util.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. #include <linux/mm.h>
  2. #include <linux/slab.h>
  3. #include <linux/string.h>
  4. #include <linux/compiler.h>
  5. #include <linux/export.h>
  6. #include <linux/err.h>
  7. #include <linux/sched.h>
  8. #include <linux/security.h>
  9. #include <linux/swap.h>
  10. #include <linux/swapops.h>
  11. #include <linux/mman.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/vmalloc.h>
  14. #include <asm/sections.h>
  15. #include <asm/uaccess.h>
  16. #include "internal.h"
  17. static inline int is_kernel_rodata(unsigned long addr)
  18. {
  19. return addr >= (unsigned long)__start_rodata &&
  20. addr < (unsigned long)__end_rodata;
  21. }
  22. /**
  23. * kfree_const - conditionally free memory
  24. * @x: pointer to the memory
  25. *
  26. * Function calls kfree only if @x is not in .rodata section.
  27. */
  28. void kfree_const(const void *x)
  29. {
  30. if (!is_kernel_rodata((unsigned long)x))
  31. kfree(x);
  32. }
  33. EXPORT_SYMBOL(kfree_const);
  34. /**
  35. * kstrdup - allocate space for and copy an existing string
  36. * @s: the string to duplicate
  37. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  38. */
  39. char *kstrdup(const char *s, gfp_t gfp)
  40. {
  41. size_t len;
  42. char *buf;
  43. if (!s)
  44. return NULL;
  45. len = strlen(s) + 1;
  46. buf = kmalloc_track_caller(len, gfp);
  47. if (buf)
  48. memcpy(buf, s, len);
  49. return buf;
  50. }
  51. EXPORT_SYMBOL(kstrdup);
  52. /**
  53. * kstrdup_const - conditionally duplicate an existing const string
  54. * @s: the string to duplicate
  55. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  56. *
  57. * Function returns source string if it is in .rodata section otherwise it
  58. * fallbacks to kstrdup.
  59. * Strings allocated by kstrdup_const should be freed by kfree_const.
  60. */
  61. const char *kstrdup_const(const char *s, gfp_t gfp)
  62. {
  63. if (is_kernel_rodata((unsigned long)s))
  64. return s;
  65. return kstrdup(s, gfp);
  66. }
  67. EXPORT_SYMBOL(kstrdup_const);
  68. /**
  69. * kstrndup - allocate space for and copy an existing string
  70. * @s: the string to duplicate
  71. * @max: read at most @max chars from @s
  72. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  73. */
  74. char *kstrndup(const char *s, size_t max, gfp_t gfp)
  75. {
  76. size_t len;
  77. char *buf;
  78. if (!s)
  79. return NULL;
  80. len = strnlen(s, max);
  81. buf = kmalloc_track_caller(len+1, gfp);
  82. if (buf) {
  83. memcpy(buf, s, len);
  84. buf[len] = '\0';
  85. }
  86. return buf;
  87. }
  88. EXPORT_SYMBOL(kstrndup);
  89. /**
  90. * kmemdup - duplicate region of memory
  91. *
  92. * @src: memory region to duplicate
  93. * @len: memory region length
  94. * @gfp: GFP mask to use
  95. */
  96. void *kmemdup(const void *src, size_t len, gfp_t gfp)
  97. {
  98. void *p;
  99. p = kmalloc_track_caller(len, gfp);
  100. if (p)
  101. memcpy(p, src, len);
  102. return p;
  103. }
  104. EXPORT_SYMBOL(kmemdup);
  105. /**
  106. * memdup_user - duplicate memory region from user space
  107. *
  108. * @src: source address in user space
  109. * @len: number of bytes to copy
  110. *
  111. * Returns an ERR_PTR() on failure.
  112. */
  113. void *memdup_user(const void __user *src, size_t len)
  114. {
  115. void *p;
  116. /*
  117. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  118. * cause pagefault, which makes it pointless to use GFP_NOFS
  119. * or GFP_ATOMIC.
