memory.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <asm/io.h>
  62. #include <asm/pgalloc.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/tlb.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/pgtable.h>
  67. #include "internal.h"
  68. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  69. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  70. #endif
  71. #ifndef CONFIG_NEED_MULTIPLE_NODES
  72. /* use the per-pgdat data instead for discontigmem - mbligh */
  73. unsigned long max_mapnr;
  74. struct page *mem_map;
  75. EXPORT_SYMBOL(max_mapnr);
  76. EXPORT_SYMBOL(mem_map);
  77. #endif
  78. /*
  79. * A number of key systems in x86 including ioremap() rely on the assumption
  80. * that high_memory defines the upper bound on direct map memory, then end
  81. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  82. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  83. * and ZONE_HIGHMEM.
  84. */
  85. void * high_memory;
  86. EXPORT_SYMBOL(high_memory);
  87. /*
  88. * Randomize the address space (stacks, mmaps, brk, etc.).
  89. *
  90. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  91. * as ancient (libc5 based) binaries can segfault. )
  92. */
  93. int randomize_va_space __read_mostly =
  94. #ifdef CONFIG_COMPAT_BRK
  95. 1;
  96. #else
  97. 2;
  98. #endif
  99. static int __init disable_randmaps(char *s)
  100. {
  101. randomize_va_space = 0;
  102. return 1;
  103. }
  104. __setup("norandmaps", disable_randmaps);
  105. unsigned long zero_pfn __read_mostly;
  106. unsigned long highest_memmap_pfn __read_mostly;
  107. EXPORT_SYMBOL(zero_pfn);
  108. /*
  109. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  110. */
  111. static int __init init_zero_pfn(void)
  112. {
  113. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  114. return 0;
  115. }
  116. core_initcall(init_zero_pfn);
  117. #if defined(SPLIT_RSS_COUNTING)
  118. void sync_mm_rss(struct mm_struct *mm)
  119. {
  120. int i;
  121. for (i = 0; i < NR_MM_COUNTERS; i++) {
  122. if (current->rss_stat.count[i]) {
  123. add_mm_counter(mm, i, current->rss_stat.count[i]);
  124. current->rss_stat.count[i] = 0;
  125. }
  126. }
  127. current->rss_stat.events = 0;
  128. }
  129. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  130. {
  131. struct task_struct *task = current;
  132. if (likely(task->mm == mm))
  133. task->rss_stat.count[member] += val;
  134. else
  135. add_mm_counter(mm, member, val);
  136. }
  137. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  138. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  139. /* sync counter once per 64 page faults */
  140. #define TASK_RSS_EVENTS_THRESH (64)
  141. static void check_sync_rss_stat(struct task_struct *task)
  142. {
  143. if (unlikely(task != current))
  144. return;
  145. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  146. sync_mm_rss(task->mm);
  147. }
  148. #else /* SPLIT_RSS_COUNTING */
  149. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  150. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  151. static void check_sync_rss_stat(struct task_struct *task)
  152. {
  153. }
  154. #endif /* SPLIT_RSS_COUNTING */
  155. #ifdef HAVE_GENERIC_MMU_GATHER
  156. static bool tlb_next_batch(struct mmu_gather *tlb)
  157. {
  158. struct mmu_gather_batch *batch;
  159. batch = tlb->active;
  160. if (batch->next) {
  161. tlb->active = batch->next;
  162. return true;
  163. }
  164. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  165. return false;
  166. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  167. if (!batch)
  168. return false;
  169. tlb->batch_count++;
  170. batch->next = NULL;
  171. batch->nr = 0;
  172. batch->max = MAX_GATHER_BATCH;
  173. tlb->active->next = batch;
  174. tlb->active = batch;
  175. return true;
  176. }
  177. /* tlb_gather_mmu
  178. * Called to initialize an (on-stack) mmu_gather structure for page-table
  179. * tear-down from @mm. The @fullmm argument is used when @mm is without
  180. * users and we're going to destroy the full address space (exit/execve).
  181. */
  182. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  183. {
  184. tlb->mm = mm;
  185. /* Is it from 0 to ~0? */
  186. tlb->fullmm = !(start | (end+1));
  187. tlb->need_flush_all = 0;
  188. tlb->local.next = NULL;
  189. tlb->local.nr = 0;
  190. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  191. tlb->active = &tlb->local;
  192. tlb->batch_count = 0;
  193. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  194. tlb->batch = NULL;
  195. #endif
  196. __tlb_reset_range(tlb);
  197. }
  198. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  199. {
  200. if (!tlb->end)
  201. return;
  202. tlb_flush(tlb);
  203. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  204. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  205. tlb_table_flush(tlb);
  206. #endif
  207. __tlb_reset_range(tlb);
  208. }
  209. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  210. {
  211. struct mmu_gather_batch *batch;
  212. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  213. free_pages_and_swap_cache(batch->pages, batch->nr);
  214. batch->nr = 0;
  215. }
  216. tlb->active = &tlb->local;
  217. }
  218. void tlb_flush_mmu(struct mmu_gather *tlb)
  219. {
  220. tlb_flush_mmu_tlbonly(tlb);
  221. tlb_flush_mmu_free(tlb);
  222. }
  223. /* tlb_finish_mmu
  224. * Called at the end of the shootdown operation to free up any resources
  225. * that were required.
  226. */
  227. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  228. {
  229. struct mmu_gather_batch *batch, *next;
  230. tlb_flush_mmu(tlb);
  231. /* keep the page table cache within bounds */
  232. check_pgt_cache();
  233. for (batch = tlb->local.next; batch; batch = next) {
  234. next = batch->next;
  235. free_pages((unsigned long)batch, 0);
  236. }
  237. tlb->local.next = NULL;
  238. }
  239. /* __tlb_remove_page
  240. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  241. * handling the additional races in SMP caused by other CPUs caching valid
  242. * mappings in their TLBs. Returns the number of free page slots left.
  243. * When out of page slots we must call tlb_flush_mmu().
  244. */
  245. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  246. {
  247. struct mmu_gather_batch *batch;
  248. VM_BUG_ON(!tlb->end);
  249. batch = tlb->active;
  250. batch->pages[batch->nr++] = page;
  251. if (batch->nr == batch->max) {
  252. if (!tlb_next_batch(tlb))
  253. return 0;
  254. batch = tlb->active;
  255. }
  256. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  257. return batch->max - batch->nr;
  258. }
  259. #endif /* HAVE_GENERIC_MMU_GATHER */
  260. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  261. /*
  262. * See the comment near struct mmu_table_batch.
  263. */
  264. static void tlb_remove_table_smp_sync(void *arg)
  265. {
  266. /* Simply deliver the interrupt */
  267. }
  268. static void tlb_remove_table_one(void *table)
  269. {
  270. /*
  271. * This isn't an RCU grace period and hence the page-tables cannot be
  272. * assumed to be actually RCU-freed.
  273. *
  274. * It is however sufficient for software page-table walkers that rely on
  275. * IRQ disabling. See the comment near struct mmu_table_batch.
  276. */
  277. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  278. __tlb_remove_table(table);
  279. }
  280. static void tlb_remove_table_rcu(struct rcu_head *head)
  281. {
  282. struct mmu_table_batch *batch;
  283. int i;
  284. batch = container_of(head, struct mmu_table_batch, rcu);
  285. for (i = 0; i < batch->nr; i++)
  286. __tlb_remove_table(batch->tables[i]);
  287. free_page((unsigned long)batch);
  288. }
  289. void tlb_table_flush(struct mmu_gather *tlb)
  290. {
  291. struct mmu_table_batch **batch = &tlb->batch;
  292. if (*batch) {
  293. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  294. *batch = NULL;
  295. }
  296. }
  297. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  298. {
  299. struct mmu_table_batch **batch = &tlb->batch;
  300. /*
  301. * When there's less then two users of this mm there cannot be a
  302. * concurrent page-table walk.
  303. */
  304. if (atomic_read(&tlb->mm->mm_users) < 2) {
  305. __tlb_remove_table(table);
  306. return;
  307. }
  308. if (*batch == NULL) {
  309. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  310. if (*batch == NULL) {
  311. tlb_remove_table_one(table);
  312. return;
  313. }
  314. (*batch)->nr = 0;
  315. }
  316. (*batch)->tables[(*batch)->nr++] = table;
  317. if ((*batch)->nr == MAX_TABLE_BATCH)
  318. tlb_table_flush(tlb);
  319. }
  320. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  321. /*
  322. * Note: this doesn't free the actual pages themselves. That
  323. * has been handled earlier when unmapping all the memory regions.
  324. */
  325. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  326. unsigned long addr)
  327. {
  328. pgtable_t token = pmd_pgtable(*pmd);
  329. pmd_clear(pmd);
  330. pte_free_tlb(tlb, token, addr);
  331. atomic_long_dec(&tlb->mm->nr_ptes);
  332. }
  333. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  334. unsigned long addr, unsigned long end,
  335. unsigned long floor, unsigned long ceiling)
  336. {
  337. pmd_t *pmd;
  338. unsigned long next;
  339. unsigned long start;
  340. start = addr;
  341. pmd = pmd_offset(pud, addr);
  342. do {
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none_or_clear_bad(pmd))
  345. continue;
  346. free_pte_range(tlb, pmd, addr);
  347. } while (pmd++, addr = next, addr != end);
  348. start &= PUD_MASK;
  349. if (start < floor)
  350. return;
  351. if (ceiling) {
  352. ceiling &= PUD_MASK;
  353. if (!ceiling)
  354. return;
  355. }
  356. if (end - 1 > ceiling - 1)
  357. return;
  358. pmd = pmd_offset(pud, start);
  359. pud_clear(pud);
  360. pmd_free_tlb(tlb, pmd, start);
  361. mm_dec_nr_pmds(tlb->mm);
  362. }
  363. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  364. unsigned long addr, unsigned long end,
  365. unsigned long floor, unsigned long ceiling)
  366. {
  367. pud_t *pud;
  368. unsigned long next;
  369. unsigned long start;
  370. start = addr;
  371. pud = pud_offset(pgd, addr);
  372. do {
  373. next = pud_addr_end(addr, end);
  374. if (pud_none_or_clear_bad(pud))
  375. continue;
  376. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  377. } while (pud++, addr = next, addr != end);
  378. start &= PGDIR_MASK;
  379. if (start < floor)
  380. return;
  381. if (ceiling) {
  382. ceiling &= PGDIR_MASK;
  383. if (!ceiling)
  384. return;
  385. }
  386. if (end - 1 > ceiling - 1)
  387. return;
  388. pud = pud_offset(pgd, start);
  389. pgd_clear(pgd);
  390. pud_free_tlb(tlb, pud, start);
  391. }
  392. /*
  393. * This function frees user-level page tables of a process.
  394. */
  395. void free_pgd_range(struct mmu_gather *tlb,
  396. unsigned long addr, unsigned long end,
  397. unsigned long floor, unsigned long ceiling)
  398. {
  399. pgd_t *pgd;
  400. unsigned long next;
  401. /*
  402. * The next few lines have given us lots of grief...
  403. *
  404. * Why are we testing PMD* at this top level? Because often
  405. * there will be no work to do at all, and we'd prefer not to
  406. * go all the way down to the bottom just to discover that.
  407. *
  408. * Why all these "- 1"s? Because 0 represents both the bottom
  409. * of the address space and the top of it (using -1 for the
  410. * top wouldn't help much: the masks would do the wrong thing).
  411. * The rule is that addr 0 and floor 0 refer to the bottom of
  412. * the address space, but end 0 and ceiling 0 refer to the top
  413. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  414. * that end 0 case should be mythical).
  415. *
  416. * Wherever addr is brought up or ceiling brought down, we must
  417. * be careful to reject "the opposite 0" before it confuses the
  418. * subsequent tests. But what about where end is brought down
  419. * by PMD_SIZE below? no, end can't go down to 0 there.
  420. *
  421. * Whereas we round start (addr) and ceiling down, by different
  422. * masks at different levels, in order to test whether a table
  423. * now has no other vmas using it, so can be freed, we don't
  424. * bother to round floor or end up - the tests don't need that.
  425. */
  426. addr &= PMD_MASK;
  427. if (addr < floor) {
  428. addr += PMD_SIZE;
  429. if (!addr)
  430. return;
  431. }
  432. if (ceiling) {
  433. ceiling &= PMD_MASK;
  434. if (!ceiling)
  435. return;
  436. }
  437. if (end - 1 > ceiling - 1)
  438. end -= PMD_SIZE;
  439. if (addr > end - 1)
  440. return;
  441. pgd = pgd_offset(tlb->mm, addr);
  442. do {
  443. next = pgd_addr_end(addr, end);
  444. if (pgd_none_or_clear_bad(pgd))
  445. continue;
  446. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  447. } while (pgd++, addr = next, addr != end);
  448. }
  449. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  450. unsigned long floor, unsigned long ceiling)
  451. {
  452. while (vma) {
  453. struct vm_area_struct *next = vma->vm_next;
  454. unsigned long addr = vma->vm_start;
  455. /*
  456. * Hide vma from rmap and truncate_pagecache before freeing
  457. * pgtables
  458. */
  459. unlink_anon_vmas(vma);
  460. unlink_file_vma(vma);
  461. if (is_vm_hugetlb_page(vma)) {
  462. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  463. floor, next? next->vm_start: ceiling);
  464. } else {
  465. /*
  466. * Optimization: gather nearby vmas into one call down
  467. */
  468. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  469. && !is_vm_hugetlb_page(next)) {
  470. vma = next;
  471. next = vma->vm_next;
  472. unlink_anon_vmas(vma);
  473. unlink_file_vma(vma);
  474. }
  475. free_pgd_range(tlb, addr, vma->vm_end,
  476. floor, next? next->vm_start: ceiling);
  477. }
  478. vma = next;
  479. }
  480. }
  481. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  482. pmd_t *pmd, unsigned long address)
  483. {
  484. spinlock_t *ptl;
  485. pgtable_t new = pte_alloc_one(mm, address);
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  504. atomic_long_inc(&mm->nr_ptes);
  505. pmd_populate(mm, pmd, new);
  506. new = NULL;
  507. }
  508. spin_unlock(ptl);
  509. if (new)
  510. pte_free(mm, new);
  511. return 0;
  512. }
  513. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  514. {
  515. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  516. if (!new)
  517. return -ENOMEM;
  518. smp_wmb(); /* See comment in __pte_alloc */
  519. spin_lock(&init_mm.page_table_lock);
  520. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  521. pmd_populate_kernel(&init_mm, pmd, new);
  522. new = NULL;
  523. }
  524. spin_unlock(&init_mm.page_table_lock);
  525. if (new)
  526. pte_free_kernel(&init_mm, new);
  527. return 0;
  528. }
  529. static inline void init_rss_vec(int *rss)
  530. {
  531. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  532. }
  533. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  534. {
  535. int i;
  536. if (current->mm == mm)
  537. sync_mm_rss(mm);
  538. for (i = 0; i < NR_MM_COUNTERS; i++)
  539. if (rss[i])
  540. add_mm_counter(mm, i, rss[i]);
  541. }
  542. /*
  543. * This function is called to print an error when a bad pte
  544. * is found. For example, we might have a PFN-mapped pte in
  545. * a region that doesn't allow it.
