swap.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965
  1. /*
  2. * linux/mm/swap.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * This file contains the default values for the operation of the
  8. * Linux VM subsystem. Fine-tuning documentation can be found in
  9. * Documentation/sysctl/vm.txt.
  10. * Started 18.12.91
  11. * Swap aging added 23.2.95, Stephen Tweedie.
  12. * Buffermem limits added 12.3.98, Rik van Riel.
  13. */
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/pagevec.h>
  21. #include <linux/init.h>
  22. #include <linux/export.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/percpu_counter.h>
  25. #include <linux/memremap.h>
  26. #include <linux/percpu.h>
  27. #include <linux/cpu.h>
  28. #include <linux/notifier.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/gfp.h>
  32. #include <linux/uio.h>
  33. #include <linux/hugetlb.h>
  34. #include <linux/page_idle.h>
  35. #include "internal.h"
  36. #define CREATE_TRACE_POINTS
  37. #include <trace/events/pagemap.h>
  38. /* How many pages do we try to swap or page in/out together? */
  39. int page_cluster;
  40. static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
  41. static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
  42. static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
  43. static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
  44. /*
  45. * This path almost never happens for VM activity - pages are normally
  46. * freed via pagevecs. But it gets used by networking.
  47. */
  48. static void __page_cache_release(struct page *page)
  49. {
  50. if (PageLRU(page)) {
  51. struct zone *zone = page_zone(page);
  52. struct lruvec *lruvec;
  53. unsigned long flags;
  54. spin_lock_irqsave(&zone->lru_lock, flags);
  55. lruvec = mem_cgroup_page_lruvec(page, zone);
  56. VM_BUG_ON_PAGE(!PageLRU(page), page);
  57. __ClearPageLRU(page);
  58. del_page_from_lru_list(page, lruvec, page_off_lru(page));
  59. spin_unlock_irqrestore(&zone->lru_lock, flags);
  60. }
  61. mem_cgroup_uncharge(page);
  62. }
  63. static void __put_single_page(struct page *page)
  64. {
  65. __page_cache_release(page);
  66. free_hot_cold_page(page, false);
  67. }
  68. static void __put_compound_page(struct page *page)
  69. {
  70. compound_page_dtor *dtor;
  71. /*
  72. * __page_cache_release() is supposed to be called for thp, not for
  73. * hugetlb. This is because hugetlb page does never have PageLRU set
  74. * (it's never listed to any LRU lists) and no memcg routines should
  75. * be called for hugetlb (it has a separate hugetlb_cgroup.)
  76. */
  77. if (!PageHuge(page))
  78. __page_cache_release(page);
  79. dtor = get_compound_page_dtor(page);
  80. (*dtor)(page);
  81. }
  82. void __put_page(struct page *page)
  83. {
  84. if (unlikely(PageCompound(page)))
  85. __put_compound_page(page);
  86. else
  87. __put_single_page(page);
  88. }
  89. EXPORT_SYMBOL(__put_page);
  90. /**
  91. * put_pages_list() - release a list of pages
  92. * @pages: list of pages threaded on page->lru
  93. *
  94. * Release a list of pages which are strung together on page.lru. Currently
  95. * used by read_cache_pages() and related error recovery code.
  96. */
  97. void put_pages_list(struct list_head *pages)
  98. {
  99. while (!list_empty(pages)) {
  100. struct page *victim;
  101. victim = list_entry(pages->prev, struct page, lru);
  102. list_del(&victim->lru);
  103. page_cache_release(victim);
  104. }
  105. }
  106. EXPORT_SYMBOL(put_pages_list);
  107. /*
  108. * get_kernel_pages() - pin kernel pages in memory
  109. * @kiov: An array of struct kvec structures
  110. * @nr_segs: number of segments to pin
  111. * @write: pinning for read/write, currently ignored
  112. * @pages: array that receives pointers to the pages pinned.
  113. * Should be at least nr_segs long.
