNSPEC)
  917. return -EAFNOSUPPORT;
  918. }
  919. daddr = usin->sin_addr.s_addr;
  920. dport = usin->sin_port;
  921. if (dport == 0)
  922. return -EINVAL;
  923. } else {
  924. if (sk->sk_state != TCP_ESTABLISHED)
  925. return -EDESTADDRREQ;
  926. daddr = inet->inet_daddr;
  927. dport = inet->inet_dport;
  928. /* Open fast path for connected socket.
  929. Route will not be used, if at least one option is set.
  930. */
  931. connected = 1;
  932. }
  933. ipc.addr = inet->inet_saddr;
  934. ipc.oif = sk->sk_bound_dev_if;
  935. sock_tx_timestamp(sk, &ipc.tx_flags);
  936. if (msg->msg_controllen) {
  937. err = ip_cmsg_send(sock_net(sk), msg, &ipc,
  938. sk->sk_family == AF_INET6);
  939. if (err)
  940. return err;
  941. if (ipc.opt)
  942. free = 1;
  943. connected = 0;
  944. }
  945. if (!ipc.opt) {
  946. struct ip_options_rcu *inet_opt;
  947. rcu_read_lock();
  948. inet_opt = rcu_dereference(inet->inet_opt);
  949. if (inet_opt) {
  950. memcpy(&opt_copy, inet_opt,
  951. sizeof(*inet_opt) + inet_opt->opt.optlen);
  952. ipc.opt = &opt_copy.opt;
  953. }
  954. rcu_read_unlock();
  955. }
  956. saddr = ipc.addr;
  957. ipc.addr = faddr = daddr;
  958. if (ipc.opt && ipc.opt->opt.srr) {
  959. if (!daddr)
  960. return -EINVAL;
  961. faddr = ipc.opt->opt.faddr;
  962. connected = 0;
  963. }
  964. tos = get_rttos(&ipc, inet);
  965. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  966. (msg->msg_flags & MSG_DONTROUTE) ||
  967. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  968. tos |= RTO_ONLINK;
  969. connected = 0;
  970. }
  971. if (ipv4_is_multicast(daddr)) {
  972. if (!ipc.oif)
  973. ipc.oif = inet->mc_index;
  974. if (!saddr)
  975. saddr = inet->mc_addr;
  976. connected = 0;
  977. } else if (!ipc.oif)
  978. ipc.oif = inet->uc_index;
  979. if (connected)
  980. rt = (struct rtable *)sk_dst_check(sk, 0);
  981. if (!rt) {
  982. struct net *net = sock_net(sk);
  983. __u8 flow_flags = inet_sk_flowi_flags(sk);
  984. fl4 = &fl4_stack;
  985. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  986. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  987. flow_flags,
  988. faddr, saddr, dport, inet->inet_sport);
  989. if (!saddr && ipc.oif) {
  990. err = l3mdev_get_saddr(net, ipc.oif, fl4);
  991. if (err < 0)
  992. goto out;
  993. }
  994. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  995. rt = ip_route_output_flow(net, fl4, sk);
  996. if (IS_ERR(rt)) {
  997. err = PTR_ERR(rt);
  998. rt = NULL;
  999. if (err == -ENETUNREACH)
  1000. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  1001. goto out;
  1002. }
  1003. err = -EACCES;
  1004. if ((rt->rt_flags & RTCF_BROADCAST) &&
  1005. !sock_flag(sk, SOCK_BROADCAST))
  1006. goto out;
  1007. if (connected)
  1008. sk_dst_set(sk, dst_clone(&rt->dst));
  1009. }
  1010. if (msg->msg_flags&MSG_CONFIRM)
  1011. goto do_confirm;
  1012. back_from_confirm:
  1013. saddr = fl4->saddr;
  1014. if (!ipc.addr)
  1015. daddr = ipc.addr = fl4->daddr;
  1016. /* Lockless fast path for the non-corking case. */
  1017. if (!corkreq) {
  1018. skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
  1019. sizeof(struct udphdr), &ipc, &rt,
  1020. msg->msg_flags);
  1021. err = PTR_ERR(skb);
  1022. if (!IS_ERR_OR_NULL(skb))
  1023. err = udp_send_skb(skb, fl4);
  1024. goto out;
  1025. }
  1026. lock_sock(sk);
  1027. if (unlikely(up->pending)) {
  1028. /* The socket is already corked while preparing it. */
  1029. /* ... which is an evident application bug. --ANK */
  1030. release_sock(sk);
  1031. net_dbg_ratelimited("cork app bug 2\n");
  1032. err = -EINVAL;
  1033. goto out;
  1034. }
  1035. /*
  1036. * Now cork the socket to pend data.
  1037. */
  1038. fl4 = &inet->cork.fl.u.ip4;
  1039. fl4->daddr = daddr;
  1040. fl4->saddr = saddr;
  1041. fl4->fl4_dport = dport;
  1042. fl4->fl4_sport = inet->inet_sport;
  1043. up->pending = AF_INET;
  1044. do_append_data:
  1045. up->len += ulen;
  1046. err = ip_append_data(sk, fl4, getfrag, msg, ulen,
  1047. sizeof(struct udphdr), &ipc, &rt,
  1048. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  1049. if (err)
  1050. udp_flush_pending_frames(sk);
  1051. else if (!corkreq)
  1052. err = udp_push_pending_frames(sk);
  1053. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  1054. up->pending = 0;
  1055. release_sock(sk);
  1056. out:
  1057. ip_rt_put(rt);
  1058. if (free)
  1059. kfree(ipc.opt);
  1060. if (!err)
  1061. return len;
  1062. /*
  1063. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  1064. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  1065. * we don't have a good statistic (IpOutDiscards but it can be too many
  1066. * things). We could add another new stat but at least for now that
  1067. * seems like overkill.
  1068. */
  1069. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1070. UDP_INC_STATS_USER(sock_net(sk),
  1071. UDP_MIB_SNDBUFERRORS, is_udplite);
  1072. }
  1073. return err;
  1074. do_confirm:
  1075. dst_confirm(&rt->dst);
  1076. if (!(msg->msg_flags&MSG_PROBE) || len)
  1077. goto back_from_confirm;
  1078. err = 0;
  1079. goto out;
  1080. }
  1081. EXPORT_SYMBOL(udp_sendmsg);
  1082. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  1083. size_t size, int flags)
  1084. {
  1085. struct inet_sock *inet = inet_sk(sk);
  1086. struct udp_sock *up = udp_sk(sk);
  1087. int ret;
  1088. if (flags & MSG_SENDPAGE_NOTLAST)
  1089. flags |= MSG_MORE;
  1090. if (!up->pending) {
  1091. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  1092. /* Call udp_sendmsg to specify destination address which
  1093. * sendpage interface can't pass.
