swapfile.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/mman.h>
  10. #include <linux/slab.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/namei.h>
  16. #include <linux/shmem_fs.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/random.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/ksm.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/poll.h>
  32. #include <linux/oom.h>
  33. #include <linux/frontswap.h>
  34. #include <linux/swapfile.h>
  35. #include <linux/export.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/tlbflush.h>
  38. #include <linux/swapops.h>
  39. #include <linux/swap_cgroup.h>
  40. static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  41. unsigned char);
  42. static void free_swap_count_continuations(struct swap_info_struct *);
  43. static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  44. DEFINE_SPINLOCK(swap_lock);
  45. static unsigned int nr_swapfiles;
  46. atomic_long_t nr_swap_pages;
  47. /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  48. long total_swap_pages;
  49. static int least_priority;
  50. static const char Bad_file[] = "Bad swap file entry ";
  51. static const char Unused_file[] = "Unused swap file entry ";
  52. static const char Bad_offset[] = "Bad swap offset entry ";
  53. static const char Unused_offset[] = "Unused swap offset entry ";
  54. /*
  55. * all active swap_info_structs
  56. * protected with swap_lock, and ordered by priority.
  57. */
  58. PLIST_HEAD(swap_active_head);
  59. /*
  60. * all available (active, not full) swap_info_structs
  61. * protected with swap_avail_lock, ordered by priority.
  62. * This is used by get_swap_page() instead of swap_active_head
  63. * because swap_active_head includes all swap_info_structs,
  64. * but get_swap_page() doesn't need to look at full ones.
  65. * This uses its own lock instead of swap_lock because when a
  66. * swap_info_struct changes between not-full/full, it needs to
  67. * add/remove itself to/from this list, but the swap_info_struct->lock
  68. * is held and the locking order requires swap_lock to be taken
  69. * before any swap_info_struct->lock.
  70. */
  71. static PLIST_HEAD(swap_avail_head);
  72. static DEFINE_SPINLOCK(swap_avail_lock);
  73. struct swap_info_struct *swap_info[MAX_SWAPFILES];
  74. static DEFINE_MUTEX(swapon_mutex);
  75. static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  76. /* Activity counter to indicate that a swapon or swapoff has occurred */
  77. static atomic_t proc_poll_event = ATOMIC_INIT(0);
  78. static inline unsigned char swap_count(unsigned char ent)
  79. {
  80. return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
  81. }
  82. /* returns 1 if swap entry is freed */
  83. static int
  84. __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  85. {
  86. swp_entry_t entry = swp_entry(si->type, offset);
  87. struct page *page;
  88. int ret = 0;
  89. page = find_get_page(swap_address_space(entry), entry.val);
  90. if (!page)
  91. return 0;
  92. /*
  93. * This function is called from scan_swap_map() and it's called
  94. * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  95. * We have to use trylock for avoiding deadlock. This is a special
  96. * case and you should use try_to_free_swap() with explicit lock_page()
  97. * in usual operations.
  98. */
  99. if (trylock_page(page)) {
  100. ret = try_to_free_swap(page);
  101. unlock_page(page);
  102. }
  103. page_cache_release(page);
  104. return ret;
  105. }
  106. /*
  107. * swapon tell device that all the old swap contents can be discarded,
  108. * to allow the swap device to optimize its wear-levelling.
  109. */
  110. static int discard_swap(struct swap_info_struct *si)
  111. {
  112. struct swap_extent *se;
  113. sector_t start_block;
  114. sector_t nr_blocks;
  115. int err = 0;
  116. /* Do not discard the swap header page! */
  117. se = &si->first_swap_extent;
  118. start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
  119. nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
  120. if (nr_blocks) {
  121. err = blkdev_issue_discard(si->bdev, start_block,
  122. nr_blocks, GFP_KERNEL, 0);
  123. if (err)
  124. return err;
  125. cond_resched();
  126. }
  127. list_for_each_entry(se, &si->first_swap_extent.list, list) {
  128. start_block = se->start_block << (PAGE_SHIFT - 9);
  129. nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  130. err = blkdev_issue_discard(si->bdev, start_block,
  131. nr_blocks, GFP_KERNEL, 0);
  132. if (err)
  133. break;
  134. cond_resched();
  135. }
  136. return err; /* That will often be -EOPNOTSUPP */
  137. }
  138. /*
  139. * swap allocation tell device that a cluster of swap can now be discarded,
  140. * to allow the swap device to optimize its wear-levelling.
  141. */
  142. static void discard_swap_cluster(struct swap_info_struct *si,
  143. pgoff_t start_page, pgoff_t nr_pages)
  144. {
  145. struct swap_extent *se = si->curr_swap_extent;
  146. int found_extent = 0;
  147. while (nr_pages) {
  148. if (se->start_page <= start_page &&
  149. start_page < se->start_page + se->nr_pages) {
  150. pgoff_t offset = start_page - se->start_page;
  151. sector_t start_block = se->start_block + offset;
  152. sector_t nr_blocks = se->nr_pages - offset;
  153. if (nr_blocks > nr_pages)
  154. nr_blocks = nr_pages;
  155. start_page += nr_blocks;
  156. nr_pages -= nr_blocks;
  157. if (!found_extent++)
  158. si->curr_swap_extent = se;
  159. start_block <<= PAGE_SHIFT - 9;
  160. nr_blocks <<= PAGE_SHIFT - 9;
  161. if (blkdev_issue_discard(si->bdev, start_block,
  162. nr_blocks, GFP_NOIO, 0))
  163. break;
  164. }
  165. se = list_next_entry(se, list);
  166. }
  167. }
  168. #define SWAPFILE_CLUSTER 256
  169. #define LATENCY_LIMIT 256
  170. static inline void cluster_set_flag(struct swap_cluster_info *info,
  171. unsigned int flag)
  172. {
  173. info->flags = flag;
  174. }
  175. static inline unsigned int cluster_count(struct swap_cluster_info *info)
  176. {
  177. return info->data;
  178. }
  179. static inline void cluster_set_count(struct swap_cluster_info *info,
  180. unsigned int c)
  181. {
  182. info->data = c;
  183. }
  184. static inline void cluster_set_count_flag(struct swap_cluster_info *info,
  185. unsigned int c, unsigned int f)
  186. {
  187. info->flags = f;
  188. info->data = c;
  189. }
  190. static inline unsigned int cluster_next(struct swap_cluster_info *info)
  191. {
  192. return info->data;
  193. }
  194. static inline void cluster_set_next(struct swap_cluster_info *info,
  195. unsigned int n)
  196. {
  197. info->data = n;
  198. }
  199. static inline void cluster_set_next_flag(struct swap_cluster_info *info,
  200. unsigned int n, unsigned int f)
  201. {
  202. info->flags = f;
  203. info->data = n;
  204. }
  205. static inline bool cluster_is_free(struct swap_cluster_info *info)
  206. {
  207. return info->flags & CLUSTER_FLAG_FREE;
  208. }
  209. static inline bool cluster_is_null(struct swap_cluster_info *info)
  210. {
  211. return info->flags & CLUSTER_FLAG_NEXT_NULL;
  212. }
  213. static inline void cluster_set_null(struct swap_cluster_info *info)
  214. {
  215. info->flags = CLUSTER_FLAG_NEXT_NULL;
  216. info->data = 0;
  217. }
  218. /* Add a cluster to discard list and schedule it to do discard */
  219. static void swap_cluster_schedule_discard(struct swap_info_struct *si,
  220. unsigned int idx)
  221. {
  222. /*
  223. * If scan_swap_map() can't find a free cluster, it will check
  224. * si->swap_map directly. To make sure the discarding cluster isn't
  225. * taken by scan_swap_map(), mark the swap entries bad (occupied). It
  226. * will be cleared after discard
  227. */
  228. memset(si->swap_map + idx * SWAPFILE_CLUSTER,
  229. SWAP_MAP_BAD, SWAPFILE_CLUSTER);
  230. if (cluster_is_null(&si->discard_cluster_head)) {
  231. cluster_set_next_flag(&si->discard_cluster_head,
  232. idx, 0);
  233. cluster_set_next_flag(&si->discard_cluster_tail,
  234. idx, 0);
  235. } else {
  236. unsigned int tail = cluster_next(&si->discard_cluster_tail);
  237. cluster_set_next(&si->cluster_info[tail], idx);
  238. cluster_set_next_flag(&si->discard_cluster_tail,
  239. idx, 0);
  240. }
  241. schedule_work(&si->discard_work);
  242. }
  243. /*
  244. * Doing discard actually. After a cluster discard is finished, the cluster
  245. * will be added to free cluster list. caller should hold si->lock.
  246. */
  247. static void swap_do_scheduled_discard(struct swap_info_struct *si)
  248. {
  249. struct swap_cluster_info *info;
  250. unsigned int idx;
  251. info = si->cluster_info;
  252. while (!cluster_is_null(&si->discard_cluster_head)) {
  253. idx = cluster_next(&si->discard_cluster_head);
  254. cluster_set_next_flag(&si->discard_cluster_head,
  255. cluster_next(&info[idx]), 0);
  256. if (cluster_next(&si->discard_cluster_tail) == idx) {
  257. cluster_set_null(&si->discard_cluster_head);
  258. cluster_set_null(&si->discard_cluster_tail);
  259. }
  260. spin_unlock(&si->lock);
  261. discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
  262. SWAPFILE_CLUSTER);
  263. spin_lock(&si->lock);
  264. cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
  265. if (cluster_is_null(&si->free_cluster_head)) {
  266. cluster_set_next_flag(&si->free_cluster_head,
  267. idx, 0);
  268. cluster_set_next_flag(&si->free_cluster_tail,
  269. idx, 0);
  270. } else {
  271. unsigned int tail;
  272. tail = cluster_next(&si->free_cluster_tail);
  273. cluster_set_next(&info[tail], idx);
  274. cluster_set_next_flag(&si->free_cluster_tail,
  275. idx, 0);
  276. }
  277. memset(si->swap_map + idx * SWAPFILE_CLUSTER,
  278. 0, SWAPFILE_CLUSTER);
  279. }
  280. }
  281. static void swap_discard_work(struct work_struct *work)
  282. {
  283. struct swap_info_struct *si;
  284. si = container_of(work, struct swap_info_struct, discard_work);
  285. spin_lock(&si->lock);
  286. swap_do_scheduled_discard(si);
  287. spin_unlock(&si->lock);
  288. }
  289. /*
  290. * The cluster corresponding to page_nr will be used. The cluster will be
  291. * removed from free cluster list and its usage counter will be increased.
  292. */
  293. static void inc_cluster_info_page(struct swap_info_struct *p,
  294. struct swap_cluster_info *cluster_info, unsigned long page_nr)
  295. {
  296. unsigned long idx = page_nr / SWAPFILE_CLUSTER;
  297. if (!cluster_info)
  298. return;
  299. if (cluster_is_free(&cluster_info[idx])) {
  300. VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
  301. cluster_set_next_flag(&p->free_cluster_head,
  302. cluster_next(&cluster_info[idx]), 0);
  303. if (cluster_next(&p->free_cluster_tail) == idx) {
  304. cluster_set_null(&p->free_cluster_tail);
  305. cluster_set_null(&p->free_cluster_head);
  306. }
  307. cluster_set_count_flag(&cluster_info[idx], 0, 0);
  308. }
  309. VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
  310. cluster_set_count(&cluster_info[idx],
  311. cluster_count(&cluster_info[idx]) + 1);
  312. }
  313. /*
  314. * The cluster corresponding to page_nr decreases one usage. If the usage
  315. * counter becomes 0, which means no page in the cluster is in using, we can
  316. * optionally discard the cluster and add it to free cluster list.
  317. */
  318. static void dec_cluster_info_page(struct swap_info_struct *p,
  319. struct swap_cluster_info *cluster_info, unsigned long page_nr)
  320. {
  321. unsigned long idx = page_nr / SWAPFILE_CLUSTER;
  322. if (!cluster_info)
  323. return;
  324. VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
  325. cluster_set_count(&cluster_info[idx],
  326. cluster_count(&cluster_info[idx]) - 1);
  327. if (cluster_count(&cluster_info[idx]) == 0) {
  328. /*
  329. * If the swap is discardable, prepare discard the cluster
  330. * instead of free it immediately. The cluster will be freed
  331. * after discard.