  114. *
  115. * Returns number of pages pinned. This may be fewer than the number
  116. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  117. * were pinned, returns -errno. Each page returned must be released
  118. * with a put_page() call when it is finished with.
  119. */
  120. int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
  121. struct page **pages)
  122. {
  123. int seg;
  124. for (seg = 0; seg < nr_segs; seg++) {
  125. if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
  126. return seg;
  127. pages[seg] = kmap_to_page(kiov[seg].iov_base);
  128. page_cache_get(pages[seg]);
  129. }
  130. return seg;
  131. }
  132. EXPORT_SYMBOL_GPL(get_kernel_pages);
  133. /*
  134. * get_kernel_page() - pin a kernel page in memory
  135. * @start: starting kernel address
  136. * @write: pinning for read/write, currently ignored
  137. * @pages: array that receives pointer to the page pinned.
  138. * Must be at least nr_segs long.
  139. *
  140. * Returns 1 if page is pinned. If the page was not pinned, returns
  141. * -errno. The page returned must be released with a put_page() call
  142. * when it is finished with.
  143. */
  144. int get_kernel_page(unsigned long start, int write, struct page **pages)
  145. {
  146. const struct kvec kiov = {
  147. .iov_base = (void *)start,
  148. .iov_len = PAGE_SIZE
  149. };
  150. return get_kernel_pages(&kiov, 1, write, pages);
  151. }
  152. EXPORT_SYMBOL_GPL(get_kernel_page);
  153. static void pagevec_lru_move_fn(struct pagevec *pvec,
  154. void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
  155. void *arg)
  156. {
  157. int i;
  158. struct zone *zone = NULL;
  159. struct lruvec *lruvec;
  160. unsigned long flags = 0;
  161. for (i = 0; i < pagevec_count(pvec); i++) {
  162. struct page *page = pvec->pages[i];
  163. struct zone *pagezone = page_zone(page);
  164. if (pagezone != zone) {
  165. if (zone)
  166. spin_unlock_irqrestore(&zone->lru_lock, flags);
  167. zone = pagezone;
  168. spin_lock_irqsave(&zone->lru_lock, flags);
  169. }
  170. lruvec = mem_cgroup_page_lruvec(page, zone);
  171. (*move_fn)(page, lruvec, arg);
  172. }
  173. if (zone)
  174. spin_unlock_irqrestore(&zone->lru_lock, flags);
  175. release_pages(pvec->pages, pvec->nr, pvec->cold);
  176. pagevec_reinit(pvec);
  177. }
  178. static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
  179. void *arg)
  180. {
  181. int *pgmoved = arg;
  182. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  183. enum lru_list lru = page_lru_base_type(page);
  184. list_move_tail(&page->lru, &lruvec->lists[lru]);
  185. (*pgmoved)++;
  186. }
  187. }
  188. /*
  189. * pagevec_move_tail() must be called with IRQ disabled.
  190. * Otherwise this may cause nasty races.
  191. */
  192. static void pagevec_move_tail(struct pagevec *pvec)
  193. {
  194. int pgmoved = 0;
  195. pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
  196. __count_vm_events(PGROTATED, pgmoved);
  197. }
  198. /*
  199. * Writeback is about to end against a page which has been marked for immediate
  200. * reclaim. If it still appears to be reclaimable, move it to the tail of the
  201. * inactive list.