  120. */
  121. p = kmalloc_track_caller(len, GFP_KERNEL);
  122. if (!p)
  123. return ERR_PTR(-ENOMEM);
  124. if (copy_from_user(p, src, len)) {
  125. kfree(p);
  126. return ERR_PTR(-EFAULT);
  127. }
  128. return p;
  129. }
  130. EXPORT_SYMBOL(memdup_user);
  131. /*
  132. * strndup_user - duplicate an existing string from user space
  133. * @s: The string to duplicate
  134. * @n: Maximum number of bytes to copy, including the trailing NUL.
  135. */
  136. char *strndup_user(const char __user *s, long n)
  137. {
  138. char *p;
  139. long length;
  140. length = strnlen_user(s, n);
  141. if (!length)
  142. return ERR_PTR(-EFAULT);
  143. if (length > n)
  144. return ERR_PTR(-EINVAL);
  145. p = memdup_user(s, length);
  146. if (IS_ERR(p))
  147. return p;
  148. p[length - 1] = '\0';
  149. return p;
  150. }
  151. EXPORT_SYMBOL(strndup_user);
  152. /**
  153. * memdup_user_nul - duplicate memory region from user space and NUL-terminate
  154. *
  155. * @src: source address in user space
  156. * @len: number of bytes to copy
  157. *
  158. * Returns an ERR_PTR() on failure.
  159. */
  160. void *memdup_user_nul(const void __user *src, size_t len)
  161. {
  162. char *p;
  163. /*
  164. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  165. * cause pagefault, which makes it pointless to use GFP_NOFS
  166. * or GFP_ATOMIC.
  167. */
  168. p = kmalloc_track_caller(len + 1, GFP_KERNEL);
  169. if (!p)
  170. return ERR_PTR(-ENOMEM);
  171. if (copy_from_user(p, src, len)) {
  172. kfree(p);
  173. return ERR_PTR(-EFAULT);
  174. }
  175. p[len] = '\0';
  176. return p;
  177. }
  178. EXPORT_SYMBOL(memdup_user_nul);
  179. void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
  180. struct vm_area_struct *prev, struct rb_node *rb_parent)
  181. {
  182. struct vm_area_struct *next;
  183. vma->vm_prev = prev;
  184. if (prev) {
  185. next = prev->vm_next;
  186. prev->vm_next = vma;
  187. } else {
  188. mm->mmap = vma;
  189. if (rb_parent)
  190. next = rb_entry(rb_parent,
  191. struct vm_area_struct, vm_rb);
  192. else
  193. next = NULL;
  194. }
  195. vma->vm_next = next;
  196. if (next)
  197. next->vm_prev = vma;
  198. }
  199. /* Check if the vma is being used as a stack by this task */
  200. static int vm_is_stack_for_task(struct task_struct *t,
  201. struct vm_area_struct *vma)
  202. {
  203. return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
  204. }
  205. /*
  206. * Check if the vma is being used as a stack.
  207. * If is_group is non-zero, check in the entire thread group or else
  208. * just check in the current task. Returns the task_struct of the task
  209. * that the vma is stack for. Must be called under rcu_read_lock().
  210. */
  211. struct task_struct *task_of_stack(struct task_struct *task,
  212. struct vm_area_struct *vma, bool in_group)
  213. {
  214. if (vm_is_stack_for_task(task, vma))
  215. return task;
  216. if (in_group) {
  217. struct task_struct *t;
  218. for_each_thread(task, t) {
  219. if (vm_is_stack_for_task(t, vma))
  220. return t;
  221. }
  222. }
  223. return NULL;
  224. }
  225. #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
  226. void arch_pick_mmap_layout(struct mm_struct *mm)
  227. {
  228. mm->mmap_base = TASK_UNMAPPED_BASE;
  229. mm->get_unmapped_area = arch_get_unmapped_area;
  230. }
  231. #endif
  232. /*
  233. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  234. * back to the regular GUP.