  332. */
  333. if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
  334. (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
  335. swap_cluster_schedule_discard(p, idx);
  336. return;
  337. }
  338. cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
  339. if (cluster_is_null(&p->free_cluster_head)) {
  340. cluster_set_next_flag(&p->free_cluster_head, idx, 0);
  341. cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
  342. } else {
  343. unsigned int tail = cluster_next(&p->free_cluster_tail);
  344. cluster_set_next(&cluster_info[tail], idx);
  345. cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
  346. }
  347. }
  348. }
  349. /*
  350. * It's possible scan_swap_map() uses a free cluster in the middle of free
  351. * cluster list. Avoiding such abuse to avoid list corruption.
  352. */
  353. static bool
  354. scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
  355. unsigned long offset)
  356. {
  357. struct percpu_cluster *percpu_cluster;
  358. bool conflict;
  359. offset /= SWAPFILE_CLUSTER;
  360. conflict = !cluster_is_null(&si->free_cluster_head) &&
  361. offset != cluster_next(&si->free_cluster_head) &&
  362. cluster_is_free(&si->cluster_info[offset]);
  363. if (!conflict)
  364. return false;
  365. percpu_cluster = this_cpu_ptr(si->percpu_cluster);
  366. cluster_set_null(&percpu_cluster->index);
  367. return true;
  368. }
  369. /*
  370. * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
  371. * might involve allocating a new cluster for current CPU too.
  372. */
  373. static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
  374. unsigned long *offset, unsigned long *scan_base)
  375. {
  376. struct percpu_cluster *cluster;
  377. bool found_free;
  378. unsigned long tmp;
  379. new_cluster:
  380. cluster = this_cpu_ptr(si->percpu_cluster);
  381. if (cluster_is_null(&cluster->index)) {
  382. if (!cluster_is_null(&si->free_cluster_head)) {
  383. cluster->index = si->free_cluster_head;
  384. cluster->next = cluster_next(&cluster->index) *
  385. SWAPFILE_CLUSTER;
  386. } else if (!cluster_is_null(&si->discard_cluster_head)) {
  387. /*
  388. * we don't have free cluster but have some clusters in
  389. * discarding, do discard now and reclaim them
  390. */
  391. swap_do_scheduled_discard(si);
  392. *scan_base = *offset = si->cluster_next;
  393. goto new_cluster;
  394. } else
  395. return;
  396. }
  397. found_free = false;
  398. /*
  399. * Other CPUs can use our cluster if they can't find a free cluster,
  400. * check if there is still free entry in the cluster
  401. */
  402. tmp = cluster->next;
  403. while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
  404. SWAPFILE_CLUSTER) {
  405. if (!si->swap_map[tmp]) {
  406. found_free = true;
  407. break;
  408. }
  409. tmp++;
  410. }
  411. if (!found_free) {
  412. cluster_set_null(&cluster->index);
  413. goto new_cluster;
  414. }
  415. cluster->next = tmp + 1;
  416. *offset = tmp;
  417. *scan_base = tmp;
  418. }
  419. static unsigned long scan_swap_map(struct swap_info_struct *si,
  420. unsigned char usage)
  421. {
  422. unsigned long offset;
  423. unsigned long scan_base;
  424. unsigned long last_in_cluster = 0;
  425. int latency_ration = LATENCY_LIMIT;
  426. /*
  427. * We try to cluster swap pages by allocating them sequentially
  428. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  429. * way, however, we resort to first-free allocation, starting
  430. * a new cluster. This prevents us from scattering swap pages
  431. * all over the entire swap partition, so that we reduce
  432. * overall disk seek times between swap pages. -- sct
  433. * But we do now try to find an empty cluster. -Andrea
  434. * And we let swap pages go all over an SSD partition. Hugh
  435. */
  436. si->flags += SWP_SCANNING;
  437. scan_base = offset = si->cluster_next;
  438. /* SSD algorithm */
  439. if (si->cluster_info) {
  440. scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
  441. goto checks;
  442. }
  443. if (unlikely(!si->cluster_nr--)) {
  444. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  445. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  446. goto checks;
  447. }
  448. spin_unlock(&si->lock);
  449. /*
  450. * If seek is expensive, start searching for new cluster from
  451. * start of partition, to minimize the span of allocated swap.
  452. * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
  453. * case, just handled by scan_swap_map_try_ssd_cluster() above.
  454. */
  455. scan_base = offset = si->lowest_bit;
  456. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  457. /* Locate the first empty (unaligned) cluster */
  458. for (; last_in_cluster <= si->highest_bit; offset++) {
  459. if (si->swap_map[offset])
  460. last_in_cluster = offset + SWAPFILE_CLUSTER;
  461. else if (offset == last_in_cluster) {
  462. spin_lock(&si->lock);
  463. offset -= SWAPFILE_CLUSTER - 1;
  464. si->cluster_next = offset;
  465. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  466. goto checks;
  467. }
  468. if (unlikely(--latency_ration < 0)) {
  469. cond_resched();
  470. latency_ration = LATENCY_LIMIT;
  471. }
  472. }
  473. offset = scan_base;
  474. spin_lock(&si->lock);
  475. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  476. }
  477. checks:
  478. if (si->cluster_info) {
  479. while (scan_swap_map_ssd_cluster_conflict(si, offset))
  480. scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
  481. }
  482. if (!(si->flags & SWP_WRITEOK))
  483. goto no_page;
  484. if (!si->highest_bit)
  485. goto no_page;
  486. if (offset > si->highest_bit)
  487. scan_base = offset = si->lowest_bit;
  488. /* reuse swap entry of cache-only swap if not busy. */
  489. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  490. int swap_was_freed;
  491. spin_unlock(&si->lock);
  492. swap_was_freed = __try_to_reclaim_swap(si, offset);
  493. spin_lock(&si->lock);
  494. /* entry was freed successfully, try to use this again */
  495. if (swap_was_freed)
  496. goto checks;
  497. goto scan; /* check next one */
  498. }
  499. if (si->swap_map[offset])
  500. goto scan;
  501. if (offset == si->lowest_bit)
  502. si->lowest_bit++;
  503. if (offset == si->highest_bit)
  504. si->highest_bit--;
  505. si->inuse_pages++;
  506. if (si->inuse_pages == si->pages) {
  507. si->lowest_bit = si->max;
  508. si->highest_bit = 0;
  509. spin_lock(&swap_avail_lock);
  510. plist_del(&si->avail_list, &swap_avail_head);
  511. spin_unlock(&swap_avail_lock);
  512. }
  513. si->swap_map[offset] = usage;
  514. inc_cluster_info_page(si, si->cluster_info, offset);
  515. si->cluster_next = offset + 1;
  516. si->flags -= SWP_SCANNING;
  517. return offset;
  518. scan:
  519. spin_unlock(&si->lock);
  520. while (++offset <= si->highest_bit) {
  521. if (!si->swap_map[offset]) {
  522. spin_lock(&si->lock);
  523. goto checks;
  524. }
  525. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  526. spin_lock(&si->lock);
  527. goto checks;
  528. }
  529. if (unlikely(--latency_ration < 0)) {
  530. cond_resched();
  531. latency_ration = LATENCY_LIMIT;
  532. }
  533. }
  534. offset = si->lowest_bit;
  535. while (offset < scan_base) {
  536. if (!si->swap_map[offset]) {
  537. spin_lock(&si->lock);
  538. goto checks;
  539. }
  540. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  541. spin_lock(&si->lock);
  542. goto checks;
  543. }
  544. if (unlikely(--latency_ration < 0)) {
  545. cond_resched();
  546. latency_ration = LATENCY_LIMIT;
  547. }
  548. offset++;
  549. }
  550. spin_lock(&si->lock);
  551. no_page:
  552. si->flags -= SWP_SCANNING;
  553. return 0;
  554. }
  555. swp_entry_t get_swap_page(void)
  556. {
  557. struct swap_info_struct *si, *next;
  558. pgoff_t offset;
  559. if (atomic_long_read(&nr_swap_pages) <= 0)
  560. goto noswap;
  561. atomic_long_dec(&nr_swap_pages);
  562. spin_lock(&swap_avail_lock);
  563. start_over:
  564. plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
  565. /* requeue si to after same-priority siblings */
  566. plist_requeue(&si->avail_list, &swap_avail_head);
  567. spin_unlock(&swap_avail_lock);
  568. spin_lock(&si->lock);
  569. if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
  570. spin_lock(&swap_avail_lock);
  571. if (plist_node_empty(&si->avail_list)) {
  572. spin_unlock(&si->lock);
  573. goto nextsi;
  574. }
  575. WARN(!si->highest_bit,
  576. "swap_info %d in list but !highest_bit\n",
  577. si->type);
  578. WARN(!(si->flags & SWP_WRITEOK),
  579. "swap_info %d in list but !SWP_WRITEOK\n",
  580. si->type);
  581. plist_del(&si->avail_list, &swap_avail_head);
  582. spin_unlock(&si->lock);
  583. goto nextsi;
  584. }
  585. /* This is called for allocating swap entry for cache */
  586. offset = scan_swap_map(si, SWAP_HAS_CACHE);
  587. spin_unlock(&si->lock);
  588. if (offset)
  589. return swp_entry(si->type, offset);
  590. pr_debug("scan_swap_map of si %d failed to find offset\n",
  591. si->type);
  592. spin_lock(&swap_avail_lock);
  593. nextsi:
  594. /*
  595. * if we got here, it's likely that si was almost full before,
  596. * and since scan_swap_map() can drop the si->lock, multiple
  597. * callers probably all tried to get a page from the same si
  598. * and it filled up before we could get one; or, the si filled
  599. * up between us dropping swap_avail_lock and taking si->lock.
  600. * Since we dropped the swap_avail_lock, the swap_avail_head
  601. * list may have been modified; so if next is still in the
  602. * swap_avail_head list then try it, otherwise start over.
  603. */
  604. if (plist_node_empty(&next->avail_list))
  605. goto start_over;
  606. }
  607. spin_unlock(&swap_avail_lock);
  608. atomic_long_inc(&nr_swap_pages);
  609. noswap:
  610. return (swp_entry_t) {0};
  611. }
  612. /* The only caller of this function is now suspend routine */
  613. swp_entry_t get_swap_page_of_type(int type)
  614. {
  615. struct swap_info_struct *si;
  616. pgoff_t offset;
  617. si = swap_info[type];
  618. spin_lock(&si->lock);
  619. if (si && (si->flags & SWP_WRITEOK)) {
  620. atomic_long_dec(&nr_swap_pages);
  621. /* This is called for allocating swap entry, not cache */
  622. offset = scan_swap_map(si, 1);
  623. if (offset) {
  624. spin_unlock(&si->lock);
  625. return swp_entry(type, offset);
  626. }
  627. atomic_long_inc(&nr_swap_pages);
  628. }
  629. spin_unlock(&si->lock);
  630. return (swp_entry_t) {0};
  631. }
  632. static struct swap_info_struct *swap_info_get(swp_entry_t entry)
  633. {
  634. struct swap_info_struct *p;
  635. unsigned long offset, type;
  636. if (!entry.val)
  637. goto out;
  638. type = swp_type(entry);
  639. if (type >= nr_swapfiles)
  640. goto bad_nofile;
  641. p = swap_info[type];
  642. if (!(p->flags & SWP_USED))
  643. goto bad_device;
  644. offset = swp_offset(entry);
  645. if (offset >= p->max)
  646. goto bad_offset;
  647. if (!p->swap_map[offset])
  648. goto bad_free;
  649. spin_lock(&p->lock);
  650. return p;
  651. bad_free:
  652. pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
  653. goto out;
  654. bad_offset:
  655. pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
  656. goto out;
  657. bad_device:
  658. pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
  659. goto out;
  660. bad_nofile:
  661. pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
  662. out:
  663. return NULL;
  664. }
  665. static unsigned char swap_entry_free(struct swap_info_struct *p,
  666. swp_entry_t entry, unsigned char usage)
  667. {
  668. unsigned long offset = swp_offset(entry);
  669. unsigned char count;
  670. unsigned char has_cache;
  671. count = p->swap_map[offset];
  672. has_cache = count & SWAP_HAS_CACHE;
  673. count &= ~SWAP_HAS_CACHE;
  674. if (usage == SWAP_HAS_CACHE) {
  675. VM_BUG_ON(!has_cache);
  676. has_cache = 0;
  677. } else if (count == SWAP_MAP_SHMEM) {
  678. /*
  679. * Or we could insist on shmem.c using a special
  680. * swap_shmem_free() and free_shmem_swap_and_cache()...
