fib_trie.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <net/net_namespace.h>
  75. #include <net/ip.h>
  76. #include <net/protocol.h>
  77. #include <net/route.h>
  78. #include <net/tcp.h>
  79. #include <net/sock.h>
  80. #include <net/ip_fib.h>
  81. #include <net/switchdev.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. #define MAX_STAT_DEPTH 32
  85. #define KEYLENGTH (8*sizeof(t_key))
  86. #define KEY_MAX ((t_key)~0)
  87. typedef unsigned int t_key;
  88. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  89. #define IS_TNODE(n) ((n)->bits)
  90. #define IS_LEAF(n) (!(n)->bits)
  91. struct key_vector {
  92. t_key key;
  93. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  94. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  95. unsigned char slen;
  96. union {
  97. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  98. struct hlist_head leaf;
  99. /* This array is valid if (pos | bits) > 0 (TNODE) */
  100. struct key_vector __rcu *tnode[0];
  101. };
  102. };
  103. struct tnode {
  104. struct rcu_head rcu;
  105. t_key empty_children; /* KEYLENGTH bits needed */
  106. t_key full_children; /* KEYLENGTH bits needed */
  107. struct key_vector __rcu *parent;
  108. struct key_vector kv[1];
  109. #define tn_bits kv[0].bits
  110. };
  111. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  112. #define LEAF_SIZE TNODE_SIZE(1)
  113. #ifdef CONFIG_IP_FIB_TRIE_STATS
  114. struct trie_use_stats {
  115. unsigned int gets;
  116. unsigned int backtrack;
  117. unsigned int semantic_match_passed;
  118. unsigned int semantic_match_miss;
  119. unsigned int null_node_hit;
  120. unsigned int resize_node_skipped;
  121. };
  122. #endif
  123. struct trie_stat {
  124. unsigned int totdepth;
  125. unsigned int maxdepth;
  126. unsigned int tnodes;
  127. unsigned int leaves;
  128. unsigned int nullpointers;
  129. unsigned int prefixes;
  130. unsigned int nodesizes[MAX_STAT_DEPTH];
  131. };
  132. struct trie {
  133. struct key_vector kv[1];
  134. #ifdef CONFIG_IP_FIB_TRIE_STATS
  135. struct trie_use_stats __percpu *stats;
  136. #endif
  137. };
  138. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  139. static size_t tnode_free_size;
  140. /*
  141. * synchronize_rcu after call_rcu for that many pages; it should be especially
  142. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  143. * obtained experimentally, aiming to avoid visible slowdown.
  144. */
  145. static const int sync_pages = 128;
  146. static struct kmem_cache *fn_alias_kmem __read_mostly;
  147. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  148. static inline struct tnode *tn_info(struct key_vector *kv)
  149. {
  150. return container_of(kv, struct tnode, kv[0]);
  151. }
  152. /* caller must hold RTNL */
  153. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  154. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  155. /* caller must hold RCU read lock or RTNL */
  156. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  157. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  158. /* wrapper for rcu_assign_pointer */
  159. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  160. {
  161. if (n)
  162. rcu_assign_pointer(tn_info(n)->parent, tp);
  163. }
  164. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  165. /* This provides us with the number of children in this node, in the case of a
  166. * leaf this will return 0 meaning none of the children are accessible.
  167. */
  168. static inline unsigned long child_length(const struct key_vector *tn)
  169. {
  170. return (1ul << tn->bits) & ~(1ul);
  171. }
  172. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  173. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  174. {
  175. unsigned long index = key ^ kv->key;
  176. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  177. return 0;
  178. return index >> kv->pos;
  179. }
  180. /* To understand this stuff, an understanding of keys and all their bits is
  181. * necessary. Every node in the trie has a key associated with it, but not
  182. * all of the bits in that key are significant.
  183. *
  184. * Consider a node 'n' and its parent 'tp'.
  185. *
  186. * If n is a leaf, every bit in its key is significant. Its presence is
  187. * necessitated by path compression, since during a tree traversal (when
  188. * searching for a leaf - unless we are doing an insertion) we will completely
  189. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  190. * a potentially successful search, that we have indeed been walking the
  191. * correct key path.
  192. *
  193. * Note that we can never "miss" the correct key in the tree if present by
  194. * following the wrong path. Path compression ensures that segments of the key
  195. * that are the same for all keys with a given prefix are skipped, but the
  196. * skipped part *is* identical for each node in the subtrie below the skipped
  197. * bit! trie_insert() in this implementation takes care of that.
  198. *
  199. * if n is an internal node - a 'tnode' here, the various parts of its key
  200. * have many different meanings.
  201. *
  202. * Example:
  203. * _________________________________________________________________
  204. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  205. * -----------------------------------------------------------------
  206. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  207. *
  208. * _________________________________________________________________
  209. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  210. * -----------------------------------------------------------------
  211. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  212. *
  213. * tp->pos = 22
  214. * tp->bits = 3
  215. * n->pos = 13
  216. * n->bits = 4
  217. *
  218. * First, let's just ignore the bits that come before the parent tp, that is
  219. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  220. * point we do not use them for anything.
  221. *
  222. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  223. * index into the parent's child array. That is, they will be used to find
  224. * 'n' among tp's children.
  225. *
  226. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  227. * for the node n.
  228. *
  229. * All the bits we have seen so far are significant to the node n. The rest
  230. * of the bits are really not needed or indeed known in n->key.
  231. *
  232. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  233. * n's child array, and will of course be different for each child.
  234. *
  235. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  236. * at this point.
  237. */
  238. static const int halve_threshold = 25;
  239. static const int inflate_threshold = 50;
  240. static const int halve_threshold_root = 15;
  241. static const int inflate_threshold_root = 30;
  242. static void __alias_free_mem(struct rcu_head *head)
  243. {
  244. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  245. kmem_cache_free(fn_alias_kmem, fa);
  246. }
  247. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  248. {
  249. call_rcu(&fa->rcu, __alias_free_mem);
  250. }
  251. #define TNODE_KMALLOC_MAX \
  252. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. #define TNODE_VMALLOC_MAX \
  254. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  255. static void __node_free_rcu(struct rcu_head *head)
  256. {
  257. struct tnode *n = container_of(head, struct tnode, rcu);
  258. if (!n->tn_bits)
  259. kmem_cache_free(trie_leaf_kmem, n);
  260. else
  261. kvfree(n);
  262. }
  263. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  264. static struct tnode *tnode_alloc(int bits)
  265. {
  266. size_t size;
  267. /* verify bits is within bounds */
  268. if (bits > TNODE_VMALLOC_MAX)
  269. return NULL;
  270. /* determine size and verify it is non-zero and didn't overflow */
  271. size = TNODE_SIZE(1ul << bits);
  272. if (size <= PAGE_SIZE)
  273. return kzalloc(size, GFP_KERNEL);
  274. else
  275. return vzalloc(size);
  276. }
  277. static inline void empty_child_inc(struct key_vector *n)
  278. {
  279. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  280. }
  281. static inline void empty_child_dec(struct key_vector *n)
  282. {
  283. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  284. }
  285. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  286. {
  287. struct key_vector *l;
  288. struct tnode *kv;
  289. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  290. if (!kv)
  291. return NULL;
  292. /* initialize key vector */
  293. l = kv->kv;
  294. l->key = key;
  295. l->pos = 0;
  296. l->bits = 0;
  297. l->slen = fa->fa_slen;
  298. /* link leaf to fib alias */
  299. INIT_HLIST_HEAD(&l->leaf);
  300. hlist_add_head(&fa->fa_list, &l->leaf);
  301. return l;
  302. }
  303. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  304. {
  305. unsigned int shift = pos + bits;
  306. struct key_vector *tn;
  307. struct tnode *tnode;
  308. /* verify bits and pos their msb bits clear and values are valid */
  309. BUG_ON(!bits || (shift > KEYLENGTH));
  310. tnode = tnode_alloc(bits);
  311. if (!tnode)
  312. return NULL;
  313. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  314. sizeof(struct key_vector *) << bits);
  315. if (bits == KEYLENGTH)
  316. tnode->full_children = 1;
  317. else
  318. tnode->empty_children = 1ul << bits;
  319. tn = tnode->kv;
  320. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  321. tn->pos = pos;
  322. tn->bits = bits;
  323. tn->slen = pos;
  324. return tn;
  325. }
  326. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  327. * and no bits are skipped. See discussion in dyntree paper p. 6
  328. */
  329. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  330. {
  331. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  332. }
  333. /* Add a child at position i overwriting the old value.
  334. * Update the value of full_children and empty_children.
  335. */
  336. static void put_child(struct key_vector *tn, unsigned long i,
  337. struct key_vector *n)
  338. {
  339. struct key_vector *chi = get_child(tn, i);
  340. int isfull, wasfull;
  341. BUG_ON(i >= child_length(tn));
  342. /* update emptyChildren, overflow into fullChildren */
  343. if (!n && chi)
  344. empty_child_inc(tn);
  345. if (n && !chi)
  346. empty_child_dec(tn);
  347. /* update fullChildren */
  348. wasfull = tnode_full(tn, chi);
  349. isfull = tnode_full(tn, n);
  350. if (wasfull && !isfull)
  351. tn_info(tn)->full_children--;
  352. else if (!wasfull && isfull)
  353. tn_info(tn)->full_children++;
  354. if (n && (tn->slen < n->slen))
  355. tn->slen = n->slen;
  356. rcu_assign_pointer(tn->tnode[i], n);
  357. }
  358. static void update_children(struct key_vector *tn)
  359. {
  360. unsigned long i;
  361. /* update all of the child parent pointers */
  362. for (i = child_length(tn); i;) {
  363. struct key_vector *inode = get_child(tn, --i);
  364. if (!inode)
  365. continue;
  366. /* Either update the children of a tnode that
  367. * already belongs to us or update the child
  368. * to point to ourselves.
