kmemleak.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a red black tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * Locks and mutexes are acquired/nested in the following order:
  57. *
  58. * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  59. *
  60. * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  61. * regions.
  62. *
  63. * The kmemleak_object structures have a use_count incremented or decremented
  64. * using the get_object()/put_object() functions. When the use_count becomes
  65. * 0, this count can no longer be incremented and put_object() schedules the
  66. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  67. * function must be protected by rcu_read_lock() to avoid accessing a freed
  68. * structure.
  69. */
  70. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  71. #include <linux/init.h>
  72. #include <linux/kernel.h>
  73. #include <linux/list.h>
  74. #include <linux/sched.h>
  75. #include <linux/jiffies.h>
  76. #include <linux/delay.h>
  77. #include <linux/export.h>
  78. #include <linux/kthread.h>
  79. #include <linux/rbtree.h>
  80. #include <linux/fs.h>
  81. #include <linux/debugfs.h>
  82. #include <linux/seq_file.h>
  83. #include <linux/cpumask.h>
  84. #include <linux/spinlock.h>
  85. #include <linux/mutex.h>
  86. #include <linux/rcupdate.h>
  87. #include <linux/stacktrace.h>
  88. #include <linux/cache.h>
  89. #include <linux/percpu.h>
  90. #include <linux/hardirq.h>
  91. #include <linux/mmzone.h>
  92. #include <linux/slab.h>
  93. #include <linux/thread_info.h>
  94. #include <linux/err.h>
  95. #include <linux/uaccess.h>
  96. #include <linux/string.h>
  97. #include <linux/nodemask.h>
  98. #include <linux/mm.h>
  99. #include <linux/workqueue.h>
  100. #include <linux/crc32.h>
  101. #include <asm/sections.h>
  102. #include <asm/processor.h>
  103. #include <linux/atomic.h>
  104. #include <linux/kasan.h>
  105. #include <linux/kmemcheck.h>
  106. #include <linux/kmemleak.h>
  107. #include <linux/memory_hotplug.h>
  108. /*
  109. * Kmemleak configuration and common defines.
  110. */
  111. #define MAX_TRACE 16 /* stack trace length */
  112. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  113. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  114. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  115. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  116. #define BYTES_PER_POINTER sizeof(void *)
  117. /* GFP bitmask for kmemleak internal allocations */
  118. #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
  119. __GFP_NORETRY | __GFP_NOMEMALLOC | \
  120. __GFP_NOWARN)
  121. /* scanning area inside a memory block */
  122. struct kmemleak_scan_area {
  123. struct hlist_node node;
  124. unsigned long start;
  125. size_t size;
  126. };
  127. #define KMEMLEAK_GREY 0
  128. #define KMEMLEAK_BLACK -1
  129. /*
  130. * Structure holding the metadata for each allocated memory block.
  131. * Modifications to such objects should be made while holding the
  132. * object->lock. Insertions or deletions from object_list, gray_list or
  133. * rb_node are already protected by the corresponding locks or mutex (see
  134. * the notes on locking above). These objects are reference-counted
  135. * (use_count) and freed using the RCU mechanism.
  136. */
  137. struct kmemleak_object {
  138. spinlock_t lock;
  139. unsigned long flags; /* object status flags */
  140. struct list_head object_list;
  141. struct list_head gray_list;
  142. struct rb_node rb_node;
  143. struct rcu_head rcu; /* object_list lockless traversal */
  144. /* object usage count; object freed when use_count == 0 */
  145. atomic_t use_count;
  146. unsigned long pointer;
  147. size_t size;
  148. /* minimum number of a pointers found before it is considered leak */
  149. int min_count;
  150. /* the total number of pointers found pointing to this object */
  151. int count;
  152. /* checksum for detecting modified objects */
  153. u32 checksum;
  154. /* memory ranges to be scanned inside an object (empty for all) */
  155. struct hlist_head area_list;
  156. unsigned long trace[MAX_TRACE];
  157. unsigned int trace_len;
  158. unsigned long jiffies; /* creation timestamp */
  159. pid_t pid; /* pid of the current task */
  160. char comm[TASK_COMM_LEN]; /* executable name */
  161. };
  162. /* flag representing the memory block allocation status */
  163. #define OBJECT_ALLOCATED (1 << 0)
  164. /* flag set after the first reporting of an unreference object */
  165. #define OBJECT_REPORTED (1 << 1)
  166. /* flag set to not scan the object */
  167. #define OBJECT_NO_SCAN (1 << 2)
  168. /* number of bytes to print per line; must be 16 or 32 */
  169. #define HEX_ROW_SIZE 16
  170. /* number of bytes to print at a time (1, 2, 4, 8) */
  171. #define HEX_GROUP_SIZE 1
  172. /* include ASCII after the hex output */
  173. #define HEX_ASCII 1
  174. /* max number of lines to be printed */
  175. #define HEX_MAX_LINES 2
  176. /* the list of all allocated objects */
  177. static LIST_HEAD(object_list);
  178. /* the list of gray-colored objects (see color_gray comment below) */
  179. static LIST_HEAD(gray_list);
  180. /* search tree for object boundaries */
  181. static struct rb_root object_tree_root = RB_ROOT;
  182. /* rw_lock protecting the access to object_list and object_tree_root */
  183. static DEFINE_RWLOCK(kmemleak_lock);
  184. /* allocation caches for kmemleak internal data */