  546. *
  547. * The calling function must still handle the error.
  548. */
  549. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  550. pte_t pte, struct page *page)
  551. {
  552. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  553. pud_t *pud = pud_offset(pgd, addr);
  554. pmd_t *pmd = pmd_offset(pud, addr);
  555. struct address_space *mapping;
  556. pgoff_t index;
  557. static unsigned long resume;
  558. static unsigned long nr_shown;
  559. static unsigned long nr_unshown;
  560. /*
  561. * Allow a burst of 60 reports, then keep quiet for that minute;
  562. * or allow a steady drip of one report per second.
  563. */
  564. if (nr_shown == 60) {
  565. if (time_before(jiffies, resume)) {
  566. nr_unshown++;
  567. return;
  568. }
  569. if (nr_unshown) {
  570. printk(KERN_ALERT
  571. "BUG: Bad page map: %lu messages suppressed\n",
  572. nr_unshown);
  573. nr_unshown = 0;
  574. }
  575. nr_shown = 0;
  576. }
  577. if (nr_shown++ == 0)
  578. resume = jiffies + 60 * HZ;
  579. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  580. index = linear_page_index(vma, addr);
  581. printk(KERN_ALERT
  582. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  583. current->comm,
  584. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  585. if (page)
  586. dump_page(page, "bad pte");
  587. printk(KERN_ALERT
  588. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  589. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  590. /*
  591. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  592. */
  593. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  594. vma->vm_file,
  595. vma->vm_ops ? vma->vm_ops->fault : NULL,
  596. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  597. mapping ? mapping->a_ops->readpage : NULL);
  598. dump_stack();
  599. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  600. }
  601. /*
  602. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  603. *
  604. * "Special" mappings do not wish to be associated with a "struct page" (either
  605. * it doesn't exist, or it exists but they don't want to touch it). In this
  606. * case, NULL is returned here. "Normal" mappings do have a struct page.
  607. *
  608. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  609. * pte bit, in which case this function is trivial. Secondly, an architecture
  610. * may not have a spare pte bit, which requires a more complicated scheme,
  611. * described below.
  612. *
  613. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  614. * special mapping (even if there are underlying and valid "struct pages").
  615. * COWed pages of a VM_PFNMAP are always normal.
  616. *
  617. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  618. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  619. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  620. * mapping will always honor the rule
  621. *
  622. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  623. *
  624. * And for normal mappings this is false.
  625. *
  626. * This restricts such mappings to be a linear translation from virtual address
  627. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  628. * as the vma is not a COW mapping; in that case, we know that all ptes are
  629. * special (because none can have been COWed).
  630. *
  631. *
  632. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  633. *
  634. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  635. * page" backing, however the difference is that _all_ pages with a struct
  636. * page (that is, those where pfn_valid is true) are refcounted and considered
  637. * normal pages by the VM. The disadvantage is that pages are refcounted
  638. * (which can be slower and simply not an option for some PFNMAP users). The
  639. * advantage is that we don't have to follow the strict linearity rule of
  640. * PFNMAP mappings in order to support COWable mappings.
  641. *
  642. */
  643. #ifdef __HAVE_ARCH_PTE_SPECIAL
  644. # define HAVE_PTE_SPECIAL 1
  645. #else
  646. # define HAVE_PTE_SPECIAL 0
  647. #endif
  648. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  649. pte_t pte)
  650. {
  651. unsigned long pfn = pte_pfn(pte);
  652. if (HAVE_PTE_SPECIAL) {
  653. if (likely(!pte_special(pte)))
  654. goto check_pfn;
  655. if (vma->vm_ops && vma->vm_ops->find_special_page)
  656. return vma->vm_ops->find_special_page(vma, addr);
  657. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  658. return NULL;
  659. if (!is_zero_pfn(pfn))
  660. print_bad_pte(vma, addr, pte, NULL);
  661. return NULL;
  662. }
  663. /* !HAVE_PTE_SPECIAL case follows: */
  664. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  665. if (vma->vm_flags & VM_MIXEDMAP) {
  666. if (!pfn_valid(pfn))
  667. return NULL;
  668. goto out;
  669. } else {
  670. unsigned long off;
  671. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  672. if (pfn == vma->vm_pgoff + off)
  673. return NULL;
  674. if (!is_cow_mapping(vma->vm_flags))
  675. return NULL;
  676. }
  677. }
  678. if (is_zero_pfn(pfn))
  679. return NULL;
  680. check_pfn:
  681. if (unlikely(pfn > highest_memmap_pfn)) {
  682. print_bad_pte(vma, addr, pte, NULL);
  683. return NULL;
  684. }
  685. /*
  686. * NOTE! We still have PageReserved() pages in the page tables.
  687. * eg. VDSO mappings can cause them to exist.
  688. */
  689. out:
  690. return pfn_to_page(pfn);
  691. }
  692. /*
  693. * copy one vm_area from one task to the other. Assumes the page tables
  694. * already present in the new task to be cleared in the whole range
  695. * covered by this vma.
  696. */
  697. static inline unsigned long
  698. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  699. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  700. unsigned long addr, int *rss)
  701. {
  702. unsigned long vm_flags = vma->vm_flags;
  703. pte_t pte = *src_pte;
  704. struct page *page;
  705. /* pte contains position in swap or file, so copy. */
  706. if (unlikely(!pte_present(pte))) {
  707. swp_entry_t entry = pte_to_swp_entry(pte);
  708. if (likely(!non_swap_entry(entry))) {
  709. if (swap_duplicate(entry) < 0)
  710. return entry.val;
  711. /* make sure dst_mm is on swapoff's mmlist. */
  712. if (unlikely(list_empty(&dst_mm->mmlist))) {
  713. spin_lock(&mmlist_lock);
  714. if (list_empty(&dst_mm->mmlist))
  715. list_add(&dst_mm->mmlist,
  716. &src_mm->mmlist);
  717. spin_unlock(&mmlist_lock);
  718. }
  719. rss[MM_SWAPENTS]++;
  720. } else if (is_migration_entry(entry)) {
  721. page = migration_entry_to_page(entry);
  722. rss[mm_counter(page)]++;
  723. if (is_write_migration_entry(entry) &&
  724. is_cow_mapping(vm_flags)) {
  725. /*
  726. * COW mappings require pages in both
  727. * parent and child to be set to read.
  728. */
  729. make_migration_entry_read(&entry);
  730. pte = swp_entry_to_pte(entry);
  731. if (pte_swp_soft_dirty(*src_pte))
  732. pte = pte_swp_mksoft_dirty(pte);
  733. set_pte_at(src_mm, addr, src_pte, pte);
  734. }
  735. }
  736. goto out_set_pte;
  737. }
  738. /*
  739. * If it's a COW mapping, write protect it both
  740. * in the parent and the child
  741. */
  742. if (is_cow_mapping(vm_flags)) {
  743. ptep_set_wrprotect(src_mm, addr, src_pte);
  744. pte = pte_wrprotect(pte);
  745. }
  746. /*
  747. * If it's a shared mapping, mark it clean in
  748. * the child
  749. */
  750. if (vm_flags & VM_SHARED)
  751. pte = pte_mkclean(pte);
  752. pte = pte_mkold(pte);
  753. page = vm_normal_page(vma, addr, pte);
  754. if (page) {
  755. get_page(page);
  756. page_dup_rmap(page, false);
  757. rss[mm_counter(page)]++;
  758. }
  759. out_set_pte:
  760. set_pte_at(dst_mm, addr, dst_pte, pte);
  761. return 0;
  762. }
  763. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  764. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  765. unsigned long addr, unsigned long end)
  766. {
  767. pte_t *orig_src_pte, *orig_dst_pte;
  768. pte_t *src_pte, *dst_pte;
  769. spinlock_t *src_ptl, *dst_ptl;
  770. int progress = 0;
  771. int rss[NR_MM_COUNTERS];
  772. swp_entry_t entry = (swp_entry_t){0};
  773. again:
  774. init_rss_vec(rss);
  775. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  776. if (!dst_pte)
  777. return -ENOMEM;
  778. src_pte = pte_offset_map(src_pmd, addr);
  779. src_ptl = pte_lockptr(src_mm, src_pmd);
  780. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  781. orig_src_pte = src_pte;
  782. orig_dst_pte = dst_pte;
  783. arch_enter_lazy_mmu_mode();
  784. do {
  785. /*
  786. * We are holding two locks at this point - either of them
  787. * could generate latencies in another task on another CPU.
  788. */
  789. if (progress >= 32) {
  790. progress = 0;
  791. if (need_resched() ||
  792. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  793. break;
  794. }
  795. if (pte_none(*src_pte)) {
  796. progress++;
  797. continue;
  798. }
  799. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  800. vma, addr, rss);
  801. if (entry.val)
  802. break;
  803. progress += 8;
  804. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  805. arch_leave_lazy_mmu_mode();
  806. spin_unlock(src_ptl);
  807. pte_unmap(orig_src_pte);
  808. add_mm_rss_vec(dst_mm, rss);
  809. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  810. cond_resched();
  811. if (entry.val) {
  812. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  813. return -ENOMEM;
  814. progress = 0;
  815. }
  816. if (addr != end)
  817. goto again;
  818. return 0;
  819. }
  820. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  821. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  822. unsigned long addr, unsigned long end)
  823. {
  824. pmd_t *src_pmd, *dst_pmd;
  825. unsigned long next;
  826. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  827. if (!dst_pmd)
  828. return -ENOMEM;
  829. src_pmd = pmd_offset(src_pud, addr);
  830. do {
  831. next = pmd_addr_end(addr, end);
  832. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  833. int err;
  834. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  835. err = copy_huge_pmd(dst_mm, src_mm,
  836. dst_pmd, src_pmd, addr, vma);
  837. if (err == -ENOMEM)
  838. return -ENOMEM;
  839. if (!err)
  840. continue;
  841. /* fall through */
  842. }
  843. if (pmd_none_or_clear_bad(src_pmd))
  844. continue;
  845. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  846. vma, addr, next))
  847. return -ENOMEM;
  848. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  849. return 0;
  850. }
  851. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  852. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  853. unsigned long addr, unsigned long end)
  854. {
  855. pud_t *src_pud, *dst_pud;
  856. unsigned long next;
  857. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  858. if (!dst_pud)
  859. return -ENOMEM;
  860. src_pud = pud_offset(src_pgd, addr);
  861. do {
  862. next = pud_addr_end(addr, end);
  863. if (pud_none_or_clear_bad(src_pud))
  864. continue;
  865. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  866. vma, addr, next))
  867. return -ENOMEM;
  868. } while (dst_pud++, src_pud++, addr = next, addr != end);
  869. return 0;
  870. }
  871. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  872. struct vm_area_struct *vma)
  873. {
  874. pgd_t *src_pgd, *dst_pgd;
  875. unsigned long next;
  876. unsigned long addr = vma->vm_start;
  877. unsigned long end = vma->vm_end;
  878. unsigned long mmun_start; /* For mmu_notifiers */
  879. unsigned long mmun_end; /* For mmu_notifiers */
  880. bool is_cow;
  881. int ret;
  882. /*
  883. * Don't copy ptes where a page fault will fill them correctly.
  884. * Fork becomes much lighter when there are big shared or private
  885. * readonly mappings. The tradeoff is that copy_page_range is more
  886. * efficient than faulting.
  887. */
  888. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  889. !vma->anon_vma)
  890. return 0;
  891. if (is_vm_hugetlb_page(vma))
  892. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  893. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  894. /*
  895. * We do not free on error cases below as remove_vma
  896. * gets called on error from higher level routine
  897. */
  898. ret = track_pfn_copy(vma);
  899. if (ret)
  900. return ret;
  901. }
  902. /*
  903. * We need to invalidate the secondary MMU mappings only when
  904. * there could be a permission downgrade on the ptes of the
  905. * parent mm. And a permission downgrade will only happen if
  906. * is_cow_mapping() returns true.
  907. */
  908. is_cow = is_cow_mapping(vma->vm_flags);
  909. mmun_start = addr;
  910. mmun_end = end;
  911. if (is_cow)
  912. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  913. mmun_end);
  914. ret = 0;
  915. dst_pgd = pgd_offset(dst_mm, addr);
  916. src_pgd = pgd_offset(src_mm, addr);
  917. do {
  918. next = pgd_addr_end(addr, end);
  919. if (pgd_none_or_clear_bad(src_pgd))
  920. continue;
  921. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  922. vma, addr, next))) {
  923. ret = -ENOMEM;
  924. break;
  925. }
  926. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  927. if (is_cow)
  928. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  929. return ret;
  930. }
  931. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  932. struct vm_area_struct *vma, pmd_t *pmd,
  933. unsigned long addr, unsigned long end,
  934. struct zap_details *details)
  935. {
  936. struct mm_struct *mm = tlb->mm;
  937. int force_flush = 0;
  938. int rss[NR_MM_COUNTERS];
  939. spinlock_t *ptl;
  940. pte_t *start_pte;
  941. pte_t *pte;
  942. swp_entry_t entry;
  943. again:
  944. init_rss_vec(rss);
  945. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  946. pte = start_pte;
  947. arch_enter_lazy_mmu_mode();
  948. do {
  949. pte_t ptent = *pte;
  950. if (pte_none(ptent)) {
  951. continue;
  952. }
  953. if (pte_present(ptent)) {
  954. struct page *page;
  955. page = vm_normal_page(vma, addr, ptent);
  956. if (unlikely(details) && page) {
  957. /*
  958. * unmap_shared_mapping_pages() wants to
  959. * invalidate cache without truncating:
  960. * unmap shared but keep private pages.