  369. */
  370. if (node_parent(inode) == tn)
  371. update_children(inode);
  372. else
  373. node_set_parent(inode, tn);
  374. }
  375. }
  376. static inline void put_child_root(struct key_vector *tp, t_key key,
  377. struct key_vector *n)
  378. {
  379. if (IS_TRIE(tp))
  380. rcu_assign_pointer(tp->tnode[0], n);
  381. else
  382. put_child(tp, get_index(key, tp), n);
  383. }
  384. static inline void tnode_free_init(struct key_vector *tn)
  385. {
  386. tn_info(tn)->rcu.next = NULL;
  387. }
  388. static inline void tnode_free_append(struct key_vector *tn,
  389. struct key_vector *n)
  390. {
  391. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  392. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  393. }
  394. static void tnode_free(struct key_vector *tn)
  395. {
  396. struct callback_head *head = &tn_info(tn)->rcu;
  397. while (head) {
  398. head = head->next;
  399. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  400. node_free(tn);
  401. tn = container_of(head, struct tnode, rcu)->kv;
  402. }
  403. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  404. tnode_free_size = 0;
  405. synchronize_rcu();
  406. }
  407. }
  408. static struct key_vector *replace(struct trie *t,
  409. struct key_vector *oldtnode,
  410. struct key_vector *tn)
  411. {
  412. struct key_vector *tp = node_parent(oldtnode);
  413. unsigned long i;
  414. /* setup the parent pointer out of and back into this node */
  415. NODE_INIT_PARENT(tn, tp);
  416. put_child_root(tp, tn->key, tn);
  417. /* update all of the child parent pointers */
  418. update_children(tn);
  419. /* all pointers should be clean so we are done */
  420. tnode_free(oldtnode);
  421. /* resize children now that oldtnode is freed */
  422. for (i = child_length(tn); i;) {
  423. struct key_vector *inode = get_child(tn, --i);
  424. /* resize child node */
  425. if (tnode_full(tn, inode))
  426. tn = resize(t, inode);
  427. }
  428. return tp;
  429. }
  430. static struct key_vector *inflate(struct trie *t,
  431. struct key_vector *oldtnode)
  432. {
  433. struct key_vector *tn;
  434. unsigned long i;
  435. t_key m;
  436. pr_debug("In inflate\n");
  437. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  438. if (!tn)
  439. goto notnode;
  440. /* prepare oldtnode to be freed */
  441. tnode_free_init(oldtnode);
  442. /* Assemble all of the pointers in our cluster, in this case that
  443. * represents all of the pointers out of our allocated nodes that
  444. * point to existing tnodes and the links between our allocated
  445. * nodes.
  446. */
  447. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  448. struct key_vector *inode = get_child(oldtnode, --i);
  449. struct key_vector *node0, *node1;
  450. unsigned long j, k;
  451. /* An empty child */
  452. if (!inode)
  453. continue;
  454. /* A leaf or an internal node with skipped bits */
  455. if (!tnode_full(oldtnode, inode)) {
  456. put_child(tn, get_index(inode->key, tn), inode);
  457. continue;
  458. }
  459. /* drop the node in the old tnode free list */
  460. tnode_free_append(oldtnode, inode);
  461. /* An internal node with two children */
  462. if (inode->bits == 1) {
  463. put_child(tn, 2 * i + 1, get_child(inode, 1));
  464. put_child(tn, 2 * i, get_child(inode, 0));
  465. continue;
  466. }
  467. /* We will replace this node 'inode' with two new
  468. * ones, 'node0' and 'node1', each with half of the
  469. * original children. The two new nodes will have
  470. * a position one bit further down the key and this
  471. * means that the "significant" part of their keys
  472. * (see the discussion near the top of this file)
  473. * will differ by one bit, which will be "0" in
  474. * node0's key and "1" in node1's key. Since we are
  475. * moving the key position by one step, the bit that
  476. * we are moving away from - the bit at position
  477. * (tn->pos) - is the one that will differ between
  478. * node0 and node1. So... we synthesize that bit in the
  479. * two new keys.
  480. */
  481. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  482. if (!node1)
  483. goto nomem;
  484. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  485. tnode_free_append(tn, node1);
  486. if (!node0)
  487. goto nomem;
  488. tnode_free_append(tn, node0);
  489. /* populate child pointers in new nodes */
  490. for (k = child_length(inode), j = k / 2; j;) {
  491. put_child(node1, --j, get_child(inode, --k));
  492. put_child(node0, j, get_child(inode, j));
  493. put_child(node1, --j, get_child(inode, --k));
  494. put_child(node0, j, get_child(inode, j));
  495. }
  496. /* link new nodes to parent */
  497. NODE_INIT_PARENT(node1, tn);
  498. NODE_INIT_PARENT(node0, tn);
  499. /* link parent to nodes */
  500. put_child(tn, 2 * i + 1, node1);
  501. put_child(tn, 2 * i, node0);
  502. }
  503. /* setup the parent pointers into and out of this node */
  504. return replace(t, oldtnode, tn);
  505. nomem:
  506. /* all pointers should be clean so we are done */
  507. tnode_free(tn);
  508. notnode:
  509. return NULL;
  510. }
  511. static struct key_vector *halve(struct trie *t,
  512. struct key_vector *oldtnode)
  513. {
  514. struct key_vector *tn;
  515. unsigned long i;
  516. pr_debug("In halve\n");
  517. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  518. if (!tn)
  519. goto notnode;
  520. /* prepare oldtnode to be freed */
  521. tnode_free_init(oldtnode);
  522. /* Assemble all of the pointers in our cluster, in this case that
  523. * represents all of the pointers out of our allocated nodes that
  524. * point to existing tnodes and the links between our allocated
  525. * nodes.
  526. */
  527. for (i = child_length(oldtnode); i;) {
  528. struct key_vector *node1 = get_child(oldtnode, --i);
  529. struct key_vector *node0 = get_child(oldtnode, --i);
  530. struct key_vector *inode;
  531. /* At least one of the children is empty */
  532. if (!node1 || !node0) {
  533. put_child(tn, i / 2, node1 ? : node0);
  534. continue;
  535. }
  536. /* Two nonempty children */
  537. inode = tnode_new(node0->key, oldtnode->pos, 1);
  538. if (!inode)
  539. goto nomem;
  540. tnode_free_append(tn, inode);
  541. /* initialize pointers out of node */
  542. put_child(inode, 1, node1);
  543. put_child(inode, 0, node0);
  544. NODE_INIT_PARENT(inode, tn);
  545. /* link parent to node */
  546. put_child(tn, i / 2, inode);
  547. }
  548. /* setup the parent pointers into and out of this node */
  549. return replace(t, oldtnode, tn);
  550. nomem:
  551. /* all pointers should be clean so we are done */
  552. tnode_free(tn);
  553. notnode:
  554. return NULL;
  555. }
  556. static struct key_vector *collapse(struct trie *t,
  557. struct key_vector *oldtnode)
  558. {
  559. struct key_vector *n, *tp;
  560. unsigned long i;
  561. /* scan the tnode looking for that one child that might still exist */
  562. for (n = NULL, i = child_length(oldtnode); !n && i;)
  563. n = get_child(oldtnode, --i);
  564. /* compress one level */
  565. tp = node_parent(oldtnode);
  566. put_child_root(tp, oldtnode->key, n);
  567. node_set_parent(n, tp);
  568. /* drop dead node */
  569. node_free(oldtnode);
  570. return tp;
  571. }
  572. static unsigned char update_suffix(struct key_vector *tn)
  573. {
  574. unsigned char slen = tn->pos;
  575. unsigned long stride, i;
  576. /* search though the list of children looking for nodes that might
  577. * have a suffix greater than the one we currently have. This is
  578. * why we start with a stride of 2 since a stride of 1 would
  579. * represent the nodes with suffix length equal to tn->pos
  580. */
  581. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  582. struct key_vector *n = get_child(tn, i);
  583. if (!n || (n->slen <= slen))
  584. continue;
  585. /* update stride and slen based on new value */
  586. stride <<= (n->slen - slen);
  587. slen = n->slen;
  588. i &= ~(stride - 1);
  589. /* if slen covers all but the last bit we can stop here
  590. * there will be nothing longer than that since only node
  591. * 0 and 1 << (bits - 1) could have that as their suffix
  592. * length.
  593. */
  594. if ((slen + 1) >= (tn->pos + tn->bits))
  595. break;
  596. }
  597. tn->slen = slen;
  598. return slen;
  599. }
  600. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  601. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  602. * Telecommunications, page 6:
  603. * "A node is doubled if the ratio of non-empty children to all
  604. * children in the *doubled* node is at least 'high'."