  235. * If the architecture not support this function, simply return with no
  236. * page pinned
  237. */
  238. int __weak __get_user_pages_fast(unsigned long start,
  239. int nr_pages, int write, struct page **pages)
  240. {
  241. return 0;
  242. }
  243. EXPORT_SYMBOL_GPL(__get_user_pages_fast);
  244. /**
  245. * get_user_pages_fast() - pin user pages in memory
  246. * @start: starting user address
  247. * @nr_pages: number of pages from start to pin
  248. * @write: whether pages will be written to
  249. * @pages: array that receives pointers to the pages pinned.
  250. * Should be at least nr_pages long.
  251. *
  252. * Returns number of pages pinned. This may be fewer than the number
  253. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  254. * were pinned, returns -errno.
  255. *
  256. * get_user_pages_fast provides equivalent functionality to get_user_pages,
  257. * operating on current and current->mm, with force=0 and vma=NULL. However
  258. * unlike get_user_pages, it must be called without mmap_sem held.
  259. *
  260. * get_user_pages_fast may take mmap_sem and page table locks, so no
  261. * assumptions can be made about lack of locking. get_user_pages_fast is to be
  262. * implemented in a way that is advantageous (vs get_user_pages()) when the
  263. * user memory area is already faulted in and present in ptes. However if the
  264. * pages have to be faulted in, it may turn out to be slightly slower so
  265. * callers need to carefully consider what to use. On many architectures,
  266. * get_user_pages_fast simply falls back to get_user_pages.
  267. */
  268. int __weak get_user_pages_fast(unsigned long start,
  269. int nr_pages, int write, struct page **pages)
  270. {
  271. struct mm_struct *mm = current->mm;
  272. return get_user_pages_unlocked(current, mm, start, nr_pages,
  273. write, 0, pages);
  274. }
  275. EXPORT_SYMBOL_GPL(get_user_pages_fast);
  276. unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
  277. unsigned long len, unsigned long prot,
  278. unsigned long flag, unsigned long pgoff)
  279. {
  280. unsigned long ret;
  281. struct mm_struct *mm = current->mm;
  282. unsigned long populate;
  283. ret = security_mmap_file(file, prot, flag);
  284. if (!ret) {
  285. down_write(&mm->mmap_sem);
  286. ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
  287. &populate);
  288. up_write(&mm->mmap_sem);
  289. if (populate)
  290. mm_populate(ret, populate);
  291. }
  292. return ret;
  293. }
  294. unsigned long vm_mmap(struct file *file, unsigned long addr,
  295. unsigned long len, unsigned long prot,
  296. unsigned long flag, unsigned long offset)
  297. {
  298. if (unlikely(offset + PAGE_ALIGN(len) < offset))
  299. return -EINVAL;
  300. if (unlikely(offset_in_page(offset)))
  301. return -EINVAL;
  302. return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  303. }
  304. EXPORT_SYMBOL(vm_mmap);
  305. void kvfree(const void *addr)
  306. {
  307. if (is_vmalloc_addr(addr))
  308. vfree(addr);
  309. else
  310. kfree(addr);
  311. }
  312. EXPORT_SYMBOL(kvfree);
  313. static inline void *__page_rmapping(struct page *page)
  314. {
  315. unsigned long mapping;
  316. mapping = (unsigned long)page->mapping;
  317. mapping &= ~PAGE_MAPPING_FLAGS;
  318. return (void *)mapping;
  319. }
  320. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  321. void *page_rmapping(struct page *page)
  322. {
  323. page = compound_head(page);
  324. return __page_rmapping(page);
  325. }
  326. struct anon_vma *page_anon_vma(struct page *page)
  327. {
  328. unsigned long mapping;
  329. page = compound_head(page);
  330. mapping = (unsigned long)page->mapping;
  331. if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  332. return NULL;