  961. */
  962. if (details->check_mapping &&
  963. details->check_mapping != page->mapping)
  964. continue;
  965. }
  966. ptent = ptep_get_and_clear_full(mm, addr, pte,
  967. tlb->fullmm);
  968. tlb_remove_tlb_entry(tlb, pte, addr);
  969. if (unlikely(!page))
  970. continue;
  971. if (!PageAnon(page)) {
  972. if (pte_dirty(ptent)) {
  973. force_flush = 1;
  974. set_page_dirty(page);
  975. }
  976. if (pte_young(ptent) &&
  977. likely(!(vma->vm_flags & VM_SEQ_READ)))
  978. mark_page_accessed(page);
  979. }
  980. rss[mm_counter(page)]--;
  981. page_remove_rmap(page, false);
  982. if (unlikely(page_mapcount(page) < 0))
  983. print_bad_pte(vma, addr, ptent, page);
  984. if (unlikely(!__tlb_remove_page(tlb, page))) {
  985. force_flush = 1;
  986. addr += PAGE_SIZE;
  987. break;
  988. }
  989. continue;
  990. }
  991. /* If details->check_mapping, we leave swap entries. */
  992. if (unlikely(details))
  993. continue;
  994. entry = pte_to_swp_entry(ptent);
  995. if (!non_swap_entry(entry))
  996. rss[MM_SWAPENTS]--;
  997. else if (is_migration_entry(entry)) {
  998. struct page *page;
  999. page = migration_entry_to_page(entry);
  1000. rss[mm_counter(page)]--;
  1001. }
  1002. if (unlikely(!free_swap_and_cache(entry)))
  1003. print_bad_pte(vma, addr, ptent, NULL);
  1004. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1005. } while (pte++, addr += PAGE_SIZE, addr != end);
  1006. add_mm_rss_vec(mm, rss);
  1007. arch_leave_lazy_mmu_mode();
  1008. /* Do the actual TLB flush before dropping ptl */
  1009. if (force_flush)
  1010. tlb_flush_mmu_tlbonly(tlb);
  1011. pte_unmap_unlock(start_pte, ptl);
  1012. /*
  1013. * If we forced a TLB flush (either due to running out of
  1014. * batch buffers or because we needed to flush dirty TLB
  1015. * entries before releasing the ptl), free the batched
  1016. * memory too. Restart if we didn't do everything.
  1017. */
  1018. if (force_flush) {
  1019. force_flush = 0;
  1020. tlb_flush_mmu_free(tlb);
  1021. if (addr != end)
  1022. goto again;
  1023. }
  1024. return addr;
  1025. }
  1026. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1027. struct vm_area_struct *vma, pud_t *pud,
  1028. unsigned long addr, unsigned long end,
  1029. struct zap_details *details)
  1030. {
  1031. pmd_t *pmd;
  1032. unsigned long next;
  1033. pmd = pmd_offset(pud, addr);
  1034. do {
  1035. next = pmd_addr_end(addr, end);
  1036. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1037. if (next - addr != HPAGE_PMD_SIZE) {
  1038. #ifdef CONFIG_DEBUG_VM
  1039. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1040. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1041. __func__, addr, end,
  1042. vma->vm_start,
  1043. vma->vm_end);
  1044. BUG();
  1045. }
  1046. #endif
  1047. split_huge_pmd(vma, pmd, addr);
  1048. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1049. goto next;
  1050. /* fall through */
  1051. }
  1052. /*
  1053. * Here there can be other concurrent MADV_DONTNEED or
  1054. * trans huge page faults running, and if the pmd is
  1055. * none or trans huge it can change under us. This is
  1056. * because MADV_DONTNEED holds the mmap_sem in read
  1057. * mode.
  1058. */
  1059. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1060. goto next;
  1061. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1062. next:
  1063. cond_resched();
  1064. } while (pmd++, addr = next, addr != end);
  1065. return addr;
  1066. }
  1067. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1068. struct vm_area_struct *vma, pgd_t *pgd,
  1069. unsigned long addr, unsigned long end,
  1070. struct zap_details *details)
  1071. {
  1072. pud_t *pud;
  1073. unsigned long next;
  1074. pud = pud_offset(pgd, addr);
  1075. do {
  1076. next = pud_addr_end(addr, end);
  1077. if (pud_none_or_clear_bad(pud))
  1078. continue;
  1079. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1080. } while (pud++, addr = next, addr != end);
  1081. return addr;
  1082. }
  1083. static void unmap_page_range(struct mmu_gather *tlb,
  1084. struct vm_area_struct *vma,
  1085. unsigned long addr, unsigned long end,
  1086. struct zap_details *details)
  1087. {
  1088. pgd_t *pgd;
  1089. unsigned long next;
  1090. if (details && !details->check_mapping)
  1091. details = NULL;
  1092. BUG_ON(addr >= end);
  1093. tlb_start_vma(tlb, vma);
  1094. pgd = pgd_offset(vma->vm_mm, addr);
  1095. do {
  1096. next = pgd_addr_end(addr, end);
  1097. if (pgd_none_or_clear_bad(pgd))
  1098. continue;
  1099. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1100. } while (pgd++, addr = next, addr != end);
  1101. tlb_end_vma(tlb, vma);
  1102. }
  1103. static void unmap_single_vma(struct mmu_gather *tlb,
  1104. struct vm_area_struct *vma, unsigned long start_addr,
  1105. unsigned long end_addr,
  1106. struct zap_details *details)
  1107. {
  1108. unsigned long start = max(vma->vm_start, start_addr);
  1109. unsigned long end;
  1110. if (start >= vma->vm_end)
  1111. return;
  1112. end = min(vma->vm_end, end_addr);
  1113. if (end <= vma->vm_start)
  1114. return;
  1115. if (vma->vm_file)
  1116. uprobe_munmap(vma, start, end);
  1117. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1118. untrack_pfn(vma, 0, 0);
  1119. if (start != end) {
  1120. if (unlikely(is_vm_hugetlb_page(vma))) {
  1121. /*
  1122. * It is undesirable to test vma->vm_file as it
  1123. * should be non-null for valid hugetlb area.
  1124. * However, vm_file will be NULL in the error
  1125. * cleanup path of mmap_region. When
  1126. * hugetlbfs ->mmap method fails,
  1127. * mmap_region() nullifies vma->vm_file
  1128. * before calling this function to clean up.
  1129. * Since no pte has actually been setup, it is
  1130. * safe to do nothing in this case.
  1131. */
  1132. if (vma->vm_file) {
  1133. i_mmap_lock_write(vma->vm_file->f_mapping);
  1134. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1135. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1136. }
  1137. } else
  1138. unmap_page_range(tlb, vma, start, end, details);
  1139. }
  1140. }
  1141. /**
  1142. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1143. * @tlb: address of the caller's struct mmu_gather
  1144. * @vma: the starting vma
  1145. * @start_addr: virtual address at which to start unmapping
  1146. * @end_addr: virtual address at which to end unmapping
  1147. *
  1148. * Unmap all pages in the vma list.
  1149. *
  1150. * Only addresses between `start' and `end' will be unmapped.
  1151. *
  1152. * The VMA list must be sorted in ascending virtual address order.
  1153. *
  1154. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1155. * range after unmap_vmas() returns. So the only responsibility here is to
  1156. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1157. * drops the lock and schedules.
  1158. */
  1159. void unmap_vmas(struct mmu_gather *tlb,
  1160. struct vm_area_struct *vma, unsigned long start_addr,
  1161. unsigned long end_addr)
  1162. {
  1163. struct mm_struct *mm = vma->vm_mm;
  1164. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1165. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1166. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1167. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1168. }
  1169. /**
  1170. * zap_page_range - remove user pages in a given range
  1171. * @vma: vm_area_struct holding the applicable pages
  1172. * @start: starting address of pages to zap
  1173. * @size: number of bytes to zap
  1174. * @details: details of shared cache invalidation
  1175. *
  1176. * Caller must protect the VMA list
  1177. */
  1178. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1179. unsigned long size, struct zap_details *details)
  1180. {
  1181. struct mm_struct *mm = vma->vm_mm;
  1182. struct mmu_gather tlb;
  1183. unsigned long end = start + size;
  1184. lru_add_drain();
  1185. tlb_gather_mmu(&tlb, mm, start, end);
  1186. update_hiwater_rss(mm);
  1187. mmu_notifier_invalidate_range_start(mm, start, end);
  1188. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1189. unmap_single_vma(&tlb, vma, start, end, details);
  1190. mmu_notifier_invalidate_range_end(mm, start, end);
  1191. tlb_finish_mmu(&tlb, start, end);
  1192. }
  1193. /**
  1194. * zap_page_range_single - remove user pages in a given range
  1195. * @vma: vm_area_struct holding the applicable pages
  1196. * @address: starting address of pages to zap
  1197. * @size: number of bytes to zap
  1198. * @details: details of shared cache invalidation
  1199. *
  1200. * The range must fit into one VMA.
  1201. */
  1202. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1203. unsigned long size, struct zap_details *details)
  1204. {
  1205. struct mm_struct *mm = vma->vm_mm;
  1206. struct mmu_gather tlb;
  1207. unsigned long end = address + size;
  1208. lru_add_drain();
  1209. tlb_gather_mmu(&tlb, mm, address, end);
  1210. update_hiwater_rss(mm);
  1211. mmu_notifier_invalidate_range_start(mm, address, end);
  1212. unmap_single_vma(&tlb, vma, address, end, details);
  1213. mmu_notifier_invalidate_range_end(mm, address, end);
  1214. tlb_finish_mmu(&tlb, address, end);
  1215. }
  1216. /**
  1217. * zap_vma_ptes - remove ptes mapping the vma
  1218. * @vma: vm_area_struct holding ptes to be zapped
  1219. * @address: starting address of pages to zap
  1220. * @size: number of bytes to zap
  1221. *
  1222. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1223. *
  1224. * The entire address range must be fully contained within the vma.
  1225. *
  1226. * Returns 0 if successful.
  1227. */
  1228. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1229. unsigned long size)
  1230. {
  1231. if (address < vma->vm_start || address + size > vma->vm_end ||
  1232. !(vma->vm_flags & VM_PFNMAP))
  1233. return -1;
  1234. zap_page_range_single(vma, address, size, NULL);
  1235. return 0;
  1236. }
  1237. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1238. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1239. spinlock_t **ptl)
  1240. {
  1241. pgd_t * pgd = pgd_offset(mm, addr);
  1242. pud_t * pud = pud_alloc(mm, pgd, addr);
  1243. if (pud) {
  1244. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1245. if (pmd) {
  1246. VM_BUG_ON(pmd_trans_huge(*pmd));
  1247. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1248. }
  1249. }
  1250. return NULL;
  1251. }
  1252. /*
  1253. * This is the old fallback for page remapping.
  1254. *
  1255. * For historical reasons, it only allows reserved pages. Only
  1256. * old drivers should use this, and they needed to mark their
  1257. * pages reserved for the old functions anyway.
  1258. */
  1259. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1260. struct page *page, pgprot_t prot)
  1261. {
  1262. struct mm_struct *mm = vma->vm_mm;
  1263. int retval;
  1264. pte_t *pte;
  1265. spinlock_t *ptl;
  1266. retval = -EINVAL;
  1267. if (PageAnon(page))
  1268. goto out;
  1269. retval = -ENOMEM;
  1270. flush_dcache_page(page);
  1271. pte = get_locked_pte(mm, addr, &ptl);
  1272. if (!pte)
  1273. goto out;
  1274. retval = -EBUSY;
  1275. if (!pte_none(*pte))
  1276. goto out_unlock;
  1277. /* Ok, finally just insert the thing.. */
  1278. get_page(page);
  1279. inc_mm_counter_fast(mm, mm_counter_file(page));
  1280. page_add_file_rmap(page);
  1281. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1282. retval = 0;
  1283. pte_unmap_unlock(pte, ptl);
  1284. return retval;
  1285. out_unlock:
  1286. pte_unmap_unlock(pte, ptl);
  1287. out:
  1288. return retval;
  1289. }
  1290. /**
  1291. * vm_insert_page - insert single page into user vma
  1292. * @vma: user vma to map to
  1293. * @addr: target user address of this page
  1294. * @page: source kernel page
  1295. *
  1296. * This allows drivers to insert individual pages they've allocated
  1297. * into a user vma.
  1298. *
  1299. * The page has to be a nice clean _individual_ kernel allocation.
  1300. * If you allocate a compound page, you need to have marked it as
  1301. * such (__GFP_COMP), or manually just split the page up yourself
  1302. * (see split_page()).
  1303. *
  1304. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1305. * took an arbitrary page protection parameter. This doesn't allow
  1306. * that. Your vma protection will have to be set up correctly, which
  1307. * means that if you want a shared writable mapping, you'd better
  1308. * ask for a shared writable mapping!
  1309. *
  1310. * The page does not need to be reserved.
  1311. *
  1312. * Usually this function is called from f_op->mmap() handler
  1313. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1314. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1315. * function from other places, for example from page-fault handler.
  1316. */
  1317. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1318. struct page *page)
  1319. {
  1320. if (addr < vma->vm_start || addr >= vma->vm_end)
  1321. return -EFAULT;
  1322. if (!page_count(page))
  1323. return -EINVAL;
  1324. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1325. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1326. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1327. vma->vm_flags |= VM_MIXEDMAP;
  1328. }
  1329. return insert_page(vma, addr, page, vma->vm_page_prot);
  1330. }
  1331. EXPORT_SYMBOL(vm_insert_page);
  1332. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1333. pfn_t pfn, pgprot_t prot)
  1334. {
  1335. struct mm_struct *mm = vma->vm_mm;
  1336. int retval;
  1337. pte_t *pte, entry;
  1338. spinlock_t *ptl;
  1339. retval = -ENOMEM;
  1340. pte = get_locked_pte(mm, addr, &ptl);
  1341. if (!pte)
  1342. goto out;
  1343. retval = -EBUSY;
  1344. if (!pte_none(*pte))
  1345. goto out_unlock;
  1346. /* Ok, finally just insert the thing.. */
  1347. if (pfn_t_devmap(pfn))
  1348. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1349. else
  1350. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1351. set_pte_at(mm, addr, pte, entry);
  1352. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1353. retval = 0;
  1354. out_unlock:
  1355. pte_unmap_unlock(pte, ptl);
  1356. out:
  1357. return retval;
  1358. }
  1359. /**
  1360. * vm_insert_pfn - insert single pfn into user vma
  1361. * @vma: user vma to map to
  1362. * @addr: target user address of this page
  1363. * @pfn: source kernel pfn
  1364. *
  1365. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1366. * they've allocated into a user vma. Same comments apply.
  1367. *
  1368. * This function should only be called from a vm_ops->fault handler, and
  1369. * in that case the handler should return NULL.
  1370. *
  1371. * vma cannot be a COW mapping.
  1372. *
  1373. * As this is called only for pages that do not currently exist, we
  1374. * do not need to flush old virtual caches or the TLB.