  202. */
  203. void rotate_reclaimable_page(struct page *page)
  204. {
  205. if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
  206. !PageUnevictable(page) && PageLRU(page)) {
  207. struct pagevec *pvec;
  208. unsigned long flags;
  209. page_cache_get(page);
  210. local_irq_save(flags);
  211. pvec = this_cpu_ptr(&lru_rotate_pvecs);
  212. if (!pagevec_add(pvec, page))
  213. pagevec_move_tail(pvec);
  214. local_irq_restore(flags);
  215. }
  216. }
  217. static void update_page_reclaim_stat(struct lruvec *lruvec,
  218. int file, int rotated)
  219. {
  220. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  221. reclaim_stat->recent_scanned[file]++;
  222. if (rotated)
  223. reclaim_stat->recent_rotated[file]++;
  224. }
  225. static void __activate_page(struct page *page, struct lruvec *lruvec,
  226. void *arg)
  227. {
  228. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  229. int file = page_is_file_cache(page);
  230. int lru = page_lru_base_type(page);
  231. del_page_from_lru_list(page, lruvec, lru);
  232. SetPageActive(page);
  233. lru += LRU_ACTIVE;
  234. add_page_to_lru_list(page, lruvec, lru);
  235. trace_mm_lru_activate(page);
  236. __count_vm_event(PGACTIVATE);
  237. update_page_reclaim_stat(lruvec, file, 1);
  238. }
  239. }
  240. #ifdef CONFIG_SMP
  241. static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
  242. static void activate_page_drain(int cpu)
  243. {
  244. struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
  245. if (pagevec_count(pvec))
  246. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  247. }
  248. static bool need_activate_page_drain(int cpu)
  249. {
  250. return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
  251. }
  252. void activate_page(struct page *page)
  253. {
  254. if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
  255. struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
  256. page_cache_get(page);
  257. if (!pagevec_add(pvec, page))
  258. pagevec_lru_move_fn(pvec, __activate_page, NULL);
  259. put_cpu_var(activate_page_pvecs);
  260. }
  261. }
  262. #else
  263. static inline void activate_page_drain(int cpu)
  264. {
  265. }
  266. static bool need_activate_page_drain(int cpu)
  267. {
  268. return false;
  269. }
  270. void activate_page(struct page *page)
  271. {
  272. struct zone *zone = page_zone(page);
  273. spin_lock_irq(&zone->lru_lock);
  274. __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
  275. spin_unlock_irq(&zone->lru_lock);
  276. }
  277. #endif
  278. static void __lru_cache_activate_page(struct page *page)
  279. {
  280. struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
  281. int i;
  282. /*
  283. * Search backwards on the optimistic assumption that the page being
  284. * activated has just been added to this pagevec. Note that only
  285. * the local pagevec is examined as a !PageLRU page could be in the
  286. * process of being released, reclaimed, migrated or on a remote
  287. * pagevec that is currently being drained. Furthermore, marking
  288. * a remote pagevec's page PageActive potentially hits a race where
  289. * a page is marked PageActive just after it is added to the inactive
  290. * list causing accounting errors and BUG_ON checks to trigger.
  291. */
  292. for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
  293. struct page *pagevec_page = pvec->pages[i];
  294. if (pagevec_page == page) {
  295. SetPageActive(page);
  296. break;
  297. }
  298. }
  299. put_cpu_var(lru_add_pvec);
  300. }
  301. /*
  302. * Mark a page as having seen activity.
  303. *
  304. * inactive,unreferenced -> inactive,referenced
  305. * inactive,referenced -> active,unreferenced
  306. * active,unreferenced -> active,referenced
  307. *
  308. * When a newly allocated page is not yet visible, so safe for non-atomic ops,
  309. * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
  310. */
  311. void mark_page_accessed(struct page *page)
  312. {
  313. page = compound_head(page);
  314. if (!PageActive(page) && !PageUnevictable(page) &&
  315. PageReferenced(page)) {
  316. /*
  317. * If the page is on the LRU, queue it for activation via
  318. * activate_page_pvecs. Otherwise, assume the page is on a
  319. * pagevec, mark it active and it'll be moved to the active
  320. * LRU on the next drain.