  185. static struct kmem_cache *object_cache;
  186. static struct kmem_cache *scan_area_cache;
  187. /* set if tracing memory operations is enabled */
  188. static int kmemleak_enabled;
  189. /* same as above but only for the kmemleak_free() callback */
  190. static int kmemleak_free_enabled;
  191. /* set in the late_initcall if there were no errors */
  192. static int kmemleak_initialized;
  193. /* enables or disables early logging of the memory operations */
  194. static int kmemleak_early_log = 1;
  195. /* set if a kmemleak warning was issued */
  196. static int kmemleak_warning;
  197. /* set if a fatal kmemleak error has occurred */
  198. static int kmemleak_error;
  199. /* minimum and maximum address that may be valid pointers */
  200. static unsigned long min_addr = ULONG_MAX;
  201. static unsigned long max_addr;
  202. static struct task_struct *scan_thread;
  203. /* used to avoid reporting of recently allocated objects */
  204. static unsigned long jiffies_min_age;
  205. static unsigned long jiffies_last_scan;
  206. /* delay between automatic memory scannings */
  207. static signed long jiffies_scan_wait;
  208. /* enables or disables the task stacks scanning */
  209. static int kmemleak_stack_scan = 1;
  210. /* protects the memory scanning, parameters and debug/kmemleak file access */
  211. static DEFINE_MUTEX(scan_mutex);
  212. /* setting kmemleak=on, will set this var, skipping the disable */
  213. static int kmemleak_skip_disable;
  214. /* If there are leaks that can be reported */
  215. static bool kmemleak_found_leaks;
  216. /*
  217. * Early object allocation/freeing logging. Kmemleak is initialized after the
  218. * kernel allocator. However, both the kernel allocator and kmemleak may
  219. * allocate memory blocks which need to be tracked. Kmemleak defines an
  220. * arbitrary buffer to hold the allocation/freeing information before it is
  221. * fully initialized.
  222. */
  223. /* kmemleak operation type for early logging */
  224. enum {
  225. KMEMLEAK_ALLOC,
  226. KMEMLEAK_ALLOC_PERCPU,
  227. KMEMLEAK_FREE,
  228. KMEMLEAK_FREE_PART,
  229. KMEMLEAK_FREE_PERCPU,
  230. KMEMLEAK_NOT_LEAK,
  231. KMEMLEAK_IGNORE,
  232. KMEMLEAK_SCAN_AREA,
  233. KMEMLEAK_NO_SCAN
  234. };
  235. /*
  236. * Structure holding the information passed to kmemleak callbacks during the
  237. * early logging.
  238. */
  239. struct early_log {
  240. int op_type; /* kmemleak operation type */
  241. const void *ptr; /* allocated/freed memory block */
  242. size_t size; /* memory block size */
  243. int min_count; /* minimum reference count */
  244. unsigned long trace[MAX_TRACE]; /* stack trace */
  245. unsigned int trace_len; /* stack trace length */
  246. };
  247. /* early logging buffer and current position */
  248. static struct early_log
  249. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  250. static int crt_early_log __initdata;
  251. static void kmemleak_disable(void);
  252. /*
  253. * Print a warning and dump the stack trace.
  254. */
  255. #define kmemleak_warn(x...) do { \
  256. pr_warning(x); \
  257. dump_stack(); \
  258. kmemleak_warning = 1; \
  259. } while (0)
  260. /*
  261. * Macro invoked when a serious kmemleak condition occurred and cannot be
  262. * recovered from. Kmemleak will be disabled and further allocation/freeing
  263. * tracing no longer available.
  264. */
  265. #define kmemleak_stop(x...) do { \
  266. kmemleak_warn(x); \
  267. kmemleak_disable(); \
  268. } while (0)
  269. /*
  270. * Printing of the objects hex dump to the seq file. The number of lines to be
  271. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  272. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  273. * with the object->lock held.
  274. */
  275. static void hex_dump_object(struct seq_file *seq,
  276. struct kmemleak_object *object)
  277. {
  278. const u8 *ptr = (const u8 *)object->pointer;
  279. size_t len;
  280. /* limit the number of lines to HEX_MAX_LINES */
  281. len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
  282. seq_printf(seq, " hex dump (first %zu bytes):\n", len);
  283. seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
  284. HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
  285. }
  286. /*
  287. * Object colors, encoded with count and min_count:
  288. * - white - orphan object, not enough references to it (count < min_count)
  289. * - gray - not orphan, not marked as false positive (min_count == 0) or
  290. * sufficient references to it (count >= min_count)
  291. * - black - ignore, it doesn't contain references (e.g. text section)
  292. * (min_count == -1). No function defined for this color.
  293. * Newly created objects don't have any color assigned (object->count == -1)
  294. * before the next memory scan when they become white.
  295. */
  296. static bool color_white(const struct kmemleak_object *object)
  297. {
  298. return object->count != KMEMLEAK_BLACK &&
  299. object->count < object->min_count;
  300. }
  301. static bool color_gray(const struct kmemleak_object *object)
  302. {
  303. return object->min_count != KMEMLEAK_BLACK &&
  304. object->count >= object->min_count;
  305. }
  306. /*
  307. * Objects are considered unreferenced only if their color is white, they have
  308. * not be deleted and have a minimum age to avoid false positives caused by
  309. * pointers temporarily stored in CPU registers.