  1375. */
  1376. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1377. unsigned long pfn)
  1378. {
  1379. int ret;
  1380. pgprot_t pgprot = vma->vm_page_prot;
  1381. /*
  1382. * Technically, architectures with pte_special can avoid all these
  1383. * restrictions (same for remap_pfn_range). However we would like
  1384. * consistency in testing and feature parity among all, so we should
  1385. * try to keep these invariants in place for everybody.
  1386. */
  1387. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1388. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1389. (VM_PFNMAP|VM_MIXEDMAP));
  1390. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1391. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1392. if (addr < vma->vm_start || addr >= vma->vm_end)
  1393. return -EFAULT;
  1394. if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
  1395. return -EINVAL;
  1396. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1397. return ret;
  1398. }
  1399. EXPORT_SYMBOL(vm_insert_pfn);
  1400. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1401. pfn_t pfn)
  1402. {
  1403. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1404. if (addr < vma->vm_start || addr >= vma->vm_end)
  1405. return -EFAULT;
  1406. /*
  1407. * If we don't have pte special, then we have to use the pfn_valid()
  1408. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1409. * refcount the page if pfn_valid is true (hence insert_page rather
  1410. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1411. * without pte special, it would there be refcounted as a normal page.
  1412. */
  1413. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1414. struct page *page;
  1415. /*
  1416. * At this point we are committed to insert_page()
  1417. * regardless of whether the caller specified flags that
  1418. * result in pfn_t_has_page() == false.
  1419. */
  1420. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1421. return insert_page(vma, addr, page, vma->vm_page_prot);
  1422. }
  1423. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1424. }
  1425. EXPORT_SYMBOL(vm_insert_mixed);
  1426. /*
  1427. * maps a range of physical memory into the requested pages. the old
  1428. * mappings are removed. any references to nonexistent pages results
  1429. * in null mappings (currently treated as "copy-on-access")
  1430. */
  1431. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1432. unsigned long addr, unsigned long end,
  1433. unsigned long pfn, pgprot_t prot)
  1434. {
  1435. pte_t *pte;
  1436. spinlock_t *ptl;
  1437. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1438. if (!pte)
  1439. return -ENOMEM;
  1440. arch_enter_lazy_mmu_mode();
  1441. do {
  1442. BUG_ON(!pte_none(*pte));
  1443. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1444. pfn++;
  1445. } while (pte++, addr += PAGE_SIZE, addr != end);
  1446. arch_leave_lazy_mmu_mode();
  1447. pte_unmap_unlock(pte - 1, ptl);
  1448. return 0;
  1449. }
  1450. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1451. unsigned long addr, unsigned long end,
  1452. unsigned long pfn, pgprot_t prot)
  1453. {
  1454. pmd_t *pmd;
  1455. unsigned long next;
  1456. pfn -= addr >> PAGE_SHIFT;
  1457. pmd = pmd_alloc(mm, pud, addr);
  1458. if (!pmd)
  1459. return -ENOMEM;
  1460. VM_BUG_ON(pmd_trans_huge(*pmd));
  1461. do {
  1462. next = pmd_addr_end(addr, end);
  1463. if (remap_pte_range(mm, pmd, addr, next,
  1464. pfn + (addr >> PAGE_SHIFT), prot))
  1465. return -ENOMEM;
  1466. } while (pmd++, addr = next, addr != end);
  1467. return 0;
  1468. }
  1469. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1470. unsigned long addr, unsigned long end,
  1471. unsigned long pfn, pgprot_t prot)
  1472. {
  1473. pud_t *pud;
  1474. unsigned long next;
  1475. pfn -= addr >> PAGE_SHIFT;
  1476. pud = pud_alloc(mm, pgd, addr);
  1477. if (!pud)
  1478. return -ENOMEM;
  1479. do {
  1480. next = pud_addr_end(addr, end);
  1481. if (remap_pmd_range(mm, pud, addr, next,
  1482. pfn + (addr >> PAGE_SHIFT), prot))
  1483. return -ENOMEM;
  1484. } while (pud++, addr = next, addr != end);
  1485. return 0;
  1486. }
  1487. /**
  1488. * remap_pfn_range - remap kernel memory to userspace
  1489. * @vma: user vma to map to
  1490. * @addr: target user address to start at
  1491. * @pfn: physical address of kernel memory
  1492. * @size: size of map area
  1493. * @prot: page protection flags for this mapping
  1494. *
  1495. * Note: this is only safe if the mm semaphore is held when called.
  1496. */
  1497. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1498. unsigned long pfn, unsigned long size, pgprot_t prot)
  1499. {
  1500. pgd_t *pgd;
  1501. unsigned long next;
  1502. unsigned long end = addr + PAGE_ALIGN(size);
  1503. struct mm_struct *mm = vma->vm_mm;
  1504. int err;
  1505. /*
  1506. * Physically remapped pages are special. Tell the
  1507. * rest of the world about it:
  1508. * VM_IO tells people not to look at these pages
  1509. * (accesses can have side effects).
  1510. * VM_PFNMAP tells the core MM that the base pages are just
  1511. * raw PFN mappings, and do not have a "struct page" associated
  1512. * with them.
  1513. * VM_DONTEXPAND
  1514. * Disable vma merging and expanding with mremap().
  1515. * VM_DONTDUMP
  1516. * Omit vma from core dump, even when VM_IO turned off.
  1517. *
  1518. * There's a horrible special case to handle copy-on-write
  1519. * behaviour that some programs depend on. We mark the "original"
  1520. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1521. * See vm_normal_page() for details.
  1522. */
  1523. if (is_cow_mapping(vma->vm_flags)) {
  1524. if (addr != vma->vm_start || end != vma->vm_end)
  1525. return -EINVAL;
  1526. vma->vm_pgoff = pfn;
  1527. }
  1528. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1529. if (err)
  1530. return -EINVAL;
  1531. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1532. BUG_ON(addr >= end);
  1533. pfn -= addr >> PAGE_SHIFT;
  1534. pgd = pgd_offset(mm, addr);
  1535. flush_cache_range(vma, addr, end);
  1536. do {
  1537. next = pgd_addr_end(addr, end);
  1538. err = remap_pud_range(mm, pgd, addr, next,
  1539. pfn + (addr >> PAGE_SHIFT), prot);
  1540. if (err)
  1541. break;
  1542. } while (pgd++, addr = next, addr != end);
  1543. if (err)
  1544. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1545. return err;
  1546. }
  1547. EXPORT_SYMBOL(remap_pfn_range);
  1548. /**
  1549. * vm_iomap_memory - remap memory to userspace
  1550. * @vma: user vma to map to
  1551. * @start: start of area
  1552. * @len: size of area
  1553. *
  1554. * This is a simplified io_remap_pfn_range() for common driver use. The
  1555. * driver just needs to give us the physical memory range to be mapped,
  1556. * we'll figure out the rest from the vma information.
  1557. *
  1558. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1559. * whatever write-combining details or similar.
  1560. */
  1561. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1562. {
  1563. unsigned long vm_len, pfn, pages;
  1564. /* Check that the physical memory area passed in looks valid */
  1565. if (start + len < start)
  1566. return -EINVAL;
  1567. /*
  1568. * You *really* shouldn't map things that aren't page-aligned,
  1569. * but we've historically allowed it because IO memory might
  1570. * just have smaller alignment.
  1571. */
  1572. len += start & ~PAGE_MASK;
  1573. pfn = start >> PAGE_SHIFT;
  1574. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1575. if (pfn + pages < pfn)
  1576. return -EINVAL;
  1577. /* We start the mapping 'vm_pgoff' pages into the area */
  1578. if (vma->vm_pgoff > pages)
  1579. return -EINVAL;
  1580. pfn += vma->vm_pgoff;
  1581. pages -= vma->vm_pgoff;
  1582. /* Can we fit all of the mapping? */
  1583. vm_len = vma->vm_end - vma->vm_start;
  1584. if (vm_len >> PAGE_SHIFT > pages)
  1585. return -EINVAL;
  1586. /* Ok, let it rip */
  1587. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1588. }
  1589. EXPORT_SYMBOL(vm_iomap_memory);
  1590. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1591. unsigned long addr, unsigned long end,
  1592. pte_fn_t fn, void *data)
  1593. {
  1594. pte_t *pte;
  1595. int err;
  1596. pgtable_t token;
  1597. spinlock_t *uninitialized_var(ptl);
  1598. pte = (mm == &init_mm) ?
  1599. pte_alloc_kernel(pmd, addr) :
  1600. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1601. if (!pte)
  1602. return -ENOMEM;
  1603. BUG_ON(pmd_huge(*pmd));
  1604. arch_enter_lazy_mmu_mode();
  1605. token = pmd_pgtable(*pmd);
  1606. do {
  1607. err = fn(pte++, token, addr, data);
  1608. if (err)
  1609. break;
  1610. } while (addr += PAGE_SIZE, addr != end);
  1611. arch_leave_lazy_mmu_mode();
  1612. if (mm != &init_mm)
  1613. pte_unmap_unlock(pte-1, ptl);
  1614. return err;
  1615. }
  1616. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1617. unsigned long addr, unsigned long end,
  1618. pte_fn_t fn, void *data)
  1619. {
  1620. pmd_t *pmd;
  1621. unsigned long next;
  1622. int err;
  1623. BUG_ON(pud_huge(*pud));
  1624. pmd = pmd_alloc(mm, pud, addr);
  1625. if (!pmd)
  1626. return -ENOMEM;
  1627. do {
  1628. next = pmd_addr_end(addr, end);
  1629. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1630. if (err)
  1631. break;
  1632. } while (pmd++, addr = next, addr != end);
  1633. return err;
  1634. }
  1635. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1636. unsigned long addr, unsigned long end,
  1637. pte_fn_t fn, void *data)
  1638. {
  1639. pud_t *pud;
  1640. unsigned long next;
  1641. int err;
  1642. pud = pud_alloc(mm, pgd, addr);
  1643. if (!pud)
  1644. return -ENOMEM;
  1645. do {
  1646. next = pud_addr_end(addr, end);
  1647. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1648. if (err)
  1649. break;
  1650. } while (pud++, addr = next, addr != end);
  1651. return err;
  1652. }
  1653. /*
  1654. * Scan a region of virtual memory, filling in page tables as necessary
  1655. * and calling a provided function on each leaf page table.
  1656. */
  1657. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1658. unsigned long size, pte_fn_t fn, void *data)
  1659. {
  1660. pgd_t *pgd;
  1661. unsigned long next;
  1662. unsigned long end = addr + size;
  1663. int err;
  1664. BUG_ON(addr >= end);
  1665. pgd = pgd_offset(mm, addr);
  1666. do {
  1667. next = pgd_addr_end(addr, end);
  1668. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1669. if (err)
  1670. break;
  1671. } while (pgd++, addr = next, addr != end);
  1672. return err;
  1673. }
  1674. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1675. /*
  1676. * handle_pte_fault chooses page fault handler according to an entry which was
  1677. * read non-atomically. Before making any commitment, on those architectures
  1678. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1679. * parts, do_swap_page must check under lock before unmapping the pte and
  1680. * proceeding (but do_wp_page is only called after already making such a check;
  1681. * and do_anonymous_page can safely check later on).
  1682. */
  1683. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1684. pte_t *page_table, pte_t orig_pte)
  1685. {
  1686. int same = 1;
  1687. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1688. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1689. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1690. spin_lock(ptl);
  1691. same = pte_same(*page_table, orig_pte);
  1692. spin_unlock(ptl);
  1693. }
  1694. #endif
  1695. pte_unmap(page_table);
  1696. return same;
  1697. }
  1698. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1699. {
  1700. debug_dma_assert_idle(src);
  1701. /*
  1702. * If the source page was a PFN mapping, we don't have
  1703. * a "struct page" for it. We do a best-effort copy by
  1704. * just copying from the original user address. If that
  1705. * fails, we just zero-fill it. Live with it.
  1706. */
  1707. if (unlikely(!src)) {
  1708. void *kaddr = kmap_atomic(dst);
  1709. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1710. /*
  1711. * This really shouldn't fail, because the page is there
  1712. * in the page tables. But it might just be unreadable,
  1713. * in which case we just give up and fill the result with
  1714. * zeroes.
  1715. */
  1716. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1717. clear_page(kaddr);
  1718. kunmap_atomic(kaddr);
  1719. flush_dcache_page(dst);
  1720. } else
  1721. copy_user_highpage(dst, src, va, vma);
  1722. }
  1723. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1724. {
  1725. struct file *vm_file = vma->vm_file;
  1726. if (vm_file)
  1727. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1728. /*
  1729. * Special mappings (e.g. VDSO) do not have any file so fake
  1730. * a default GFP_KERNEL for them.
  1731. */
  1732. return GFP_KERNEL;
  1733. }
  1734. /*
  1735. * Notify the address space that the page is about to become writable so that
  1736. * it can prohibit this or wait for the page to get into an appropriate state.
  1737. *
  1738. * We do this without the lock held, so that it can sleep if it needs to.
  1739. */
  1740. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1741. unsigned long address)
  1742. {
  1743. struct vm_fault vmf;
  1744. int ret;
  1745. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1746. vmf.pgoff = page->index;
  1747. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1748. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  1749. vmf.page = page;
  1750. vmf.cow_page = NULL;
  1751. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1752. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1753. return ret;
  1754. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1755. lock_page(page);
  1756. if (!page->mapping) {
  1757. unlock_page(page);
  1758. return 0; /* retry */
  1759. }
  1760. ret |= VM_FAULT_LOCKED;
  1761. } else
  1762. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1763. return ret;
  1764. }
  1765. /*
  1766. * Handle write page faults for pages that can be reused in the current vma
  1767. *
  1768. * This can happen either due to the mapping being with the VM_SHARED flag,
  1769. * or due to us being the last reference standing to the page. In either
  1770. * case, all we need to do here is to mark the page as writable and update
  1771. * any related book-keeping.
  1772. */
  1773. static inline int wp_page_reuse(struct mm_struct *mm,
  1774. struct vm_area_struct *vma, unsigned long address,
  1775. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1776. struct page *page, int page_mkwrite,
  1777. int dirty_shared)
  1778. __releases(ptl)
  1779. {
  1780. pte_t entry;
  1781. /*
  1782. * Clear the pages cpupid information as the existing
  1783. * information potentially belongs to a now completely
  1784. * unrelated process.