  681. */
  682. count = 0;
  683. } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
  684. if (count == COUNT_CONTINUED) {
  685. if (swap_count_continued(p, offset, count))
  686. count = SWAP_MAP_MAX | COUNT_CONTINUED;
  687. else
  688. count = SWAP_MAP_MAX;
  689. } else
  690. count--;
  691. }
  692. usage = count | has_cache;
  693. p->swap_map[offset] = usage;
  694. /* free if no reference */
  695. if (!usage) {
  696. mem_cgroup_uncharge_swap(entry);
  697. dec_cluster_info_page(p, p->cluster_info, offset);
  698. if (offset < p->lowest_bit)
  699. p->lowest_bit = offset;
  700. if (offset > p->highest_bit) {
  701. bool was_full = !p->highest_bit;
  702. p->highest_bit = offset;
  703. if (was_full && (p->flags & SWP_WRITEOK)) {
  704. spin_lock(&swap_avail_lock);
  705. WARN_ON(!plist_node_empty(&p->avail_list));
  706. if (plist_node_empty(&p->avail_list))
  707. plist_add(&p->avail_list,
  708. &swap_avail_head);
  709. spin_unlock(&swap_avail_lock);
  710. }
  711. }
  712. atomic_long_inc(&nr_swap_pages);
  713. p->inuse_pages--;
  714. frontswap_invalidate_page(p->type, offset);
  715. if (p->flags & SWP_BLKDEV) {
  716. struct gendisk *disk = p->bdev->bd_disk;
  717. if (disk->fops->swap_slot_free_notify)
  718. disk->fops->swap_slot_free_notify(p->bdev,
  719. offset);
  720. }
  721. }
  722. return usage;
  723. }
  724. /*
  725. * Caller has made sure that the swap device corresponding to entry
  726. * is still around or has not been recycled.
  727. */
  728. void swap_free(swp_entry_t entry)
  729. {
  730. struct swap_info_struct *p;
  731. p = swap_info_get(entry);
  732. if (p) {
  733. swap_entry_free(p, entry, 1);
  734. spin_unlock(&p->lock);
  735. }
  736. }
  737. /*
  738. * Called after dropping swapcache to decrease refcnt to swap entries.
  739. */
  740. void swapcache_free(swp_entry_t entry)
  741. {
  742. struct swap_info_struct *p;
  743. p = swap_info_get(entry);
  744. if (p) {
  745. swap_entry_free(p, entry, SWAP_HAS_CACHE);
  746. spin_unlock(&p->lock);
  747. }
  748. }
  749. /*
  750. * How many references to page are currently swapped out?
  751. * This does not give an exact answer when swap count is continued,
  752. * but does include the high COUNT_CONTINUED flag to allow for that.
  753. */
  754. int page_swapcount(struct page *page)
  755. {
  756. int count = 0;
  757. struct swap_info_struct *p;
  758. swp_entry_t entry;
  759. entry.val = page_private(page);
  760. p = swap_info_get(entry);
  761. if (p) {
  762. count = swap_count(p->swap_map[swp_offset(entry)]);
  763. spin_unlock(&p->lock);
  764. }
  765. return count;
  766. }
  767. /*
  768. * How many references to @entry are currently swapped out?
  769. * This considers COUNT_CONTINUED so it returns exact answer.
  770. */
  771. int swp_swapcount(swp_entry_t entry)
  772. {
  773. int count, tmp_count, n;
  774. struct swap_info_struct *p;
  775. struct page *page;
  776. pgoff_t offset;
  777. unsigned char *map;
  778. p = swap_info_get(entry);
  779. if (!p)
  780. return 0;
  781. count = swap_count(p->swap_map[swp_offset(entry)]);
  782. if (!(count & COUNT_CONTINUED))
  783. goto out;
  784. count &= ~COUNT_CONTINUED;
  785. n = SWAP_MAP_MAX + 1;
  786. offset = swp_offset(entry);
  787. page = vmalloc_to_page(p->swap_map + offset);
  788. offset &= ~PAGE_MASK;
  789. VM_BUG_ON(page_private(page) != SWP_CONTINUED);
  790. do {
  791. page = list_next_entry(page, lru);
  792. map = kmap_atomic(page);
  793. tmp_count = map[offset];
  794. kunmap_atomic(map);
  795. count += (tmp_count & ~COUNT_CONTINUED) * n;
  796. n *= (SWAP_CONT_MAX + 1);
  797. } while (tmp_count & COUNT_CONTINUED);
  798. out:
  799. spin_unlock(&p->lock);
  800. return count;
  801. }
  802. /*
  803. * We can write to an anon page without COW if there are no other references
  804. * to it. And as a side-effect, free up its swap: because the old content
  805. * on disk will never be read, and seeking back there to write new content
  806. * later would only waste time away from clustering.
  807. */
  808. int reuse_swap_page(struct page *page)
  809. {
  810. int count;
  811. VM_BUG_ON_PAGE(!PageLocked(page), page);
  812. if (unlikely(PageKsm(page)))
  813. return 0;
  814. /* The page is part of THP and cannot be reused */
  815. if (PageTransCompound(page))
  816. return 0;
  817. count = page_mapcount(page);
  818. if (count <= 1 && PageSwapCache(page)) {
  819. count += page_swapcount(page);
  820. if (count == 1 && !PageWriteback(page)) {
  821. delete_from_swap_cache(page);
  822. SetPageDirty(page);
  823. }
  824. }
  825. return count <= 1;
  826. }
  827. /*
  828. * If swap is getting full, or if there are no more mappings of this page,
  829. * then try_to_free_swap is called to free its swap space.
  830. */
  831. int try_to_free_swap(struct page *page)
  832. {
  833. VM_BUG_ON_PAGE(!PageLocked(page), page);
  834. if (!PageSwapCache(page))
  835. return 0;
  836. if (PageWriteback(page))
  837. return 0;
  838. if (page_swapcount(page))
  839. return 0;
  840. /*
  841. * Once hibernation has begun to create its image of memory,
  842. * there's a danger that one of the calls to try_to_free_swap()
  843. * - most probably a call from __try_to_reclaim_swap() while
  844. * hibernation is allocating its own swap pages for the image,
  845. * but conceivably even a call from memory reclaim - will free
  846. * the swap from a page which has already been recorded in the
  847. * image as a clean swapcache page, and then reuse its swap for
  848. * another page of the image. On waking from hibernation, the
  849. * original page might be freed under memory pressure, then
  850. * later read back in from swap, now with the wrong data.
  851. *
  852. * Hibernation suspends storage while it is writing the image
  853. * to disk so check that here.
  854. */
  855. if (pm_suspended_storage())
  856. return 0;
  857. delete_from_swap_cache(page);
  858. SetPageDirty(page);
  859. return 1;
  860. }
  861. /*
  862. * Free the swap entry like above, but also try to
  863. * free the page cache entry if it is the last user.
  864. */
  865. int free_swap_and_cache(swp_entry_t entry)
  866. {
  867. struct swap_info_struct *p;
  868. struct page *page = NULL;
  869. if (non_swap_entry(entry))
  870. return 1;
  871. p = swap_info_get(entry);
  872. if (p) {
  873. if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
  874. page = find_get_page(swap_address_space(entry),
  875. entry.val);
  876. if (page && !trylock_page(page)) {
  877. page_cache_release(page);
  878. page = NULL;
  879. }
  880. }
  881. spin_unlock(&p->lock);
  882. }
  883. if (page) {
  884. /*
  885. * Not mapped elsewhere, or swap space full? Free it!
  886. * Also recheck PageSwapCache now page is locked (above).
  887. */
  888. if (PageSwapCache(page) && !PageWriteback(page) &&
  889. (!page_mapped(page) || mem_cgroup_swap_full(page))) {
  890. delete_from_swap_cache(page);
  891. SetPageDirty(page);
  892. }
  893. unlock_page(page);
  894. page_cache_release(page);
  895. }
  896. return p != NULL;
  897. }
  898. #ifdef CONFIG_HIBERNATION
  899. /*
  900. * Find the swap type that corresponds to given device (if any).
  901. *
  902. * @offset - number of the PAGE_SIZE-sized block of the device, starting
  903. * from 0, in which the swap header is expected to be located.
  904. *
  905. * This is needed for the suspend to disk (aka swsusp).
  906. */
  907. int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  908. {
  909. struct block_device *bdev = NULL;
  910. int type;
  911. if (device)
  912. bdev = bdget(device);
  913. spin_lock(&swap_lock);
  914. for (type = 0; type < nr_swapfiles; type++) {
  915. struct swap_info_struct *sis = swap_info[type];
  916. if (!(sis->flags & SWP_WRITEOK))
  917. continue;
  918. if (!bdev) {
  919. if (bdev_p)
  920. *bdev_p = bdgrab(sis->bdev);
  921. spin_unlock(&swap_lock);
  922. return type;
  923. }
  924. if (bdev == sis->bdev) {
  925. struct swap_extent *se = &sis->first_swap_extent;
  926. if (se->start_block == offset) {
  927. if (bdev_p)
  928. *bdev_p = bdgrab(sis->bdev);
  929. spin_unlock(&swap_lock);
  930. bdput(bdev);
  931. return type;
  932. }
  933. }
  934. }
  935. spin_unlock(&swap_lock);
  936. if (bdev)
  937. bdput(bdev);
  938. return -ENODEV;
  939. }
  940. /*
  941. * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  942. * corresponding to given index in swap_info (swap type).
  943. */
  944. sector_t swapdev_block(int type, pgoff_t offset)
  945. {
  946. struct block_device *bdev;
  947. if ((unsigned int)type >= nr_swapfiles)
  948. return 0;
  949. if (!(swap_info[type]->flags & SWP_WRITEOK))
  950. return 0;
  951. return map_swap_entry(swp_entry(type, offset), &bdev);
  952. }
  953. /*
  954. * Return either the total number of swap pages of given type, or the number
  955. * of free pages of that type (depending on @free)
  956. *
  957. * This is needed for software suspend
  958. */
  959. unsigned int count_swap_pages(int type, int free)
  960. {
  961. unsigned int n = 0;
  962. spin_lock(&swap_lock);
  963. if ((unsigned int)type < nr_swapfiles) {
  964. struct swap_info_struct *sis = swap_info[type];
  965. spin_lock(&sis->lock);
  966. if (sis->flags & SWP_WRITEOK) {
  967. n = sis->pages;
  968. if (free)
  969. n -= sis->inuse_pages;
  970. }
  971. spin_unlock(&sis->lock);
  972. }
  973. spin_unlock(&swap_lock);
  974. return n;
  975. }
  976. #endif /* CONFIG_HIBERNATION */
  977. static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
  978. {
  979. return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
  980. }
  981. /*
  982. * No need to decide whether this PTE shares the swap entry with others,
  983. * just let do_wp_page work it out if a write is requested later - to
  984. * force COW, vm_page_prot omits write permission from any private vma.
  985. */
  986. static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  987. unsigned long addr, swp_entry_t entry, struct page *page)
  988. {
  989. struct page *swapcache;
  990. struct mem_cgroup *memcg;
  991. spinlock_t *ptl;
  992. pte_t *pte;
  993. int ret = 1;
  994. swapcache = page;
  995. page = ksm_might_need_to_copy(page, vma, addr);
  996. if (unlikely(!page))
  997. return -ENOMEM;
  998. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
  999. &memcg, false)) {
  1000. ret = -ENOMEM;
  1001. goto out_nolock;
  1002. }
  1003. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  1004. if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
  1005. mem_cgroup_cancel_charge(page, memcg, false);
  1006. ret = 0;
  1007. goto out;
  1008. }
  1009. dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
  1010. inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
  1011. get_page(page);
  1012. set_pte_at(vma->vm_mm, addr, pte,
  1013. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  1014. if (page == swapcache) {
  1015. page_add_anon_rmap(page, vma, addr, false);
  1016. mem_cgroup_commit_charge(page, memcg, true, false);
  1017. } else { /* ksm created a completely new copy */
  1018. page_add_new_anon_rmap(page, vma, addr, false);
  1019. mem_cgroup_commit_charge(page, memcg, false, false);
  1020. lru_cache_add_active_or_unevictable(page, vma);
  1021. }
  1022. swap_free(entry);
  1023. /*
  1024. * Move the page to the active list so it is not
  1025. * immediately swapped out again after swapon.