  605. *
  606. * 'high' in this instance is the variable 'inflate_threshold'. It
  607. * is expressed as a percentage, so we multiply it with
  608. * child_length() and instead of multiplying by 2 (since the
  609. * child array will be doubled by inflate()) and multiplying
  610. * the left-hand side by 100 (to handle the percentage thing) we
  611. * multiply the left-hand side by 50.
  612. *
  613. * The left-hand side may look a bit weird: child_length(tn)
  614. * - tn->empty_children is of course the number of non-null children
  615. * in the current node. tn->full_children is the number of "full"
  616. * children, that is non-null tnodes with a skip value of 0.
  617. * All of those will be doubled in the resulting inflated tnode, so
  618. * we just count them one extra time here.
  619. *
  620. * A clearer way to write this would be:
  621. *
  622. * to_be_doubled = tn->full_children;
  623. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  624. * tn->full_children;
  625. *
  626. * new_child_length = child_length(tn) * 2;
  627. *
  628. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  629. * new_child_length;
  630. * if (new_fill_factor >= inflate_threshold)
  631. *
  632. * ...and so on, tho it would mess up the while () loop.
  633. *
  634. * anyway,
  635. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  636. * inflate_threshold
  637. *
  638. * avoid a division:
  639. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  640. * inflate_threshold * new_child_length
  641. *
  642. * expand not_to_be_doubled and to_be_doubled, and shorten:
  643. * 100 * (child_length(tn) - tn->empty_children +
  644. * tn->full_children) >= inflate_threshold * new_child_length
  645. *
  646. * expand new_child_length:
  647. * 100 * (child_length(tn) - tn->empty_children +
  648. * tn->full_children) >=
  649. * inflate_threshold * child_length(tn) * 2
  650. *
  651. * shorten again:
  652. * 50 * (tn->full_children + child_length(tn) -
  653. * tn->empty_children) >= inflate_threshold *
  654. * child_length(tn)
  655. *
  656. */
  657. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  658. {
  659. unsigned long used = child_length(tn);
  660. unsigned long threshold = used;
  661. /* Keep root node larger */
  662. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  663. used -= tn_info(tn)->empty_children;
  664. used += tn_info(tn)->full_children;
  665. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  666. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  667. }
  668. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  669. {
  670. unsigned long used = child_length(tn);
  671. unsigned long threshold = used;
  672. /* Keep root node larger */
  673. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  674. used -= tn_info(tn)->empty_children;
  675. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  676. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  677. }
  678. static inline bool should_collapse(struct key_vector *tn)
  679. {
  680. unsigned long used = child_length(tn);
  681. used -= tn_info(tn)->empty_children;
  682. /* account for bits == KEYLENGTH case */
  683. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  684. used -= KEY_MAX;
  685. /* One child or none, time to drop us from the trie */
  686. return used < 2;
  687. }
  688. #define MAX_WORK 10
  689. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  690. {
  691. #ifdef CONFIG_IP_FIB_TRIE_STATS
  692. struct trie_use_stats __percpu *stats = t->stats;
  693. #endif
  694. struct key_vector *tp = node_parent(tn);
  695. unsigned long cindex = get_index(tn->key, tp);
  696. int max_work = MAX_WORK;
  697. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  698. tn, inflate_threshold, halve_threshold);
  699. /* track the tnode via the pointer from the parent instead of
  700. * doing it ourselves. This way we can let RCU fully do its
  701. * thing without us interfering
  702. */
  703. BUG_ON(tn != get_child(tp, cindex));
  704. /* Double as long as the resulting node has a number of
  705. * nonempty nodes that are above the threshold.
  706. */
  707. while (should_inflate(tp, tn) && max_work) {
  708. tp = inflate(t, tn);
  709. if (!tp) {
  710. #ifdef CONFIG_IP_FIB_TRIE_STATS
  711. this_cpu_inc(stats->resize_node_skipped);
  712. #endif
  713. break;
  714. }
  715. max_work--;
  716. tn = get_child(tp, cindex);
  717. }
  718. /* update parent in case inflate failed */
  719. tp = node_parent(tn);
  720. /* Return if at least one inflate is run */
  721. if (max_work != MAX_WORK)
  722. return tp;
  723. /* Halve as long as the number of empty children in this
  724. * node is above threshold.
  725. */
  726. while (should_halve(tp, tn) && max_work) {
  727. tp = halve(t, tn);
  728. if (!tp) {
  729. #ifdef CONFIG_IP_FIB_TRIE_STATS
  730. this_cpu_inc(stats->resize_node_skipped);
  731. #endif
  732. break;
  733. }
  734. max_work--;
  735. tn = get_child(tp, cindex);
  736. }
  737. /* Only one child remains */
  738. if (should_collapse(tn))
  739. return collapse(t, tn);
  740. /* update parent in case halve failed */
  741. tp = node_parent(tn);
  742. /* Return if at least one deflate was run */
  743. if (max_work != MAX_WORK)
  744. return tp;
  745. /* push the suffix length to the parent node */
  746. if (tn->slen > tn->pos) {
  747. unsigned char slen = update_suffix(tn);
  748. if (slen > tp->slen)
  749. tp->slen = slen;
  750. }
  751. return tp;
  752. }
  753. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  754. {
  755. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  756. if (update_suffix(tp) > l->slen)
  757. break;
  758. tp = node_parent(tp);
  759. }
  760. }
  761. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  762. {
  763. /* if this is a new leaf then tn will be NULL and we can sort
  764. * out parent suffix lengths as a part of trie_rebalance
  765. */
  766. while (tn->slen < l->slen) {
  767. tn->slen = l->slen;
  768. tn = node_parent(tn);
  769. }
  770. }
  771. /* rcu_read_lock needs to be hold by caller from readside */
  772. static struct key_vector *fib_find_node(struct trie *t,
  773. struct key_vector **tp, u32 key)
  774. {
  775. struct key_vector *pn, *n = t->kv;
  776. unsigned long index = 0;
  777. do {
  778. pn = n;
  779. n = get_child_rcu(n, index);
  780. if (!n)
  781. break;
  782. index = get_cindex(key, n);
  783. /* This bit of code is a bit tricky but it combines multiple
  784. * checks into a single check. The prefix consists of the
  785. * prefix plus zeros for the bits in the cindex. The index
  786. * is the difference between the key and this value. From
  787. * this we can actually derive several pieces of data.
  788. * if (index >= (1ul << bits))
  789. * we have a mismatch in skip bits and failed
  790. * else
  791. * we know the value is cindex
  792. *
  793. * This check is safe even if bits == KEYLENGTH due to the
  794. * fact that we can only allocate a node with 32 bits if a
  795. * long is greater than 32 bits.
  796. */
  797. if (index >= (1ul << n->bits)) {
  798. n = NULL;
  799. break;
  800. }
  801. /* keep searching until we find a perfect match leaf or NULL */
  802. } while (IS_TNODE(n));
  803. *tp = pn;
  804. return n;
  805. }
  806. /* Return the first fib alias matching TOS with
  807. * priority less than or equal to PRIO.
  808. */
  809. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  810. u8 tos, u32 prio, u32 tb_id)
  811. {
  812. struct fib_alias *fa;
  813. if (!fah)
  814. return NULL;
  815. hlist_for_each_entry(fa, fah, fa_list) {
  816. if (fa->fa_slen < slen)
  817. continue;
  818. if (fa->fa_slen != slen)
  819. break;
  820. if (fa->tb_id > tb_id)
  821. continue;
  822. if (fa->tb_id != tb_id)
  823. break;
  824. if (fa->fa_tos > tos)
  825. continue;
  826. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  827. return fa;
  828. }
  829. return NULL;
  830. }
  831. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  832. {
  833. while (!IS_TRIE(tn))
  834. tn = resize(t, tn);
  835. }
  836. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  837. struct fib_alias *new, t_key key)
  838. {
  839. struct key_vector *n, *l;
  840. l = leaf_new(key, new);
  841. if (!l)
  842. goto noleaf;
  843. /* retrieve child from parent node */
  844. n = get_child(tp, get_index(key, tp));
  845. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  846. *
  847. * Add a new tnode here
  848. * first tnode need some special handling
  849. * leaves us in position for handling as case 3
  850. */
  851. if (n) {
  852. struct key_vector *tn;
  853. tn = tnode_new(key, __fls(key ^ n->key), 1);
  854. if (!tn)
  855. goto notnode;
  856. /* initialize routes out of node */
  857. NODE_INIT_PARENT(tn, tp);
  858. put_child(tn, get_index(key, tn) ^ 1, n);
  859. /* start adding routes into the node */
  860. put_child_root(tp, key, tn);
  861. node_set_parent(n, tn);
  862. /* parent now has a NULL spot where the leaf can go */
  863. tp = tn;
  864. }
  865. /* Case 3: n is NULL, and will just insert a new leaf */
  866. NODE_INIT_PARENT(l, tp);
  867. put_child_root(tp, key, l);
  868. trie_rebalance(t, tp);
  869. return 0;
  870. notnode:
  871. node_free(l);
  872. noleaf:
  873. return -ENOMEM;
  874. }
  875. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  876. struct key_vector *l, struct fib_alias *new,
  877. struct fib_alias *fa, t_key key)
  878. {
  879. if (!l)
  880. return fib_insert_node(t, tp, new, key);
  881. if (fa) {
  882. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  883. } else {
  884. struct fib_alias *last;
  885. hlist_for_each_entry(last, &l->leaf, fa_list) {
  886. if (new->fa_slen < last->fa_slen)
  887. break;
  888. if ((new->fa_slen == last->fa_slen) &&
  889. (new->tb_id > last->tb_id))
  890. break;
  891. fa = last;
  892. }
  893. if (fa)
  894. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  895. else
  896. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  897. }
  898. /* if we added to the tail node then we need to update slen */
  899. if (l->slen < new->fa_slen) {
  900. l->slen = new->fa_slen;
  901. leaf_push_suffix(tp, l);
  902. }
  903. return 0;
  904. }
  905. /* Caller must hold RTNL. */
  906. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  907. {
  908. struct trie *t = (struct trie *)tb->tb_data;
  909. struct fib_alias *fa, *new_fa;
  910. struct key_vector *l, *tp;
  911. unsigned int nlflags = 0;
  912. struct fib_info *fi;
  913. u8 plen = cfg->fc_dst_len;
  914. u8 slen = KEYLENGTH - plen;
  915. u8 tos = cfg->fc_tos;
  916. u32 key;
  917. int err;
  918. if (plen > KEYLENGTH)
  919. return -EINVAL;
  920. key = ntohl(cfg->fc_dst);
  921. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  922. if ((plen < KEYLENGTH) && (key << plen))
  923. return -EINVAL;
  924. fi = fib_create_info(cfg);
  925. if (IS_ERR(fi)) {
  926. err = PTR_ERR(fi);
  927. goto err;
  928. }
  929. l = fib_find_node(t, &tp, key);
  930. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  931. tb->tb_id) : NULL;
  932. /* Now fa, if non-NULL, points to the first fib alias
  933. * with the same keys [prefix,tos,priority], if such key already
  934. * exists or to the node before which we will insert new one.