  1785. */
  1786. if (page)
  1787. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1788. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1789. entry = pte_mkyoung(orig_pte);
  1790. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1791. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1792. update_mmu_cache(vma, address, page_table);
  1793. pte_unmap_unlock(page_table, ptl);
  1794. if (dirty_shared) {
  1795. struct address_space *mapping;
  1796. int dirtied;
  1797. if (!page_mkwrite)
  1798. lock_page(page);
  1799. dirtied = set_page_dirty(page);
  1800. VM_BUG_ON_PAGE(PageAnon(page), page);
  1801. mapping = page->mapping;
  1802. unlock_page(page);
  1803. page_cache_release(page);
  1804. if ((dirtied || page_mkwrite) && mapping) {
  1805. /*
  1806. * Some device drivers do not set page.mapping
  1807. * but still dirty their pages
  1808. */
  1809. balance_dirty_pages_ratelimited(mapping);
  1810. }
  1811. if (!page_mkwrite)
  1812. file_update_time(vma->vm_file);
  1813. }
  1814. return VM_FAULT_WRITE;
  1815. }
  1816. /*
  1817. * Handle the case of a page which we actually need to copy to a new page.
  1818. *
  1819. * Called with mmap_sem locked and the old page referenced, but
  1820. * without the ptl held.
  1821. *
  1822. * High level logic flow:
  1823. *
  1824. * - Allocate a page, copy the content of the old page to the new one.
  1825. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1826. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1827. * - If the pte is still the way we remember it, update the page table and all
  1828. * relevant references. This includes dropping the reference the page-table
  1829. * held to the old page, as well as updating the rmap.
  1830. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1831. */
  1832. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1833. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1834. pte_t orig_pte, struct page *old_page)
  1835. {
  1836. struct page *new_page = NULL;
  1837. spinlock_t *ptl = NULL;
  1838. pte_t entry;
  1839. int page_copied = 0;
  1840. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1841. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1842. struct mem_cgroup *memcg;
  1843. if (unlikely(anon_vma_prepare(vma)))
  1844. goto oom;
  1845. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1846. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1847. if (!new_page)
  1848. goto oom;
  1849. } else {
  1850. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1851. if (!new_page)
  1852. goto oom;
  1853. cow_user_page(new_page, old_page, address, vma);
  1854. }
  1855. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1856. goto oom_free_new;
  1857. __SetPageUptodate(new_page);
  1858. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1859. /*
  1860. * Re-check the pte - we dropped the lock
  1861. */
  1862. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1863. if (likely(pte_same(*page_table, orig_pte))) {
  1864. if (old_page) {
  1865. if (!PageAnon(old_page)) {
  1866. dec_mm_counter_fast(mm,
  1867. mm_counter_file(old_page));
  1868. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1869. }
  1870. } else {
  1871. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1872. }
  1873. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1874. entry = mk_pte(new_page, vma->vm_page_prot);
  1875. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1876. /*
  1877. * Clear the pte entry and flush it first, before updating the
  1878. * pte with the new entry. This will avoid a race condition
  1879. * seen in the presence of one thread doing SMC and another
  1880. * thread doing COW.
  1881. */
  1882. ptep_clear_flush_notify(vma, address, page_table);
  1883. page_add_new_anon_rmap(new_page, vma, address, false);
  1884. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1885. lru_cache_add_active_or_unevictable(new_page, vma);
  1886. /*
  1887. * We call the notify macro here because, when using secondary
  1888. * mmu page tables (such as kvm shadow page tables), we want the
  1889. * new page to be mapped directly into the secondary page table.
  1890. */
  1891. set_pte_at_notify(mm, address, page_table, entry);
  1892. update_mmu_cache(vma, address, page_table);
  1893. if (old_page) {
  1894. /*
  1895. * Only after switching the pte to the new page may
  1896. * we remove the mapcount here. Otherwise another
  1897. * process may come and find the rmap count decremented
  1898. * before the pte is switched to the new page, and
  1899. * "reuse" the old page writing into it while our pte
  1900. * here still points into it and can be read by other
  1901. * threads.
  1902. *
  1903. * The critical issue is to order this
  1904. * page_remove_rmap with the ptp_clear_flush above.
  1905. * Those stores are ordered by (if nothing else,)
  1906. * the barrier present in the atomic_add_negative
  1907. * in page_remove_rmap.
  1908. *
  1909. * Then the TLB flush in ptep_clear_flush ensures that
  1910. * no process can access the old page before the
  1911. * decremented mapcount is visible. And the old page
  1912. * cannot be reused until after the decremented
  1913. * mapcount is visible. So transitively, TLBs to
  1914. * old page will be flushed before it can be reused.
  1915. */
  1916. page_remove_rmap(old_page, false);
  1917. }
  1918. /* Free the old page.. */
  1919. new_page = old_page;
  1920. page_copied = 1;
  1921. } else {
  1922. mem_cgroup_cancel_charge(new_page, memcg, false);
  1923. }
  1924. if (new_page)
  1925. page_cache_release(new_page);
  1926. pte_unmap_unlock(page_table, ptl);
  1927. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1928. if (old_page) {
  1929. /*
  1930. * Don't let another task, with possibly unlocked vma,
  1931. * keep the mlocked page.
  1932. */
  1933. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1934. lock_page(old_page); /* LRU manipulation */
  1935. if (PageMlocked(old_page))
  1936. munlock_vma_page(old_page);
  1937. unlock_page(old_page);
  1938. }
  1939. page_cache_release(old_page);
  1940. }
  1941. return page_copied ? VM_FAULT_WRITE : 0;
  1942. oom_free_new:
  1943. page_cache_release(new_page);
  1944. oom:
  1945. if (old_page)
  1946. page_cache_release(old_page);
  1947. return VM_FAULT_OOM;
  1948. }
  1949. /*
  1950. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1951. * mapping
  1952. */
  1953. static int wp_pfn_shared(struct mm_struct *mm,
  1954. struct vm_area_struct *vma, unsigned long address,
  1955. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1956. pmd_t *pmd)
  1957. {
  1958. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1959. struct vm_fault vmf = {
  1960. .page = NULL,
  1961. .pgoff = linear_page_index(vma, address),
  1962. .virtual_address = (void __user *)(address & PAGE_MASK),
  1963. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1964. };
  1965. int ret;
  1966. pte_unmap_unlock(page_table, ptl);
  1967. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1968. if (ret & VM_FAULT_ERROR)
  1969. return ret;
  1970. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1971. /*
  1972. * We might have raced with another page fault while we
  1973. * released the pte_offset_map_lock.
  1974. */
  1975. if (!pte_same(*page_table, orig_pte)) {
  1976. pte_unmap_unlock(page_table, ptl);
  1977. return 0;
  1978. }
  1979. }
  1980. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  1981. NULL, 0, 0);
  1982. }
  1983. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  1984. unsigned long address, pte_t *page_table,
  1985. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  1986. struct page *old_page)
  1987. __releases(ptl)
  1988. {
  1989. int page_mkwrite = 0;
  1990. page_cache_get(old_page);
  1991. /*
  1992. * Only catch write-faults on shared writable pages,
  1993. * read-only shared pages can get COWed by
  1994. * get_user_pages(.write=1, .force=1).
  1995. */
  1996. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1997. int tmp;
  1998. pte_unmap_unlock(page_table, ptl);
  1999. tmp = do_page_mkwrite(vma, old_page, address);
  2000. if (unlikely(!tmp || (tmp &
  2001. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2002. page_cache_release(old_page);
  2003. return tmp;
  2004. }
  2005. /*
  2006. * Since we dropped the lock we need to revalidate
  2007. * the PTE as someone else may have changed it. If
  2008. * they did, we just return, as we can count on the
  2009. * MMU to tell us if they didn't also make it writable.
  2010. */
  2011. page_table = pte_offset_map_lock(mm, pmd, address,
  2012. &ptl);
  2013. if (!pte_same(*page_table, orig_pte)) {
  2014. unlock_page(old_page);
  2015. pte_unmap_unlock(page_table, ptl);
  2016. page_cache_release(old_page);
  2017. return 0;
  2018. }
  2019. page_mkwrite = 1;
  2020. }
  2021. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2022. orig_pte, old_page, page_mkwrite, 1);
  2023. }
  2024. /*
  2025. * This routine handles present pages, when users try to write
  2026. * to a shared page. It is done by copying the page to a new address
  2027. * and decrementing the shared-page counter for the old page.
  2028. *
  2029. * Note that this routine assumes that the protection checks have been
  2030. * done by the caller (the low-level page fault routine in most cases).
  2031. * Thus we can safely just mark it writable once we've done any necessary
  2032. * COW.
  2033. *
  2034. * We also mark the page dirty at this point even though the page will
  2035. * change only once the write actually happens. This avoids a few races,
  2036. * and potentially makes it more efficient.
  2037. *
  2038. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2039. * but allow concurrent faults), with pte both mapped and locked.
  2040. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2041. */
  2042. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2043. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2044. spinlock_t *ptl, pte_t orig_pte)
  2045. __releases(ptl)
  2046. {
  2047. struct page *old_page;
  2048. old_page = vm_normal_page(vma, address, orig_pte);
  2049. if (!old_page) {
  2050. /*
  2051. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2052. * VM_PFNMAP VMA.
  2053. *
  2054. * We should not cow pages in a shared writeable mapping.
  2055. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2056. */
  2057. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2058. (VM_WRITE|VM_SHARED))
  2059. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2060. orig_pte, pmd);
  2061. pte_unmap_unlock(page_table, ptl);
  2062. return wp_page_copy(mm, vma, address, page_table, pmd,
  2063. orig_pte, old_page);
  2064. }
  2065. /*
  2066. * Take out anonymous pages first, anonymous shared vmas are
  2067. * not dirty accountable.
  2068. */
  2069. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2070. if (!trylock_page(old_page)) {
  2071. page_cache_get(old_page);
  2072. pte_unmap_unlock(page_table, ptl);
  2073. lock_page(old_page);
  2074. page_table = pte_offset_map_lock(mm, pmd, address,
  2075. &ptl);
  2076. if (!pte_same(*page_table, orig_pte)) {
  2077. unlock_page(old_page);
  2078. pte_unmap_unlock(page_table, ptl);
  2079. page_cache_release(old_page);
  2080. return 0;
  2081. }
  2082. page_cache_release(old_page);
  2083. }
  2084. if (reuse_swap_page(old_page)) {
  2085. /*
  2086. * The page is all ours. Move it to our anon_vma so
  2087. * the rmap code will not search our parent or siblings.
  2088. * Protected against the rmap code by the page lock.
  2089. */
  2090. page_move_anon_rmap(old_page, vma, address);
  2091. unlock_page(old_page);
  2092. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2093. orig_pte, old_page, 0, 0);
  2094. }
  2095. unlock_page(old_page);
  2096. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2097. (VM_WRITE|VM_SHARED))) {
  2098. return wp_page_shared(mm, vma, address, page_table, pmd,
  2099. ptl, orig_pte, old_page);
  2100. }
  2101. /*
  2102. * Ok, we need to copy. Oh, well..
  2103. */
  2104. page_cache_get(old_page);
  2105. pte_unmap_unlock(page_table, ptl);
  2106. return wp_page_copy(mm, vma, address, page_table, pmd,
  2107. orig_pte, old_page);
  2108. }
  2109. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2110. unsigned long start_addr, unsigned long end_addr,
  2111. struct zap_details *details)
  2112. {
  2113. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2114. }
  2115. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2116. struct zap_details *details)
  2117. {
  2118. struct vm_area_struct *vma;
  2119. pgoff_t vba, vea, zba, zea;
  2120. vma_interval_tree_foreach(vma, root,
  2121. details->first_index, details->last_index) {
  2122. vba = vma->vm_pgoff;
  2123. vea = vba + vma_pages(vma) - 1;
  2124. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2125. zba = details->first_index;
  2126. if (zba < vba)
  2127. zba = vba;
  2128. zea = details->last_index;
  2129. if (zea > vea)
  2130. zea = vea;
  2131. unmap_mapping_range_vma(vma,
  2132. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2133. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2134. details);
  2135. }
  2136. }
  2137. /**
  2138. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2139. * address_space corresponding to the specified page range in the underlying
  2140. * file.
  2141. *
  2142. * @mapping: the address space containing mmaps to be unmapped.
  2143. * @holebegin: byte in first page to unmap, relative to the start of
  2144. * the underlying file. This will be rounded down to a PAGE_SIZE
  2145. * boundary. Note that this is different from truncate_pagecache(), which
  2146. * must keep the partial page. In contrast, we must get rid of
  2147. * partial pages.
  2148. * @holelen: size of prospective hole in bytes. This will be rounded
  2149. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2150. * end of the file.
  2151. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2152. * but 0 when invalidating pagecache, don't throw away private data.
  2153. */
  2154. void unmap_mapping_range(struct address_space *mapping,
  2155. loff_t const holebegin, loff_t const holelen, int even_cows)
  2156. {
  2157. struct zap_details details;
  2158. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2159. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2160. /* Check for overflow. */
  2161. if (sizeof(holelen) > sizeof(hlen)) {
  2162. long long holeend =
  2163. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2164. if (holeend & ~(long long)ULONG_MAX)
  2165. hlen = ULONG_MAX - hba + 1;
  2166. }
  2167. details.check_mapping = even_cows? NULL: mapping;
  2168. details.first_index = hba;
  2169. details.last_index = hba + hlen - 1;
  2170. if (details.last_index < details.first_index)
  2171. details.last_index = ULONG_MAX;
  2172. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2173. i_mmap_lock_write(mapping);
  2174. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2175. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2176. i_mmap_unlock_write(mapping);
  2177. }
  2178. EXPORT_SYMBOL(unmap_mapping_range);
  2179. /*
  2180. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2181. * but allow concurrent faults), and pte mapped but not yet locked.
  2182. * We return with pte unmapped and unlocked.
  2183. *
  2184. * We return with the mmap_sem locked or unlocked in the same cases
  2185. * as does filemap_fault().
  2186. */
  2187. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2188. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2189. unsigned int flags, pte_t orig_pte)
  2190. {
  2191. spinlock_t *ptl;
  2192. struct page *page, *swapcache;
  2193. struct mem_cgroup *memcg;
  2194. swp_entry_t entry;
  2195. pte_t pte;
  2196. int locked;
  2197. int exclusive = 0;
  2198. int ret = 0;
  2199. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2200. goto out;
  2201. entry = pte_to_swp_entry(orig_pte);
  2202. if (unlikely(non_swap_entry(entry))) {
  2203. if (is_migration_entry(entry)) {
  2204. migration_entry_wait(mm, pmd, address);
  2205. } else if (is_hwpoison_entry(entry)) {
  2206. ret = VM_FAULT_HWPOISON;
  2207. } else {
  2208. print_bad_pte(vma, address, orig_pte, NULL);
  2209. ret = VM_FAULT_SIGBUS;
  2210. }
  2211. goto out;
  2212. }
  2213. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2214. page = lookup_swap_cache(entry);
  2215. if (!page) {
  2216. page = swapin_readahead(entry,
  2217. GFP_HIGHUSER_MOVABLE, vma, address);
  2218. if (!page) {
  2219. /*
  2220. * Back out if somebody else faulted in this pte
  2221. * while we released the pte lock.