  1094. * This will succeed only when the socket is connected.
  1095. */
  1096. ret = udp_sendmsg(sk, &msg, 0);
  1097. if (ret < 0)
  1098. return ret;
  1099. }
  1100. lock_sock(sk);
  1101. if (unlikely(!up->pending)) {
  1102. release_sock(sk);
  1103. net_dbg_ratelimited("udp cork app bug 3\n");
  1104. return -EINVAL;
  1105. }
  1106. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1107. page, offset, size, flags);
  1108. if (ret == -EOPNOTSUPP) {
  1109. release_sock(sk);
  1110. return sock_no_sendpage(sk->sk_socket, page, offset,
  1111. size, flags);
  1112. }
  1113. if (ret < 0) {
  1114. udp_flush_pending_frames(sk);
  1115. goto out;
  1116. }
  1117. up->len += size;
  1118. if (!(up->corkflag || (flags&MSG_MORE)))
  1119. ret = udp_push_pending_frames(sk);
  1120. if (!ret)
  1121. ret = size;
  1122. out:
  1123. release_sock(sk);
  1124. return ret;
  1125. }
  1126. /**
  1127. * first_packet_length - return length of first packet in receive queue
  1128. * @sk: socket
  1129. *
  1130. * Drops all bad checksum frames, until a valid one is found.
  1131. * Returns the length of found skb, or 0 if none is found.
  1132. */
  1133. static unsigned int first_packet_length(struct sock *sk)
  1134. {
  1135. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  1136. struct sk_buff *skb;
  1137. unsigned int res;
  1138. __skb_queue_head_init(&list_kill);
  1139. spin_lock_bh(&rcvq->lock);
  1140. while ((skb = skb_peek(rcvq)) != NULL &&
  1141. udp_lib_checksum_complete(skb)) {
  1142. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
  1143. IS_UDPLITE(sk));
  1144. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1145. IS_UDPLITE(sk));
  1146. atomic_inc(&sk->sk_drops);
  1147. __skb_unlink(skb, rcvq);
  1148. __skb_queue_tail(&list_kill, skb);
  1149. }
  1150. res = skb ? skb->len : 0;
  1151. spin_unlock_bh(&rcvq->lock);
  1152. if (!skb_queue_empty(&list_kill)) {
  1153. bool slow = lock_sock_fast(sk);
  1154. __skb_queue_purge(&list_kill);
  1155. sk_mem_reclaim_partial(sk);
  1156. unlock_sock_fast(sk, slow);
  1157. }
  1158. return res;
  1159. }
  1160. /*
  1161. * IOCTL requests applicable to the UDP protocol
  1162. */
  1163. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1164. {
  1165. switch (cmd) {
  1166. case SIOCOUTQ:
  1167. {
  1168. int amount = sk_wmem_alloc_get(sk);
  1169. return put_user(amount, (int __user *)arg);
  1170. }
  1171. case SIOCINQ:
  1172. {
  1173. unsigned int amount = first_packet_length(sk);
  1174. if (amount)
  1175. /*
  1176. * We will only return the amount
  1177. * of this packet since that is all
  1178. * that will be read.
  1179. */
  1180. amount -= sizeof(struct udphdr);
  1181. return put_user(amount, (int __user *)arg);
  1182. }
  1183. default:
  1184. return -ENOIOCTLCMD;
  1185. }
  1186. return 0;
  1187. }
  1188. EXPORT_SYMBOL(udp_ioctl);
  1189. /*
  1190. * This should be easy, if there is something there we
  1191. * return it, otherwise we block.
  1192. */
  1193. int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
  1194. int flags, int *addr_len)
  1195. {
  1196. struct inet_sock *inet = inet_sk(sk);
  1197. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  1198. struct sk_buff *skb;
  1199. unsigned int ulen, copied;
  1200. int peeked, off = 0;
  1201. int err;
  1202. int is_udplite = IS_UDPLITE(sk);
  1203. bool checksum_valid = false;
  1204. bool slow;
  1205. if (flags & MSG_ERRQUEUE)
  1206. return ip_recv_error(sk, msg, len, addr_len);
  1207. try_again:
  1208. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1209. &peeked, &off, &err);
  1210. if (!skb)
  1211. goto out;
  1212. ulen = skb->len - sizeof(struct udphdr);
  1213. copied = len;
  1214. if (copied > ulen)
  1215. copied = ulen;
  1216. else if (copied < ulen)
  1217. msg->msg_flags |= MSG_TRUNC;
  1218. /*
  1219. * If checksum is needed at all, try to do it while copying the
  1220. * data. If the data is truncated, or if we only want a partial
  1221. * coverage checksum (UDP-Lite), do it before the copy.
  1222. */
  1223. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  1224. checksum_valid = !udp_lib_checksum_complete(skb);
  1225. if (!checksum_valid)
  1226. goto csum_copy_err;
  1227. }
  1228. if (checksum_valid || skb_csum_unnecessary(skb))
  1229. err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
  1230. msg, copied);
  1231. else {
  1232. err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
  1233. msg);
  1234. if (err == -EINVAL)
  1235. goto csum_copy_err;
  1236. }
  1237. if (unlikely(err)) {
  1238. trace_kfree_skb(skb, udp_recvmsg);
  1239. if (!peeked) {
  1240. atomic_inc(&sk->sk_drops);
  1241. UDP_INC_STATS_USER(sock_net(sk),
  1242. UDP_MIB_INERRORS, is_udplite);
  1243. }
  1244. goto out_free;
  1245. }
  1246. if (!peeked)
  1247. UDP_INC_STATS_USER(sock_net(sk),
  1248. UDP_MIB_INDATAGRAMS, is_udplite);
  1249. sock_recv_ts_and_drops(msg, sk, skb);
  1250. /* Copy the address. */
  1251. if (sin) {
  1252. sin->sin_family = AF_INET;
  1253. sin->sin_port = udp_hdr(skb)->source;
  1254. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1255. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1256. *addr_len = sizeof(*sin);
  1257. }
  1258. if (inet->cmsg_flags)
  1259. ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
  1260. err = copied;
  1261. if (flags & MSG_TRUNC)
  1262. err = ulen;
  1263. out_free:
  1264. skb_free_datagram_locked(sk, skb);
  1265. out:
  1266. return err;
  1267. csum_copy_err:
  1268. slow = lock_sock_fast(sk);
  1269. if (!skb_kill_datagram(sk, skb, flags)) {
  1270. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1271. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1272. }
  1273. unlock_sock_fast(sk, slow);
  1274. /* starting over for a new packet, but check if we need to yield */
  1275. cond_resched();
  1276. msg->msg_flags &= ~MSG_TRUNC;
  1277. goto try_again;
  1278. }
  1279. int udp_disconnect(struct sock *sk, int flags)
  1280. {
  1281. struct inet_sock *inet = inet_sk(sk);
  1282. /*
  1283. * 1003.1g - break association.