  310. */
  311. static bool unreferenced_object(struct kmemleak_object *object)
  312. {
  313. return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  314. time_before_eq(object->jiffies + jiffies_min_age,
  315. jiffies_last_scan);
  316. }
  317. /*
  318. * Printing of the unreferenced objects information to the seq file. The
  319. * print_unreferenced function must be called with the object->lock held.
  320. */
  321. static void print_unreferenced(struct seq_file *seq,
  322. struct kmemleak_object *object)
  323. {
  324. int i;
  325. unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  326. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  327. object->pointer, object->size);
  328. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  329. object->comm, object->pid, object->jiffies,
  330. msecs_age / 1000, msecs_age % 1000);
  331. hex_dump_object(seq, object);
  332. seq_printf(seq, " backtrace:\n");
  333. for (i = 0; i < object->trace_len; i++) {
  334. void *ptr = (void *)object->trace[i];
  335. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  336. }
  337. }
  338. /*
  339. * Print the kmemleak_object information. This function is used mainly for
  340. * debugging special cases when kmemleak operations. It must be called with
  341. * the object->lock held.
  342. */
  343. static void dump_object_info(struct kmemleak_object *object)
  344. {
  345. struct stack_trace trace;
  346. trace.nr_entries = object->trace_len;
  347. trace.entries = object->trace;
  348. pr_notice("Object 0x%08lx (size %zu):\n",
  349. object->pointer, object->size);
  350. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  351. object->comm, object->pid, object->jiffies);
  352. pr_notice(" min_count = %d\n", object->min_count);
  353. pr_notice(" count = %d\n", object->count);
  354. pr_notice(" flags = 0x%lx\n", object->flags);
  355. pr_notice(" checksum = %u\n", object->checksum);
  356. pr_notice(" backtrace:\n");
  357. print_stack_trace(&trace, 4);
  358. }
  359. /*
  360. * Look-up a memory block metadata (kmemleak_object) in the object search
  361. * tree based on a pointer value. If alias is 0, only values pointing to the
  362. * beginning of the memory block are allowed. The kmemleak_lock must be held
  363. * when calling this function.
  364. */
  365. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  366. {
  367. struct rb_node *rb = object_tree_root.rb_node;
  368. while (rb) {
  369. struct kmemleak_object *object =
  370. rb_entry(rb, struct kmemleak_object, rb_node);
  371. if (ptr < object->pointer)
  372. rb = object->rb_node.rb_left;
  373. else if (object->pointer + object->size <= ptr)
  374. rb = object->rb_node.rb_right;
  375. else if (object->pointer == ptr || alias)
  376. return object;
  377. else {
  378. kmemleak_warn("Found object by alias at 0x%08lx\n",
  379. ptr);
  380. dump_object_info(object);
  381. break;
  382. }
  383. }
  384. return NULL;
  385. }
  386. /*
  387. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  388. * that once an object's use_count reached 0, the RCU freeing was already
  389. * registered and the object should no longer be used. This function must be
  390. * called under the protection of rcu_read_lock().
  391. */
  392. static int get_object(struct kmemleak_object *object)
  393. {
  394. return atomic_inc_not_zero(&object->use_count);
  395. }
  396. /*
  397. * RCU callback to free a kmemleak_object.
  398. */
  399. static void free_object_rcu(struct rcu_head *rcu)
  400. {
  401. struct hlist_node *tmp;
  402. struct kmemleak_scan_area *area;
  403. struct kmemleak_object *object =
  404. container_of(rcu, struct kmemleak_object, rcu);
  405. /*
  406. * Once use_count is 0 (guaranteed by put_object), there is no other
  407. * code accessing this object, hence no need for locking.
  408. */
  409. hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
  410. hlist_del(&area->node);
  411. kmem_cache_free(scan_area_cache, area);
  412. }
  413. kmem_cache_free(object_cache, object);
  414. }
  415. /*
  416. * Decrement the object use_count. Once the count is 0, free the object using
  417. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  418. * delete_object() path, the delayed RCU freeing ensures that there is no
  419. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  420. * is also possible.
  421. */
  422. static void put_object(struct kmemleak_object *object)
  423. {
  424. if (!atomic_dec_and_test(&object->use_count))
  425. return;
  426. /* should only get here after delete_object was called */
  427. WARN_ON(object->flags & OBJECT_ALLOCATED);
  428. call_rcu(&object->rcu, free_object_rcu);
  429. }
  430. /*
  431. * Look up an object in the object search tree and increase its use_count.
  432. */
  433. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  434. {
  435. unsigned long flags;
  436. struct kmemleak_object *object;
  437. rcu_read_lock();
  438. read_lock_irqsave(&kmemleak_lock, flags);
  439. object = lookup_object(ptr, alias);
  440. read_unlock_irqrestore(&kmemleak_lock, flags);
  441. /* check whether the object is still available */
  442. if (object && !get_object(object))
  443. object = NULL;
  444. rcu_read_unlock();
  445. return object;
  446. }
  447. /*
  448. * Look up an object in the object search tree and remove it from both
  449. * object_tree_root and object_list. The returned object's use_count should be
  450. * at least 1, as initially set by create_object().