  935. *
  936. * If fa is NULL, we will need to allocate a new one and
  937. * insert to the tail of the section matching the suffix length
  938. * of the new alias.
  939. */
  940. if (fa && fa->fa_tos == tos &&
  941. fa->fa_info->fib_priority == fi->fib_priority) {
  942. struct fib_alias *fa_first, *fa_match;
  943. err = -EEXIST;
  944. if (cfg->fc_nlflags & NLM_F_EXCL)
  945. goto out;
  946. /* We have 2 goals:
  947. * 1. Find exact match for type, scope, fib_info to avoid
  948. * duplicate routes
  949. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  950. */
  951. fa_match = NULL;
  952. fa_first = fa;
  953. hlist_for_each_entry_from(fa, fa_list) {
  954. if ((fa->fa_slen != slen) ||
  955. (fa->tb_id != tb->tb_id) ||
  956. (fa->fa_tos != tos))
  957. break;
  958. if (fa->fa_info->fib_priority != fi->fib_priority)
  959. break;
  960. if (fa->fa_type == cfg->fc_type &&
  961. fa->fa_info == fi) {
  962. fa_match = fa;
  963. break;
  964. }
  965. }
  966. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  967. struct fib_info *fi_drop;
  968. u8 state;
  969. fa = fa_first;
  970. if (fa_match) {
  971. if (fa == fa_match)
  972. err = 0;
  973. goto out;
  974. }
  975. err = -ENOBUFS;
  976. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  977. if (!new_fa)
  978. goto out;
  979. fi_drop = fa->fa_info;
  980. new_fa->fa_tos = fa->fa_tos;
  981. new_fa->fa_info = fi;
  982. new_fa->fa_type = cfg->fc_type;
  983. state = fa->fa_state;
  984. new_fa->fa_state = state & ~FA_S_ACCESSED;
  985. new_fa->fa_slen = fa->fa_slen;
  986. new_fa->tb_id = tb->tb_id;
  987. new_fa->fa_default = -1;
  988. err = switchdev_fib_ipv4_add(key, plen, fi,
  989. new_fa->fa_tos,
  990. cfg->fc_type,
  991. cfg->fc_nlflags,
  992. tb->tb_id);
  993. if (err) {
  994. switchdev_fib_ipv4_abort(fi);
  995. kmem_cache_free(fn_alias_kmem, new_fa);
  996. goto out;
  997. }
  998. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  999. alias_free_mem_rcu(fa);
  1000. fib_release_info(fi_drop);
  1001. if (state & FA_S_ACCESSED)
  1002. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1003. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1004. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  1005. goto succeeded;
  1006. }
  1007. /* Error if we find a perfect match which
  1008. * uses the same scope, type, and nexthop
  1009. * information.
  1010. */
  1011. if (fa_match)
  1012. goto out;
  1013. if (cfg->fc_nlflags & NLM_F_APPEND)
  1014. nlflags = NLM_F_APPEND;
  1015. else
  1016. fa = fa_first;
  1017. }
  1018. err = -ENOENT;
  1019. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1020. goto out;
  1021. err = -ENOBUFS;
  1022. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1023. if (!new_fa)
  1024. goto out;
  1025. new_fa->fa_info = fi;
  1026. new_fa->fa_tos = tos;
  1027. new_fa->fa_type = cfg->fc_type;
  1028. new_fa->fa_state = 0;
  1029. new_fa->fa_slen = slen;
  1030. new_fa->tb_id = tb->tb_id;
  1031. new_fa->fa_default = -1;
  1032. /* (Optionally) offload fib entry to switch hardware. */
  1033. err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
  1034. cfg->fc_nlflags, tb->tb_id);
  1035. if (err) {
  1036. switchdev_fib_ipv4_abort(fi);
  1037. goto out_free_new_fa;
  1038. }
  1039. /* Insert new entry to the list. */
  1040. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1041. if (err)
  1042. goto out_sw_fib_del;
  1043. if (!plen)
  1044. tb->tb_num_default++;
  1045. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1046. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1047. &cfg->fc_nlinfo, nlflags);
  1048. succeeded:
  1049. return 0;
  1050. out_sw_fib_del:
  1051. switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1052. out_free_new_fa:
  1053. kmem_cache_free(fn_alias_kmem, new_fa);
  1054. out:
  1055. fib_release_info(fi);
  1056. err:
  1057. return err;
  1058. }
  1059. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1060. {
  1061. t_key prefix = n->key;
  1062. return (key ^ prefix) & (prefix | -prefix);
  1063. }
  1064. /* should be called with rcu_read_lock */
  1065. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1066. struct fib_result *res, int fib_flags)
  1067. {
  1068. struct trie *t = (struct trie *) tb->tb_data;
  1069. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1070. struct trie_use_stats __percpu *stats = t->stats;
  1071. #endif
  1072. const t_key key = ntohl(flp->daddr);
  1073. struct key_vector *n, *pn;
  1074. struct fib_alias *fa;
  1075. unsigned long index;
  1076. t_key cindex;
  1077. trace_fib_table_lookup(tb->tb_id, flp);
  1078. pn = t->kv;
  1079. cindex = 0;
  1080. n = get_child_rcu(pn, cindex);
  1081. if (!n)
  1082. return -EAGAIN;
  1083. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1084. this_cpu_inc(stats->gets);
  1085. #endif
  1086. /* Step 1: Travel to the longest prefix match in the trie */
  1087. for (;;) {
  1088. index = get_cindex(key, n);
  1089. /* This bit of code is a bit tricky but it combines multiple
  1090. * checks into a single check. The prefix consists of the
  1091. * prefix plus zeros for the "bits" in the prefix. The index
  1092. * is the difference between the key and this value. From
  1093. * this we can actually derive several pieces of data.
  1094. * if (index >= (1ul << bits))
  1095. * we have a mismatch in skip bits and failed
  1096. * else
  1097. * we know the value is cindex
  1098. *
  1099. * This check is safe even if bits == KEYLENGTH due to the
  1100. * fact that we can only allocate a node with 32 bits if a
  1101. * long is greater than 32 bits.
  1102. */
  1103. if (index >= (1ul << n->bits))
  1104. break;
  1105. /* we have found a leaf. Prefixes have already been compared */
  1106. if (IS_LEAF(n))
  1107. goto found;
  1108. /* only record pn and cindex if we are going to be chopping
  1109. * bits later. Otherwise we are just wasting cycles.
  1110. */
  1111. if (n->slen > n->pos) {
  1112. pn = n;
  1113. cindex = index;
  1114. }
  1115. n = get_child_rcu(n, index);
  1116. if (unlikely(!n))
  1117. goto backtrace;
  1118. }
  1119. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1120. for (;;) {
  1121. /* record the pointer where our next node pointer is stored */
  1122. struct key_vector __rcu **cptr = n->tnode;
  1123. /* This test verifies that none of the bits that differ
  1124. * between the key and the prefix exist in the region of
  1125. * the lsb and higher in the prefix.
  1126. */
  1127. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1128. goto backtrace;
  1129. /* exit out and process leaf */
  1130. if (unlikely(IS_LEAF(n)))
  1131. break;
  1132. /* Don't bother recording parent info. Since we are in
  1133. * prefix match mode we will have to come back to wherever
  1134. * we started this traversal anyway
  1135. */
  1136. while ((n = rcu_dereference(*cptr)) == NULL) {
  1137. backtrace:
  1138. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1139. if (!n)
  1140. this_cpu_inc(stats->null_node_hit);
  1141. #endif
  1142. /* If we are at cindex 0 there are no more bits for
  1143. * us to strip at this level so we must ascend back
  1144. * up one level to see if there are any more bits to
  1145. * be stripped there.