  1026. */
  1027. activate_page(page);
  1028. out:
  1029. pte_unmap_unlock(pte, ptl);
  1030. out_nolock:
  1031. if (page != swapcache) {
  1032. unlock_page(page);
  1033. put_page(page);
  1034. }
  1035. return ret;
  1036. }
  1037. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  1038. unsigned long addr, unsigned long end,
  1039. swp_entry_t entry, struct page *page)
  1040. {
  1041. pte_t swp_pte = swp_entry_to_pte(entry);
  1042. pte_t *pte;
  1043. int ret = 0;
  1044. /*
  1045. * We don't actually need pte lock while scanning for swp_pte: since
  1046. * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  1047. * page table while we're scanning; though it could get zapped, and on
  1048. * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  1049. * of unmatched parts which look like swp_pte, so unuse_pte must
  1050. * recheck under pte lock. Scanning without pte lock lets it be
  1051. * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  1052. */
  1053. pte = pte_offset_map(pmd, addr);
  1054. do {
  1055. /*
  1056. * swapoff spends a _lot_ of time in this loop!
  1057. * Test inline before going to call unuse_pte.
  1058. */
  1059. if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
  1060. pte_unmap(pte);
  1061. ret = unuse_pte(vma, pmd, addr, entry, page);
  1062. if (ret)
  1063. goto out;
  1064. pte = pte_offset_map(pmd, addr);
  1065. }
  1066. } while (pte++, addr += PAGE_SIZE, addr != end);
  1067. pte_unmap(pte - 1);
  1068. out:
  1069. return ret;
  1070. }
  1071. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  1072. unsigned long addr, unsigned long end,
  1073. swp_entry_t entry, struct page *page)
  1074. {
  1075. pmd_t *pmd;
  1076. unsigned long next;
  1077. int ret;
  1078. pmd = pmd_offset(pud, addr);
  1079. do {
  1080. next = pmd_addr_end(addr, end);
  1081. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1082. continue;
  1083. ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  1084. if (ret)
  1085. return ret;
  1086. } while (pmd++, addr = next, addr != end);
  1087. return 0;
  1088. }
  1089. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  1090. unsigned long addr, unsigned long end,
  1091. swp_entry_t entry, struct page *page)
  1092. {
  1093. pud_t *pud;
  1094. unsigned long next;
  1095. int ret;
  1096. pud = pud_offset(pgd, addr);
  1097. do {
  1098. next = pud_addr_end(addr, end);
  1099. if (pud_none_or_clear_bad(pud))
  1100. continue;
  1101. ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  1102. if (ret)
  1103. return ret;
  1104. } while (pud++, addr = next, addr != end);
  1105. return 0;
  1106. }
  1107. static int unuse_vma(struct vm_area_struct *vma,
  1108. swp_entry_t entry, struct page *page)
  1109. {
  1110. pgd_t *pgd;
  1111. unsigned long addr, end, next;
  1112. int ret;
  1113. if (page_anon_vma(page)) {
  1114. addr = page_address_in_vma(page, vma);
  1115. if (addr == -EFAULT)
  1116. return 0;
  1117. else
  1118. end = addr + PAGE_SIZE;
  1119. } else {
  1120. addr = vma->vm_start;
  1121. end = vma->vm_end;
  1122. }
  1123. pgd = pgd_offset(vma->vm_mm, addr);
  1124. do {
  1125. next = pgd_addr_end(addr, end);
  1126. if (pgd_none_or_clear_bad(pgd))
  1127. continue;
  1128. ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  1129. if (ret)
  1130. return ret;
  1131. } while (pgd++, addr = next, addr != end);
  1132. return 0;
  1133. }
  1134. static int unuse_mm(struct mm_struct *mm,
  1135. swp_entry_t entry, struct page *page)
  1136. {
  1137. struct vm_area_struct *vma;
  1138. int ret = 0;
  1139. if (!down_read_trylock(&mm->mmap_sem)) {
  1140. /*
  1141. * Activate page so shrink_inactive_list is unlikely to unmap
  1142. * its ptes while lock is dropped, so swapoff can make progress.
  1143. */
  1144. activate_page(page);
  1145. unlock_page(page);
  1146. down_read(&mm->mmap_sem);
  1147. lock_page(page);
  1148. }
  1149. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1150. if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  1151. break;
  1152. }
  1153. up_read(&mm->mmap_sem);
  1154. return (ret < 0)? ret: 0;
  1155. }
  1156. /*
  1157. * Scan swap_map (or frontswap_map if frontswap parameter is true)
  1158. * from current position to next entry still in use.
  1159. * Recycle to start on reaching the end, returning 0 when empty.
  1160. */
  1161. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  1162. unsigned int prev, bool frontswap)
  1163. {
  1164. unsigned int max = si->max;
  1165. unsigned int i = prev;
  1166. unsigned char count;
  1167. /*
  1168. * No need for swap_lock here: we're just looking
  1169. * for whether an entry is in use, not modifying it; false
  1170. * hits are okay, and sys_swapoff() has already prevented new
  1171. * allocations from this area (while holding swap_lock).
  1172. */
  1173. for (;;) {
  1174. if (++i >= max) {
  1175. if (!prev) {
  1176. i = 0;
  1177. break;
  1178. }
  1179. /*
  1180. * No entries in use at top of swap_map,
  1181. * loop back to start and recheck there.
  1182. */
  1183. max = prev + 1;
  1184. prev = 0;
  1185. i = 1;
  1186. }
  1187. if (frontswap) {
  1188. if (frontswap_test(si, i))
  1189. break;
  1190. else
  1191. continue;
  1192. }
  1193. count = READ_ONCE(si->swap_map[i]);
  1194. if (count && swap_count(count) != SWAP_MAP_BAD)
  1195. break;
  1196. }
  1197. return i;
  1198. }
  1199. /*
  1200. * We completely avoid races by reading each swap page in advance,
  1201. * and then search for the process using it. All the necessary
  1202. * page table adjustments can then be made atomically.
  1203. *
  1204. * if the boolean frontswap is true, only unuse pages_to_unuse pages;
  1205. * pages_to_unuse==0 means all pages; ignored if frontswap is false
  1206. */
  1207. int try_to_unuse(unsigned int type, bool frontswap,
  1208. unsigned long pages_to_unuse)
  1209. {
  1210. struct swap_info_struct *si = swap_info[type];
  1211. struct mm_struct *start_mm;
  1212. volatile unsigned char *swap_map; /* swap_map is accessed without
  1213. * locking. Mark it as volatile
  1214. * to prevent compiler doing
  1215. * something odd.
  1216. */
  1217. unsigned char swcount;
  1218. struct page *page;
  1219. swp_entry_t entry;
  1220. unsigned int i = 0;
  1221. int retval = 0;
  1222. /*
  1223. * When searching mms for an entry, a good strategy is to
  1224. * start at the first mm we freed the previous entry from
  1225. * (though actually we don't notice whether we or coincidence
  1226. * freed the entry). Initialize this start_mm with a hold.
  1227. *
  1228. * A simpler strategy would be to start at the last mm we
  1229. * freed the previous entry from; but that would take less
  1230. * advantage of mmlist ordering, which clusters forked mms
  1231. * together, child after parent. If we race with dup_mmap(), we
  1232. * prefer to resolve parent before child, lest we miss entries
  1233. * duplicated after we scanned child: using last mm would invert
  1234. * that.
  1235. */
  1236. start_mm = &init_mm;
  1237. atomic_inc(&init_mm.mm_users);
  1238. /*
  1239. * Keep on scanning until all entries have gone. Usually,
  1240. * one pass through swap_map is enough, but not necessarily:
  1241. * there are races when an instance of an entry might be missed.
  1242. */
  1243. while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
  1244. if (signal_pending(current)) {
  1245. retval = -EINTR;
  1246. break;
  1247. }
  1248. /*
  1249. * Get a page for the entry, using the existing swap
  1250. * cache page if there is one. Otherwise, get a clean
  1251. * page and read the swap into it.
  1252. */
  1253. swap_map = &si->swap_map[i];
  1254. entry = swp_entry(type, i);
  1255. page = read_swap_cache_async(entry,
  1256. GFP_HIGHUSER_MOVABLE, NULL, 0);
  1257. if (!page) {
  1258. /*
  1259. * Either swap_duplicate() failed because entry
  1260. * has been freed independently, and will not be
  1261. * reused since sys_swapoff() already disabled
  1262. * allocation from here, or alloc_page() failed.
  1263. */
  1264. swcount = *swap_map;
  1265. /*
  1266. * We don't hold lock here, so the swap entry could be
  1267. * SWAP_MAP_BAD (when the cluster is discarding).
  1268. * Instead of fail out, We can just skip the swap
  1269. * entry because swapoff will wait for discarding
  1270. * finish anyway.
  1271. */
  1272. if (!swcount || swcount == SWAP_MAP_BAD)
  1273. continue;
  1274. retval = -ENOMEM;
  1275. break;
  1276. }
  1277. /*
  1278. * Don't hold on to start_mm if it looks like exiting.
  1279. */
  1280. if (atomic_read(&start_mm->mm_users) == 1) {
  1281. mmput(start_mm);
  1282. start_mm = &init_mm;
  1283. atomic_inc(&init_mm.mm_users);
  1284. }
  1285. /*
  1286. * Wait for and lock page. When do_swap_page races with
  1287. * try_to_unuse, do_swap_page can handle the fault much
  1288. * faster than try_to_unuse can locate the entry. This
  1289. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  1290. * defer to do_swap_page in such a case - in some tests,
  1291. * do_swap_page and try_to_unuse repeatedly compete.
  1292. */
  1293. wait_on_page_locked(page);
  1294. wait_on_page_writeback(page);
  1295. lock_page(page);
  1296. wait_on_page_writeback(page);
  1297. /*
  1298. * Remove all references to entry.
  1299. */
  1300. swcount = *swap_map;
  1301. if (swap_count(swcount) == SWAP_MAP_SHMEM) {
  1302. retval = shmem_unuse(entry, page);
  1303. /* page has already been unlocked and released */
  1304. if (retval < 0)
  1305. break;
  1306. continue;
  1307. }
  1308. if (swap_count(swcount) && start_mm != &init_mm)
  1309. retval = unuse_mm(start_mm, entry, page);
  1310. if (swap_count(*swap_map)) {
  1311. int set_start_mm = (*swap_map >= swcount);
  1312. struct list_head *p = &start_mm->mmlist;
  1313. struct mm_struct *new_start_mm = start_mm;
  1314. struct mm_struct *prev_mm = start_mm;
  1315. struct mm_struct *mm;
  1316. atomic_inc(&new_start_mm->mm_users);
  1317. atomic_inc(&prev_mm->mm_users);
  1318. spin_lock(&mmlist_lock);
  1319. while (swap_count(*swap_map) && !retval &&
  1320. (p = p->next) != &start_mm->mmlist) {
  1321. mm = list_entry(p, struct mm_struct, mmlist);
  1322. if (!atomic_inc_not_zero(&mm->mm_users))
  1323. continue;
  1324. spin_unlock(&mmlist_lock);
  1325. mmput(prev_mm);
  1326. prev_mm = mm;
  1327. cond_resched();
  1328. swcount = *swap_map;
  1329. if (!swap_count(swcount)) /* any usage ? */
  1330. ;
  1331. else if (mm == &init_mm)
  1332. set_start_mm = 1;
  1333. else
  1334. retval = unuse_mm(mm, entry, page);
  1335. if (set_start_mm && *swap_map < swcount) {
  1336. mmput(new_start_mm);
  1337. atomic_inc(&mm->mm_users);
  1338. new_start_mm = mm;
  1339. set_start_mm = 0;
  1340. }
  1341. spin_lock(&mmlist_lock);
  1342. }
  1343. spin_unlock(&mmlist_lock);
  1344. mmput(prev_mm);
  1345. mmput(start_mm);
  1346. start_mm = new_start_mm;
  1347. }
  1348. if (retval) {
  1349. unlock_page(page);
  1350. page_cache_release(page);
  1351. break;
  1352. }
  1353. /*
  1354. * If a reference remains (rare), we would like to leave
  1355. * the page in the swap cache; but try_to_unmap could
  1356. * then re-duplicate the entry once we drop page lock,
  1357. * so we might loop indefinitely; also, that page could
  1358. * not be swapped out to other storage meanwhile. So:
  1359. * delete from cache even if there's another reference,
  1360. * after ensuring that the data has been saved to disk -
  1361. * since if the reference remains (rarer), it will be
  1362. * read from disk into another page. Splitting into two
  1363. * pages would be incorrect if swap supported "shared
  1364. * private" pages, but they are handled by tmpfs files.