  321. */
  322. if (PageLRU(page))
  323. activate_page(page);
  324. else
  325. __lru_cache_activate_page(page);
  326. ClearPageReferenced(page);
  327. if (page_is_file_cache(page))
  328. workingset_activation(page);
  329. } else if (!PageReferenced(page)) {
  330. SetPageReferenced(page);
  331. }
  332. if (page_is_idle(page))
  333. clear_page_idle(page);
  334. }
  335. EXPORT_SYMBOL(mark_page_accessed);
  336. static void __lru_cache_add(struct page *page)
  337. {
  338. struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
  339. page_cache_get(page);
  340. if (!pagevec_space(pvec))
  341. __pagevec_lru_add(pvec);
  342. pagevec_add(pvec, page);
  343. put_cpu_var(lru_add_pvec);
  344. }
  345. /**
  346. * lru_cache_add: add a page to the page lists
  347. * @page: the page to add
  348. */
  349. void lru_cache_add_anon(struct page *page)
  350. {
  351. if (PageActive(page))
  352. ClearPageActive(page);
  353. __lru_cache_add(page);
  354. }
  355. void lru_cache_add_file(struct page *page)
  356. {
  357. if (PageActive(page))
  358. ClearPageActive(page);
  359. __lru_cache_add(page);
  360. }
  361. EXPORT_SYMBOL(lru_cache_add_file);
  362. /**
  363. * lru_cache_add - add a page to a page list
  364. * @page: the page to be added to the LRU.
  365. *
  366. * Queue the page for addition to the LRU via pagevec. The decision on whether
  367. * to add the page to the [in]active [file|anon] list is deferred until the
  368. * pagevec is drained. This gives a chance for the caller of lru_cache_add()
  369. * have the page added to the active list using mark_page_accessed().
  370. */
  371. void lru_cache_add(struct page *page)
  372. {
  373. VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
  374. VM_BUG_ON_PAGE(PageLRU(page), page);
  375. __lru_cache_add(page);
  376. }
  377. /**
  378. * add_page_to_unevictable_list - add a page to the unevictable list
  379. * @page: the page to be added to the unevictable list
  380. *
  381. * Add page directly to its zone's unevictable list. To avoid races with
  382. * tasks that might be making the page evictable, through eg. munlock,
  383. * munmap or exit, while it's not on the lru, we want to add the page
  384. * while it's locked or otherwise "invisible" to other tasks. This is
  385. * difficult to do when using the pagevec cache, so bypass that.
  386. */
  387. void add_page_to_unevictable_list(struct page *page)
  388. {
  389. struct zone *zone = page_zone(page);
  390. struct lruvec *lruvec;
  391. spin_lock_irq(&zone->lru_lock);
  392. lruvec = mem_cgroup_page_lruvec(page, zone);
  393. ClearPageActive(page);
  394. SetPageUnevictable(page);
  395. SetPageLRU(page);
  396. add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
  397. spin_unlock_irq(&zone->lru_lock);
  398. }
  399. /**
  400. * lru_cache_add_active_or_unevictable
  401. * @page: the page to be added to LRU
  402. * @vma: vma in which page is mapped for determining reclaimability
  403. *
  404. * Place @page on the active or unevictable LRU list, depending on its
  405. * evictability. Note that if the page is not evictable, it goes
  406. * directly back onto it's zone's unevictable list, it does NOT use a
  407. * per cpu pagevec.
  408. */
  409. void lru_cache_add_active_or_unevictable(struct page *page,
  410. struct vm_area_struct *vma)
  411. {
  412. VM_BUG_ON_PAGE(PageLRU(page), page);
  413. if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
  414. SetPageActive(page);
  415. lru_cache_add(page);
  416. return;
  417. }
  418. if (!TestSetPageMlocked(page)) {
  419. /*
  420. * We use the irq-unsafe __mod_zone_page_stat because this
  421. * counter is not modified from interrupt context, and the pte
  422. * lock is held(spinlock), which implies preemption disabled.