  1284. */
  1285. sk->sk_state = TCP_CLOSE;
  1286. inet->inet_daddr = 0;
  1287. inet->inet_dport = 0;
  1288. sock_rps_reset_rxhash(sk);
  1289. sk->sk_bound_dev_if = 0;
  1290. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1291. inet_reset_saddr(sk);
  1292. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1293. sk->sk_prot->unhash(sk);
  1294. inet->inet_sport = 0;
  1295. }
  1296. sk_dst_reset(sk);
  1297. return 0;
  1298. }
  1299. EXPORT_SYMBOL(udp_disconnect);
  1300. void udp_lib_unhash(struct sock *sk)
  1301. {
  1302. if (sk_hashed(sk)) {
  1303. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1304. struct udp_hslot *hslot, *hslot2;
  1305. hslot = udp_hashslot(udptable, sock_net(sk),
  1306. udp_sk(sk)->udp_port_hash);
  1307. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1308. spin_lock_bh(&hslot->lock);
  1309. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1310. reuseport_detach_sock(sk);
  1311. if (sk_nulls_del_node_init_rcu(sk)) {
  1312. hslot->count--;
  1313. inet_sk(sk)->inet_num = 0;
  1314. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1315. spin_lock(&hslot2->lock);
  1316. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1317. hslot2->count--;
  1318. spin_unlock(&hslot2->lock);
  1319. }
  1320. spin_unlock_bh(&hslot->lock);
  1321. }
  1322. }
  1323. EXPORT_SYMBOL(udp_lib_unhash);
  1324. /*
  1325. * inet_rcv_saddr was changed, we must rehash secondary hash
  1326. */
  1327. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1328. {
  1329. if (sk_hashed(sk)) {
  1330. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1331. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1332. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1333. nhslot2 = udp_hashslot2(udptable, newhash);
  1334. udp_sk(sk)->udp_portaddr_hash = newhash;
  1335. if (hslot2 != nhslot2 ||
  1336. rcu_access_pointer(sk->sk_reuseport_cb)) {
  1337. hslot = udp_hashslot(udptable, sock_net(sk),
  1338. udp_sk(sk)->udp_port_hash);
  1339. /* we must lock primary chain too */
  1340. spin_lock_bh(&hslot->lock);
  1341. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1342. reuseport_detach_sock(sk);
  1343. if (hslot2 != nhslot2) {
  1344. spin_lock(&hslot2->lock);
  1345. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1346. hslot2->count--;
  1347. spin_unlock(&hslot2->lock);
  1348. spin_lock(&nhslot2->lock);
  1349. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1350. &nhslot2->head);
  1351. nhslot2->count++;
  1352. spin_unlock(&nhslot2->lock);
  1353. }
  1354. spin_unlock_bh(&hslot->lock);
  1355. }
  1356. }
  1357. }
  1358. EXPORT_SYMBOL(udp_lib_rehash);
  1359. static void udp_v4_rehash(struct sock *sk)
  1360. {
  1361. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1362. inet_sk(sk)->inet_rcv_saddr,
  1363. inet_sk(sk)->inet_num);
  1364. udp_lib_rehash(sk, new_hash);
  1365. }
  1366. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1367. {
  1368. int rc;
  1369. if (inet_sk(sk)->inet_daddr) {
  1370. sock_rps_save_rxhash(sk, skb);
  1371. sk_mark_napi_id(sk, skb);
  1372. sk_incoming_cpu_update(sk);
  1373. }
  1374. rc = sock_queue_rcv_skb(sk, skb);
  1375. if (rc < 0) {
  1376. int is_udplite = IS_UDPLITE(sk);
  1377. /* Note that an ENOMEM error is charged twice */
  1378. if (rc == -ENOMEM)
  1379. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1380. is_udplite);
  1381. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1382. kfree_skb(skb);
  1383. trace_udp_fail_queue_rcv_skb(rc, sk);
  1384. return -1;
  1385. }
  1386. return 0;
  1387. }
  1388. static struct static_key udp_encap_needed __read_mostly;
  1389. void udp_encap_enable(void)
  1390. {
  1391. if (!static_key_enabled(&udp_encap_needed))
  1392. static_key_slow_inc(&udp_encap_needed);
  1393. }
  1394. EXPORT_SYMBOL(udp_encap_enable);
  1395. /* returns:
  1396. * -1: error
  1397. * 0: success
  1398. * >0: "udp encap" protocol resubmission
  1399. *
  1400. * Note that in the success and error cases, the skb is assumed to
  1401. * have either been requeued or freed.
  1402. */
  1403. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1404. {
  1405. struct udp_sock *up = udp_sk(sk);
  1406. int rc;
  1407. int is_udplite = IS_UDPLITE(sk);
  1408. /*
  1409. * Charge it to the socket, dropping if the queue is full.
  1410. */
  1411. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1412. goto drop;
  1413. nf_reset(skb);
  1414. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1415. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1416. /*
  1417. * This is an encapsulation socket so pass the skb to
  1418. * the socket's udp_encap_rcv() hook. Otherwise, just
  1419. * fall through and pass this up the UDP socket.
  1420. * up->encap_rcv() returns the following value:
  1421. * =0 if skb was successfully passed to the encap
  1422. * handler or was discarded by it.
  1423. * >0 if skb should be passed on to UDP.