  1146. */
  1147. while (!cindex) {
  1148. t_key pkey = pn->key;
  1149. /* If we don't have a parent then there is
  1150. * nothing for us to do as we do not have any
  1151. * further nodes to parse.
  1152. */
  1153. if (IS_TRIE(pn))
  1154. return -EAGAIN;
  1155. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1156. this_cpu_inc(stats->backtrack);
  1157. #endif
  1158. /* Get Child's index */
  1159. pn = node_parent_rcu(pn);
  1160. cindex = get_index(pkey, pn);
  1161. }
  1162. /* strip the least significant bit from the cindex */
  1163. cindex &= cindex - 1;
  1164. /* grab pointer for next child node */
  1165. cptr = &pn->tnode[cindex];
  1166. }
  1167. }
  1168. found:
  1169. /* this line carries forward the xor from earlier in the function */
  1170. index = key ^ n->key;
  1171. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1172. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1173. struct fib_info *fi = fa->fa_info;
  1174. int nhsel, err;
  1175. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1176. if (index >= (1ul << fa->fa_slen))
  1177. continue;
  1178. }
  1179. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1180. continue;
  1181. if (fi->fib_dead)
  1182. continue;
  1183. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1184. continue;
  1185. fib_alias_accessed(fa);
  1186. err = fib_props[fa->fa_type].error;
  1187. if (unlikely(err < 0)) {
  1188. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1189. this_cpu_inc(stats->semantic_match_passed);
  1190. #endif
  1191. return err;
  1192. }
  1193. if (fi->fib_flags & RTNH_F_DEAD)
  1194. continue;
  1195. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1196. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1197. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1198. if (nh->nh_flags & RTNH_F_DEAD)
  1199. continue;
  1200. if (in_dev &&
  1201. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1202. nh->nh_flags & RTNH_F_LINKDOWN &&
  1203. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1204. continue;
  1205. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1206. if (flp->flowi4_oif &&
  1207. flp->flowi4_oif != nh->nh_oif)
  1208. continue;
  1209. }
  1210. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1211. atomic_inc(&fi->fib_clntref);
  1212. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1213. res->nh_sel = nhsel;
  1214. res->type = fa->fa_type;
  1215. res->scope = fi->fib_scope;
  1216. res->fi = fi;
  1217. res->table = tb;
  1218. res->fa_head = &n->leaf;
  1219. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1220. this_cpu_inc(stats->semantic_match_passed);
  1221. #endif
  1222. trace_fib_table_lookup_nh(nh);
  1223. return err;
  1224. }
  1225. }
  1226. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1227. this_cpu_inc(stats->semantic_match_miss);
  1228. #endif
  1229. goto backtrace;
  1230. }
  1231. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1232. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1233. struct key_vector *l, struct fib_alias *old)
  1234. {
  1235. /* record the location of the previous list_info entry */
  1236. struct hlist_node **pprev = old->fa_list.pprev;
  1237. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1238. /* remove the fib_alias from the list */
  1239. hlist_del_rcu(&old->fa_list);
  1240. /* if we emptied the list this leaf will be freed and we can sort
  1241. * out parent suffix lengths as a part of trie_rebalance
  1242. */
  1243. if (hlist_empty(&l->leaf)) {
  1244. put_child_root(tp, l->key, NULL);
  1245. node_free(l);
  1246. trie_rebalance(t, tp);
  1247. return;
  1248. }
  1249. /* only access fa if it is pointing at the last valid hlist_node */
  1250. if (*pprev)
  1251. return;
  1252. /* update the trie with the latest suffix length */
  1253. l->slen = fa->fa_slen;
  1254. leaf_pull_suffix(tp, l);
  1255. }
  1256. /* Caller must hold RTNL. */
  1257. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1258. {
  1259. struct trie *t = (struct trie *) tb->tb_data;
  1260. struct fib_alias *fa, *fa_to_delete;
  1261. struct key_vector *l, *tp;
  1262. u8 plen = cfg->fc_dst_len;
  1263. u8 slen = KEYLENGTH - plen;
  1264. u8 tos = cfg->fc_tos;
  1265. u32 key;
  1266. if (plen > KEYLENGTH)
  1267. return -EINVAL;
  1268. key = ntohl(cfg->fc_dst);
  1269. if ((plen < KEYLENGTH) && (key << plen))
  1270. return -EINVAL;
  1271. l = fib_find_node(t, &tp, key);
  1272. if (!l)
  1273. return -ESRCH;
  1274. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1275. if (!fa)
  1276. return -ESRCH;
  1277. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1278. fa_to_delete = NULL;
  1279. hlist_for_each_entry_from(fa, fa_list) {
  1280. struct fib_info *fi = fa->fa_info;
  1281. if ((fa->fa_slen != slen) ||
  1282. (fa->tb_id != tb->tb_id) ||
  1283. (fa->fa_tos != tos))
  1284. break;
  1285. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1286. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1287. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1288. (!cfg->fc_prefsrc ||
  1289. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1290. (!cfg->fc_protocol ||
  1291. fi->fib_protocol == cfg->fc_protocol) &&
  1292. fib_nh_match(cfg, fi) == 0) {
  1293. fa_to_delete = fa;
  1294. break;
  1295. }
  1296. }
  1297. if (!fa_to_delete)
  1298. return -ESRCH;
  1299. switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1300. cfg->fc_type, tb->tb_id);
  1301. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1302. &cfg->fc_nlinfo, 0);
  1303. if (!plen)
  1304. tb->tb_num_default--;
  1305. fib_remove_alias(t, tp, l, fa_to_delete);
  1306. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1307. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1308. fib_release_info(fa_to_delete->fa_info);
  1309. alias_free_mem_rcu(fa_to_delete);
  1310. return 0;
  1311. }
  1312. /* Scan for the next leaf starting at the provided key value */
  1313. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1314. {
  1315. struct key_vector *pn, *n = *tn;
  1316. unsigned long cindex;
  1317. /* this loop is meant to try and find the key in the trie */
  1318. do {
  1319. /* record parent and next child index */
  1320. pn = n;
  1321. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1322. if (cindex >> pn->bits)
  1323. break;
  1324. /* descend into the next child */
  1325. n = get_child_rcu(pn, cindex++);
  1326. if (!n)
  1327. break;
  1328. /* guarantee forward progress on the keys */
  1329. if (IS_LEAF(n) && (n->key >= key))
  1330. goto found;
  1331. } while (IS_TNODE(n));
  1332. /* this loop will search for the next leaf with a greater key */
  1333. while (!IS_TRIE(pn)) {
  1334. /* if we exhausted the parent node we will need to climb */
  1335. if (cindex >= (1ul << pn->bits)) {
  1336. t_key pkey = pn->key;
  1337. pn = node_parent_rcu(pn);
  1338. cindex = get_index(pkey, pn) + 1;
  1339. continue;
  1340. }
  1341. /* grab the next available node */
  1342. n = get_child_rcu(pn, cindex++);
  1343. if (!n)
  1344. continue;
  1345. /* no need to compare keys since we bumped the index */
  1346. if (IS_LEAF(n))
  1347. goto found;
  1348. /* Rescan start scanning in new node */
  1349. pn = n;
  1350. cindex = 0;
  1351. }
  1352. *tn = pn;
  1353. return NULL; /* Root of trie */
  1354. found:
  1355. /* if we are at the limit for keys just return NULL for the tnode */
  1356. *tn = pn;
  1357. return n;
  1358. }
  1359. static void fib_trie_free(struct fib_table *tb)
  1360. {
  1361. struct trie *t = (struct trie *)tb->tb_data;
  1362. struct key_vector *pn = t->kv;
  1363. unsigned long cindex = 1;