  423. */
  424. __mod_zone_page_state(page_zone(page), NR_MLOCK,
  425. hpage_nr_pages(page));
  426. count_vm_event(UNEVICTABLE_PGMLOCKED);
  427. }
  428. add_page_to_unevictable_list(page);
  429. }
  430. /*
  431. * If the page can not be invalidated, it is moved to the
  432. * inactive list to speed up its reclaim. It is moved to the
  433. * head of the list, rather than the tail, to give the flusher
  434. * threads some time to write it out, as this is much more
  435. * effective than the single-page writeout from reclaim.
  436. *
  437. * If the page isn't page_mapped and dirty/writeback, the page
  438. * could reclaim asap using PG_reclaim.
  439. *
  440. * 1. active, mapped page -> none
  441. * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
  442. * 3. inactive, mapped page -> none
  443. * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
  444. * 5. inactive, clean -> inactive, tail
  445. * 6. Others -> none
  446. *
  447. * In 4, why it moves inactive's head, the VM expects the page would
  448. * be write it out by flusher threads as this is much more effective
  449. * than the single-page writeout from reclaim.
  450. */
  451. static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
  452. void *arg)
  453. {
  454. int lru, file;
  455. bool active;
  456. if (!PageLRU(page))
  457. return;
  458. if (PageUnevictable(page))
  459. return;
  460. /* Some processes are using the page */
  461. if (page_mapped(page))
  462. return;
  463. active = PageActive(page);
  464. file = page_is_file_cache(page);
  465. lru = page_lru_base_type(page);
  466. del_page_from_lru_list(page, lruvec, lru + active);
  467. ClearPageActive(page);
  468. ClearPageReferenced(page);
  469. add_page_to_lru_list(page, lruvec, lru);
  470. if (PageWriteback(page) || PageDirty(page)) {
  471. /*
  472. * PG_reclaim could be raced with end_page_writeback
  473. * It can make readahead confusing. But race window
  474. * is _really_ small and it's non-critical problem.
  475. */
  476. SetPageReclaim(page);
  477. } else {
  478. /*
  479. * The page's writeback ends up during pagevec
  480. * We moves tha page into tail of inactive.
  481. */
  482. list_move_tail(&page->lru, &lruvec->lists[lru]);
  483. __count_vm_event(PGROTATED);
  484. }
  485. if (active)
  486. __count_vm_event(PGDEACTIVATE);
  487. update_page_reclaim_stat(lruvec, file, 0);
  488. }
  489. static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
  490. void *arg)
  491. {
  492. if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
  493. int file = page_is_file_cache(page);
  494. int lru = page_lru_base_type(page);
  495. del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
  496. ClearPageActive(page);
  497. ClearPageReferenced(page);
  498. add_page_to_lru_list(page, lruvec, lru);
  499. __count_vm_event(PGDEACTIVATE);
  500. update_page_reclaim_stat(lruvec, file, 0);
  501. }
  502. }
  503. /*
  504. * Drain pages out of the cpu's pagevecs.
  505. * Either "cpu" is the current CPU, and preemption has already been
  506. * disabled; or "cpu" is being hot-unplugged, and is already dead.
  507. */
  508. void lru_add_drain_cpu(int cpu)
  509. {
  510. struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
  511. if (pagevec_count(pvec))
  512. __pagevec_lru_add(pvec);
  513. pvec = &per_cpu(lru_rotate_pvecs, cpu);
  514. if (pagevec_count(pvec)) {
  515. unsigned long flags;
  516. /* No harm done if a racing interrupt already did this */
  517. local_irq_save(flags);
  518. pagevec_move_tail(pvec);
  519. local_irq_restore(flags);
  520. }
  521. pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
  522. if (pagevec_count(pvec))
  523. pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
  524. pvec = &per_cpu(lru_deactivate_pvecs, cpu);
  525. if (pagevec_count(pvec))
  526. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  527. activate_page_drain(cpu);
  528. }
  529. /**
  530. * deactivate_file_page - forcefully deactivate a file page
  531. * @page: page to deactivate
  532. *
  533. * This function hints the VM that @page is a good reclaim candidate,
  534. * for example if its invalidation fails due to the page being dirty
  535. * or under writeback.