  451. */
  452. static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
  453. {
  454. unsigned long flags;
  455. struct kmemleak_object *object;
  456. write_lock_irqsave(&kmemleak_lock, flags);
  457. object = lookup_object(ptr, alias);
  458. if (object) {
  459. rb_erase(&object->rb_node, &object_tree_root);
  460. list_del_rcu(&object->object_list);
  461. }
  462. write_unlock_irqrestore(&kmemleak_lock, flags);
  463. return object;
  464. }
  465. /*
  466. * Save stack trace to the given array of MAX_TRACE size.
  467. */
  468. static int __save_stack_trace(unsigned long *trace)
  469. {
  470. struct stack_trace stack_trace;
  471. stack_trace.max_entries = MAX_TRACE;
  472. stack_trace.nr_entries = 0;
  473. stack_trace.entries = trace;
  474. stack_trace.skip = 2;
  475. save_stack_trace(&stack_trace);
  476. return stack_trace.nr_entries;
  477. }
  478. /*
  479. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  480. * memory block and add it to the object_list and object_tree_root.
  481. */
  482. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  483. int min_count, gfp_t gfp)
  484. {
  485. unsigned long flags;
  486. struct kmemleak_object *object, *parent;
  487. struct rb_node **link, *rb_parent;
  488. object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  489. if (!object) {
  490. pr_warning("Cannot allocate a kmemleak_object structure\n");
  491. kmemleak_disable();
  492. return NULL;
  493. }
  494. INIT_LIST_HEAD(&object->object_list);
  495. INIT_LIST_HEAD(&object->gray_list);
  496. INIT_HLIST_HEAD(&object->area_list);
  497. spin_lock_init(&object->lock);
  498. atomic_set(&object->use_count, 1);
  499. object->flags = OBJECT_ALLOCATED;
  500. object->pointer = ptr;
  501. object->size = size;
  502. object->min_count = min_count;
  503. object->count = 0; /* white color initially */
  504. object->jiffies = jiffies;
  505. object->checksum = 0;
  506. /* task information */
  507. if (in_irq()) {
  508. object->pid = 0;
  509. strncpy(object->comm, "hardirq", sizeof(object->comm));
  510. } else if (in_softirq()) {
  511. object->pid = 0;
  512. strncpy(object->comm, "softirq", sizeof(object->comm));
  513. } else {
  514. object->pid = current->pid;
  515. /*
  516. * There is a small chance of a race with set_task_comm(),
  517. * however using get_task_comm() here may cause locking
  518. * dependency issues with current->alloc_lock. In the worst
  519. * case, the command line is not correct.
  520. */
  521. strncpy(object->comm, current->comm, sizeof(object->comm));
  522. }
  523. /* kernel backtrace */
  524. object->trace_len = __save_stack_trace(object->trace);
  525. write_lock_irqsave(&kmemleak_lock, flags);
  526. min_addr = min(min_addr, ptr);
  527. max_addr = max(max_addr, ptr + size);
  528. link = &object_tree_root.rb_node;
  529. rb_parent = NULL;
  530. while (*link) {
  531. rb_parent = *link;
  532. parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  533. if (ptr + size <= parent->pointer)
  534. link = &parent->rb_node.rb_left;
  535. else if (parent->pointer + parent->size <= ptr)
  536. link = &parent->rb_node.rb_right;
  537. else {
  538. kmemleak_stop("Cannot insert 0x%lx into the object "
  539. "search tree (overlaps existing)\n",
  540. ptr);
  541. /*
  542. * No need for parent->lock here since "parent" cannot
  543. * be freed while the kmemleak_lock is held.
  544. */
  545. dump_object_info(parent);
  546. kmem_cache_free(object_cache, object);
  547. object = NULL;
  548. goto out;
  549. }
  550. }
  551. rb_link_node(&object->rb_node, rb_parent, link);
  552. rb_insert_color(&object->rb_node, &object_tree_root);
  553. list_add_tail_rcu(&object->object_list, &object_list);
  554. out:
  555. write_unlock_irqrestore(&kmemleak_lock, flags);
  556. return object;
  557. }
  558. /*
  559. * Mark the object as not allocated and schedule RCU freeing via put_object().
  560. */
  561. static void __delete_object(struct kmemleak_object *object)
  562. {
  563. unsigned long flags;
  564. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  565. WARN_ON(atomic_read(&object->use_count) < 1);
  566. /*
  567. * Locking here also ensures that the corresponding memory block
  568. * cannot be freed when it is being scanned.
  569. */
  570. spin_lock_irqsave(&object->lock, flags);
  571. object->flags &= ~OBJECT_ALLOCATED;
  572. spin_unlock_irqrestore(&object->lock, flags);
  573. put_object(object);
  574. }
  575. /*
  576. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  577. * delete it.
  578. */
  579. static void delete_object_full(unsigned long ptr)
  580. {
  581. struct kmemleak_object *object;
  582. object = find_and_remove_object(ptr, 0);
  583. if (!object) {
  584. #ifdef DEBUG
  585. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  586. ptr);
  587. #endif
  588. return;
  589. }
  590. __delete_object(object);
  591. }
  592. /*
  593. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  594. * delete it. If the memory block is partially freed, the function may create
  595. * additional metadata for the remaining parts of the block.