  1364. struct hlist_node *tmp;
  1365. struct fib_alias *fa;
  1366. /* walk trie in reverse order and free everything */
  1367. for (;;) {
  1368. struct key_vector *n;
  1369. if (!(cindex--)) {
  1370. t_key pkey = pn->key;
  1371. if (IS_TRIE(pn))
  1372. break;
  1373. n = pn;
  1374. pn = node_parent(pn);
  1375. /* drop emptied tnode */
  1376. put_child_root(pn, n->key, NULL);
  1377. node_free(n);
  1378. cindex = get_index(pkey, pn);
  1379. continue;
  1380. }
  1381. /* grab the next available node */
  1382. n = get_child(pn, cindex);
  1383. if (!n)
  1384. continue;
  1385. if (IS_TNODE(n)) {
  1386. /* record pn and cindex for leaf walking */
  1387. pn = n;
  1388. cindex = 1ul << n->bits;
  1389. continue;
  1390. }
  1391. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1392. hlist_del_rcu(&fa->fa_list);
  1393. alias_free_mem_rcu(fa);
  1394. }
  1395. put_child_root(pn, n->key, NULL);
  1396. node_free(n);
  1397. }
  1398. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1399. free_percpu(t->stats);
  1400. #endif
  1401. kfree(tb);
  1402. }
  1403. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1404. {
  1405. struct trie *ot = (struct trie *)oldtb->tb_data;
  1406. struct key_vector *l, *tp = ot->kv;
  1407. struct fib_table *local_tb;
  1408. struct fib_alias *fa;
  1409. struct trie *lt;
  1410. t_key key = 0;
  1411. if (oldtb->tb_data == oldtb->__data)
  1412. return oldtb;
  1413. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1414. if (!local_tb)
  1415. return NULL;
  1416. lt = (struct trie *)local_tb->tb_data;
  1417. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1418. struct key_vector *local_l = NULL, *local_tp;
  1419. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1420. struct fib_alias *new_fa;
  1421. if (local_tb->tb_id != fa->tb_id)
  1422. continue;
  1423. /* clone fa for new local table */
  1424. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1425. if (!new_fa)
  1426. goto out;
  1427. memcpy(new_fa, fa, sizeof(*fa));
  1428. /* insert clone into table */
  1429. if (!local_l)
  1430. local_l = fib_find_node(lt, &local_tp, l->key);
  1431. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1432. NULL, l->key))
  1433. goto out;
  1434. }
  1435. /* stop loop if key wrapped back to 0 */
  1436. key = l->key + 1;
  1437. if (key < l->key)
  1438. break;
  1439. }
  1440. return local_tb;
  1441. out:
  1442. fib_trie_free(local_tb);
  1443. return NULL;
  1444. }
  1445. /* Caller must hold RTNL */
  1446. void fib_table_flush_external(struct fib_table *tb)
  1447. {
  1448. struct trie *t = (struct trie *)tb->tb_data;
  1449. struct key_vector *pn = t->kv;
  1450. unsigned long cindex = 1;
  1451. struct hlist_node *tmp;
  1452. struct fib_alias *fa;
  1453. /* walk trie in reverse order */
  1454. for (;;) {
  1455. unsigned char slen = 0;
  1456. struct key_vector *n;
  1457. if (!(cindex--)) {
  1458. t_key pkey = pn->key;
  1459. /* cannot resize the trie vector */
  1460. if (IS_TRIE(pn))
  1461. break;
  1462. /* resize completed node */
  1463. pn = resize(t, pn);
  1464. cindex = get_index(pkey, pn);
  1465. continue;
  1466. }
  1467. /* grab the next available node */
  1468. n = get_child(pn, cindex);
  1469. if (!n)
  1470. continue;
  1471. if (IS_TNODE(n)) {
  1472. /* record pn and cindex for leaf walking */
  1473. pn = n;
  1474. cindex = 1ul << n->bits;
  1475. continue;
  1476. }
  1477. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1478. struct fib_info *fi = fa->fa_info;
  1479. /* if alias was cloned to local then we just
  1480. * need to remove the local copy from main
  1481. */
  1482. if (tb->tb_id != fa->tb_id) {
  1483. hlist_del_rcu(&fa->fa_list);
  1484. alias_free_mem_rcu(fa);
  1485. continue;
  1486. }
  1487. /* record local slen */
  1488. slen = fa->fa_slen;
  1489. if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
  1490. continue;
  1491. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1492. fi, fa->fa_tos, fa->fa_type,
  1493. tb->tb_id);
  1494. }
  1495. /* update leaf slen */
  1496. n->slen = slen;
  1497. if (hlist_empty(&n->leaf)) {
  1498. put_child_root(pn, n->key, NULL);
  1499. node_free(n);
  1500. }
  1501. }
  1502. }
  1503. /* Caller must hold RTNL. */
  1504. int fib_table_flush(struct fib_table *tb)
  1505. {
  1506. struct trie *t = (struct trie *)tb->tb_data;
  1507. struct key_vector *pn = t->kv;
  1508. unsigned long cindex = 1;
  1509. struct hlist_node *tmp;
  1510. struct fib_alias *fa;
  1511. int found = 0;
  1512. /* walk trie in reverse order */
  1513. for (;;) {
  1514. unsigned char slen = 0;
  1515. struct key_vector *n;
  1516. if (!(cindex--)) {
  1517. t_key pkey = pn->key;
  1518. /* cannot resize the trie vector */
  1519. if (IS_TRIE(pn))
  1520. break;
  1521. /* resize completed node */
  1522. pn = resize(t, pn);
  1523. cindex = get_index(pkey, pn);
  1524. continue;
  1525. }
  1526. /* grab the next available node */
  1527. n = get_child(pn, cindex);
  1528. if (!n)
  1529. continue;
  1530. if (IS_TNODE(n)) {
  1531. /* record pn and cindex for leaf walking */
  1532. pn = n;
  1533. cindex = 1ul << n->bits;
  1534. continue;
  1535. }
  1536. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1537. struct fib_info *fi = fa->fa_info;
  1538. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1539. slen = fa->fa_slen;
  1540. continue;
  1541. }
  1542. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1543. fi, fa->fa_tos, fa->fa_type,
  1544. tb->tb_id);
  1545. hlist_del_rcu(&fa->fa_list);
  1546. fib_release_info(fa->fa_info);
  1547. alias_free_mem_rcu(fa);
  1548. found++;
  1549. }
  1550. /* update leaf slen */
  1551. n->slen = slen;
  1552. if (hlist_empty(&n->leaf)) {
  1553. put_child_root(pn, n->key, NULL);
  1554. node_free(n);
  1555. }
  1556. }
  1557. pr_debug("trie_flush found=%d\n", found);
  1558. return found;
  1559. }
  1560. static void __trie_free_rcu(struct rcu_head *head)
  1561. {
  1562. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1563. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1564. struct trie *t = (struct trie *)tb->tb_data;
  1565. if (tb->tb_data == tb->__data)
  1566. free_percpu(t->stats);
  1567. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1568. kfree(tb);
  1569. }
  1570. void fib_free_table(struct fib_table *tb)
  1571. {
  1572. call_rcu(&tb->rcu, __trie_free_rcu);
  1573. }
  1574. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1575. struct sk_buff *skb, struct netlink_callback *cb)
  1576. {
  1577. __be32 xkey = htonl(l->key);
  1578. struct fib_alias *fa;
  1579. int i, s_i;
  1580. s_i = cb->args[4];
  1581. i = 0;
  1582. /* rcu_read_lock is hold by caller */
  1583. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1584. if (i < s_i) {
  1585. i++;
  1586. continue;
  1587. }
  1588. if (tb->tb_id != fa->tb_id) {
  1589. i++;
  1590. continue;
  1591. }
  1592. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1593. cb->nlh->nlmsg_seq,
  1594. RTM_NEWROUTE,
  1595. tb->tb_id,
  1596. fa->fa_type,
  1597. xkey,
  1598. KEYLENGTH - fa->fa_slen,
  1599. fa->fa_tos,
  1600. fa->fa_info, NLM_F_MULTI) < 0) {
  1601. cb->args[4] = i;
  1602. return -1;
  1603. }
  1604. i++;
  1605. }
  1606. cb->args[4] = i;
  1607. return skb->len;
  1608. }
  1609. /* rcu_read_lock needs to be hold by caller from readside */
  1610. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1611. struct netlink_callback *cb)
  1612. {
  1613. struct trie *t = (struct trie *)tb->tb_data;
  1614. struct key_vector *l, *tp = t->kv;
  1615. /* Dump starting at last key.
  1616. * Note: 0.0.0.0/0 (ie default) is first key.