  1424. * <0 if skb should be resubmitted as proto -N
  1425. */
  1426. /* if we're overly short, let UDP handle it */
  1427. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1428. if (skb->len > sizeof(struct udphdr) && encap_rcv) {
  1429. int ret;
  1430. /* Verify checksum before giving to encap */
  1431. if (udp_lib_checksum_complete(skb))
  1432. goto csum_error;
  1433. ret = encap_rcv(sk, skb);
  1434. if (ret <= 0) {
  1435. UDP_INC_STATS_BH(sock_net(sk),
  1436. UDP_MIB_INDATAGRAMS,
  1437. is_udplite);
  1438. return -ret;
  1439. }
  1440. }
  1441. /* FALLTHROUGH -- it's a UDP Packet */
  1442. }
  1443. /*
  1444. * UDP-Lite specific tests, ignored on UDP sockets
  1445. */
  1446. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1447. /*
  1448. * MIB statistics other than incrementing the error count are
  1449. * disabled for the following two types of errors: these depend
  1450. * on the application settings, not on the functioning of the
  1451. * protocol stack as such.
  1452. *
  1453. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1454. * way ... to ... at least let the receiving application block
  1455. * delivery of packets with coverage values less than a value
  1456. * provided by the application."
  1457. */
  1458. if (up->pcrlen == 0) { /* full coverage was set */
  1459. net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
  1460. UDP_SKB_CB(skb)->cscov, skb->len);
  1461. goto drop;
  1462. }
  1463. /* The next case involves violating the min. coverage requested
  1464. * by the receiver. This is subtle: if receiver wants x and x is
  1465. * greater than the buffersize/MTU then receiver will complain
  1466. * that it wants x while sender emits packets of smaller size y.
  1467. * Therefore the above ...()->partial_cov statement is essential.
  1468. */
  1469. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1470. net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
  1471. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1472. goto drop;
  1473. }
  1474. }
  1475. if (rcu_access_pointer(sk->sk_filter) &&
  1476. udp_lib_checksum_complete(skb))
  1477. goto csum_error;
  1478. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  1479. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1480. is_udplite);
  1481. goto drop;
  1482. }
  1483. rc = 0;
  1484. ipv4_pktinfo_prepare(sk, skb);
  1485. bh_lock_sock(sk);
  1486. if (!sock_owned_by_user(sk))
  1487. rc = __udp_queue_rcv_skb(sk, skb);
  1488. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1489. bh_unlock_sock(sk);
  1490. goto drop;
  1491. }
  1492. bh_unlock_sock(sk);
  1493. return rc;
  1494. csum_error:
  1495. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1496. drop:
  1497. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1498. atomic_inc(&sk->sk_drops);
  1499. kfree_skb(skb);
  1500. return -1;
  1501. }
  1502. static void flush_stack(struct sock **stack, unsigned int count,
  1503. struct sk_buff *skb, unsigned int final)
  1504. {
  1505. unsigned int i;
  1506. struct sk_buff *skb1 = NULL;
  1507. struct sock *sk;
  1508. for (i = 0; i < count; i++) {
  1509. sk = stack[i];
  1510. if (likely(!skb1))
  1511. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  1512. if (!skb1) {
  1513. atomic_inc(&sk->sk_drops);
  1514. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1515. IS_UDPLITE(sk));
  1516. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1517. IS_UDPLITE(sk));
  1518. }
  1519. if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
  1520. skb1 = NULL;
  1521. sock_put(sk);
  1522. }
  1523. if (unlikely(skb1))
  1524. kfree_skb(skb1);
  1525. }
  1526. /* For TCP sockets, sk_rx_dst is protected by socket lock
  1527. * For UDP, we use xchg() to guard against concurrent changes.
  1528. */
  1529. static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
  1530. {
  1531. struct dst_entry *old;
  1532. dst_hold(dst);
  1533. old = xchg(&sk->sk_rx_dst, dst);
  1534. dst_release(old);
  1535. }
  1536. /*
  1537. * Multicasts and broadcasts go to each listener.
  1538. *
  1539. * Note: called only from the BH handler context.
  1540. */
  1541. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1542. struct udphdr *uh,
  1543. __be32 saddr, __be32 daddr,
  1544. struct udp_table *udptable,
  1545. int proto)
  1546. {
  1547. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  1548. struct hlist_nulls_node *node;
  1549. unsigned short hnum = ntohs(uh->dest);
  1550. struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
  1551. int dif = skb->dev->ifindex;
  1552. unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
  1553. unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
  1554. bool inner_flushed = false;
  1555. if (use_hash2) {
  1556. hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
  1557. udp_table.mask;
  1558. hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
  1559. start_lookup:
  1560. hslot = &udp_table.hash2[hash2];
  1561. offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
  1562. }
  1563. spin_lock(&hslot->lock);
  1564. sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
  1565. if (__udp_is_mcast_sock(net, sk,
  1566. uh->dest, daddr,
  1567. uh->source, saddr,
  1568. dif, hnum)) {
  1569. if (unlikely(count == ARRAY_SIZE(stack))) {
  1570. flush_stack(stack, count, skb, ~0);
  1571. inner_flushed = true;
  1572. count = 0;
  1573. }
  1574. stack[count++] = sk;
  1575. sock_hold(sk);
  1576. }
  1577. }
  1578. spin_unlock(&hslot->lock);
  1579. /* Also lookup *:port if we are using hash2 and haven't done so yet. */
  1580. if (use_hash2 && hash2 != hash2_any) {
  1581. hash2 = hash2_any;
  1582. goto start_lookup;
  1583. }
  1584. /*
  1585. * do the slow work with no lock held
  1586. */
  1587. if (count) {
  1588. flush_stack(stack, count, skb, count - 1);
  1589. } else {
  1590. if (!inner_flushed)
  1591. UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
  1592. proto == IPPROTO_UDPLITE);
  1593. consume_skb(skb);
  1594. }
  1595. return 0;
  1596. }
  1597. /* Initialize UDP checksum. If exited with zero value (success),
  1598. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1599. * Otherwise, csum completion requires chacksumming packet body,
  1600. * including udp header and folding it to skb->csum.
  1601. */
  1602. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1603. int proto)
  1604. {
  1605. int err;
  1606. UDP_SKB_CB(skb)->partial_cov = 0;
  1607. UDP_SKB_CB(skb)->cscov = skb->len;
  1608. if (proto == IPPROTO_UDPLITE) {
  1609. err = udplite_checksum_init(skb, uh);
  1610. if (err)
  1611. return err;
  1612. }
  1613. return skb_checksum_init_zero_check(skb, proto, uh->check,
  1614. inet_compute_pseudo);
  1615. }
  1616. /*
  1617. * All we need to do is get the socket, and then do a checksum.