  333. return __page_rmapping(page);
  334. }
  335. struct address_space *page_mapping(struct page *page)
  336. {
  337. struct address_space *mapping;
  338. page = compound_head(page);
  339. /* This happens if someone calls flush_dcache_page on slab page */
  340. if (unlikely(PageSlab(page)))
  341. return NULL;
  342. if (unlikely(PageSwapCache(page))) {
  343. swp_entry_t entry;
  344. entry.val = page_private(page);
  345. return swap_address_space(entry);
  346. }
  347. mapping = page->mapping;
  348. if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
  349. return NULL;
  350. return mapping;
  351. }
  352. /* Slow path of page_mapcount() for compound pages */
  353. int __page_mapcount(struct page *page)
  354. {
  355. int ret;
  356. ret = atomic_read(&page->_mapcount) + 1;
  357. page = compound_head(page);
  358. ret += atomic_read(compound_mapcount_ptr(page)) + 1;
  359. if (PageDoubleMap(page))
  360. ret--;
  361. return ret;
  362. }
  363. EXPORT_SYMBOL_GPL(__page_mapcount);
  364. int overcommit_ratio_handler(struct ctl_table *table, int write,
  365. void __user *buffer, size_t *lenp,
  366. loff_t *ppos)
  367. {
  368. int ret;
  369. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  370. if (ret == 0 && write)
  371. sysctl_overcommit_kbytes = 0;
  372. return ret;
  373. }
  374. int overcommit_kbytes_handler(struct ctl_table *table, int write,
  375. void __user *buffer, size_t *lenp,
  376. loff_t *ppos)
  377. {
  378. int ret;
  379. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  380. if (ret == 0 && write)
  381. sysctl_overcommit_ratio = 0;
  382. return ret;
  383. }
  384. /*
  385. * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
  386. */
  387. unsigned long vm_commit_limit(void)
  388. {
  389. unsigned long allowed;
  390. if (sysctl_overcommit_kbytes)
  391. allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
  392. else
  393. allowed = ((totalram_pages - hugetlb_total_pages())
  394. * sysctl_overcommit_ratio / 100);
  395. allowed += total_swap_pages;
  396. return allowed;
  397. }
  398. /**
  399. * get_cmdline() - copy the cmdline value to a buffer.
  400. * @task: the task whose cmdline value to copy.
  401. * @buffer: the buffer to copy to.
  402. * @buflen: the length of the buffer. Larger cmdline values are truncated
  403. * to this length.
  404. * Returns the size of the cmdline field copied. Note that the copy does
  405. * not guarantee an ending NULL byte.
  406. */
  407. int get_cmdline(struct task_struct *task, char *buffer, int buflen)
  408. {
  409. int res = 0;
  410. unsigned int len;
  411. struct mm_struct *mm = get_task_mm(task);
  412. unsigned long arg_start, arg_end, env_start, env_end;
  413. if (!mm)
  414. goto out;
  415. if (!mm->arg_end)
  416. goto out_mm; /* Shh! No looking before we're done */
  417. down_read(&mm->mmap_sem);
  418. arg_start = mm->arg_start;
  419. arg_end = mm->arg_end;
  420. env_start = mm->env_start;
  421. env_end = mm->env_end;
  422. up_read(&mm->mmap_sem);
  423. len = arg_end - arg_start;
  424. if (len > buflen)
  425. len = buflen;
  426. res = access_process_vm(task, arg_start, buffer, len, 0);
  427. /*
  428. * If the nul at the end of args has been overwritten, then
  429. * assume application is using setproctitle(3).
  430. */
  431. if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
  432. len = strnlen(buffer, res);
  433. if (len < res) {
  434. res = len;
  435. } else {
  436. len = env_end - env_start;
  437. if (len > buflen - res)
  438. len = buflen - res;
  439. res += access_process_vm(task, env_start,
  440. buffer+res, len, 0);
  441. res = strnlen(buffer, res);
  442. }
  443. }
  444. out_mm:
  445. mmput(mm);
  446. out:
  447. return res;
  448. }