  1365. *
  1366. * Given how unuse_vma() targets one particular offset
  1367. * in an anon_vma, once the anon_vma has been determined,
  1368. * this splitting happens to be just what is needed to
  1369. * handle where KSM pages have been swapped out: re-reading
  1370. * is unnecessarily slow, but we can fix that later on.
  1371. */
  1372. if (swap_count(*swap_map) &&
  1373. PageDirty(page) && PageSwapCache(page)) {
  1374. struct writeback_control wbc = {
  1375. .sync_mode = WB_SYNC_NONE,
  1376. };
  1377. swap_writepage(page, &wbc);
  1378. lock_page(page);
  1379. wait_on_page_writeback(page);
  1380. }
  1381. /*
  1382. * It is conceivable that a racing task removed this page from
  1383. * swap cache just before we acquired the page lock at the top,
  1384. * or while we dropped it in unuse_mm(). The page might even
  1385. * be back in swap cache on another swap area: that we must not
  1386. * delete, since it may not have been written out to swap yet.
  1387. */
  1388. if (PageSwapCache(page) &&
  1389. likely(page_private(page) == entry.val))
  1390. delete_from_swap_cache(page);
  1391. /*
  1392. * So we could skip searching mms once swap count went
  1393. * to 1, we did not mark any present ptes as dirty: must
  1394. * mark page dirty so shrink_page_list will preserve it.
  1395. */
  1396. SetPageDirty(page);
  1397. unlock_page(page);
  1398. page_cache_release(page);
  1399. /*
  1400. * Make sure that we aren't completely killing
  1401. * interactive performance.
  1402. */
  1403. cond_resched();
  1404. if (frontswap && pages_to_unuse > 0) {
  1405. if (!--pages_to_unuse)
  1406. break;
  1407. }
  1408. }
  1409. mmput(start_mm);
  1410. return retval;
  1411. }
  1412. /*
  1413. * After a successful try_to_unuse, if no swap is now in use, we know
  1414. * we can empty the mmlist. swap_lock must be held on entry and exit.
  1415. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  1416. * added to the mmlist just after page_duplicate - before would be racy.
  1417. */
  1418. static void drain_mmlist(void)
  1419. {
  1420. struct list_head *p, *next;
  1421. unsigned int type;
  1422. for (type = 0; type < nr_swapfiles; type++)
  1423. if (swap_info[type]->inuse_pages)
  1424. return;
  1425. spin_lock(&mmlist_lock);
  1426. list_for_each_safe(p, next, &init_mm.mmlist)
  1427. list_del_init(p);
  1428. spin_unlock(&mmlist_lock);
  1429. }
  1430. /*
  1431. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  1432. * corresponds to page offset for the specified swap entry.
  1433. * Note that the type of this function is sector_t, but it returns page offset
  1434. * into the bdev, not sector offset.
  1435. */
  1436. static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
  1437. {
  1438. struct swap_info_struct *sis;
  1439. struct swap_extent *start_se;
  1440. struct swap_extent *se;
  1441. pgoff_t offset;
  1442. sis = swap_info[swp_type(entry)];
  1443. *bdev = sis->bdev;
  1444. offset = swp_offset(entry);
  1445. start_se = sis->curr_swap_extent;
  1446. se = start_se;
  1447. for ( ; ; ) {
  1448. if (se->start_page <= offset &&
  1449. offset < (se->start_page + se->nr_pages)) {
  1450. return se->start_block + (offset - se->start_page);
  1451. }
  1452. se = list_next_entry(se, list);
  1453. sis->curr_swap_extent = se;
  1454. BUG_ON(se == start_se); /* It *must* be present */
  1455. }
  1456. }
  1457. /*
  1458. * Returns the page offset into bdev for the specified page's swap entry.
  1459. */
  1460. sector_t map_swap_page(struct page *page, struct block_device **bdev)
  1461. {
  1462. swp_entry_t entry;
  1463. entry.val = page_private(page);
  1464. return map_swap_entry(entry, bdev);
  1465. }
  1466. /*
  1467. * Free all of a swapdev's extent information
  1468. */
  1469. static void destroy_swap_extents(struct swap_info_struct *sis)
  1470. {
  1471. while (!list_empty(&sis->first_swap_extent.list)) {
  1472. struct swap_extent *se;
  1473. se = list_first_entry(&sis->first_swap_extent.list,
  1474. struct swap_extent, list);
  1475. list_del(&se->list);
  1476. kfree(se);
  1477. }
  1478. if (sis->flags & SWP_FILE) {
  1479. struct file *swap_file = sis->swap_file;
  1480. struct address_space *mapping = swap_file->f_mapping;
  1481. sis->flags &= ~SWP_FILE;
  1482. mapping->a_ops->swap_deactivate(swap_file);
  1483. }
  1484. }
  1485. /*
  1486. * Add a block range (and the corresponding page range) into this swapdev's
  1487. * extent list. The extent list is kept sorted in page order.
  1488. *
  1489. * This function rather assumes that it is called in ascending page order.
  1490. */
  1491. int
  1492. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  1493. unsigned long nr_pages, sector_t start_block)
  1494. {
  1495. struct swap_extent *se;
  1496. struct swap_extent *new_se;
  1497. struct list_head *lh;
  1498. if (start_page == 0) {
  1499. se = &sis->first_swap_extent;
  1500. sis->curr_swap_extent = se;
  1501. se->start_page = 0;
  1502. se->nr_pages = nr_pages;
  1503. se->start_block = start_block;
  1504. return 1;
  1505. } else {
  1506. lh = sis->first_swap_extent.list.prev; /* Highest extent */
  1507. se = list_entry(lh, struct swap_extent, list);
  1508. BUG_ON(se->start_page + se->nr_pages != start_page);
  1509. if (se->start_block + se->nr_pages == start_block) {
  1510. /* Merge it */
  1511. se->nr_pages += nr_pages;
  1512. return 0;
  1513. }
  1514. }
  1515. /*
  1516. * No merge. Insert a new extent, preserving ordering.
  1517. */
  1518. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  1519. if (new_se == NULL)
  1520. return -ENOMEM;
  1521. new_se->start_page = start_page;
  1522. new_se->nr_pages = nr_pages;
  1523. new_se->start_block = start_block;
  1524. list_add_tail(&new_se->list, &sis->first_swap_extent.list);
  1525. return 1;
  1526. }
  1527. /*
  1528. * A `swap extent' is a simple thing which maps a contiguous range of pages
  1529. * onto a contiguous range of disk blocks. An ordered list of swap extents
  1530. * is built at swapon time and is then used at swap_writepage/swap_readpage
  1531. * time for locating where on disk a page belongs.
  1532. *
  1533. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  1534. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  1535. * swap files identically.
  1536. *
  1537. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  1538. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  1539. * swapfiles are handled *identically* after swapon time.
  1540. *
  1541. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  1542. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  1543. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  1544. * requirements, they are simply tossed out - we will never use those blocks
  1545. * for swapping.
  1546. *
  1547. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  1548. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  1549. * which will scribble on the fs.
  1550. *
  1551. * The amount of disk space which a single swap extent represents varies.
  1552. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  1553. * extents in the list. To avoid much list walking, we cache the previous
  1554. * search location in `curr_swap_extent', and start new searches from there.
  1555. * This is extremely effective. The average number of iterations in
  1556. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  1557. */
  1558. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  1559. {
  1560. struct file *swap_file = sis->swap_file;
  1561. struct address_space *mapping = swap_file->f_mapping;
  1562. struct inode *inode = mapping->host;
  1563. int ret;
  1564. if (S_ISBLK(inode->i_mode)) {
  1565. ret = add_swap_extent(sis, 0, sis->max, 0);
  1566. *span = sis->pages;
  1567. return ret;
  1568. }
  1569. if (mapping->a_ops->swap_activate) {
  1570. ret = mapping->a_ops->swap_activate(sis, swap_file, span);
  1571. if (!ret) {
  1572. sis->flags |= SWP_FILE;
  1573. ret = add_swap_extent(sis, 0, sis->max, 0);
  1574. *span = sis->pages;
  1575. }
  1576. return ret;
  1577. }
  1578. return generic_swapfile_activate(sis, swap_file, span);
  1579. }
  1580. static void _enable_swap_info(struct swap_info_struct *p, int prio,
  1581. unsigned char *swap_map,
  1582. struct swap_cluster_info *cluster_info)
  1583. {
  1584. if (prio >= 0)
  1585. p->prio = prio;
  1586. else
  1587. p->prio = --least_priority;
  1588. /*
  1589. * the plist prio is negated because plist ordering is
  1590. * low-to-high, while swap ordering is high-to-low
  1591. */
  1592. p->list.prio = -p->prio;
  1593. p->avail_list.prio = -p->prio;
  1594. p->swap_map = swap_map;
  1595. p->cluster_info = cluster_info;
  1596. p->flags |= SWP_WRITEOK;
  1597. atomic_long_add(p->pages, &nr_swap_pages);
  1598. total_swap_pages += p->pages;
  1599. assert_spin_locked(&swap_lock);
  1600. /*
  1601. * both lists are plists, and thus priority ordered.
  1602. * swap_active_head needs to be priority ordered for swapoff(),
  1603. * which on removal of any swap_info_struct with an auto-assigned
  1604. * (i.e. negative) priority increments the auto-assigned priority
  1605. * of any lower-priority swap_info_structs.
  1606. * swap_avail_head needs to be priority ordered for get_swap_page(),
  1607. * which allocates swap pages from the highest available priority
  1608. * swap_info_struct.