  1618. */
  1619. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1620. int proto)
  1621. {
  1622. struct sock *sk;
  1623. struct udphdr *uh;
  1624. unsigned short ulen;
  1625. struct rtable *rt = skb_rtable(skb);
  1626. __be32 saddr, daddr;
  1627. struct net *net = dev_net(skb->dev);
  1628. /*
  1629. * Validate the packet.
  1630. */
  1631. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1632. goto drop; /* No space for header. */
  1633. uh = udp_hdr(skb);
  1634. ulen = ntohs(uh->len);
  1635. saddr = ip_hdr(skb)->saddr;
  1636. daddr = ip_hdr(skb)->daddr;
  1637. if (ulen > skb->len)
  1638. goto short_packet;
  1639. if (proto == IPPROTO_UDP) {
  1640. /* UDP validates ulen. */
  1641. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1642. goto short_packet;
  1643. uh = udp_hdr(skb);
  1644. }
  1645. if (udp4_csum_init(skb, uh, proto))
  1646. goto csum_error;
  1647. sk = skb_steal_sock(skb);
  1648. if (sk) {
  1649. struct dst_entry *dst = skb_dst(skb);
  1650. int ret;
  1651. if (unlikely(sk->sk_rx_dst != dst))
  1652. udp_sk_rx_dst_set(sk, dst);
  1653. ret = udp_queue_rcv_skb(sk, skb);
  1654. sock_put(sk);
  1655. /* a return value > 0 means to resubmit the input, but
  1656. * it wants the return to be -protocol, or 0
  1657. */
  1658. if (ret > 0)
  1659. return -ret;
  1660. return 0;
  1661. }
  1662. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1663. return __udp4_lib_mcast_deliver(net, skb, uh,
  1664. saddr, daddr, udptable, proto);
  1665. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1666. if (sk) {
  1667. int ret;
  1668. if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
  1669. skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
  1670. inet_compute_pseudo);
  1671. ret = udp_queue_rcv_skb(sk, skb);
  1672. sock_put(sk);
  1673. /* a return value > 0 means to resubmit the input, but
  1674. * it wants the return to be -protocol, or 0
  1675. */
  1676. if (ret > 0)
  1677. return -ret;
  1678. return 0;
  1679. }
  1680. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1681. goto drop;
  1682. nf_reset(skb);
  1683. /* No socket. Drop packet silently, if checksum is wrong */
  1684. if (udp_lib_checksum_complete(skb))
  1685. goto csum_error;
  1686. UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1687. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1688. /*
  1689. * Hmm. We got an UDP packet to a port to which we
  1690. * don't wanna listen. Ignore it.
  1691. */
  1692. kfree_skb(skb);
  1693. return 0;
  1694. short_packet:
  1695. net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1696. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1697. &saddr, ntohs(uh->source),
  1698. ulen, skb->len,
  1699. &daddr, ntohs(uh->dest));
  1700. goto drop;
  1701. csum_error:
  1702. /*
  1703. * RFC1122: OK. Discards the bad packet silently (as far as
  1704. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1705. */
  1706. net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1707. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1708. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1709. ulen);
  1710. UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1711. drop:
  1712. UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1713. kfree_skb(skb);
  1714. return 0;
  1715. }
  1716. /* We can only early demux multicast if there is a single matching socket.
  1717. * If more than one socket found returns NULL
  1718. */
  1719. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1720. __be16 loc_port, __be32 loc_addr,
  1721. __be16 rmt_port, __be32 rmt_addr,
  1722. int dif)
  1723. {
  1724. struct sock *sk, *result;
  1725. struct hlist_nulls_node *node;
  1726. unsigned short hnum = ntohs(loc_port);
  1727. unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
  1728. struct udp_hslot *hslot = &udp_table.hash[slot];
  1729. /* Do not bother scanning a too big list */
  1730. if (hslot->count > 10)
  1731. return NULL;
  1732. rcu_read_lock();
  1733. begin:
  1734. count = 0;
  1735. result = NULL;
  1736. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  1737. if (__udp_is_mcast_sock(net, sk,
  1738. loc_port, loc_addr,
  1739. rmt_port, rmt_addr,
  1740. dif, hnum)) {
  1741. result = sk;
  1742. ++count;
  1743. }
  1744. }
  1745. /*
  1746. * if the nulls value we got at the end of this lookup is
  1747. * not the expected one, we must restart lookup.
  1748. * We probably met an item that was moved to another chain.
  1749. */
  1750. if (get_nulls_value(node) != slot)
  1751. goto begin;
  1752. if (result) {
  1753. if (count != 1 ||
  1754. unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1755. result = NULL;
  1756. else if (unlikely(!__udp_is_mcast_sock(net, result,
  1757. loc_port, loc_addr,
  1758. rmt_port, rmt_addr,
  1759. dif, hnum))) {
  1760. sock_put(result);
  1761. result = NULL;
  1762. }
  1763. }
  1764. rcu_read_unlock();
  1765. return result;
  1766. }
  1767. /* For unicast we should only early demux connected sockets or we can
  1768. * break forwarding setups. The chains here can be long so only check
  1769. * if the first socket is an exact match and if not move on.