  596. */
  597. static void delete_object_part(unsigned long ptr, size_t size)
  598. {
  599. struct kmemleak_object *object;
  600. unsigned long start, end;
  601. object = find_and_remove_object(ptr, 1);
  602. if (!object) {
  603. #ifdef DEBUG
  604. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  605. "(size %zu)\n", ptr, size);
  606. #endif
  607. return;
  608. }
  609. /*
  610. * Create one or two objects that may result from the memory block
  611. * split. Note that partial freeing is only done by free_bootmem() and
  612. * this happens before kmemleak_init() is called. The path below is
  613. * only executed during early log recording in kmemleak_init(), so
  614. * GFP_KERNEL is enough.
  615. */
  616. start = object->pointer;
  617. end = object->pointer + object->size;
  618. if (ptr > start)
  619. create_object(start, ptr - start, object->min_count,
  620. GFP_KERNEL);
  621. if (ptr + size < end)
  622. create_object(ptr + size, end - ptr - size, object->min_count,
  623. GFP_KERNEL);
  624. __delete_object(object);
  625. }
  626. static void __paint_it(struct kmemleak_object *object, int color)
  627. {
  628. object->min_count = color;
  629. if (color == KMEMLEAK_BLACK)
  630. object->flags |= OBJECT_NO_SCAN;
  631. }
  632. static void paint_it(struct kmemleak_object *object, int color)
  633. {
  634. unsigned long flags;
  635. spin_lock_irqsave(&object->lock, flags);
  636. __paint_it(object, color);
  637. spin_unlock_irqrestore(&object->lock, flags);
  638. }
  639. static void paint_ptr(unsigned long ptr, int color)
  640. {
  641. struct kmemleak_object *object;
  642. object = find_and_get_object(ptr, 0);
  643. if (!object) {
  644. kmemleak_warn("Trying to color unknown object "
  645. "at 0x%08lx as %s\n", ptr,
  646. (color == KMEMLEAK_GREY) ? "Grey" :
  647. (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  648. return;
  649. }
  650. paint_it(object, color);
  651. put_object(object);
  652. }
  653. /*
  654. * Mark an object permanently as gray-colored so that it can no longer be
  655. * reported as a leak. This is used in general to mark a false positive.
  656. */
  657. static void make_gray_object(unsigned long ptr)
  658. {
  659. paint_ptr(ptr, KMEMLEAK_GREY);
  660. }
  661. /*
  662. * Mark the object as black-colored so that it is ignored from scans and
  663. * reporting.
  664. */
  665. static void make_black_object(unsigned long ptr)
  666. {
  667. paint_ptr(ptr, KMEMLEAK_BLACK);
  668. }
  669. /*
  670. * Add a scanning area to the object. If at least one such area is added,
  671. * kmemleak will only scan these ranges rather than the whole memory block.
  672. */
  673. static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  674. {
  675. unsigned long flags;
  676. struct kmemleak_object *object;
  677. struct kmemleak_scan_area *area;
  678. object = find_and_get_object(ptr, 1);
  679. if (!object) {
  680. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  681. ptr);
  682. return;
  683. }
  684. area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  685. if (!area) {
  686. pr_warning("Cannot allocate a scan area\n");
  687. goto out;
  688. }
  689. spin_lock_irqsave(&object->lock, flags);
  690. if (size == SIZE_MAX) {
  691. size = object->pointer + object->size - ptr;
  692. } else if (ptr + size > object->pointer + object->size) {
  693. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  694. dump_object_info(object);
  695. kmem_cache_free(scan_area_cache, area);
  696. goto out_unlock;
  697. }
  698. INIT_HLIST_NODE(&area->node);
  699. area->start = ptr;
  700. area->size = size;
  701. hlist_add_head(&area->node, &object->area_list);
  702. out_unlock:
  703. spin_unlock_irqrestore(&object->lock, flags);
  704. out:
  705. put_object(object);
  706. }
  707. /*
  708. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  709. * pointer. Such object will not be scanned by kmemleak but references to it
  710. * are searched.
  711. */
  712. static void object_no_scan(unsigned long ptr)
  713. {
  714. unsigned long flags;
  715. struct kmemleak_object *object;
  716. object = find_and_get_object(ptr, 0);
  717. if (!object) {
  718. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  719. return;
  720. }
  721. spin_lock_irqsave(&object->lock, flags);
  722. object->flags |= OBJECT_NO_SCAN;
  723. spin_unlock_irqrestore(&object->lock, flags);
  724. put_object(object);
  725. }
  726. /*
  727. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  728. * processed later once kmemleak is fully initialized.
  729. */
  730. static void __init log_early(int op_type, const void *ptr, size_t size,
  731. int min_count)
  732. {
  733. unsigned long flags;
  734. struct early_log *log;
  735. if (kmemleak_error) {
  736. /* kmemleak stopped recording, just count the requests */
  737. crt_early_log++;
  738. return;
  739. }
  740. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  741. crt_early_log++;
  742. kmemleak_disable();
  743. return;
  744. }
  745. /*
  746. * There is no need for locking since the kernel is still in UP mode
  747. * at this stage. Disabling the IRQs is enough.