  1617. */
  1618. int count = cb->args[2];
  1619. t_key key = cb->args[3];
  1620. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1621. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1622. cb->args[3] = key;
  1623. cb->args[2] = count;
  1624. return -1;
  1625. }
  1626. ++count;
  1627. key = l->key + 1;
  1628. memset(&cb->args[4], 0,
  1629. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1630. /* stop loop if key wrapped back to 0 */
  1631. if (key < l->key)
  1632. break;
  1633. }
  1634. cb->args[3] = key;
  1635. cb->args[2] = count;
  1636. return skb->len;
  1637. }
  1638. void __init fib_trie_init(void)
  1639. {
  1640. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1641. sizeof(struct fib_alias),
  1642. 0, SLAB_PANIC, NULL);
  1643. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1644. LEAF_SIZE,
  1645. 0, SLAB_PANIC, NULL);
  1646. }
  1647. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1648. {
  1649. struct fib_table *tb;
  1650. struct trie *t;
  1651. size_t sz = sizeof(*tb);
  1652. if (!alias)
  1653. sz += sizeof(struct trie);
  1654. tb = kzalloc(sz, GFP_KERNEL);
  1655. if (!tb)
  1656. return NULL;
  1657. tb->tb_id = id;
  1658. tb->tb_num_default = 0;
  1659. tb->tb_data = (alias ? alias->__data : tb->__data);
  1660. if (alias)
  1661. return tb;
  1662. t = (struct trie *) tb->tb_data;
  1663. t->kv[0].pos = KEYLENGTH;
  1664. t->kv[0].slen = KEYLENGTH;
  1665. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1666. t->stats = alloc_percpu(struct trie_use_stats);
  1667. if (!t->stats) {
  1668. kfree(tb);
  1669. tb = NULL;
  1670. }
  1671. #endif
  1672. return tb;
  1673. }
  1674. #ifdef CONFIG_PROC_FS
  1675. /* Depth first Trie walk iterator */
  1676. struct fib_trie_iter {
  1677. struct seq_net_private p;
  1678. struct fib_table *tb;
  1679. struct key_vector *tnode;
  1680. unsigned int index;
  1681. unsigned int depth;
  1682. };
  1683. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1684. {
  1685. unsigned long cindex = iter->index;
  1686. struct key_vector *pn = iter->tnode;
  1687. t_key pkey;
  1688. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1689. iter->tnode, iter->index, iter->depth);
  1690. while (!IS_TRIE(pn)) {
  1691. while (cindex < child_length(pn)) {
  1692. struct key_vector *n = get_child_rcu(pn, cindex++);
  1693. if (!n)
  1694. continue;
  1695. if (IS_LEAF(n)) {
  1696. iter->tnode = pn;
  1697. iter->index = cindex;
  1698. } else {
  1699. /* push down one level */
  1700. iter->tnode = n;
  1701. iter->index = 0;
  1702. ++iter->depth;
  1703. }
  1704. return n;
  1705. }
  1706. /* Current node exhausted, pop back up */
  1707. pkey = pn->key;
  1708. pn = node_parent_rcu(pn);
  1709. cindex = get_index(pkey, pn) + 1;
  1710. --iter->depth;
  1711. }
  1712. /* record root node so further searches know we are done */
  1713. iter->tnode = pn;
  1714. iter->index = 0;
  1715. return NULL;
  1716. }
  1717. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1718. struct trie *t)
  1719. {
  1720. struct key_vector *n, *pn;
  1721. if (!t)
  1722. return NULL;
  1723. pn = t->kv;
  1724. n = rcu_dereference(pn->tnode[0]);
  1725. if (!n)
  1726. return NULL;
  1727. if (IS_TNODE(n)) {
  1728. iter->tnode = n;
  1729. iter->index = 0;
  1730. iter->depth = 1;
  1731. } else {
  1732. iter->tnode = pn;
  1733. iter->index = 0;
  1734. iter->depth = 0;
  1735. }
  1736. return n;
  1737. }
  1738. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1739. {
  1740. struct key_vector *n;
  1741. struct fib_trie_iter iter;
  1742. memset(s, 0, sizeof(*s));
  1743. rcu_read_lock();
  1744. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1745. if (IS_LEAF(n)) {
  1746. struct fib_alias *fa;
  1747. s->leaves++;
  1748. s->totdepth += iter.depth;
  1749. if (iter.depth > s->maxdepth)
  1750. s->maxdepth = iter.depth;
  1751. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1752. ++s->prefixes;
  1753. } else {
  1754. s->tnodes++;
  1755. if (n->bits < MAX_STAT_DEPTH)
  1756. s->nodesizes[n->bits]++;
  1757. s->nullpointers += tn_info(n)->empty_children;
  1758. }
  1759. }
  1760. rcu_read_unlock();
  1761. }
  1762. /*
  1763. * This outputs /proc/net/fib_triestats
  1764. */
  1765. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1766. {
  1767. unsigned int i, max, pointers, bytes, avdepth;
  1768. if (stat->leaves)
  1769. avdepth = stat->totdepth*100 / stat->leaves;
  1770. else
  1771. avdepth = 0;
  1772. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1773. avdepth / 100, avdepth % 100);
  1774. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1775. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1776. bytes = LEAF_SIZE * stat->leaves;
  1777. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1778. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1779. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1780. bytes += TNODE_SIZE(0) * stat->tnodes;
  1781. max = MAX_STAT_DEPTH;
  1782. while (max > 0 && stat->nodesizes[max-1] == 0)
  1783. max--;
  1784. pointers = 0;
  1785. for (i = 1; i < max; i++)
  1786. if (stat->nodesizes[i] != 0) {
  1787. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1788. pointers += (1<<i) * stat->nodesizes[i];
  1789. }
  1790. seq_putc(seq, '\n');
  1791. seq_printf(seq, "\tPointers: %u\n", pointers);
  1792. bytes += sizeof(struct key_vector *) * pointers;
  1793. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1794. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1795. }
  1796. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1797. static void trie_show_usage(struct seq_file *seq,
  1798. const struct trie_use_stats __percpu *stats)
  1799. {
  1800. struct trie_use_stats s = { 0 };
  1801. int cpu;
  1802. /* loop through all of the CPUs and gather up the stats */
  1803. for_each_possible_cpu(cpu) {
  1804. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1805. s.gets += pcpu->gets;
  1806. s.backtrack += pcpu->backtrack;
  1807. s.semantic_match_passed += pcpu->semantic_match_passed;
  1808. s.semantic_match_miss += pcpu->semantic_match_miss;
  1809. s.null_node_hit += pcpu->null_node_hit;
  1810. s.resize_node_skipped += pcpu->resize_node_skipped;
  1811. }
  1812. seq_printf(seq, "\nCounters:\n---------\n");
  1813. seq_printf(seq, "gets = %u\n", s.gets);
  1814. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1815. seq_printf(seq, "semantic match passed = %u\n",
  1816. s.semantic_match_passed);
  1817. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1818. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1819. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1820. }
  1821. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1822. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1823. {
  1824. if (tb->tb_id == RT_TABLE_LOCAL)
  1825. seq_puts(seq, "Local:\n");
  1826. else if (tb->tb_id == RT_TABLE_MAIN)
  1827. seq_puts(seq, "Main:\n");
  1828. else
  1829. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1830. }
  1831. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1832. {
  1833. struct net *net = (struct net *)seq->private;
  1834. unsigned int h;
  1835. seq_printf(seq,
  1836. "Basic info: size of leaf:"
  1837. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1838. LEAF_SIZE, TNODE_SIZE(0));
  1839. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1840. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1841. struct fib_table *tb;
  1842. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1843. struct trie *t = (struct trie *) tb->tb_data;
  1844. struct trie_stat stat;
  1845. if (!t)
  1846. continue;
  1847. fib_table_print(seq, tb);
  1848. trie_collect_stats(t, &stat);
  1849. trie_show_stats(seq, &stat);
  1850. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1851. trie_show_usage(seq, t->stats);
  1852. #endif
  1853. }
  1854. }
  1855. return 0;
  1856. }
  1857. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1858. {
  1859. return single_open_net(inode, file, fib_triestat_seq_show);
  1860. }
  1861. static const struct file_operations fib_triestat_fops = {
  1862. .owner = THIS_MODULE,
  1863. .open = fib_triestat_seq_open,
  1864. .read = seq_read,
  1865. .llseek = seq_lseek,
  1866. .release = single_release_net,
  1867. };
  1868. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1869. {
  1870. struct fib_trie_iter *iter = seq->private;
  1871. struct net *net = seq_file_net(seq);
  1872. loff_t idx = 0;
  1873. unsigned int h;
  1874. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1875. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1876. struct fib_table *tb;
  1877. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1878. struct key_vector *n;
  1879. for (n = fib_trie_get_first(iter,
  1880. (struct trie *) tb->tb_data);
  1881. n; n = fib_trie_get_next(iter))
  1882. if (pos == idx++) {
  1883. iter->tb = tb;
  1884. return n;
  1885. }
  1886. }
  1887. }
  1888. return NULL;
  1889. }
  1890. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1891. __acquires(RCU)
  1892. {
  1893. rcu_read_lock();
  1894. return fib_trie_get_idx(seq, *pos);
  1895. }
  1896. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1897. {
  1898. struct fib_trie_iter *iter = seq->private;
  1899. struct net *net = seq_file_net(seq);
  1900. struct fib_table *tb = iter->tb;
  1901. struct hlist_node *tb_node;
  1902. unsigned int h;
  1903. struct key_vector *n;
  1904. ++*pos;
  1905. /* next node in same table */
  1906. n = fib_trie_get_next(iter);
  1907. if (n)
  1908. return n;
  1909. /* walk rest of this hash chain */