  1609. */
  1610. plist_add(&p->list, &swap_active_head);
  1611. spin_lock(&swap_avail_lock);
  1612. plist_add(&p->avail_list, &swap_avail_head);
  1613. spin_unlock(&swap_avail_lock);
  1614. }
  1615. static void enable_swap_info(struct swap_info_struct *p, int prio,
  1616. unsigned char *swap_map,
  1617. struct swap_cluster_info *cluster_info,
  1618. unsigned long *frontswap_map)
  1619. {
  1620. frontswap_init(p->type, frontswap_map);
  1621. spin_lock(&swap_lock);
  1622. spin_lock(&p->lock);
  1623. _enable_swap_info(p, prio, swap_map, cluster_info);
  1624. spin_unlock(&p->lock);
  1625. spin_unlock(&swap_lock);
  1626. }
  1627. static void reinsert_swap_info(struct swap_info_struct *p)
  1628. {
  1629. spin_lock(&swap_lock);
  1630. spin_lock(&p->lock);
  1631. _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
  1632. spin_unlock(&p->lock);
  1633. spin_unlock(&swap_lock);
  1634. }
  1635. SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
  1636. {
  1637. struct swap_info_struct *p = NULL;
  1638. unsigned char *swap_map;
  1639. struct swap_cluster_info *cluster_info;
  1640. unsigned long *frontswap_map;
  1641. struct file *swap_file, *victim;
  1642. struct address_space *mapping;
  1643. struct inode *inode;
  1644. struct filename *pathname;
  1645. int err, found = 0;
  1646. unsigned int old_block_size;
  1647. if (!capable(CAP_SYS_ADMIN))
  1648. return -EPERM;
  1649. BUG_ON(!current->mm);
  1650. pathname = getname(specialfile);
  1651. if (IS_ERR(pathname))
  1652. return PTR_ERR(pathname);
  1653. victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
  1654. err = PTR_ERR(victim);
  1655. if (IS_ERR(victim))
  1656. goto out;
  1657. mapping = victim->f_mapping;
  1658. spin_lock(&swap_lock);
  1659. plist_for_each_entry(p, &swap_active_head, list) {
  1660. if (p->flags & SWP_WRITEOK) {
  1661. if (p->swap_file->f_mapping == mapping) {
  1662. found = 1;
  1663. break;
  1664. }
  1665. }
  1666. }
  1667. if (!found) {
  1668. err = -EINVAL;
  1669. spin_unlock(&swap_lock);
  1670. goto out_dput;
  1671. }
  1672. if (!security_vm_enough_memory_mm(current->mm, p->pages))
  1673. vm_unacct_memory(p->pages);
  1674. else {
  1675. err = -ENOMEM;
  1676. spin_unlock(&swap_lock);
  1677. goto out_dput;
  1678. }
  1679. spin_lock(&swap_avail_lock);
  1680. plist_del(&p->avail_list, &swap_avail_head);
  1681. spin_unlock(&swap_avail_lock);
  1682. spin_lock(&p->lock);
  1683. if (p->prio < 0) {
  1684. struct swap_info_struct *si = p;
  1685. plist_for_each_entry_continue(si, &swap_active_head, list) {
  1686. si->prio++;
  1687. si->list.prio--;
  1688. si->avail_list.prio--;
  1689. }
  1690. least_priority++;
  1691. }
  1692. plist_del(&p->list, &swap_active_head);
  1693. atomic_long_sub(p->pages, &nr_swap_pages);
  1694. total_swap_pages -= p->pages;
  1695. p->flags &= ~SWP_WRITEOK;
  1696. spin_unlock(&p->lock);
  1697. spin_unlock(&swap_lock);
  1698. set_current_oom_origin();
  1699. err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
  1700. clear_current_oom_origin();
  1701. if (err) {
  1702. /* re-insert swap space back into swap_list */
  1703. reinsert_swap_info(p);
  1704. goto out_dput;
  1705. }
  1706. flush_work(&p->discard_work);
  1707. destroy_swap_extents(p);
  1708. if (p->flags & SWP_CONTINUED)
  1709. free_swap_count_continuations(p);
  1710. mutex_lock(&swapon_mutex);
  1711. spin_lock(&swap_lock);
  1712. spin_lock(&p->lock);
  1713. drain_mmlist();
  1714. /* wait for anyone still in scan_swap_map */
  1715. p->highest_bit = 0; /* cuts scans short */
  1716. while (p->flags >= SWP_SCANNING) {
  1717. spin_unlock(&p->lock);
  1718. spin_unlock(&swap_lock);
  1719. schedule_timeout_uninterruptible(1);
  1720. spin_lock(&swap_lock);
  1721. spin_lock(&p->lock);
  1722. }
  1723. swap_file = p->swap_file;
  1724. old_block_size = p->old_block_size;
  1725. p->swap_file = NULL;
  1726. p->max = 0;
  1727. swap_map = p->swap_map;
  1728. p->swap_map = NULL;
  1729. cluster_info = p->cluster_info;
  1730. p->cluster_info = NULL;
  1731. frontswap_map = frontswap_map_get(p);
  1732. spin_unlock(&p->lock);
  1733. spin_unlock(&swap_lock);
  1734. frontswap_invalidate_area(p->type);
  1735. frontswap_map_set(p, NULL);
  1736. mutex_unlock(&swapon_mutex);
  1737. free_percpu(p->percpu_cluster);
  1738. p->percpu_cluster = NULL;
  1739. vfree(swap_map);
  1740. vfree(cluster_info);
  1741. vfree(frontswap_map);
  1742. /* Destroy swap account information */
  1743. swap_cgroup_swapoff(p->type);
  1744. inode = mapping->host;
  1745. if (S_ISBLK(inode->i_mode)) {
  1746. struct block_device *bdev = I_BDEV(inode);
  1747. set_blocksize(bdev, old_block_size);
  1748. blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
  1749. } else {
  1750. inode_lock(inode);
  1751. inode->i_flags &= ~S_SWAPFILE;
  1752. inode_unlock(inode);
  1753. }
  1754. filp_close(swap_file, NULL);
  1755. /*
  1756. * Clear the SWP_USED flag after all resources are freed so that swapon
  1757. * can reuse this swap_info in alloc_swap_info() safely. It is ok to
  1758. * not hold p->lock after we cleared its SWP_WRITEOK.
  1759. */
  1760. spin_lock(&swap_lock);
  1761. p->flags = 0;
  1762. spin_unlock(&swap_lock);
  1763. err = 0;
  1764. atomic_inc(&proc_poll_event);
  1765. wake_up_interruptible(&proc_poll_wait);
  1766. out_dput:
  1767. filp_close(victim, NULL);
  1768. out:
  1769. putname(pathname);
  1770. return err;
  1771. }
  1772. #ifdef CONFIG_PROC_FS
  1773. static unsigned swaps_poll(struct file *file, poll_table *wait)
  1774. {
  1775. struct seq_file *seq = file->private_data;
  1776. poll_wait(file, &proc_poll_wait, wait);
  1777. if (seq->poll_event != atomic_read(&proc_poll_event)) {
  1778. seq->poll_event = atomic_read(&proc_poll_event);
  1779. return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
  1780. }
  1781. return POLLIN | POLLRDNORM;
  1782. }
  1783. /* iterator */
  1784. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1785. {
  1786. struct swap_info_struct *si;
  1787. int type;
  1788. loff_t l = *pos;
  1789. mutex_lock(&swapon_mutex);
  1790. if (!l)
  1791. return SEQ_START_TOKEN;
  1792. for (type = 0; type < nr_swapfiles; type++) {
  1793. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1794. si = swap_info[type];
  1795. if (!(si->flags & SWP_USED) || !si->swap_map)
  1796. continue;
  1797. if (!--l)
  1798. return si;
  1799. }
  1800. return NULL;
  1801. }
  1802. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1803. {
  1804. struct swap_info_struct *si = v;
  1805. int type;
  1806. if (v == SEQ_START_TOKEN)
  1807. type = 0;
  1808. else
  1809. type = si->type + 1;
  1810. for (; type < nr_swapfiles; type++) {
  1811. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1812. si = swap_info[type];
  1813. if (!(si->flags & SWP_USED) || !si->swap_map)
  1814. continue;
  1815. ++*pos;
  1816. return si;
  1817. }
  1818. return NULL;
  1819. }
  1820. static void swap_stop(struct seq_file *swap, void *v)
  1821. {
  1822. mutex_unlock(&swapon_mutex);
  1823. }
  1824. static int swap_show(struct seq_file *swap, void *v)
  1825. {
  1826. struct swap_info_struct *si = v;
  1827. struct file *file;
  1828. int len;
  1829. if (si == SEQ_START_TOKEN) {
  1830. seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1831. return 0;
  1832. }
  1833. file = si->swap_file;
  1834. len = seq_file_path(swap, file, " \t\n\\");
  1835. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1836. len < 40 ? 40 - len : 1, " ",
  1837. S_ISBLK(file_inode(file)->i_mode) ?
  1838. "partition" : "file\t",
  1839. si->pages << (PAGE_SHIFT - 10),
  1840. si->inuse_pages << (PAGE_SHIFT - 10),
  1841. si->prio);
  1842. return 0;
  1843. }
  1844. static const struct seq_operations swaps_op = {
  1845. .start = swap_start,
  1846. .next = swap_next,
  1847. .stop = swap_stop,
  1848. .show = swap_show
  1849. };
  1850. static int swaps_open(struct inode *inode, struct file *file)
  1851. {
  1852. struct seq_file *seq;
  1853. int ret;
  1854. ret = seq_open(file, &swaps_op);
  1855. if (ret)
  1856. return ret;
  1857. seq = file->private_data;
  1858. seq->poll_event = atomic_read(&proc_poll_event);
  1859. return 0;
  1860. }
  1861. static const struct file_operations proc_swaps_operations = {
  1862. .open = swaps_open,
  1863. .read = seq_read,
  1864. .llseek = seq_lseek,
  1865. .release = seq_release,
  1866. .poll = swaps_poll,
  1867. };
  1868. static int __init procswaps_init(void)
  1869. {
  1870. proc_create("swaps", 0, NULL, &proc_swaps_operations);
  1871. return 0;
  1872. }
  1873. __initcall(procswaps_init);
  1874. #endif /* CONFIG_PROC_FS */
  1875. #ifdef MAX_SWAPFILES_CHECK
  1876. static int __init max_swapfiles_check(void)
  1877. {
  1878. MAX_SWAPFILES_CHECK();
  1879. return 0;
  1880. }
  1881. late_initcall(max_swapfiles_check);
  1882. #endif
  1883. static struct swap_info_struct *alloc_swap_info(void)
  1884. {
  1885. struct swap_info_struct *p;
  1886. unsigned int type;
  1887. p = kzalloc(sizeof(*p), GFP_KERNEL);
  1888. if (!p)
  1889. return ERR_PTR(-ENOMEM);
  1890. spin_lock(&swap_lock);
  1891. for (type = 0; type < nr_swapfiles; type++) {
  1892. if (!(swap_info[type]->flags & SWP_USED))
  1893. break;
  1894. }
  1895. if (type >= MAX_SWAPFILES) {
  1896. spin_unlock(&swap_lock);
  1897. kfree(p);
  1898. return ERR_PTR(-EPERM);
  1899. }
  1900. if (type >= nr_swapfiles) {
  1901. p->type = type;
  1902. swap_info[type] = p;
  1903. /*
  1904. * Write swap_info[type] before nr_swapfiles, in case a
  1905. * racing procfs swap_start() or swap_next() is reading them.
  1906. * (We never shrink nr_swapfiles, we never free this entry.)
  1907. */
  1908. smp_wmb();
  1909. nr_swapfiles++;
  1910. } else {
  1911. kfree(p);
  1912. p = swap_info[type];
  1913. /*
  1914. * Do not memset this entry: a racing procfs swap_next()
  1915. * would be relying on p->type to remain valid.
  1916. */
  1917. }
  1918. INIT_LIST_HEAD(&p->first_swap_extent.list);
  1919. plist_node_init(&p->list, 0);
  1920. plist_node_init(&p->avail_list, 0);
  1921. p->flags = SWP_USED;
  1922. spin_unlock(&swap_lock);
  1923. spin_lock_init(&p->lock);
  1924. return p;
  1925. }
  1926. static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
  1927. {
  1928. int error;
  1929. if (S_ISBLK(inode->i_mode)) {
  1930. p->bdev = bdgrab(I_BDEV(inode));
  1931. error = blkdev_get(p->bdev,
  1932. FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
  1933. if (error < 0) {
  1934. p->bdev = NULL;
  1935. return error;
  1936. }
  1937. p->old_block_size = block_size(p->bdev);
  1938. error = set_blocksize(p->bdev, PAGE_SIZE);
  1939. if (error < 0)
  1940. return error;
  1941. p->flags |= SWP_BLKDEV;
  1942. } else if (S_ISREG(inode->i_mode)) {
  1943. p->bdev = inode->i_sb->s_bdev;
  1944. inode_lock(inode);
  1945. if (IS_SWAPFILE(inode))
  1946. return -EBUSY;
  1947. } else
  1948. return -EINVAL;
  1949. return 0;
  1950. }
  1951. static unsigned long read_swap_header(struct swap_info_struct *p,
  1952. union swap_header *swap_header,
  1953. struct inode *inode)
  1954. {
  1955. int i;
  1956. unsigned long maxpages;
  1957. unsigned long swapfilepages;
  1958. unsigned long last_page;
  1959. if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
  1960. pr_err("Unable to find swap-space signature\n");
  1961. return 0;
  1962. }
  1963. /* swap partition endianess hack... */
  1964. if (swab32(swap_header->info.version) == 1) {
  1965. swab32s(&swap_header->info.version);
  1966. swab32s(&swap_header->info.last_page);
  1967. swab32s(&swap_header->info.nr_badpages);
  1968. for (i = 0; i < swap_header->info.nr_badpages; i++)
  1969. swab32s(&swap_header->info.badpages[i]);
  1970. }
  1971. /* Check the swap header's sub-version */
  1972. if (swap_header->info.version != 1) {
  1973. pr_warn("Unable to handle swap header version %d\n",
  1974. swap_header->info.version);
  1975. return 0;
  1976. }
  1977. p->lowest_bit = 1;
  1978. p->cluster_next = 1;
  1979. p->cluster_nr = 0;
  1980. /*
  1981. * Find out how many pages are allowed for a single swap
  1982. * device. There are two limiting factors: 1) the number
  1983. * of bits for the swap offset in the swp_entry_t type, and
  1984. * 2) the number of bits in the swap pte as defined by the
  1985. * different architectures. In order to find the
  1986. * largest possible bit mask, a swap entry with swap type 0
  1987. * and swap offset ~0UL is created, encoded to a swap pte,
  1988. * decoded to a swp_entry_t again, and finally the swap
  1989. * offset is extracted. This will mask all the bits from
  1990. * the initial ~0UL mask that can't be encoded in either
  1991. * the swp_entry_t or the architecture definition of a
  1992. * swap pte.