  536. */
  537. void deactivate_file_page(struct page *page)
  538. {
  539. /*
  540. * In a workload with many unevictable page such as mprotect,
  541. * unevictable page deactivation for accelerating reclaim is pointless.
  542. */
  543. if (PageUnevictable(page))
  544. return;
  545. if (likely(get_page_unless_zero(page))) {
  546. struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
  547. if (!pagevec_add(pvec, page))
  548. pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
  549. put_cpu_var(lru_deactivate_file_pvecs);
  550. }
  551. }
  552. /**
  553. * deactivate_page - deactivate a page
  554. * @page: page to deactivate
  555. *
  556. * deactivate_page() moves @page to the inactive list if @page was on the active
  557. * list and was not an unevictable page. This is done to accelerate the reclaim
  558. * of @page.
  559. */
  560. void deactivate_page(struct page *page)
  561. {
  562. if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
  563. struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
  564. page_cache_get(page);
  565. if (!pagevec_add(pvec, page))
  566. pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
  567. put_cpu_var(lru_deactivate_pvecs);
  568. }
  569. }
  570. void lru_add_drain(void)
  571. {
  572. lru_add_drain_cpu(get_cpu());
  573. put_cpu();
  574. }
  575. static void lru_add_drain_per_cpu(struct work_struct *dummy)
  576. {
  577. lru_add_drain();
  578. }
  579. static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
  580. void lru_add_drain_all(void)
  581. {
  582. static DEFINE_MUTEX(lock);
  583. static struct cpumask has_work;
  584. int cpu;
  585. mutex_lock(&lock);
  586. get_online_cpus();
  587. cpumask_clear(&has_work);
  588. for_each_online_cpu(cpu) {
  589. struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
  590. if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
  591. pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
  592. pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
  593. pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
  594. need_activate_page_drain(cpu)) {
  595. INIT_WORK(work, lru_add_drain_per_cpu);
  596. schedule_work_on(cpu, work);
  597. cpumask_set_cpu(cpu, &has_work);
  598. }
  599. }
  600. for_each_cpu(cpu, &has_work)
  601. flush_work(&per_cpu(lru_add_drain_work, cpu));
  602. put_online_cpus();
  603. mutex_unlock(&lock);
  604. }
  605. /**
  606. * release_pages - batched page_cache_release()
  607. * @pages: array of pages to release
  608. * @nr: number of pages
  609. * @cold: whether the pages are cache cold
  610. *
  611. * Decrement the reference count on all the pages in @pages. If it
  612. * fell to zero, remove the page from the LRU and free it.
  613. */
  614. void release_pages(struct page **pages, int nr, bool cold)
  615. {
  616. int i;
  617. LIST_HEAD(pages_to_free);
  618. struct zone *zone = NULL;
  619. struct lruvec *lruvec;
  620. unsigned long uninitialized_var(flags);
  621. unsigned int uninitialized_var(lock_batch);
  622. for (i = 0; i < nr; i++) {
  623. struct page *page = pages[i];
  624. /*
  625. * Make sure the IRQ-safe lock-holding time does not get
  626. * excessive with a continuous string of pages from the
  627. * same zone. The lock is held only if zone != NULL.