  748. */
  749. local_irq_save(flags);
  750. log = &early_log[crt_early_log];
  751. log->op_type = op_type;
  752. log->ptr = ptr;
  753. log->size = size;
  754. log->min_count = min_count;
  755. log->trace_len = __save_stack_trace(log->trace);
  756. crt_early_log++;
  757. local_irq_restore(flags);
  758. }
  759. /*
  760. * Log an early allocated block and populate the stack trace.
  761. */
  762. static void early_alloc(struct early_log *log)
  763. {
  764. struct kmemleak_object *object;
  765. unsigned long flags;
  766. int i;
  767. if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
  768. return;
  769. /*
  770. * RCU locking needed to ensure object is not freed via put_object().
  771. */
  772. rcu_read_lock();
  773. object = create_object((unsigned long)log->ptr, log->size,
  774. log->min_count, GFP_ATOMIC);
  775. if (!object)
  776. goto out;
  777. spin_lock_irqsave(&object->lock, flags);
  778. for (i = 0; i < log->trace_len; i++)
  779. object->trace[i] = log->trace[i];
  780. object->trace_len = log->trace_len;
  781. spin_unlock_irqrestore(&object->lock, flags);
  782. out:
  783. rcu_read_unlock();
  784. }
  785. /*
  786. * Log an early allocated block and populate the stack trace.
  787. */
  788. static void early_alloc_percpu(struct early_log *log)
  789. {
  790. unsigned int cpu;
  791. const void __percpu *ptr = log->ptr;
  792. for_each_possible_cpu(cpu) {
  793. log->ptr = per_cpu_ptr(ptr, cpu);
  794. early_alloc(log);
  795. }
  796. }
  797. /**
  798. * kmemleak_alloc - register a newly allocated object
  799. * @ptr: pointer to beginning of the object
  800. * @size: size of the object
  801. * @min_count: minimum number of references to this object. If during memory
  802. * scanning a number of references less than @min_count is found,
  803. * the object is reported as a memory leak. If @min_count is 0,
  804. * the object is never reported as a leak. If @min_count is -1,
  805. * the object is ignored (not scanned and not reported as a leak)
  806. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  807. *
  808. * This function is called from the kernel allocators when a new object
  809. * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
  810. */
  811. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  812. gfp_t gfp)
  813. {
  814. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  815. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  816. create_object((unsigned long)ptr, size, min_count, gfp);
  817. else if (kmemleak_early_log)
  818. log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  819. }
  820. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  821. /**
  822. * kmemleak_alloc_percpu - register a newly allocated __percpu object
  823. * @ptr: __percpu pointer to beginning of the object
  824. * @size: size of the object
  825. * @gfp: flags used for kmemleak internal memory allocations
  826. *
  827. * This function is called from the kernel percpu allocator when a new object
  828. * (memory block) is allocated (alloc_percpu).
  829. */
  830. void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
  831. gfp_t gfp)
  832. {
  833. unsigned int cpu;
  834. pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  835. /*
  836. * Percpu allocations are only scanned and not reported as leaks
  837. * (min_count is set to 0).
  838. */
  839. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  840. for_each_possible_cpu(cpu)
  841. create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  842. size, 0, gfp);
  843. else if (kmemleak_early_log)
  844. log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  845. }
  846. EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  847. /**
  848. * kmemleak_free - unregister a previously registered object
  849. * @ptr: pointer to beginning of the object
  850. *
  851. * This function is called from the kernel allocators when an object (memory
  852. * block) is freed (kmem_cache_free, kfree, vfree etc.).
  853. */
  854. void __ref kmemleak_free(const void *ptr)
  855. {
  856. pr_debug("%s(0x%p)\n", __func__, ptr);
  857. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  858. delete_object_full((unsigned long)ptr);
  859. else if (kmemleak_early_log)
  860. log_early(KMEMLEAK_FREE, ptr, 0, 0);
  861. }
  862. EXPORT_SYMBOL_GPL(kmemleak_free);
  863. /**
  864. * kmemleak_free_part - partially unregister a previously registered object
  865. * @ptr: pointer to the beginning or inside the object. This also
  866. * represents the start of the range to be freed
  867. * @size: size to be unregistered
  868. *
  869. * This function is called when only a part of a memory block is freed
  870. * (usually from the bootmem allocator).
  871. */
  872. void __ref kmemleak_free_part(const void *ptr, size_t size)
  873. {
  874. pr_debug("%s(0x%p)\n", __func__, ptr);
  875. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  876. delete_object_part((unsigned long)ptr, size);
  877. else if (kmemleak_early_log)
  878. log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  879. }
  880. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  881. /**
  882. * kmemleak_free_percpu - unregister a previously registered __percpu object
  883. * @ptr: __percpu pointer to beginning of the object
  884. *
  885. * This function is called from the kernel percpu allocator when an object
  886. * (memory block) is freed (free_percpu).