  1993. */
  1994. maxpages = swp_offset(pte_to_swp_entry(
  1995. swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
  1996. last_page = swap_header->info.last_page;
  1997. if (last_page > maxpages) {
  1998. pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
  1999. maxpages << (PAGE_SHIFT - 10),
  2000. last_page << (PAGE_SHIFT - 10));
  2001. }
  2002. if (maxpages > last_page) {
  2003. maxpages = last_page + 1;
  2004. /* p->max is an unsigned int: don't overflow it */
  2005. if ((unsigned int)maxpages == 0)
  2006. maxpages = UINT_MAX;
  2007. }
  2008. p->highest_bit = maxpages - 1;
  2009. if (!maxpages)
  2010. return 0;
  2011. swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
  2012. if (swapfilepages && maxpages > swapfilepages) {
  2013. pr_warn("Swap area shorter than signature indicates\n");
  2014. return 0;
  2015. }
  2016. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  2017. return 0;
  2018. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  2019. return 0;
  2020. return maxpages;
  2021. }
  2022. static int setup_swap_map_and_extents(struct swap_info_struct *p,
  2023. union swap_header *swap_header,
  2024. unsigned char *swap_map,
  2025. struct swap_cluster_info *cluster_info,
  2026. unsigned long maxpages,
  2027. sector_t *span)
  2028. {
  2029. int i;
  2030. unsigned int nr_good_pages;
  2031. int nr_extents;
  2032. unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
  2033. unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
  2034. nr_good_pages = maxpages - 1; /* omit header page */
  2035. cluster_set_null(&p->free_cluster_head);
  2036. cluster_set_null(&p->free_cluster_tail);
  2037. cluster_set_null(&p->discard_cluster_head);
  2038. cluster_set_null(&p->discard_cluster_tail);
  2039. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  2040. unsigned int page_nr = swap_header->info.badpages[i];
  2041. if (page_nr == 0 || page_nr > swap_header->info.last_page)
  2042. return -EINVAL;
  2043. if (page_nr < maxpages) {
  2044. swap_map[page_nr] = SWAP_MAP_BAD;
  2045. nr_good_pages--;
  2046. /*
  2047. * Haven't marked the cluster free yet, no list
  2048. * operation involved
  2049. */
  2050. inc_cluster_info_page(p, cluster_info, page_nr);
  2051. }
  2052. }
  2053. /* Haven't marked the cluster free yet, no list operation involved */
  2054. for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
  2055. inc_cluster_info_page(p, cluster_info, i);
  2056. if (nr_good_pages) {
  2057. swap_map[0] = SWAP_MAP_BAD;
  2058. /*
  2059. * Not mark the cluster free yet, no list
  2060. * operation involved
  2061. */
  2062. inc_cluster_info_page(p, cluster_info, 0);
  2063. p->max = maxpages;
  2064. p->pages = nr_good_pages;
  2065. nr_extents = setup_swap_extents(p, span);
  2066. if (nr_extents < 0)
  2067. return nr_extents;
  2068. nr_good_pages = p->pages;
  2069. }
  2070. if (!nr_good_pages) {
  2071. pr_warn("Empty swap-file\n");
  2072. return -EINVAL;
  2073. }
  2074. if (!cluster_info)
  2075. return nr_extents;
  2076. for (i = 0; i < nr_clusters; i++) {
  2077. if (!cluster_count(&cluster_info[idx])) {
  2078. cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
  2079. if (cluster_is_null(&p->free_cluster_head)) {
  2080. cluster_set_next_flag(&p->free_cluster_head,
  2081. idx, 0);
  2082. cluster_set_next_flag(&p->free_cluster_tail,
  2083. idx, 0);
  2084. } else {
  2085. unsigned int tail;
  2086. tail = cluster_next(&p->free_cluster_tail);
  2087. cluster_set_next(&cluster_info[tail], idx);
  2088. cluster_set_next_flag(&p->free_cluster_tail,
  2089. idx, 0);
  2090. }
  2091. }
  2092. idx++;
  2093. if (idx == nr_clusters)
  2094. idx = 0;
  2095. }
  2096. return nr_extents;
  2097. }
  2098. /*
  2099. * Helper to sys_swapon determining if a given swap
  2100. * backing device queue supports DISCARD operations.
  2101. */
  2102. static bool swap_discardable(struct swap_info_struct *si)
  2103. {
  2104. struct request_queue *q = bdev_get_queue(si->bdev);
  2105. if (!q || !blk_queue_discard(q))
  2106. return false;
  2107. return true;
  2108. }
  2109. SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
  2110. {
  2111. struct swap_info_struct *p;
  2112. struct filename *name;
  2113. struct file *swap_file = NULL;
  2114. struct address_space *mapping;
  2115. int prio;
  2116. int error;
  2117. union swap_header *swap_header;
  2118. int nr_extents;
  2119. sector_t span;
  2120. unsigned long maxpages;
  2121. unsigned char *swap_map = NULL;
  2122. struct swap_cluster_info *cluster_info = NULL;
  2123. unsigned long *frontswap_map = NULL;
  2124. struct page *page = NULL;
  2125. struct inode *inode = NULL;
  2126. if (swap_flags & ~SWAP_FLAGS_VALID)
  2127. return -EINVAL;
  2128. if (!capable(CAP_SYS_ADMIN))
  2129. return -EPERM;
  2130. p = alloc_swap_info();
  2131. if (IS_ERR(p))
  2132. return PTR_ERR(p);
  2133. INIT_WORK(&p->discard_work, swap_discard_work);
  2134. name = getname(specialfile);
  2135. if (IS_ERR(name)) {
  2136. error = PTR_ERR(name);
  2137. name = NULL;
  2138. goto bad_swap;
  2139. }
  2140. swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
  2141. if (IS_ERR(swap_file)) {
  2142. error = PTR_ERR(swap_file);
  2143. swap_file = NULL;
  2144. goto bad_swap;
  2145. }
  2146. p->swap_file = swap_file;
  2147. mapping = swap_file->f_mapping;
  2148. inode = mapping->host;
  2149. /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
  2150. error = claim_swapfile(p, inode);
  2151. if (unlikely(error))
  2152. goto bad_swap;
  2153. /*
  2154. * Read the swap header.
  2155. */
  2156. if (!mapping->a_ops->readpage) {
  2157. error = -EINVAL;
  2158. goto bad_swap;
  2159. }
  2160. page = read_mapping_page(mapping, 0, swap_file);
  2161. if (IS_ERR(page)) {
  2162. error = PTR_ERR(page);
  2163. goto bad_swap;
  2164. }
  2165. swap_header = kmap(page);
  2166. maxpages = read_swap_header(p, swap_header, inode);
  2167. if (unlikely(!maxpages)) {
  2168. error = -EINVAL;
  2169. goto bad_swap;
  2170. }
  2171. /* OK, set up the swap map and apply the bad block list */
  2172. swap_map = vzalloc(maxpages);
  2173. if (!swap_map) {
  2174. error = -ENOMEM;
  2175. goto bad_swap;
  2176. }
  2177. if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
  2178. int cpu;
  2179. p->flags |= SWP_SOLIDSTATE;
  2180. /*
  2181. * select a random position to start with to help wear leveling
  2182. * SSD
  2183. */
  2184. p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
  2185. cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
  2186. SWAPFILE_CLUSTER) * sizeof(*cluster_info));
  2187. if (!cluster_info) {
  2188. error = -ENOMEM;
  2189. goto bad_swap;
  2190. }
  2191. p->percpu_cluster = alloc_percpu(struct percpu_cluster);
  2192. if (!p->percpu_cluster) {
  2193. error = -ENOMEM;
  2194. goto bad_swap;
  2195. }
  2196. for_each_possible_cpu(cpu) {
  2197. struct percpu_cluster *cluster;
  2198. cluster = per_cpu_ptr(p->percpu_cluster, cpu);
  2199. cluster_set_null(&cluster->index);
  2200. }
  2201. }
  2202. error = swap_cgroup_swapon(p->type, maxpages);
  2203. if (error)
  2204. goto bad_swap;
  2205. nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
  2206. cluster_info, maxpages, &span);
  2207. if (unlikely(nr_extents < 0)) {
  2208. error = nr_extents;
  2209. goto bad_swap;
  2210. }
  2211. /* frontswap enabled? set up bit-per-page map for frontswap */
  2212. if (frontswap_enabled)
  2213. frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
  2214. if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
  2215. /*
  2216. * When discard is enabled for swap with no particular
  2217. * policy flagged, we set all swap discard flags here in
  2218. * order to sustain backward compatibility with older
  2219. * swapon(8) releases.
  2220. */
  2221. p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
  2222. SWP_PAGE_DISCARD);
  2223. /*
  2224. * By flagging sys_swapon, a sysadmin can tell us to
  2225. * either do single-time area discards only, or to just
  2226. * perform discards for released swap page-clusters.
  2227. * Now it's time to adjust the p->flags accordingly.
  2228. */
  2229. if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
  2230. p->flags &= ~SWP_PAGE_DISCARD;
  2231. else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
  2232. p->flags &= ~SWP_AREA_DISCARD;
  2233. /* issue a swapon-time discard if it's still required */
  2234. if (p->flags & SWP_AREA_DISCARD) {
  2235. int err = discard_swap(p);
  2236. if (unlikely(err))
  2237. pr_err("swapon: discard_swap(%p): %d\n",
  2238. p, err);
  2239. }
  2240. }
  2241. mutex_lock(&swapon_mutex);
  2242. prio = -1;
  2243. if (swap_flags & SWAP_FLAG_PREFER)
  2244. prio =
  2245. (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
  2246. enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
  2247. pr_info("Adding %uk swap on %s. "
  2248. "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
  2249. p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
  2250. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
  2251. (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
  2252. (p->flags & SWP_DISCARDABLE) ? "D" : "",
  2253. (p->flags & SWP_AREA_DISCARD) ? "s" : "",
  2254. (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
  2255. (frontswap_map) ? "FS" : "");
  2256. mutex_unlock(&swapon_mutex);
  2257. atomic_inc(&proc_poll_event);
  2258. wake_up_interruptible(&proc_poll_wait);
  2259. if (S_ISREG(inode->i_mode))
  2260. inode->i_flags |= S_SWAPFILE;
  2261. error = 0;
  2262. goto out;
  2263. bad_swap:
  2264. free_percpu(p->percpu_cluster);
  2265. p->percpu_cluster = NULL;
  2266. if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
  2267. set_blocksize(p->bdev, p->old_block_size);
  2268. blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
  2269. }
  2270. destroy_swap_extents(p);
  2271. swap_cgroup_swapoff(p->type);
  2272. spin_lock(&swap_lock);
  2273. p->swap_file = NULL;
  2274. p->flags = 0;
  2275. spin_unlock(&swap_lock);
  2276. vfree(swap_map);
  2277. vfree(cluster_info);
  2278. if (swap_file) {
  2279. if (inode && S_ISREG(inode->i_mode)) {
  2280. inode_unlock(inode);
  2281. inode = NULL;
  2282. }
  2283. filp_close(swap_file, NULL);
  2284. }
  2285. out:
  2286. if (page && !IS_ERR(page)) {
  2287. kunmap(page);
  2288. page_cache_release(page);
  2289. }
  2290. if (name)
  2291. putname(name);
  2292. if (inode && S_ISREG(inode->i_mode))
  2293. inode_unlock(inode);
  2294. return error;
  2295. }
  2296. void si_swapinfo(struct sysinfo *val)
  2297. {
  2298. unsigned int type;
  2299. unsigned long nr_to_be_unused = 0;
  2300. spin_lock(&swap_lock);
  2301. for (type = 0; type < nr_swapfiles; type++) {
  2302. struct swap_info_struct *si = swap_info[type];
  2303. if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
  2304. nr_to_be_unused += si->inuse_pages;
  2305. }
  2306. val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
  2307. val->totalswap = total_swap_pages + nr_to_be_unused;
  2308. spin_unlock(&swap_lock);
  2309. }
  2310. /*
  2311. * Verify that a swap entry is valid and increment its swap map count.