  628. */
  629. if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
  630. spin_unlock_irqrestore(&zone->lru_lock, flags);
  631. zone = NULL;
  632. }
  633. page = compound_head(page);
  634. if (!put_page_testzero(page))
  635. continue;
  636. if (PageCompound(page)) {
  637. if (zone) {
  638. spin_unlock_irqrestore(&zone->lru_lock, flags);
  639. zone = NULL;
  640. }
  641. __put_compound_page(page);
  642. continue;
  643. }
  644. if (PageLRU(page)) {
  645. struct zone *pagezone = page_zone(page);
  646. if (pagezone != zone) {
  647. if (zone)
  648. spin_unlock_irqrestore(&zone->lru_lock,
  649. flags);
  650. lock_batch = 0;
  651. zone = pagezone;
  652. spin_lock_irqsave(&zone->lru_lock, flags);
  653. }
  654. lruvec = mem_cgroup_page_lruvec(page, zone);
  655. VM_BUG_ON_PAGE(!PageLRU(page), page);
  656. __ClearPageLRU(page);
  657. del_page_from_lru_list(page, lruvec, page_off_lru(page));
  658. }
  659. /* Clear Active bit in case of parallel mark_page_accessed */
  660. __ClearPageActive(page);
  661. list_add(&page->lru, &pages_to_free);
  662. }
  663. if (zone)
  664. spin_unlock_irqrestore(&zone->lru_lock, flags);
  665. mem_cgroup_uncharge_list(&pages_to_free);
  666. free_hot_cold_page_list(&pages_to_free, cold);
  667. }
  668. EXPORT_SYMBOL(release_pages);
  669. /*
  670. * The pages which we're about to release may be in the deferred lru-addition
  671. * queues. That would prevent them from really being freed right now. That's
  672. * OK from a correctness point of view but is inefficient - those pages may be
  673. * cache-warm and we want to give them back to the page allocator ASAP.
  674. *
  675. * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
  676. * and __pagevec_lru_add_active() call release_pages() directly to avoid
  677. * mutual recursion.
  678. */
  679. void __pagevec_release(struct pagevec *pvec)
  680. {
  681. lru_add_drain();
  682. release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
  683. pagevec_reinit(pvec);
  684. }
  685. EXPORT_SYMBOL(__pagevec_release);
  686. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  687. /* used by __split_huge_page_refcount() */
  688. void lru_add_page_tail(struct page *page, struct page *page_tail,
  689. struct lruvec *lruvec, struct list_head *list)
  690. {
  691. const int file = 0;
  692. VM_BUG_ON_PAGE(!PageHead(page), page);
  693. VM_BUG_ON_PAGE(PageCompound(page_tail), page);
  694. VM_BUG_ON_PAGE(PageLRU(page_tail), page);
  695. VM_BUG_ON(NR_CPUS != 1 &&
  696. !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
  697. if (!list)
  698. SetPageLRU(page_tail);
  699. if (likely(PageLRU(page)))
  700. list_add_tail(&page_tail->lru, &page->lru);
  701. else if (list) {
  702. /* page reclaim is reclaiming a huge page */
  703. get_page(page_tail);
  704. list_add_tail(&page_tail->lru, list);
  705. } else {
  706. struct list_head *list_head;
  707. /*
  708. * Head page has not yet been counted, as an hpage,
  709. * so we must account for each subpage individually.
  710. *
  711. * Use the standard add function to put page_tail on the list,
  712. * but then correct its position so they all end up in order.
  713. */
  714. add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
  715. list_head = page_tail->lru.prev;
  716. list_move_tail(&page_tail->lru, list_head);
  717. }
  718. if (!PageUnevictable(page))
  719. update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
  720. }
  721. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  722. static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
  723. void *arg)
  724. {
  725. int file = page_is_file_cache(page);
  726. int active = PageActive(page);
  727. enum lru_list lru = page_lru(page);
  728. VM_BUG_ON_PAGE(PageLRU(page), page);
  729. SetPageLRU(page);
  730. add_page_to_lru_list(page, lruvec, lru);
  731. update_page_reclaim_stat(lruvec, file, active);
  732. trace_mm_lru_insertion(page, lru);
  733. }
  734. /*
  735. * Add the passed pages to the LRU, then drop the caller's refcount
  736. * on them. Reinitialises the caller's pagevec.