  1770. */
  1771. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1772. __be16 loc_port, __be32 loc_addr,
  1773. __be16 rmt_port, __be32 rmt_addr,
  1774. int dif)
  1775. {
  1776. struct sock *sk, *result;
  1777. struct hlist_nulls_node *node;
  1778. unsigned short hnum = ntohs(loc_port);
  1779. unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
  1780. unsigned int slot2 = hash2 & udp_table.mask;
  1781. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1782. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
  1783. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1784. rcu_read_lock();
  1785. result = NULL;
  1786. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  1787. if (INET_MATCH(sk, net, acookie,
  1788. rmt_addr, loc_addr, ports, dif))
  1789. result = sk;
  1790. /* Only check first socket in chain */
  1791. break;
  1792. }
  1793. if (result) {
  1794. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1795. result = NULL;
  1796. else if (unlikely(!INET_MATCH(sk, net, acookie,
  1797. rmt_addr, loc_addr,
  1798. ports, dif))) {
  1799. sock_put(result);
  1800. result = NULL;
  1801. }
  1802. }
  1803. rcu_read_unlock();
  1804. return result;
  1805. }
  1806. void udp_v4_early_demux(struct sk_buff *skb)
  1807. {
  1808. struct net *net = dev_net(skb->dev);
  1809. const struct iphdr *iph;
  1810. const struct udphdr *uh;
  1811. struct sock *sk;
  1812. struct dst_entry *dst;
  1813. int dif = skb->dev->ifindex;
  1814. int ours;
  1815. /* validate the packet */
  1816. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1817. return;
  1818. iph = ip_hdr(skb);
  1819. uh = udp_hdr(skb);
  1820. if (skb->pkt_type == PACKET_BROADCAST ||
  1821. skb->pkt_type == PACKET_MULTICAST) {
  1822. struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
  1823. if (!in_dev)
  1824. return;
  1825. ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
  1826. iph->protocol);
  1827. if (!ours)
  1828. return;
  1829. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1830. uh->source, iph->saddr, dif);
  1831. } else if (skb->pkt_type == PACKET_HOST) {
  1832. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1833. uh->source, iph->saddr, dif);
  1834. } else {
  1835. return;
  1836. }
  1837. if (!sk)
  1838. return;
  1839. skb->sk = sk;
  1840. skb->destructor = sock_efree;
  1841. dst = READ_ONCE(sk->sk_rx_dst);
  1842. if (dst)
  1843. dst = dst_check(dst, 0);
  1844. if (dst) {
  1845. /* DST_NOCACHE can not be used without taking a reference */
  1846. if (dst->flags & DST_NOCACHE) {
  1847. if (likely(atomic_inc_not_zero(&dst->__refcnt)))
  1848. skb_dst_set(skb, dst);
  1849. } else {
  1850. skb_dst_set_noref(skb, dst);
  1851. }
  1852. }
  1853. }
  1854. int udp_rcv(struct sk_buff *skb)
  1855. {
  1856. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1857. }
  1858. void udp_destroy_sock(struct sock *sk)
  1859. {
  1860. struct udp_sock *up = udp_sk(sk);
  1861. bool slow = lock_sock_fast(sk);
  1862. udp_flush_pending_frames(sk);
  1863. unlock_sock_fast(sk, slow);
  1864. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1865. void (*encap_destroy)(struct sock *sk);
  1866. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1867. if (encap_destroy)
  1868. encap_destroy(sk);
  1869. }
  1870. }
  1871. /*
  1872. * Socket option code for UDP
  1873. */
  1874. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1875. char __user *optval, unsigned int optlen,
  1876. int (*push_pending_frames)(struct sock *))
  1877. {
  1878. struct udp_sock *up = udp_sk(sk);
  1879. int val, valbool;
  1880. int err = 0;
  1881. int is_udplite = IS_UDPLITE(sk);
  1882. if (optlen < sizeof(int))
  1883. return -EINVAL;
  1884. if (get_user(val, (int __user *)optval))
  1885. return -EFAULT;
  1886. valbool = val ? 1 : 0;
  1887. switch (optname) {
  1888. case UDP_CORK:
  1889. if (val != 0) {
  1890. up->corkflag = 1;
  1891. } else {
  1892. up->corkflag = 0;
  1893. lock_sock(sk);
  1894. push_pending_frames(sk);
  1895. release_sock(sk);
  1896. }
  1897. break;
  1898. case UDP_ENCAP:
  1899. switch (val) {
  1900. case 0:
  1901. case UDP_ENCAP_ESPINUDP:
  1902. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1903. up->encap_rcv = xfrm4_udp_encap_rcv;
  1904. /* FALLTHROUGH */
  1905. case UDP_ENCAP_L2TPINUDP:
  1906. up->encap_type = val;
  1907. udp_encap_enable();
  1908. break;
  1909. default:
  1910. err = -ENOPROTOOPT;
  1911. break;
  1912. }
  1913. break;
  1914. case UDP_NO_CHECK6_TX:
  1915. up->no_check6_tx = valbool;
  1916. break;
  1917. case UDP_NO_CHECK6_RX:
  1918. up->no_check6_rx = valbool;
  1919. break;
  1920. /*
  1921. * UDP-Lite's partial checksum coverage (RFC 3828).
  1922. */
  1923. /* The sender sets actual checksum coverage length via this option.
  1924. * The case coverage > packet length is handled by send module. */
  1925. case UDPLITE_SEND_CSCOV:
  1926. if (!is_udplite) /* Disable the option on UDP sockets */
  1927. return -ENOPROTOOPT;
  1928. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1929. val = 8;
  1930. else if (val > USHRT_MAX)
  1931. val = USHRT_MAX;
  1932. up->pcslen = val;
  1933. up->pcflag |= UDPLITE_SEND_CC;
  1934. break;
  1935. /* The receiver specifies a minimum checksum coverage value. To make
  1936. * sense, this should be set to at least 8 (as done below). If zero is
  1937. * used, this again means full checksum coverage. */
  1938. case UDPLITE_RECV_CSCOV:
  1939. if (!is_udplite) /* Disable the option on UDP sockets */
  1940. return -ENOPROTOOPT;
  1941. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1942. val = 8;
  1943. else if (val > USHRT_MAX)
  1944. val = USHRT_MAX;
  1945. up->pcrlen = val;
  1946. up->pcflag |= UDPLITE_RECV_CC;
  1947. break;
  1948. default:
  1949. err = -ENOPROTOOPT;
  1950. break;
  1951. }
  1952. return err;
  1953. }
  1954. EXPORT_SYMBOL(udp_lib_setsockopt);
  1955. int udp_setsockopt(struct sock *sk, int level, int optname,
  1956. char __user *optval, unsigned int optlen)
  1957. {
  1958. if (level == SOL_UDP || level == SOL_UDPLITE)
  1959. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1960. udp_push_pending_frames);
  1961. return ip_setsockopt(sk, level, optname, optval, optlen);
  1962. }
  1963. #ifdef CONFIG_COMPAT
  1964. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1965. char __user *optval, unsigned int optlen)
  1966. {
  1967. if (level == SOL_UDP || level == SOL_UDPLITE)
  1968. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1969. udp_push_pending_frames);
  1970. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1971. }
  1972. #endif
  1973. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1974. char __user *optval, int __user *optlen)
  1975. {
  1976. struct udp_sock *up = udp_sk(sk);
  1977. int val, len;
  1978. if (get_user(len, optlen))
  1979. return -EFAULT;
  1980. len = min_t(unsigned int, len, sizeof(int));
  1981. if (len < 0)
  1982. return -EINVAL;
  1983. switch (optname) {
  1984. case UDP_CORK:
  1985. val = up->corkflag;
  1986. break;
  1987. case UDP_ENCAP:
  1988. val = up->encap_type;
  1989. break;
  1990. case UDP_NO_CHECK6_TX:
  1991. val = up->no_check6_tx;
  1992. break;
  1993. case UDP_NO_CHECK6_RX:
  1994. val = up->no_check6_rx;
  1995. break;
  1996. /* The following two cannot be changed on UDP sockets, the return is
  1997. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1998. case UDPLITE_SEND_CSCOV:
  1999. val = up->pcslen;
  2000. break;
  2001. case UDPLITE_RECV_CSCOV:
  2002. val = up->pcrlen;
  2003. break;
  2004. default:
  2005. return -ENOPROTOOPT;
  2006. }
  2007. if (put_user(len, optlen))
  2008. return -EFAULT;
  2009. if (copy_to_user(optval, &val, len))
  2010. return -EFAULT;
  2011. return 0;
  2012. }
  2013. EXPORT_SYMBOL(udp_lib_getsockopt);
  2014. int udp_getsockopt(struct sock *sk, int level, int optname,
  2015. char __user *optval, int __user *optlen)
  2016. {
  2017. if (level == SOL_UDP || level == SOL_UDPLITE)
  2018. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  2019. return ip_getsockopt(sk, level, optname, optval, optlen);
  2020. }
  2021. #ifdef CONFIG_COMPAT
  2022. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  2023. char __user *optval, int __user *optlen)
  2024. {
  2025. if (level == SOL_UDP || level == SOL_UDPLITE)
  2026. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  2027. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  2028. }
  2029. #endif
  2030. /**
  2031. * udp_poll - wait for a UDP event.