  2312. *
  2313. * Returns error code in following case.
  2314. * - success -> 0
  2315. * - swp_entry is invalid -> EINVAL
  2316. * - swp_entry is migration entry -> EINVAL
  2317. * - swap-cache reference is requested but there is already one. -> EEXIST
  2318. * - swap-cache reference is requested but the entry is not used. -> ENOENT
  2319. * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
  2320. */
  2321. static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
  2322. {
  2323. struct swap_info_struct *p;
  2324. unsigned long offset, type;
  2325. unsigned char count;
  2326. unsigned char has_cache;
  2327. int err = -EINVAL;
  2328. if (non_swap_entry(entry))
  2329. goto out;
  2330. type = swp_type(entry);
  2331. if (type >= nr_swapfiles)
  2332. goto bad_file;
  2333. p = swap_info[type];
  2334. offset = swp_offset(entry);
  2335. spin_lock(&p->lock);
  2336. if (unlikely(offset >= p->max))
  2337. goto unlock_out;
  2338. count = p->swap_map[offset];
  2339. /*
  2340. * swapin_readahead() doesn't check if a swap entry is valid, so the
  2341. * swap entry could be SWAP_MAP_BAD. Check here with lock held.
  2342. */
  2343. if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
  2344. err = -ENOENT;
  2345. goto unlock_out;
  2346. }
  2347. has_cache = count & SWAP_HAS_CACHE;
  2348. count &= ~SWAP_HAS_CACHE;
  2349. err = 0;
  2350. if (usage == SWAP_HAS_CACHE) {
  2351. /* set SWAP_HAS_CACHE if there is no cache and entry is used */
  2352. if (!has_cache && count)
  2353. has_cache = SWAP_HAS_CACHE;
  2354. else if (has_cache) /* someone else added cache */
  2355. err = -EEXIST;
  2356. else /* no users remaining */
  2357. err = -ENOENT;
  2358. } else if (count || has_cache) {
  2359. if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
  2360. count += usage;
  2361. else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
  2362. err = -EINVAL;
  2363. else if (swap_count_continued(p, offset, count))
  2364. count = COUNT_CONTINUED;
  2365. else
  2366. err = -ENOMEM;
  2367. } else
  2368. err = -ENOENT; /* unused swap entry */
  2369. p->swap_map[offset] = count | has_cache;
  2370. unlock_out:
  2371. spin_unlock(&p->lock);
  2372. out:
  2373. return err;
  2374. bad_file:
  2375. pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
  2376. goto out;
  2377. }
  2378. /*
  2379. * Help swapoff by noting that swap entry belongs to shmem/tmpfs
  2380. * (in which case its reference count is never incremented).
  2381. */
  2382. void swap_shmem_alloc(swp_entry_t entry)
  2383. {
  2384. __swap_duplicate(entry, SWAP_MAP_SHMEM);
  2385. }
  2386. /*
  2387. * Increase reference count of swap entry by 1.
  2388. * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
  2389. * but could not be atomically allocated. Returns 0, just as if it succeeded,
  2390. * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
  2391. * might occur if a page table entry has got corrupted.
  2392. */
  2393. int swap_duplicate(swp_entry_t entry)
  2394. {
  2395. int err = 0;
  2396. while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
  2397. err = add_swap_count_continuation(entry, GFP_ATOMIC);
  2398. return err;
  2399. }
  2400. /*
  2401. * @entry: swap entry for which we allocate swap cache.
  2402. *
  2403. * Called when allocating swap cache for existing swap entry,
  2404. * This can return error codes. Returns 0 at success.
  2405. * -EBUSY means there is a swap cache.
  2406. * Note: return code is different from swap_duplicate().
  2407. */
  2408. int swapcache_prepare(swp_entry_t entry)
  2409. {
  2410. return __swap_duplicate(entry, SWAP_HAS_CACHE);
  2411. }
  2412. struct swap_info_struct *page_swap_info(struct page *page)
  2413. {
  2414. swp_entry_t swap = { .val = page_private(page) };
  2415. BUG_ON(!PageSwapCache(page));
  2416. return swap_info[swp_type(swap)];
  2417. }
  2418. /*
  2419. * out-of-line __page_file_ methods to avoid include hell.
  2420. */
  2421. struct address_space *__page_file_mapping(struct page *page)
  2422. {
  2423. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  2424. return page_swap_info(page)->swap_file->f_mapping;
  2425. }
  2426. EXPORT_SYMBOL_GPL(__page_file_mapping);
  2427. pgoff_t __page_file_index(struct page *page)
  2428. {
  2429. swp_entry_t swap = { .val = page_private(page) };
  2430. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  2431. return swp_offset(swap);
  2432. }
  2433. EXPORT_SYMBOL_GPL(__page_file_index);
  2434. /*
  2435. * add_swap_count_continuation - called when a swap count is duplicated
  2436. * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
  2437. * page of the original vmalloc'ed swap_map, to hold the continuation count
  2438. * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
  2439. * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
  2440. *
  2441. * These continuation pages are seldom referenced: the common paths all work
  2442. * on the original swap_map, only referring to a continuation page when the
  2443. * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
  2444. *
  2445. * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
  2446. * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
  2447. * can be called after dropping locks.
  2448. */
  2449. int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
  2450. {
  2451. struct swap_info_struct *si;
  2452. struct page *head;
  2453. struct page *page;
  2454. struct page *list_page;
  2455. pgoff_t offset;
  2456. unsigned char count;
  2457. /*
  2458. * When debugging, it's easier to use __GFP_ZERO here; but it's better
  2459. * for latency not to zero a page while GFP_ATOMIC and holding locks.
  2460. */
  2461. page = alloc_page(gfp_mask | __GFP_HIGHMEM);
  2462. si = swap_info_get(entry);
  2463. if (!si) {
  2464. /*
  2465. * An acceptable race has occurred since the failing
  2466. * __swap_duplicate(): the swap entry has been freed,
  2467. * perhaps even the whole swap_map cleared for swapoff.
  2468. */
  2469. goto outer;
  2470. }
  2471. offset = swp_offset(entry);
  2472. count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
  2473. if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
  2474. /*
  2475. * The higher the swap count, the more likely it is that tasks
  2476. * will race to add swap count continuation: we need to avoid
  2477. * over-provisioning.
  2478. */
  2479. goto out;
  2480. }
  2481. if (!page) {
  2482. spin_unlock(&si->lock);
  2483. return -ENOMEM;
  2484. }
  2485. /*
  2486. * We are fortunate that although vmalloc_to_page uses pte_offset_map,
  2487. * no architecture is using highmem pages for kernel page tables: so it
  2488. * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
  2489. */
  2490. head = vmalloc_to_page(si->swap_map + offset);
  2491. offset &= ~PAGE_MASK;
  2492. /*
  2493. * Page allocation does not initialize the page's lru field,
  2494. * but it does always reset its private field.
  2495. */
  2496. if (!page_private(head)) {
  2497. BUG_ON(count & COUNT_CONTINUED);
  2498. INIT_LIST_HEAD(&head->lru);
  2499. set_page_private(head, SWP_CONTINUED);
  2500. si->flags |= SWP_CONTINUED;
  2501. }
  2502. list_for_each_entry(list_page, &head->lru, lru) {
  2503. unsigned char *map;
  2504. /*
  2505. * If the previous map said no continuation, but we've found
  2506. * a continuation page, free our allocation and use this one.
  2507. */
  2508. if (!(count & COUNT_CONTINUED))
  2509. goto out;
  2510. map = kmap_atomic(list_page) + offset;
  2511. count = *map;
  2512. kunmap_atomic(map);
  2513. /*
  2514. * If this continuation count now has some space in it,
  2515. * free our allocation and use this one.
  2516. */
  2517. if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
  2518. goto out;
  2519. }
  2520. list_add_tail(&page->lru, &head->lru);
  2521. page = NULL; /* now it's attached, don't free it */
  2522. out:
  2523. spin_unlock(&si->lock);
  2524. outer:
  2525. if (page)
  2526. __free_page(page);
  2527. return 0;
  2528. }
  2529. /*
  2530. * swap_count_continued - when the original swap_map count is incremented
  2531. * from SWAP_MAP_MAX, check if there is already a continuation page to carry
  2532. * into, carry if so, or else fail until a new continuation page is allocated;
  2533. * when the original swap_map count is decremented from 0 with continuation,
  2534. * borrow from the continuation and report whether it still holds more.
  2535. * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
  2536. */
  2537. static bool swap_count_continued(struct swap_info_struct *si,
  2538. pgoff_t offset, unsigned char count)
  2539. {
  2540. struct page *head;
  2541. struct page *page;
  2542. unsigned char *map;
  2543. head = vmalloc_to_page(si->swap_map + offset);
  2544. if (page_private(head) != SWP_CONTINUED) {
  2545. BUG_ON(count & COUNT_CONTINUED);
  2546. return false; /* need to add count continuation */
  2547. }
  2548. offset &= ~PAGE_MASK;
  2549. page = list_entry(head->lru.next, struct page, lru);
  2550. map = kmap_atomic(page) + offset;
  2551. if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
  2552. goto init_map; /* jump over SWAP_CONT_MAX checks */
  2553. if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
  2554. /*
  2555. * Think of how you add 1 to 999
  2556. */
  2557. while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
  2558. kunmap_atomic(map);
  2559. page = list_entry(page->lru.next, struct page, lru);
  2560. BUG_ON(page == head);
  2561. map = kmap_atomic(page) + offset;
  2562. }
  2563. if (*map == SWAP_CONT_MAX) {
  2564. kunmap_atomic(map);
  2565. page = list_entry(page->lru.next, struct page, lru);
  2566. if (page == head)
  2567. return false; /* add count continuation */
  2568. map = kmap_atomic(page) + offset;
  2569. init_map: *map = 0; /* we didn't zero the page */
  2570. }
  2571. *map += 1;
  2572. kunmap_atomic(map);
  2573. page = list_entry(page->lru.prev, struct page, lru);
  2574. while (page != head) {
  2575. map = kmap_atomic(page) + offset;
  2576. *map = COUNT_CONTINUED;
  2577. kunmap_atomic(map);
  2578. page = list_entry(page->lru.prev, struct page, lru);
  2579. }
  2580. return true; /* incremented */
  2581. } else { /* decrementing */
  2582. /*
  2583. * Think of how you subtract 1 from 1000
  2584. */
  2585. BUG_ON(count != COUNT_CONTINUED);
  2586. while (*map == COUNT_CONTINUED) {
  2587. kunmap_atomic(map);
  2588. page = list_entry(page->lru.next, struct page, lru);
  2589. BUG_ON(page == head);
  2590. map = kmap_atomic(page) + offset;
  2591. }
  2592. BUG_ON(*map == 0);
  2593. *map -= 1;
  2594. if (*map == 0)
  2595. count = 0;
  2596. kunmap_atomic(map);
  2597. page = list_entry(page->lru.prev, struct page, lru);
  2598. while (page != head) {
  2599. map = kmap_atomic(page) + offset;
  2600. *map = SWAP_CONT_MAX | count;
  2601. count = COUNT_CONTINUED;
  2602. kunmap_atomic(map);
  2603. page = list_entry(page->lru.prev, struct page, lru);
  2604. }
  2605. return count == COUNT_CONTINUED;
  2606. }
  2607. }
  2608. /*
  2609. * free_swap_count_continuations - swapoff free all the continuation pages
  2610. * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
  2611. */
  2612. static void free_swap_count_continuations(struct swap_info_struct *si)
  2613. {
  2614. pgoff_t offset;
  2615. for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
  2616. struct page *head;
  2617. head = vmalloc_to_page(si->swap_map + offset);
  2618. if (page_private(head)) {
  2619. struct page *page, *next;
  2620. list_for_each_entry_safe(page, next, &head->lru, lru) {
  2621. list_del(&page->lru);
  2622. __free_page(page);
  2623. }
  2624. }
  2625. }
  2626. }