  1910. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1911. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1912. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1913. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1914. if (n)
  1915. goto found;
  1916. }
  1917. /* new hash chain */
  1918. while (++h < FIB_TABLE_HASHSZ) {
  1919. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1920. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1921. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1922. if (n)
  1923. goto found;
  1924. }
  1925. }
  1926. return NULL;
  1927. found:
  1928. iter->tb = tb;
  1929. return n;
  1930. }
  1931. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1932. __releases(RCU)
  1933. {
  1934. rcu_read_unlock();
  1935. }
  1936. static void seq_indent(struct seq_file *seq, int n)
  1937. {
  1938. while (n-- > 0)
  1939. seq_puts(seq, " ");
  1940. }
  1941. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1942. {
  1943. switch (s) {
  1944. case RT_SCOPE_UNIVERSE: return "universe";
  1945. case RT_SCOPE_SITE: return "site";
  1946. case RT_SCOPE_LINK: return "link";
  1947. case RT_SCOPE_HOST: return "host";
  1948. case RT_SCOPE_NOWHERE: return "nowhere";
  1949. default:
  1950. snprintf(buf, len, "scope=%d", s);
  1951. return buf;
  1952. }
  1953. }
  1954. static const char *const rtn_type_names[__RTN_MAX] = {
  1955. [RTN_UNSPEC] = "UNSPEC",
  1956. [RTN_UNICAST] = "UNICAST",
  1957. [RTN_LOCAL] = "LOCAL",
  1958. [RTN_BROADCAST] = "BROADCAST",
  1959. [RTN_ANYCAST] = "ANYCAST",
  1960. [RTN_MULTICAST] = "MULTICAST",
  1961. [RTN_BLACKHOLE] = "BLACKHOLE",
  1962. [RTN_UNREACHABLE] = "UNREACHABLE",
  1963. [RTN_PROHIBIT] = "PROHIBIT",
  1964. [RTN_THROW] = "THROW",
  1965. [RTN_NAT] = "NAT",
  1966. [RTN_XRESOLVE] = "XRESOLVE",
  1967. };
  1968. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1969. {
  1970. if (t < __RTN_MAX && rtn_type_names[t])
  1971. return rtn_type_names[t];
  1972. snprintf(buf, len, "type %u", t);
  1973. return buf;
  1974. }
  1975. /* Pretty print the trie */
  1976. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1977. {
  1978. const struct fib_trie_iter *iter = seq->private;
  1979. struct key_vector *n = v;
  1980. if (IS_TRIE(node_parent_rcu(n)))
  1981. fib_table_print(seq, iter->tb);
  1982. if (IS_TNODE(n)) {
  1983. __be32 prf = htonl(n->key);
  1984. seq_indent(seq, iter->depth-1);
  1985. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1986. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1987. tn_info(n)->full_children,
  1988. tn_info(n)->empty_children);
  1989. } else {
  1990. __be32 val = htonl(n->key);
  1991. struct fib_alias *fa;
  1992. seq_indent(seq, iter->depth);
  1993. seq_printf(seq, " |-- %pI4\n", &val);
  1994. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1995. char buf1[32], buf2[32];
  1996. seq_indent(seq, iter->depth + 1);
  1997. seq_printf(seq, " /%zu %s %s",
  1998. KEYLENGTH - fa->fa_slen,
  1999. rtn_scope(buf1, sizeof(buf1),
  2000. fa->fa_info->fib_scope),
  2001. rtn_type(buf2, sizeof(buf2),
  2002. fa->fa_type));
  2003. if (fa->fa_tos)
  2004. seq_printf(seq, " tos=%d", fa->fa_tos);
  2005. seq_putc(seq, '\n');
  2006. }
  2007. }
  2008. return 0;
  2009. }
  2010. static const struct seq_operations fib_trie_seq_ops = {
  2011. .start = fib_trie_seq_start,
  2012. .next = fib_trie_seq_next,
  2013. .stop = fib_trie_seq_stop,
  2014. .show = fib_trie_seq_show,
  2015. };
  2016. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2017. {
  2018. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2019. sizeof(struct fib_trie_iter));
  2020. }
  2021. static const struct file_operations fib_trie_fops = {
  2022. .owner = THIS_MODULE,
  2023. .open = fib_trie_seq_open,
  2024. .read = seq_read,
  2025. .llseek = seq_lseek,
  2026. .release = seq_release_net,
  2027. };
  2028. struct fib_route_iter {
  2029. struct seq_net_private p;
  2030. struct fib_table *main_tb;
  2031. struct key_vector *tnode;
  2032. loff_t pos;
  2033. t_key key;
  2034. };
  2035. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2036. loff_t pos)
  2037. {
  2038. struct fib_table *tb = iter->main_tb;
  2039. struct key_vector *l, **tp = &iter->tnode;
  2040. struct trie *t;
  2041. t_key key;
  2042. /* use cache location of next-to-find key */
  2043. if (iter->pos > 0 && pos >= iter->pos) {
  2044. pos -= iter->pos;
  2045. key = iter->key;
  2046. } else {
  2047. t = (struct trie *)tb->tb_data;
  2048. iter->tnode = t->kv;
  2049. iter->pos = 0;
  2050. key = 0;
  2051. }
  2052. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2053. key = l->key + 1;
  2054. iter->pos++;
  2055. if (--pos <= 0)
  2056. break;
  2057. l = NULL;
  2058. /* handle unlikely case of a key wrap */
  2059. if (!key)
  2060. break;
  2061. }
  2062. if (l)
  2063. iter->key = key; /* remember it */
  2064. else
  2065. iter->pos = 0; /* forget it */
  2066. return l;
  2067. }
  2068. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2069. __acquires(RCU)
  2070. {
  2071. struct fib_route_iter *iter = seq->private;
  2072. struct fib_table *tb;
  2073. struct trie *t;
  2074. rcu_read_lock();
  2075. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2076. if (!tb)
  2077. return NULL;
  2078. iter->main_tb = tb;
  2079. if (*pos != 0)
  2080. return fib_route_get_idx(iter, *pos);
  2081. t = (struct trie *)tb->tb_data;
  2082. iter->tnode = t->kv;
  2083. iter->pos = 0;
  2084. iter->key = 0;
  2085. return SEQ_START_TOKEN;
  2086. }
  2087. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2088. {
  2089. struct fib_route_iter *iter = seq->private;
  2090. struct key_vector *l = NULL;
  2091. t_key key = iter->key;
  2092. ++*pos;
  2093. /* only allow key of 0 for start of sequence */
  2094. if ((v == SEQ_START_TOKEN) || key)
  2095. l = leaf_walk_rcu(&iter->tnode, key);
  2096. if (l) {
  2097. iter->key = l->key + 1;
  2098. iter->pos++;
  2099. } else {
  2100. iter->pos = 0;
  2101. }
  2102. return l;
  2103. }
  2104. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2105. __releases(RCU)
  2106. {
  2107. rcu_read_unlock();
  2108. }
  2109. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2110. {
  2111. unsigned int flags = 0;
  2112. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2113. flags = RTF_REJECT;
  2114. if (fi && fi->fib_nh->nh_gw)
  2115. flags |= RTF_GATEWAY;
  2116. if (mask == htonl(0xFFFFFFFF))
  2117. flags |= RTF_HOST;
  2118. flags |= RTF_UP;
  2119. return flags;
  2120. }
  2121. /*
  2122. * This outputs /proc/net/route.
  2123. * The format of the file is not supposed to be changed
  2124. * and needs to be same as fib_hash output to avoid breaking
  2125. * legacy utilities
  2126. */
  2127. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2128. {
  2129. struct fib_route_iter *iter = seq->private;
  2130. struct fib_table *tb = iter->main_tb;
  2131. struct fib_alias *fa;
  2132. struct key_vector *l = v;
  2133. __be32 prefix;
  2134. if (v == SEQ_START_TOKEN) {
  2135. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2136. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2137. "\tWindow\tIRTT");
  2138. return 0;
  2139. }
  2140. prefix = htonl(l->key);
  2141. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2142. const struct fib_info *fi = fa->fa_info;
  2143. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2144. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2145. if ((fa->fa_type == RTN_BROADCAST) ||
  2146. (fa->fa_type == RTN_MULTICAST))
  2147. continue;
  2148. if (fa->tb_id != tb->tb_id)
  2149. continue;
  2150. seq_setwidth(seq, 127);
  2151. if (fi)
  2152. seq_printf(seq,
  2153. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2154. "%d\t%08X\t%d\t%u\t%u",
  2155. fi->fib_dev ? fi->fib_dev->name : "*",
  2156. prefix,
  2157. fi->fib_nh->nh_gw, flags, 0, 0,
  2158. fi->fib_priority,
  2159. mask,
  2160. (fi->fib_advmss ?
  2161. fi->fib_advmss + 40 : 0),
  2162. fi->fib_window,
  2163. fi->fib_rtt >> 3);
  2164. else
  2165. seq_printf(seq,
  2166. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2167. "%d\t%08X\t%d\t%u\t%u",
  2168. prefix, 0, flags, 0, 0, 0,
  2169. mask, 0, 0, 0);
  2170. seq_pad(seq, '\n');
  2171. }
  2172. return 0;
  2173. }
  2174. static const struct seq_operations fib_route_seq_ops = {
  2175. .start = fib_route_seq_start,
  2176. .next = fib_route_seq_next,
  2177. .stop = fib_route_seq_stop,
  2178. .show = fib_route_seq_show,
  2179. };
  2180. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2181. {
  2182. return seq_open_net(inode, file, &fib_route_seq_ops,
  2183. sizeof(struct fib_route_iter));
  2184. }
  2185. static const struct file_operations fib_route_fops = {
  2186. .owner = THIS_MODULE,
  2187. .open = fib_route_seq_open,
  2188. .read = seq_read,
  2189. .llseek = seq_lseek,
  2190. .release = seq_release_net,
  2191. };
  2192. int __net_init fib_proc_init(struct net *net)
  2193. {
  2194. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2195. goto out1;
  2196. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2197. &fib_triestat_fops))
  2198. goto out2;
  2199. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2200. goto out3;
  2201. return 0;
  2202. out3:
  2203. remove_proc_entry("fib_triestat", net->proc_net);
  2204. out2:
  2205. remove_proc_entry("fib_trie", net->proc_net);
  2206. out1:
  2207. return -ENOMEM;
  2208. }
  2209. void __net_exit fib_proc_exit(struct net *net)
  2210. {
  2211. remove_proc_entry("fib_trie", net->proc_net);
  2212. remove_proc_entry("fib_triestat", net->proc_net);
  2213. remove_proc_entry("route", net->proc_net);
  2214. }
  2215. #endif /* CONFIG_PROC_FS */