  2032. * @file - file struct
  2033. * @sock - socket
  2034. * @wait - poll table
  2035. *
  2036. * This is same as datagram poll, except for the special case of
  2037. * blocking sockets. If application is using a blocking fd
  2038. * and a packet with checksum error is in the queue;
  2039. * then it could get return from select indicating data available
  2040. * but then block when reading it. Add special case code
  2041. * to work around these arguably broken applications.
  2042. */
  2043. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  2044. {
  2045. unsigned int mask = datagram_poll(file, sock, wait);
  2046. struct sock *sk = sock->sk;
  2047. sock_rps_record_flow(sk);
  2048. /* Check for false positives due to checksum errors */
  2049. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  2050. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  2051. mask &= ~(POLLIN | POLLRDNORM);
  2052. return mask;
  2053. }
  2054. EXPORT_SYMBOL(udp_poll);
  2055. struct proto udp_prot = {
  2056. .name = "UDP",
  2057. .owner = THIS_MODULE,
  2058. .close = udp_lib_close,
  2059. .connect = ip4_datagram_connect,
  2060. .disconnect = udp_disconnect,
  2061. .ioctl = udp_ioctl,
  2062. .destroy = udp_destroy_sock,
  2063. .setsockopt = udp_setsockopt,
  2064. .getsockopt = udp_getsockopt,
  2065. .sendmsg = udp_sendmsg,
  2066. .recvmsg = udp_recvmsg,
  2067. .sendpage = udp_sendpage,
  2068. .backlog_rcv = __udp_queue_rcv_skb,
  2069. .release_cb = ip4_datagram_release_cb,
  2070. .hash = udp_lib_hash,
  2071. .unhash = udp_lib_unhash,
  2072. .rehash = udp_v4_rehash,
  2073. .get_port = udp_v4_get_port,
  2074. .memory_allocated = &udp_memory_allocated,
  2075. .sysctl_mem = sysctl_udp_mem,
  2076. .sysctl_wmem = &sysctl_udp_wmem_min,
  2077. .sysctl_rmem = &sysctl_udp_rmem_min,
  2078. .obj_size = sizeof(struct udp_sock),
  2079. .slab_flags = SLAB_DESTROY_BY_RCU,
  2080. .h.udp_table = &udp_table,
  2081. #ifdef CONFIG_COMPAT
  2082. .compat_setsockopt = compat_udp_setsockopt,
  2083. .compat_getsockopt = compat_udp_getsockopt,
  2084. #endif
  2085. .clear_sk = sk_prot_clear_portaddr_nulls,
  2086. };
  2087. EXPORT_SYMBOL(udp_prot);
  2088. /* ------------------------------------------------------------------------ */
  2089. #ifdef CONFIG_PROC_FS
  2090. static struct sock *udp_get_first(struct seq_file *seq, int start)
  2091. {
  2092. struct sock *sk;
  2093. struct udp_iter_state *state = seq->private;
  2094. struct net *net = seq_file_net(seq);
  2095. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  2096. ++state->bucket) {
  2097. struct hlist_nulls_node *node;
  2098. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  2099. if (hlist_nulls_empty(&hslot->head))
  2100. continue;
  2101. spin_lock_bh(&hslot->lock);
  2102. sk_nulls_for_each(sk, node, &hslot->head) {
  2103. if (!net_eq(sock_net(sk), net))
  2104. continue;
  2105. if (sk->sk_family == state->family)
  2106. goto found;
  2107. }
  2108. spin_unlock_bh(&hslot->lock);
  2109. }
  2110. sk = NULL;
  2111. found:
  2112. return sk;
  2113. }
  2114. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  2115. {
  2116. struct udp_iter_state *state = seq->private;
  2117. struct net *net = seq_file_net(seq);
  2118. do {
  2119. sk = sk_nulls_next(sk);
  2120. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  2121. if (!sk) {
  2122. if (state->bucket <= state->udp_table->mask)
  2123. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2124. return udp_get_first(seq, state->bucket + 1);
  2125. }
  2126. return sk;
  2127. }
  2128. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  2129. {
  2130. struct sock *sk = udp_get_first(seq, 0);
  2131. if (sk)
  2132. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  2133. --pos;
  2134. return pos ? NULL : sk;
  2135. }
  2136. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  2137. {
  2138. struct udp_iter_state *state = seq->private;
  2139. state->bucket = MAX_UDP_PORTS;
  2140. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  2141. }
  2142. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2143. {
  2144. struct sock *sk;
  2145. if (v == SEQ_START_TOKEN)
  2146. sk = udp_get_idx(seq, 0);
  2147. else
  2148. sk = udp_get_next(seq, v);
  2149. ++*pos;
  2150. return sk;
  2151. }
  2152. static void udp_seq_stop(struct seq_file *seq, void *v)
  2153. {
  2154. struct udp_iter_state *state = seq->private;
  2155. if (state->bucket <= state->udp_table->mask)
  2156. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2157. }
  2158. int udp_seq_open(struct inode *inode, struct file *file)
  2159. {
  2160. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2161. struct udp_iter_state *s;
  2162. int err;
  2163. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2164. sizeof(struct udp_iter_state));
  2165. if (err < 0)
  2166. return err;
  2167. s = ((struct seq_file *)file->private_data)->private;
  2168. s->family = afinfo->family;
  2169. s->udp_table = afinfo->udp_table;
  2170. return err;
  2171. }
  2172. EXPORT_SYMBOL(udp_seq_open);
  2173. /* ------------------------------------------------------------------------ */