  887. */
  888. void __ref kmemleak_free_percpu(const void __percpu *ptr)
  889. {
  890. unsigned int cpu;
  891. pr_debug("%s(0x%p)\n", __func__, ptr);
  892. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  893. for_each_possible_cpu(cpu)
  894. delete_object_full((unsigned long)per_cpu_ptr(ptr,
  895. cpu));
  896. else if (kmemleak_early_log)
  897. log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  898. }
  899. EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  900. /**
  901. * kmemleak_update_trace - update object allocation stack trace
  902. * @ptr: pointer to beginning of the object
  903. *
  904. * Override the object allocation stack trace for cases where the actual
  905. * allocation place is not always useful.
  906. */
  907. void __ref kmemleak_update_trace(const void *ptr)
  908. {
  909. struct kmemleak_object *object;
  910. unsigned long flags;
  911. pr_debug("%s(0x%p)\n", __func__, ptr);
  912. if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
  913. return;
  914. object = find_and_get_object((unsigned long)ptr, 1);
  915. if (!object) {
  916. #ifdef DEBUG
  917. kmemleak_warn("Updating stack trace for unknown object at %p\n",
  918. ptr);
  919. #endif
  920. return;
  921. }
  922. spin_lock_irqsave(&object->lock, flags);
  923. object->trace_len = __save_stack_trace(object->trace);
  924. spin_unlock_irqrestore(&object->lock, flags);
  925. put_object(object);
  926. }
  927. EXPORT_SYMBOL(kmemleak_update_trace);
  928. /**
  929. * kmemleak_not_leak - mark an allocated object as false positive
  930. * @ptr: pointer to beginning of the object
  931. *
  932. * Calling this function on an object will cause the memory block to no longer
  933. * be reported as leak and always be scanned.
  934. */
  935. void __ref kmemleak_not_leak(const void *ptr)
  936. {
  937. pr_debug("%s(0x%p)\n", __func__, ptr);
  938. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  939. make_gray_object((unsigned long)ptr);
  940. else if (kmemleak_early_log)
  941. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
  942. }
  943. EXPORT_SYMBOL(kmemleak_not_leak);
  944. /**
  945. * kmemleak_ignore - ignore an allocated object
  946. * @ptr: pointer to beginning of the object
  947. *
  948. * Calling this function on an object will cause the memory block to be
  949. * ignored (not scanned and not reported as a leak). This is usually done when
  950. * it is known that the corresponding block is not a leak and does not contain
  951. * any references to other allocated memory blocks.
  952. */
  953. void __ref kmemleak_ignore(const void *ptr)
  954. {
  955. pr_debug("%s(0x%p)\n", __func__, ptr);
  956. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  957. make_black_object((unsigned long)ptr);
  958. else if (kmemleak_early_log)
  959. log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
  960. }
  961. EXPORT_SYMBOL(kmemleak_ignore);
  962. /**
  963. * kmemleak_scan_area - limit the range to be scanned in an allocated object
  964. * @ptr: pointer to beginning or inside the object. This also
  965. * represents the start of the scan area
  966. * @size: size of the scan area
  967. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  968. *
  969. * This function is used when it is known that only certain parts of an object
  970. * contain references to other objects. Kmemleak will only scan these areas
  971. * reducing the number false negatives.
  972. */
  973. void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
  974. {
  975. pr_debug("%s(0x%p)\n", __func__, ptr);
  976. if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
  977. add_scan_area((unsigned long)ptr, size, gfp);
  978. else if (kmemleak_early_log)
  979. log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
  980. }
  981. EXPORT_SYMBOL(kmemleak_scan_area);
  982. /**
  983. * kmemleak_no_scan - do not scan an allocated object
  984. * @ptr: pointer to beginning of the object
  985. *
  986. * This function notifies kmemleak not to scan the given memory block. Useful
  987. * in situations where it is known that the given object does not contain any
  988. * references to other objects. Kmemleak will not scan such objects reducing
  989. * the number of false negatives.
  990. */
  991. void __ref kmemleak_no_scan(const void *ptr)
  992. {
  993. pr_debug("%s(0x%p)\n", __func__, ptr);
  994. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  995. object_no_scan((unsigned long)ptr);
  996. else if (kmemleak_early_log)
  997. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
  998. }
  999. EXPORT_SYMBOL(kmemleak_no_scan);
  1000. /*
  1001. * Update an object's checksum and return true if it was modified.
  1002. */
  1003. static bool update_checksum(struct kmemleak_object *object)
  1004. {
  1005. u32 old_csum = object->checksum;
  1006. if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
  1007. return false;
  1008. kasan_disable_current();
  1009. object->checksum = crc32(0, (void *)object->pointer, object->size);
  1010. kasan_enable_current();
  1011. return object->checksum != old_csum;
  1012. }
  1013. /*
  1014. * Memory scanning is a long process and it needs to be interruptable. This
  1015. * function checks whether such interrupt condition occurred.
  1016. */
  1017. static int scan_should_stop(void)
  1018. {
  1019. if (!kmemleak_enabled)
  1020. return 1;
  1021. /*
  1022. * This function may be called from either process or kthread context,
  1023. * hence the need to check for both stop conditions.
  1024. */
  1025. if (current->mm)
  1026. return signal_pending(current);
  1027. else
  1028. return kthread_should_stop();
  1029. return 0;
  1030. }
  1031. /*
  1032. * Scan a memory block (exclusive range) for valid pointers and add those
  1033. * found to the gray list.