  737. */
  738. void __pagevec_lru_add(struct pagevec *pvec)
  739. {
  740. pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
  741. }
  742. EXPORT_SYMBOL(__pagevec_lru_add);
  743. /**
  744. * pagevec_lookup_entries - gang pagecache lookup
  745. * @pvec: Where the resulting entries are placed
  746. * @mapping: The address_space to search
  747. * @start: The starting entry index
  748. * @nr_entries: The maximum number of entries
  749. * @indices: The cache indices corresponding to the entries in @pvec
  750. *
  751. * pagevec_lookup_entries() will search for and return a group of up
  752. * to @nr_entries pages and shadow entries in the mapping. All
  753. * entries are placed in @pvec. pagevec_lookup_entries() takes a
  754. * reference against actual pages in @pvec.
  755. *
  756. * The search returns a group of mapping-contiguous entries with
  757. * ascending indexes. There may be holes in the indices due to
  758. * not-present entries.
  759. *
  760. * pagevec_lookup_entries() returns the number of entries which were
  761. * found.
  762. */
  763. unsigned pagevec_lookup_entries(struct pagevec *pvec,
  764. struct address_space *mapping,
  765. pgoff_t start, unsigned nr_pages,
  766. pgoff_t *indices)
  767. {
  768. pvec->nr = find_get_entries(mapping, start, nr_pages,
  769. pvec->pages, indices);
  770. return pagevec_count(pvec);
  771. }
  772. /**
  773. * pagevec_remove_exceptionals - pagevec exceptionals pruning
  774. * @pvec: The pagevec to prune
  775. *
  776. * pagevec_lookup_entries() fills both pages and exceptional radix
  777. * tree entries into the pagevec. This function prunes all
  778. * exceptionals from @pvec without leaving holes, so that it can be
  779. * passed on to page-only pagevec operations.
  780. */
  781. void pagevec_remove_exceptionals(struct pagevec *pvec)
  782. {
  783. int i, j;
  784. for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
  785. struct page *page = pvec->pages[i];
  786. if (!radix_tree_exceptional_entry(page))
  787. pvec->pages[j++] = page;
  788. }
  789. pvec->nr = j;
  790. }
  791. /**
  792. * pagevec_lookup - gang pagecache lookup
  793. * @pvec: Where the resulting pages are placed
  794. * @mapping: The address_space to search
  795. * @start: The starting page index
  796. * @nr_pages: The maximum number of pages
  797. *
  798. * pagevec_lookup() will search for and return a group of up to @nr_pages pages
  799. * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
  800. * reference against the pages in @pvec.
  801. *
  802. * The search returns a group of mapping-contiguous pages with ascending
  803. * indexes. There may be holes in the indices due to not-present pages.
  804. *
  805. * pagevec_lookup() returns the number of pages which were found.
  806. */
  807. unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
  808. pgoff_t start, unsigned nr_pages)
  809. {
  810. pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
  811. return pagevec_count(pvec);
  812. }
  813. EXPORT_SYMBOL(pagevec_lookup);
  814. unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
  815. pgoff_t *index, int tag, unsigned nr_pages)
  816. {
  817. pvec->nr = find_get_pages_tag(mapping, index, tag,
  818. nr_pages, pvec->pages);
  819. return pagevec_count(pvec);
  820. }
  821. EXPORT_SYMBOL(pagevec_lookup_tag);
  822. /*
  823. * Perform any setup for the swap system
  824. */
  825. void __init swap_setup(void)
  826. {
  827. unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
  828. #ifdef CONFIG_SWAP
  829. int i;
  830. for (i = 0; i < MAX_SWAPFILES; i++)
  831. spin_lock_init(&swapper_spaces[i].tree_lock);
  832. #endif
  833. /* Use a smaller cluster for small-memory machines */
  834. if (megs < 16)
  835. page_cluster = 2;
  836. else
  837. page_cluster = 3;
  838. /*
  839. * Right now other parts of the system means that we
  840. * _really_ don't want to cluster much more
  841. */
  842. }