  2174. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2175. {
  2176. struct proc_dir_entry *p;
  2177. int rc = 0;
  2178. afinfo->seq_ops.start = udp_seq_start;
  2179. afinfo->seq_ops.next = udp_seq_next;
  2180. afinfo->seq_ops.stop = udp_seq_stop;
  2181. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  2182. afinfo->seq_fops, afinfo);
  2183. if (!p)
  2184. rc = -ENOMEM;
  2185. return rc;
  2186. }
  2187. EXPORT_SYMBOL(udp_proc_register);
  2188. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2189. {
  2190. remove_proc_entry(afinfo->name, net->proc_net);
  2191. }
  2192. EXPORT_SYMBOL(udp_proc_unregister);
  2193. /* ------------------------------------------------------------------------ */
  2194. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2195. int bucket)
  2196. {
  2197. struct inet_sock *inet = inet_sk(sp);
  2198. __be32 dest = inet->inet_daddr;
  2199. __be32 src = inet->inet_rcv_saddr;
  2200. __u16 destp = ntohs(inet->inet_dport);
  2201. __u16 srcp = ntohs(inet->inet_sport);
  2202. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2203. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
  2204. bucket, src, srcp, dest, destp, sp->sk_state,
  2205. sk_wmem_alloc_get(sp),
  2206. sk_rmem_alloc_get(sp),
  2207. 0, 0L, 0,
  2208. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2209. 0, sock_i_ino(sp),
  2210. atomic_read(&sp->sk_refcnt), sp,
  2211. atomic_read(&sp->sk_drops));
  2212. }
  2213. int udp4_seq_show(struct seq_file *seq, void *v)
  2214. {
  2215. seq_setwidth(seq, 127);
  2216. if (v == SEQ_START_TOKEN)
  2217. seq_puts(seq, " sl local_address rem_address st tx_queue "
  2218. "rx_queue tr tm->when retrnsmt uid timeout "
  2219. "inode ref pointer drops");
  2220. else {
  2221. struct udp_iter_state *state = seq->private;
  2222. udp4_format_sock(v, seq, state->bucket);
  2223. }
  2224. seq_pad(seq, '\n');
  2225. return 0;
  2226. }
  2227. static const struct file_operations udp_afinfo_seq_fops = {
  2228. .owner = THIS_MODULE,
  2229. .open = udp_seq_open,
  2230. .read = seq_read,
  2231. .llseek = seq_lseek,
  2232. .release = seq_release_net
  2233. };
  2234. /* ------------------------------------------------------------------------ */
  2235. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2236. .name = "udp",
  2237. .family = AF_INET,
  2238. .udp_table = &udp_table,
  2239. .seq_fops = &udp_afinfo_seq_fops,
  2240. .seq_ops = {
  2241. .show = udp4_seq_show,
  2242. },
  2243. };
  2244. static int __net_init udp4_proc_init_net(struct net *net)
  2245. {
  2246. return udp_proc_register(net, &udp4_seq_afinfo);
  2247. }
  2248. static void __net_exit udp4_proc_exit_net(struct net *net)
  2249. {
  2250. udp_proc_unregister(net, &udp4_seq_afinfo);
  2251. }
  2252. static struct pernet_operations udp4_net_ops = {
  2253. .init = udp4_proc_init_net,
  2254. .exit = udp4_proc_exit_net,
  2255. };
  2256. int __init udp4_proc_init(void)
  2257. {
  2258. return register_pernet_subsys(&udp4_net_ops);
  2259. }
  2260. void udp4_proc_exit(void)
  2261. {
  2262. unregister_pernet_subsys(&udp4_net_ops);
  2263. }
  2264. #endif /* CONFIG_PROC_FS */
  2265. static __initdata unsigned long uhash_entries;
  2266. static int __init set_uhash_entries(char *str)
  2267. {
  2268. ssize_t ret;
  2269. if (!str)
  2270. return 0;
  2271. ret = kstrtoul(str, 0, &uhash_entries);
  2272. if (ret)
  2273. return 0;
  2274. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2275. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2276. return 1;
  2277. }
  2278. __setup("uhash_entries=", set_uhash_entries);
  2279. void __init udp_table_init(struct udp_table *table, const char *name)
  2280. {
  2281. unsigned int i;
  2282. table->hash = alloc_large_system_hash(name,
  2283. 2 * sizeof(struct udp_hslot),
  2284. uhash_entries,
  2285. 21, /* one slot per 2 MB */
  2286. 0,
  2287. &table->log,
  2288. &table->mask,
  2289. UDP_HTABLE_SIZE_MIN,
  2290. 64 * 1024);
  2291. table->hash2 = table->hash + (table->mask + 1);
  2292. for (i = 0; i <= table->mask; i++) {
  2293. INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
  2294. table->hash[i].count = 0;
  2295. spin_lock_init(&table->hash[i].lock);
  2296. }
  2297. for (i = 0; i <= table->mask; i++) {
  2298. INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
  2299. table->hash2[i].count = 0;
  2300. spin_lock_init(&table->hash2[i].lock);
  2301. }
  2302. }
  2303. u32 udp_flow_hashrnd(void)
  2304. {
  2305. static u32 hashrnd __read_mostly;
  2306. net_get_random_once(&hashrnd, sizeof(hashrnd));
  2307. return hashrnd;
  2308. }
  2309. EXPORT_SYMBOL(udp_flow_hashrnd);
  2310. void __init udp_init(void)
  2311. {
  2312. unsigned long limit;
  2313. udp_table_init(&udp_table, "UDP");
  2314. limit = nr_free_buffer_pages() / 8;
  2315. limit = max(limit, 128UL);
  2316. sysctl_udp_mem[0] = limit / 4 * 3;
  2317. sysctl_udp_mem[1] = limit;
  2318. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2319. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2320. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2321. }