  2222. */
  2223. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2224. if (likely(pte_same(*page_table, orig_pte)))
  2225. ret = VM_FAULT_OOM;
  2226. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2227. goto unlock;
  2228. }
  2229. /* Had to read the page from swap area: Major fault */
  2230. ret = VM_FAULT_MAJOR;
  2231. count_vm_event(PGMAJFAULT);
  2232. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2233. } else if (PageHWPoison(page)) {
  2234. /*
  2235. * hwpoisoned dirty swapcache pages are kept for killing
  2236. * owner processes (which may be unknown at hwpoison time)
  2237. */
  2238. ret = VM_FAULT_HWPOISON;
  2239. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2240. swapcache = page;
  2241. goto out_release;
  2242. }
  2243. swapcache = page;
  2244. locked = lock_page_or_retry(page, mm, flags);
  2245. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2246. if (!locked) {
  2247. ret |= VM_FAULT_RETRY;
  2248. goto out_release;
  2249. }
  2250. /*
  2251. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2252. * release the swapcache from under us. The page pin, and pte_same
  2253. * test below, are not enough to exclude that. Even if it is still
  2254. * swapcache, we need to check that the page's swap has not changed.
  2255. */
  2256. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2257. goto out_page;
  2258. page = ksm_might_need_to_copy(page, vma, address);
  2259. if (unlikely(!page)) {
  2260. ret = VM_FAULT_OOM;
  2261. page = swapcache;
  2262. goto out_page;
  2263. }
  2264. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
  2265. ret = VM_FAULT_OOM;
  2266. goto out_page;
  2267. }
  2268. /*
  2269. * Back out if somebody else already faulted in this pte.
  2270. */
  2271. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2272. if (unlikely(!pte_same(*page_table, orig_pte)))
  2273. goto out_nomap;
  2274. if (unlikely(!PageUptodate(page))) {
  2275. ret = VM_FAULT_SIGBUS;
  2276. goto out_nomap;
  2277. }
  2278. /*
  2279. * The page isn't present yet, go ahead with the fault.
  2280. *
  2281. * Be careful about the sequence of operations here.
  2282. * To get its accounting right, reuse_swap_page() must be called
  2283. * while the page is counted on swap but not yet in mapcount i.e.
  2284. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2285. * must be called after the swap_free(), or it will never succeed.
  2286. */
  2287. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2288. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2289. pte = mk_pte(page, vma->vm_page_prot);
  2290. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2291. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2292. flags &= ~FAULT_FLAG_WRITE;
  2293. ret |= VM_FAULT_WRITE;
  2294. exclusive = RMAP_EXCLUSIVE;
  2295. }
  2296. flush_icache_page(vma, page);
  2297. if (pte_swp_soft_dirty(orig_pte))
  2298. pte = pte_mksoft_dirty(pte);
  2299. set_pte_at(mm, address, page_table, pte);
  2300. if (page == swapcache) {
  2301. do_page_add_anon_rmap(page, vma, address, exclusive);
  2302. mem_cgroup_commit_charge(page, memcg, true, false);
  2303. } else { /* ksm created a completely new copy */
  2304. page_add_new_anon_rmap(page, vma, address, false);
  2305. mem_cgroup_commit_charge(page, memcg, false, false);
  2306. lru_cache_add_active_or_unevictable(page, vma);
  2307. }
  2308. swap_free(entry);
  2309. if (mem_cgroup_swap_full(page) ||
  2310. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2311. try_to_free_swap(page);
  2312. unlock_page(page);
  2313. if (page != swapcache) {
  2314. /*
  2315. * Hold the lock to avoid the swap entry to be reused
  2316. * until we take the PT lock for the pte_same() check
  2317. * (to avoid false positives from pte_same). For
  2318. * further safety release the lock after the swap_free
  2319. * so that the swap count won't change under a
  2320. * parallel locked swapcache.
  2321. */
  2322. unlock_page(swapcache);
  2323. page_cache_release(swapcache);
  2324. }
  2325. if (flags & FAULT_FLAG_WRITE) {
  2326. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2327. if (ret & VM_FAULT_ERROR)
  2328. ret &= VM_FAULT_ERROR;
  2329. goto out;
  2330. }
  2331. /* No need to invalidate - it was non-present before */
  2332. update_mmu_cache(vma, address, page_table);
  2333. unlock:
  2334. pte_unmap_unlock(page_table, ptl);
  2335. out:
  2336. return ret;
  2337. out_nomap:
  2338. mem_cgroup_cancel_charge(page, memcg, false);
  2339. pte_unmap_unlock(page_table, ptl);
  2340. out_page:
  2341. unlock_page(page);
  2342. out_release:
  2343. page_cache_release(page);
  2344. if (page != swapcache) {
  2345. unlock_page(swapcache);
  2346. page_cache_release(swapcache);
  2347. }
  2348. return ret;
  2349. }
  2350. /*
  2351. * This is like a special single-page "expand_{down|up}wards()",
  2352. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2353. * doesn't hit another vma.
  2354. */
  2355. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2356. {
  2357. address &= PAGE_MASK;
  2358. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2359. struct vm_area_struct *prev = vma->vm_prev;
  2360. /*
  2361. * Is there a mapping abutting this one below?
  2362. *
  2363. * That's only ok if it's the same stack mapping
  2364. * that has gotten split..
  2365. */
  2366. if (prev && prev->vm_end == address)
  2367. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2368. return expand_downwards(vma, address - PAGE_SIZE);
  2369. }
  2370. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2371. struct vm_area_struct *next = vma->vm_next;
  2372. /* As VM_GROWSDOWN but s/below/above/ */
  2373. if (next && next->vm_start == address + PAGE_SIZE)
  2374. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2375. return expand_upwards(vma, address + PAGE_SIZE);
  2376. }
  2377. return 0;
  2378. }
  2379. /*
  2380. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2381. * but allow concurrent faults), and pte mapped but not yet locked.
  2382. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2383. */
  2384. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2385. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2386. unsigned int flags)
  2387. {
  2388. struct mem_cgroup *memcg;
  2389. struct page *page;
  2390. spinlock_t *ptl;
  2391. pte_t entry;
  2392. pte_unmap(page_table);
  2393. /* File mapping without ->vm_ops ? */
  2394. if (vma->vm_flags & VM_SHARED)
  2395. return VM_FAULT_SIGBUS;
  2396. /* Check if we need to add a guard page to the stack */
  2397. if (check_stack_guard_page(vma, address) < 0)
  2398. return VM_FAULT_SIGSEGV;
  2399. /* Use the zero-page for reads */
  2400. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2401. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2402. vma->vm_page_prot));
  2403. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2404. if (!pte_none(*page_table))
  2405. goto unlock;
  2406. /* Deliver the page fault to userland, check inside PT lock */
  2407. if (userfaultfd_missing(vma)) {
  2408. pte_unmap_unlock(page_table, ptl);
  2409. return handle_userfault(vma, address, flags,
  2410. VM_UFFD_MISSING);
  2411. }
  2412. goto setpte;
  2413. }
  2414. /* Allocate our own private page. */
  2415. if (unlikely(anon_vma_prepare(vma)))
  2416. goto oom;
  2417. page = alloc_zeroed_user_highpage_movable(vma, address);
  2418. if (!page)
  2419. goto oom;
  2420. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
  2421. goto oom_free_page;
  2422. /*
  2423. * The memory barrier inside __SetPageUptodate makes sure that
  2424. * preceeding stores to the page contents become visible before
  2425. * the set_pte_at() write.
  2426. */
  2427. __SetPageUptodate(page);
  2428. entry = mk_pte(page, vma->vm_page_prot);
  2429. if (vma->vm_flags & VM_WRITE)
  2430. entry = pte_mkwrite(pte_mkdirty(entry));
  2431. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2432. if (!pte_none(*page_table))
  2433. goto release;
  2434. /* Deliver the page fault to userland, check inside PT lock */
  2435. if (userfaultfd_missing(vma)) {
  2436. pte_unmap_unlock(page_table, ptl);
  2437. mem_cgroup_cancel_charge(page, memcg, false);
  2438. page_cache_release(page);
  2439. return handle_userfault(vma, address, flags,
  2440. VM_UFFD_MISSING);
  2441. }
  2442. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2443. page_add_new_anon_rmap(page, vma, address, false);
  2444. mem_cgroup_commit_charge(page, memcg, false, false);
  2445. lru_cache_add_active_or_unevictable(page, vma);
  2446. setpte:
  2447. set_pte_at(mm, address, page_table, entry);
  2448. /* No need to invalidate - it was non-present before */
  2449. update_mmu_cache(vma, address, page_table);
  2450. unlock:
  2451. pte_unmap_unlock(page_table, ptl);
  2452. return 0;
  2453. release:
  2454. mem_cgroup_cancel_charge(page, memcg, false);
  2455. page_cache_release(page);
  2456. goto unlock;
  2457. oom_free_page:
  2458. page_cache_release(page);
  2459. oom:
  2460. return VM_FAULT_OOM;
  2461. }
  2462. /*
  2463. * The mmap_sem must have been held on entry, and may have been
  2464. * released depending on flags and vma->vm_ops->fault() return value.
  2465. * See filemap_fault() and __lock_page_retry().
  2466. */
  2467. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2468. pgoff_t pgoff, unsigned int flags,
  2469. struct page *cow_page, struct page **page)
  2470. {
  2471. struct vm_fault vmf;
  2472. int ret;
  2473. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2474. vmf.pgoff = pgoff;
  2475. vmf.flags = flags;
  2476. vmf.page = NULL;
  2477. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2478. vmf.cow_page = cow_page;
  2479. ret = vma->vm_ops->fault(vma, &vmf);
  2480. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2481. return ret;
  2482. if (!vmf.page)
  2483. goto out;
  2484. if (unlikely(PageHWPoison(vmf.page))) {
  2485. if (ret & VM_FAULT_LOCKED)
  2486. unlock_page(vmf.page);
  2487. page_cache_release(vmf.page);
  2488. return VM_FAULT_HWPOISON;
  2489. }
  2490. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2491. lock_page(vmf.page);
  2492. else
  2493. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2494. out:
  2495. *page = vmf.page;
  2496. return ret;
  2497. }
  2498. /**
  2499. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2500. *
  2501. * @vma: virtual memory area
  2502. * @address: user virtual address
  2503. * @page: page to map
  2504. * @pte: pointer to target page table entry
  2505. * @write: true, if new entry is writable
  2506. * @anon: true, if it's anonymous page
  2507. *
  2508. * Caller must hold page table lock relevant for @pte.
  2509. *
  2510. * Target users are page handler itself and implementations of
  2511. * vm_ops->map_pages.
  2512. */
  2513. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2514. struct page *page, pte_t *pte, bool write, bool anon)
  2515. {
  2516. pte_t entry;
  2517. flush_icache_page(vma, page);
  2518. entry = mk_pte(page, vma->vm_page_prot);
  2519. if (write)
  2520. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2521. if (anon) {
  2522. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2523. page_add_new_anon_rmap(page, vma, address, false);
  2524. } else {
  2525. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2526. page_add_file_rmap(page);
  2527. }
  2528. set_pte_at(vma->vm_mm, address, pte, entry);
  2529. /* no need to invalidate: a not-present page won't be cached */
  2530. update_mmu_cache(vma, address, pte);
  2531. }
  2532. static unsigned long fault_around_bytes __read_mostly =
  2533. rounddown_pow_of_two(65536);
  2534. #ifdef CONFIG_DEBUG_FS
  2535. static int fault_around_bytes_get(void *data, u64 *val)
  2536. {
  2537. *val = fault_around_bytes;
  2538. return 0;
  2539. }
  2540. /*
  2541. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2542. * rounded down to nearest page order. It's what do_fault_around() expects to
  2543. * see.
  2544. */
  2545. static int fault_around_bytes_set(void *data, u64 val)
  2546. {
  2547. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2548. return -EINVAL;
  2549. if (val > PAGE_SIZE)
  2550. fault_around_bytes = rounddown_pow_of_two(val);
  2551. else
  2552. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2553. return 0;
  2554. }
  2555. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2556. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2557. static int __init fault_around_debugfs(void)
  2558. {
  2559. void *ret;
  2560. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2561. &fault_around_bytes_fops);
  2562. if (!ret)
  2563. pr_warn("Failed to create fault_around_bytes in debugfs");
  2564. return 0;
  2565. }
  2566. late_initcall(fault_around_debugfs);
  2567. #endif
  2568. /*
  2569. * do_fault_around() tries to map few pages around the fault address. The hope
  2570. * is that the pages will be needed soon and this will lower the number of
  2571. * faults to handle.
  2572. *
  2573. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2574. * not ready to be mapped: not up-to-date, locked, etc.
  2575. *
  2576. * This function is called with the page table lock taken. In the split ptlock
  2577. * case the page table lock only protects only those entries which belong to
  2578. * the page table corresponding to the fault address.
  2579. *
  2580. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2581. * only once.
  2582. *
  2583. * fault_around_pages() defines how many pages we'll try to map.
  2584. * do_fault_around() expects it to return a power of two less than or equal to
  2585. * PTRS_PER_PTE.
  2586. *
  2587. * The virtual address of the area that we map is naturally aligned to the
  2588. * fault_around_pages() value (and therefore to page order). This way it's
  2589. * easier to guarantee that we don't cross page table boundaries.
  2590. */
  2591. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2592. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2593. {
  2594. unsigned long start_addr, nr_pages, mask;
  2595. pgoff_t max_pgoff;
  2596. struct vm_fault vmf;
  2597. int off;
  2598. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2599. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2600. start_addr = max(address & mask, vma->vm_start);
  2601. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2602. pte -= off;
  2603. pgoff -= off;
  2604. /*
  2605. * max_pgoff is either end of page table or end of vma
  2606. * or fault_around_pages() from pgoff, depending what is nearest.
  2607. */
  2608. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2609. PTRS_PER_PTE - 1;
  2610. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2611. pgoff + nr_pages - 1);
  2612. /* Check if it makes any sense to call ->map_pages */
  2613. while (!pte_none(*pte)) {
  2614. if (++pgoff > max_pgoff)
  2615. return;
  2616. start_addr += PAGE_SIZE;
  2617. if (start_addr >= vma->vm_end)
  2618. return;
  2619. pte++;
  2620. }
  2621. vmf.virtual_address = (void __user *) start_addr;
  2622. vmf.pte = pte;
  2623. vmf.pgoff = pgoff;
  2624. vmf.max_pgoff = max_pgoff;
  2625. vmf.flags = flags;
  2626. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2627. vma->vm_ops->map_pages(vma, &vmf);
  2628. }
  2629. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2630. unsigned long address, pmd_t *pmd,
  2631. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2632. {
  2633. struct page *fault_page;
  2634. spinlock_t *ptl;
  2635. pte_t *pte;
  2636. int ret = 0;
  2637. /*
  2638. * Let's call ->map_pages() first and use ->fault() as fallback
  2639. * if page by the offset is not ready to be mapped (cold cache or
  2640. * something).
  2641. */
  2642. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2643. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2644. do_fault_around(vma, address, pte, pgoff, flags);
  2645. if (!pte_same(*pte, orig_pte))
  2646. goto unlock_out;
  2647. pte_unmap_unlock(pte, ptl);
  2648. }
  2649. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2650. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2651. return ret;
  2652. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2653. if (unlikely(!pte_same(*pte, orig_pte))) {
  2654. pte_unmap_unlock(pte, ptl);
  2655. unlock_page(fault_page);
  2656. page_cache_release(fault_page);
  2657. return ret;
  2658. }
  2659. do_set_pte(vma, address, fault_page, pte, false, false);
  2660. unlock_page(fault_page);
  2661. unlock_out:
  2662. pte_unmap_unlock(pte, ptl);
  2663. return ret;
  2664. }
  2665. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2666. unsigned long address, pmd_t *pmd,
  2667. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2668. {
  2669. struct page *fault_page, *new_page;
  2670. struct mem_cgroup *memcg;
  2671. spinlock_t *ptl;
  2672. pte_t *pte;
  2673. int ret;
  2674. if (unlikely(anon_vma_prepare(vma)))
  2675. return VM_FAULT_OOM;
  2676. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2677. if (!new_page)
  2678. return VM_FAULT_OOM;
  2679. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
  2680. page_cache_release(new_page);
  2681. return VM_FAULT_OOM;
  2682. }
  2683. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2684. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2685. goto uncharge_out;
  2686. if (fault_page)
  2687. copy_user_highpage(new_page, fault_page, address, vma);
  2688. __SetPageUptodate(new_page);
  2689. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2690. if (unlikely(!pte_same(*pte, orig_pte))) {
  2691. pte_unmap_unlock(pte, ptl);
  2692. if (fault_page) {
  2693. unlock_page(fault_page);
  2694. page_cache_release(fault_page);
  2695. } else {
  2696. /*
  2697. * The fault handler has no page to lock, so it holds
  2698. * i_mmap_lock for read to protect against truncate.
  2699. */
  2700. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2701. }
  2702. goto uncharge_out;
  2703. }
  2704. do_set_pte(vma, address, new_page, pte, true, true);
  2705. mem_cgroup_commit_charge(new_page, memcg, false, false);
  2706. lru_cache_add_active_or_unevictable(new_page, vma);
  2707. pte_unmap_unlock(pte, ptl);
  2708. if (fault_page) {
  2709. unlock_page(fault_page);
  2710. page_cache_release(fault_page);
  2711. } else {
  2712. /*
  2713. * The fault handler has no page to lock, so it holds
  2714. * i_mmap_lock for read to protect against truncate.
  2715. */
  2716. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2717. }
  2718. return ret;
  2719. uncharge_out:
  2720. mem_cgroup_cancel_charge(new_page, memcg, false);
  2721. page_cache_release(new_page);
  2722. return ret;
  2723. }
  2724. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2725. unsigned long address, pmd_t *pmd,
  2726. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2727. {
  2728. struct page *fault_page;
  2729. struct address_space *mapping;
  2730. spinlock_t *ptl;
  2731. pte_t *pte;
  2732. int dirtied = 0;
  2733. int ret, tmp;
  2734. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2735. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2736. return ret;
  2737. /*
  2738. * Check if the backing address space wants to know that the page is
  2739. * about to become writable
  2740. */
  2741. if (vma->vm_ops->page_mkwrite) {
  2742. unlock_page(fault_page);
  2743. tmp = do_page_mkwrite(vma, fault_page, address);
  2744. if (unlikely(!tmp ||
  2745. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2746. page_cache_release(fault_page);
  2747. return tmp;
  2748. }
  2749. }
  2750. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2751. if (unlikely(!pte_same(*pte, orig_pte))) {
  2752. pte_unmap_unlock(pte, ptl);
  2753. unlock_page(fault_page);
  2754. page_cache_release(fault_page);
  2755. return ret;
  2756. }
  2757. do_set_pte(vma, address, fault_page, pte, true, false);
  2758. pte_unmap_unlock(pte, ptl);
  2759. if (set_page_dirty(fault_page))
  2760. dirtied = 1;
  2761. /*
  2762. * Take a local copy of the address_space - page.mapping may be zeroed
  2763. * by truncate after unlock_page(). The address_space itself remains
  2764. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2765. * release semantics to prevent the compiler from undoing this copying.
  2766. */
  2767. mapping = page_rmapping(fault_page);
  2768. unlock_page(fault_page);
  2769. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2770. /*
  2771. * Some device drivers do not set page.mapping but still
  2772. * dirty their pages
  2773. */
  2774. balance_dirty_pages_ratelimited(mapping);
  2775. }
  2776. if (!vma->vm_ops->page_mkwrite)
  2777. file_update_time(vma->vm_file);
  2778. return ret;
  2779. }
  2780. /*
  2781. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2782. * but allow concurrent faults).
  2783. * The mmap_sem may have been released depending on flags and our
  2784. * return value. See filemap_fault() and __lock_page_or_retry().
  2785. */
  2786. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2787. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2788. unsigned int flags, pte_t orig_pte)
  2789. {
  2790. pgoff_t pgoff = (((address & PAGE_MASK)
  2791. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2792. pte_unmap(page_table);
  2793. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2794. if (!vma->vm_ops->fault)
  2795. return VM_FAULT_SIGBUS;
  2796. if (!(flags & FAULT_FLAG_WRITE))
  2797. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2798. orig_pte);
  2799. if (!(vma->vm_flags & VM_SHARED))
  2800. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2801. orig_pte);
  2802. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2803. }
  2804. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2805. unsigned long addr, int page_nid,
  2806. int *flags)
  2807. {
  2808. get_page(page);
  2809. count_vm_numa_event(NUMA_HINT_FAULTS);
  2810. if (page_nid == numa_node_id()) {
  2811. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2812. *flags |= TNF_FAULT_LOCAL;
  2813. }
  2814. return mpol_misplaced(page, vma, addr);
  2815. }
  2816. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2817. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2818. {
  2819. struct page *page = NULL;
  2820. spinlock_t *ptl;
  2821. int page_nid = -1;
  2822. int last_cpupid;
  2823. int target_nid;
  2824. bool migrated = false;
  2825. bool was_writable = pte_write(pte);
  2826. int flags = 0;
  2827. /* A PROT_NONE fault should not end up here */
  2828. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2829. /*
  2830. * The "pte" at this point cannot be used safely without
  2831. * validation through pte_unmap_same(). It's of NUMA type but
  2832. * the pfn may be screwed if the read is non atomic.
  2833. *
  2834. * We can safely just do a "set_pte_at()", because the old
  2835. * page table entry is not accessible, so there would be no
  2836. * concurrent hardware modifications to the PTE.
  2837. */
  2838. ptl = pte_lockptr(mm, pmd);
  2839. spin_lock(ptl);
  2840. if (unlikely(!pte_same(*ptep, pte))) {
  2841. pte_unmap_unlock(ptep, ptl);
  2842. goto out;
  2843. }
  2844. /* Make it present again */
  2845. pte = pte_modify(pte, vma->vm_page_prot);
  2846. pte = pte_mkyoung(pte);
  2847. if (was_writable)
  2848. pte = pte_mkwrite(pte);
  2849. set_pte_at(mm, addr, ptep, pte);
  2850. update_mmu_cache(vma, addr, ptep);
  2851. page = vm_normal_page(vma, addr, pte);
  2852. if (!page) {
  2853. pte_unmap_unlock(ptep, ptl);
  2854. return 0;
  2855. }
  2856. /* TODO: handle PTE-mapped THP */
  2857. if (PageCompound(page)) {
  2858. pte_unmap_unlock(ptep, ptl);
  2859. return 0;
  2860. }
  2861. /*
  2862. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2863. * much anyway since they can be in shared cache state. This misses
  2864. * the case where a mapping is writable but the process never writes
  2865. * to it but pte_write gets cleared during protection updates and
  2866. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2867. * background writeback, dirty balancing and application behaviour.
  2868. */
  2869. if (!(vma->vm_flags & VM_WRITE))
  2870. flags |= TNF_NO_GROUP;
  2871. /*
  2872. * Flag if the page is shared between multiple address spaces. This
  2873. * is later used when determining whether to group tasks together
  2874. */
  2875. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2876. flags |= TNF_SHARED;
  2877. last_cpupid = page_cpupid_last(page);
  2878. page_nid = page_to_nid(page);
  2879. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2880. pte_unmap_unlock(ptep, ptl);
  2881. if (target_nid == -1) {
  2882. put_page(page);
  2883. goto out;
  2884. }
  2885. /* Migrate to the requested node */
  2886. migrated = migrate_misplaced_page(page, vma, target_nid);
  2887. if (migrated) {
  2888. page_nid = target_nid;
  2889. flags |= TNF_MIGRATED;
  2890. } else
  2891. flags |= TNF_MIGRATE_FAIL;
  2892. out:
  2893. if (page_nid != -1)
  2894. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2895. return 0;
  2896. }
  2897. static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2898. unsigned long address, pmd_t *pmd, unsigned int flags)
  2899. {
  2900. if (vma_is_anonymous(vma))
  2901. return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
  2902. if (vma->vm_ops->pmd_fault)
  2903. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2904. return VM_FAULT_FALLBACK;
  2905. }
  2906. static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2907. unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
  2908. unsigned int flags)
  2909. {
  2910. if (vma_is_anonymous(vma))
  2911. return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
  2912. if (vma->vm_ops->pmd_fault)
  2913. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2914. return VM_FAULT_FALLBACK;
  2915. }
  2916. /*
  2917. * These routines also need to handle stuff like marking pages dirty
  2918. * and/or accessed for architectures that don't do it in hardware (most
  2919. * RISC architectures). The early dirtying is also good on the i386.
  2920. *
  2921. * There is also a hook called "update_mmu_cache()" that architectures
  2922. * with external mmu caches can use to update those (ie the Sparc or
  2923. * PowerPC hashed page tables that act as extended TLBs).
  2924. *
  2925. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2926. * but allow concurrent faults), and pte mapped but not yet locked.
  2927. * We return with pte unmapped and unlocked.
  2928. *
  2929. * The mmap_sem may have been released depending on flags and our
  2930. * return value. See filemap_fault() and __lock_page_or_retry().
  2931. */
  2932. static int handle_pte_fault(struct mm_struct *mm,
  2933. struct vm_area_struct *vma, unsigned long address,
  2934. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2935. {
  2936. pte_t entry;
  2937. spinlock_t *ptl;
  2938. /*
  2939. * some architectures can have larger ptes than wordsize,
  2940. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2941. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2942. * The code below just needs a consistent view for the ifs and
  2943. * we later double check anyway with the ptl lock held. So here
  2944. * a barrier will do.
  2945. */
  2946. entry = *pte;
  2947. barrier();
  2948. if (!pte_present(entry)) {
  2949. if (pte_none(entry)) {
  2950. if (vma_is_anonymous(vma))
  2951. return do_anonymous_page(mm, vma, address,
  2952. pte, pmd, flags);
  2953. else
  2954. return do_fault(mm, vma, address, pte, pmd,
  2955. flags, entry);
  2956. }
  2957. return do_swap_page(mm, vma, address,
  2958. pte, pmd, flags, entry);
  2959. }
  2960. if (pte_protnone(entry))
  2961. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2962. ptl = pte_lockptr(mm, pmd);
  2963. spin_lock(ptl);
  2964. if (unlikely(!pte_same(*pte, entry)))
  2965. goto unlock;
  2966. if (flags & FAULT_FLAG_WRITE) {
  2967. if (!pte_write(entry))
  2968. return do_wp_page(mm, vma, address,
  2969. pte, pmd, ptl, entry);
  2970. entry = pte_mkdirty(entry);
  2971. }
  2972. entry = pte_mkyoung(entry);
  2973. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2974. update_mmu_cache(vma, address, pte);
  2975. } else {
  2976. /*
  2977. * This is needed only for protection faults but the arch code
  2978. * is not yet telling us if this is a protection fault or not.
  2979. * This still avoids useless tlb flushes for .text page faults
  2980. * with threads.
  2981. */
  2982. if (flags & FAULT_FLAG_WRITE)
  2983. flush_tlb_fix_spurious_fault(vma, address);
  2984. }
  2985. unlock:
  2986. pte_unmap_unlock(pte, ptl);
  2987. return 0;
  2988. }
  2989. /*
  2990. * By the time we get here, we already hold the mm semaphore
  2991. *
  2992. * The mmap_sem may have been released depending on flags and our
  2993. * return value. See filemap_fault() and __lock_page_or_retry().
  2994. */
  2995. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2996. unsigned long address, unsigned int flags)
  2997. {
  2998. pgd_t *pgd;
  2999. pud_t *pud;
  3000. pmd_t *pmd;
  3001. pte_t *pte;
  3002. if (unlikely(is_vm_hugetlb_page(vma)))
  3003. return hugetlb_fault(mm, vma, address, flags);
  3004. pgd = pgd_offset(mm, address);
  3005. pud = pud_alloc(mm, pgd, address);
  3006. if (!pud)
  3007. return VM_FAULT_OOM;
  3008. pmd = pmd_alloc(mm, pud, address);
  3009. if (!pmd)
  3010. return VM_FAULT_OOM;
  3011. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3012. int ret = create_huge_pmd(mm, vma, address, pmd, flags);
  3013. if (!(ret & VM_FAULT_FALLBACK))
  3014. return ret;
  3015. } else {
  3016. pmd_t orig_pmd = *pmd;
  3017. int ret;
  3018. barrier();
  3019. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3020. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3021. if (pmd_protnone(orig_pmd))
  3022. return do_huge_pmd_numa_page(mm, vma, address,
  3023. orig_pmd, pmd);
  3024. if (dirty && !pmd_write(orig_pmd)) {
  3025. ret = wp_huge_pmd(mm, vma, address, pmd,
  3026. orig_pmd, flags);
  3027. if (!(ret & VM_FAULT_FALLBACK))
  3028. return ret;
  3029. } else {
  3030. huge_pmd_set_accessed(mm, vma, address, pmd,
  3031. orig_pmd, dirty);
  3032. return 0;
  3033. }
  3034. }
  3035. }
  3036. /*
  3037. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3038. * run pte_offset_map on the pmd, if an huge pmd could
  3039. * materialize from under us from a different thread.
  3040. */
  3041. if (unlikely(pmd_none(*pmd)) &&
  3042. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3043. return VM_FAULT_OOM;
  3044. /* if an huge pmd materialized from under us just retry later */
  3045. if (unlikely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  3046. return 0;
  3047. /*
  3048. * A regular pmd is established and it can't morph into a huge pmd
  3049. * from under us anymore at this point because we hold the mmap_sem
  3050. * read mode and khugepaged takes it in write mode. So now it's
  3051. * safe to run pte_offset_map().
  3052. */
  3053. pte = pte_offset_map(pmd, address);
  3054. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3055. }
  3056. /*
  3057. * By the time we get here, we already hold the mm semaphore
  3058. *
  3059. * The mmap_sem may have been released depending on flags and our
  3060. * return value. See filemap_fault() and __lock_page_or_retry().
  3061. */
  3062. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3063. unsigned long address, unsigned int flags)
  3064. {
  3065. int ret;
  3066. __set_current_state(TASK_RUNNING);
  3067. count_vm_event(PGFAULT);
  3068. mem_cgroup_count_vm_event(mm, PGFAULT);
  3069. /* do counter updates before entering really critical section. */
  3070. check_sync_rss_stat(current);
  3071. /*
  3072. * Enable the memcg OOM handling for faults triggered in user
  3073. * space. Kernel faults are handled more gracefully.
  3074. */
  3075. if (flags & FAULT_FLAG_USER)
  3076. mem_cgroup_oom_enable();
  3077. ret = __handle_mm_fault(mm, vma, address, flags);
  3078. if (flags & FAULT_FLAG_USER) {
  3079. mem_cgroup_oom_disable();
  3080. /*
  3081. * The task may have entered a memcg OOM situation but
  3082. * if the allocation error was handled gracefully (no
  3083. * VM_FAULT_OOM), there is no need to kill anything.
  3084. * Just clean up the OOM state peacefully.
  3085. */
  3086. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3087. mem_cgroup_oom_synchronize(false);
  3088. }
  3089. return ret;
  3090. }
  3091. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3092. #ifndef __PAGETABLE_PUD_FOLDED
  3093. /*
  3094. * Allocate page upper directory.
  3095. * We've already handled the fast-path in-line.
  3096. */
  3097. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3098. {
  3099. pud_t *new = pud_alloc_one(mm, address);
  3100. if (!new)
  3101. return -ENOMEM;
  3102. smp_wmb(); /* See comment in __pte_alloc */
  3103. spin_lock(&mm->page_table_lock);
  3104. if (pgd_present(*pgd)) /* Another has populated it */
  3105. pud_free(mm, new);
  3106. else
  3107. pgd_populate(mm, pgd, new);
  3108. spin_unlock(&mm->page_table_lock);
  3109. return 0;
  3110. }
  3111. #endif /* __PAGETABLE_PUD_FOLDED */
  3112. #ifndef __PAGETABLE_PMD_FOLDED
  3113. /*
  3114. * Allocate page middle directory.
  3115. * We've already handled the fast-path in-line.
  3116. */
  3117. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3118. {
  3119. pmd_t *new = pmd_alloc_one(mm, address);
  3120. if (!new)
  3121. return -ENOMEM;
  3122. smp_wmb(); /* See comment in __pte_alloc */
  3123. spin_lock(&mm->page_table_lock);
  3124. #ifndef __ARCH_HAS_4LEVEL_HACK
  3125. if (!pud_present(*pud)) {
  3126. mm_inc_nr_pmds(mm);
  3127. pud_populate(mm, pud, new);
  3128. } else /* Another has populated it */
  3129. pmd_free(mm, new);
  3130. #else
  3131. if (!pgd_present(*pud)) {
  3132. mm_inc_nr_pmds(mm);
  3133. pgd_populate(mm, pud, new);
  3134. } else /* Another has populated it */
  3135. pmd_free(mm, new);
  3136. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3137. spin_unlock(&mm->page_table_lock);
  3138. return 0;
  3139. }
  3140. #endif /* __PAGETABLE_PMD_FOLDED */
  3141. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3142. pte_t **ptepp, spinlock_t **ptlp)
  3143. {
  3144. pgd_t *pgd;
  3145. pud_t *pud;
  3146. pmd_t *pmd;
  3147. pte_t *ptep;
  3148. pgd = pgd_offset(mm, address);
  3149. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3150. goto out;
  3151. pud = pud_offset(pgd, address);
  3152. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3153. goto out;
  3154. pmd = pmd_offset(pud, address);
  3155. VM_BUG_ON(pmd_trans_huge(*pmd));
  3156. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3157. goto out;
  3158. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3159. if (pmd_huge(*pmd))
  3160. goto out;
  3161. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3162. if (!ptep)
  3163. goto out;
  3164. if (!pte_present(*ptep))
  3165. goto unlock;
  3166. *ptepp = ptep;
  3167. return 0;
  3168. unlock:
  3169. pte_unmap_unlock(ptep, *ptlp);
  3170. out:
  3171. return -EINVAL;
  3172. }
  3173. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3174. pte_t **ptepp, spinlock_t **ptlp)
  3175. {
  3176. int res;
  3177. /* (void) is needed to make gcc happy */
  3178. (void) __cond_lock(*ptlp,
  3179. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3180. return res;
  3181. }
  3182. /**
  3183. * follow_pfn - look up PFN at a user virtual address
  3184. * @vma: memory mapping
  3185. * @address: user virtual address
  3186. * @pfn: location to store found PFN
  3187. *
  3188. * Only IO mappings and raw PFN mappings are allowed.
  3189. *
  3190. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3191. */
  3192. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3193. unsigned long *pfn)
  3194. {
  3195. int ret = -EINVAL;
  3196. spinlock_t *ptl;
  3197. pte_t *ptep;
  3198. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3199. return ret;
  3200. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3201. if (ret)
  3202. return ret;
  3203. *pfn = pte_pfn(*ptep);
  3204. pte_unmap_unlock(ptep, ptl);
  3205. return 0;
  3206. }
  3207. EXPORT_SYMBOL(follow_pfn);
  3208. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3209. int follow_phys(struct vm_area_struct *vma,
  3210. unsigned long address, unsigned int flags,
  3211. unsigned long *prot, resource_size_t *phys)
  3212. {
  3213. int ret = -EINVAL;
  3214. pte_t *ptep, pte;
  3215. spinlock_t *ptl;
  3216. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3217. goto out;
  3218. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3219. goto out;
  3220. pte = *ptep;
  3221. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3222. goto unlock;
  3223. *prot = pgprot_val(pte_pgprot(pte));
  3224. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3225. ret = 0;
  3226. unlock:
  3227. pte_unmap_unlock(ptep, ptl);
  3228. out:
  3229. return ret;
  3230. }
  3231. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3232. void *buf, int len, int write)
  3233. {
  3234. resource_size_t phys_addr;
  3235. unsigned long prot = 0;
  3236. void __iomem *maddr;
  3237. int offset = addr & (PAGE_SIZE-1);
  3238. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3239. return -EINVAL;
  3240. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3241. if (write)
  3242. memcpy_toio(maddr + offset, buf, len);
  3243. else
  3244. memcpy_fromio(buf, maddr + offset, len);
  3245. iounmap(maddr);
  3246. return len;
  3247. }
  3248. EXPORT_SYMBOL_GPL(generic_access_phys);
  3249. #endif
  3250. /*
  3251. * Access another process' address space as given in mm. If non-NULL, use the
  3252. * given task for page fault accounting.
  3253. */
  3254. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3255. unsigned long addr, void *buf, int len, int write)
  3256. {
  3257. struct vm_area_struct *vma;
  3258. void *old_buf = buf;
  3259. down_read(&mm->mmap_sem);
  3260. /* ignore errors, just check how much was successfully transferred */
  3261. while (len) {
  3262. int bytes, ret, offset;
  3263. void *maddr;
  3264. struct page *page = NULL;
  3265. ret = get_user_pages(tsk, mm, addr, 1,
  3266. write, 1, &page, &vma);
  3267. if (ret <= 0) {
  3268. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3269. break;
  3270. #else
  3271. /*
  3272. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3273. * we can access using slightly different code.
  3274. */
  3275. vma = find_vma(mm, addr);
  3276. if (!vma || vma->vm_start > addr)
  3277. break;
  3278. if (vma->vm_ops && vma->vm_ops->access)
  3279. ret = vma->vm_ops->access(vma, addr, buf,
  3280. len, write);
  3281. if (ret <= 0)
  3282. break;
  3283. bytes = ret;
  3284. #endif
  3285. } else {
  3286. bytes = len;
  3287. offset = addr & (PAGE_SIZE-1);
  3288. if (bytes > PAGE_SIZE-offset)
  3289. bytes = PAGE_SIZE-offset;
  3290. maddr = kmap(page);
  3291. if (write) {
  3292. copy_to_user_page(vma, page, addr,
  3293. maddr + offset, buf, bytes);
  3294. set_page_dirty_lock(page);
  3295. } else {
  3296. copy_from_user_page(vma, page, addr,
  3297. buf, maddr + offset, bytes);
  3298. }
  3299. kunmap(page);
  3300. page_cache_release(page);
  3301. }
  3302. len -= bytes;
  3303. buf += bytes;
  3304. addr += bytes;
  3305. }
  3306. up_read(&mm->mmap_sem);
  3307. return buf - old_buf;
  3308. }
  3309. /**
  3310. * access_remote_vm - access another process' address space
  3311. * @mm: the mm_struct of the target address space
  3312. * @addr: start address to access
  3313. * @buf: source or destination buffer
  3314. * @len: number of bytes to transfer
  3315. * @write: whether the access is a write
  3316. *
  3317. * The caller must hold a reference on @mm.
  3318. */
  3319. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3320. void *buf, int len, int write)
  3321. {
  3322. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3323. }
  3324. /*
  3325. * Access another process' address space.
  3326. * Source/target buffer must be kernel space,
  3327. * Do not walk the page table directly, use get_user_pages
  3328. */
  3329. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3330. void *buf, int len, int write)
  3331. {
  3332. struct mm_struct *mm;
  3333. int ret;
  3334. mm = get_task_mm(tsk);
  3335. if (!mm)
  3336. return 0;
  3337. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3338. mmput(mm);
  3339. return ret;
  3340. }
  3341. /*
  3342. * Print the name of a VMA.
  3343. */
  3344. void print_vma_addr(char *prefix, unsigned long ip)
  3345. {
  3346. struct mm_struct *mm = current->mm;
  3347. struct vm_area_struct *vma;
  3348. /*
  3349. * Do not print if we are in atomic
  3350. * contexts (in exception stacks, etc.):
  3351. */
  3352. if (preempt_count())
  3353. return;
  3354. down_read(&mm->mmap_sem);
  3355. vma = find_vma(mm, ip);
  3356. if (vma && vma->vm_file) {
  3357. struct file *f = vma->vm_file;
  3358. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3359. if (buf) {
  3360. char *p;
  3361. p = file_path(f, buf, PAGE_SIZE);
  3362. if (IS_ERR(p))
  3363. p = "?";
  3364. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3365. vma->vm_start,
  3366. vma->vm_end - vma->vm_start);
  3367. free_page((unsigned long)buf);
  3368. }
  3369. }
  3370. up_read(&mm->mmap_sem);
  3371. }
  3372. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3373. void __might_fault(const char *file, int line)
  3374. {
  3375. /*
  3376. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3377. * holding the mmap_sem, this is safe because kernel memory doesn't
  3378. * get paged out, therefore we'll never actually fault, and the
  3379. * below annotations will generate false positives.
  3380. */
  3381. if (segment_eq(get_fs(), KERNEL_DS))
  3382. return;
  3383. if (pagefault_disabled())
  3384. return;
  3385. __might_sleep(file, line, 0);
  3386. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3387. if (current->mm)
  3388. might_lock_read(&current->mm->mmap_sem);
  3389. #endif
  3390. }
  3391. EXPORT_SYMBOL(__might_fault);
  3392. #endif
  3393. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3394. static void clear_gigantic_page(struct page *page,
  3395. unsigned long addr,
  3396. unsigned int pages_per_huge_page)
  3397. {
  3398. int i;
  3399. struct page *p = page;
  3400. might_sleep();
  3401. for (i = 0; i < pages_per_huge_page;
  3402. i++, p = mem_map_next(p, page, i)) {
  3403. cond_resched();
  3404. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3405. }
  3406. }
  3407. void clear_huge_page(struct page *page,
  3408. unsigned long addr, unsigned int pages_per_huge_page)
  3409. {
  3410. int i;
  3411. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3412. clear_gigantic_page(page, addr, pages_per_huge_page);
  3413. return;
  3414. }
  3415. might_sleep();
  3416. for (i = 0; i < pages_per_huge_page; i++) {
  3417. cond_resched();
  3418. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3419. }
  3420. }
  3421. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3422. unsigned long addr,
  3423. struct vm_area_struct *vma,
  3424. unsigned int pages_per_huge_page)
  3425. {
  3426. int i;
  3427. struct page *dst_base = dst;
  3428. struct page *src_base = src;
  3429. for (i = 0; i < pages_per_huge_page; ) {
  3430. cond_resched();
  3431. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3432. i++;
  3433. dst = mem_map_next(dst, dst_base, i);
  3434. src = mem_map_next(src, src_base, i);
  3435. }
  3436. }
  3437. void copy_user_huge_page(struct page *dst, struct page *src,
  3438. unsigned long addr, struct vm_area_struct *vma,
  3439. unsigned int pages_per_huge_page)
  3440. {
  3441. int i;
  3442. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3443. copy_user_gigantic_page(dst, src, addr, vma,
  3444. pages_per_huge_page);
  3445. return;
  3446. }
  3447. might_sleep();
  3448. for (i = 0; i < pages_per_huge_page; i++) {
  3449. cond_resched();
  3450. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3451. }
  3452. }
  3453. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3454. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3455. static struct kmem_cache *page_ptl_cachep;
  3456. void __init ptlock_cache_init(void)
  3457. {
  3458. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3459. SLAB_PANIC, NULL);
  3460. }
  3461. bool ptlock_alloc(struct page *page)
  3462. {
  3463. spinlock_t *ptl;
  3464. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3465. if (!ptl)
  3466. return false;
  3467. page->ptl = ptl;
  3468. return true;
  3469. }
  3470. void ptlock_free(struct page *page)
  3471. {
  3472. kmem_cache_free(page_ptl_cachep, page->ptl);
  3473. }
  3474. #endif