  1034. */
  1035. static void scan_block(void *_start, void *_end,
  1036. struct kmemleak_object *scanned)
  1037. {
  1038. unsigned long *ptr;
  1039. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  1040. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  1041. unsigned long flags;
  1042. read_lock_irqsave(&kmemleak_lock, flags);
  1043. for (ptr = start; ptr < end; ptr++) {
  1044. struct kmemleak_object *object;
  1045. unsigned long pointer;
  1046. if (scan_should_stop())
  1047. break;
  1048. /* don't scan uninitialized memory */
  1049. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  1050. BYTES_PER_POINTER))
  1051. continue;
  1052. kasan_disable_current();
  1053. pointer = *ptr;
  1054. kasan_enable_current();
  1055. if (pointer < min_addr || pointer >= max_addr)
  1056. continue;
  1057. /*
  1058. * No need for get_object() here since we hold kmemleak_lock.
  1059. * object->use_count cannot be dropped to 0 while the object
  1060. * is still present in object_tree_root and object_list
  1061. * (with updates protected by kmemleak_lock).
  1062. */
  1063. object = lookup_object(pointer, 1);
  1064. if (!object)
  1065. continue;
  1066. if (object == scanned)
  1067. /* self referenced, ignore */
  1068. continue;
  1069. /*
  1070. * Avoid the lockdep recursive warning on object->lock being
  1071. * previously acquired in scan_object(). These locks are
  1072. * enclosed by scan_mutex.
  1073. */
  1074. spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
  1075. if (!color_white(object)) {
  1076. /* non-orphan, ignored or new */
  1077. spin_unlock(&object->lock);
  1078. continue;
  1079. }
  1080. /*
  1081. * Increase the object's reference count (number of pointers
  1082. * to the memory block). If this count reaches the required
  1083. * minimum, the object's color will become gray and it will be
  1084. * added to the gray_list.
  1085. */
  1086. object->count++;
  1087. if (color_gray(object)) {
  1088. /* put_object() called when removing from gray_list */
  1089. WARN_ON(!get_object(object));
  1090. list_add_tail(&object->gray_list, &gray_list);
  1091. }
  1092. spin_unlock(&object->lock);
  1093. }
  1094. read_unlock_irqrestore(&kmemleak_lock, flags);
  1095. }
  1096. /*
  1097. * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
  1098. */
  1099. static void scan_large_block(void *start, void *end)
  1100. {
  1101. void *next;
  1102. while (start < end) {
  1103. next = min(start + MAX_SCAN_SIZE, end);
  1104. scan_block(start, next, NULL);
  1105. start = next;
  1106. cond_resched();
  1107. }
  1108. }
  1109. /*
  1110. * Scan a memory block corresponding to a kmemleak_object. A condition is
  1111. * that object->use_count >= 1.
  1112. */
  1113. static void scan_object(struct kmemleak_object *object)
  1114. {
  1115. struct kmemleak_scan_area *area;
  1116. unsigned long flags;
  1117. /*
  1118. * Once the object->lock is acquired, the corresponding memory block
  1119. * cannot be freed (the same lock is acquired in delete_object).
  1120. */
  1121. spin_lock_irqsave(&object->lock, flags);
  1122. if (object->flags & OBJECT_NO_SCAN)
  1123. goto out;
  1124. if (!(object->flags & OBJECT_ALLOCATED))
  1125. /* already freed object */
  1126. goto out;
  1127. if (hlist_empty(&object->area_list)) {
  1128. void *start = (void *)object->pointer;
  1129. void *end = (void *)(object->pointer + object->size);
  1130. void *next;
  1131. do {
  1132. next = min(start + MAX_SCAN_SIZE, end);
  1133. scan_block(start, next, object);
  1134. start = next;
  1135. if (start >= end)
  1136. break;
  1137. spin_unlock_irqrestore(&object->lock, flags);
  1138. cond_resched();
  1139. spin_lock_irqsave(&object->lock, flags);
  1140. } while (object->flags & OBJECT_ALLOCATED);
  1141. } else
  1142. hlist_for_each_entry(area, &object->area_list, node)
  1143. scan_block((void *)area->start,
  1144. (void *)(area->start + area->size),
  1145. object);
  1146. out:
  1147. spin_unlock_irqrestore(&object->lock, flags);
  1148. }
  1149. /*
  1150. * Scan the objects already referenced (gray objects). More objects will be
  1151. * referenced and, if there are no memory leaks, all the objects are scanned.
  1152. */
  1153. static void scan_gray_list(void)
  1154. {
  1155. struct kmemleak_object *object, *tmp;
  1156. /*
  1157. * The list traversal is safe for both tail additions and removals
  1158. * from inside the loop. The kmemleak objects cannot be freed from
  1159. * outside the loop because their use_count was incremented.
  1160. */
  1161. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1162. while (&object->gray_list != &gray_list) {
  1163. cond_resched();
  1164. /* may add new objects to the list */
  1165. if (!scan_should_stop())
  1166. scan_object(object);
  1167. tmp = list_entry(object->gray_list.next, typeof(*object),
  1168. gray_list);
  1169. /* remove the object from the list and release it */
  1170. list_del(&object->gray_list);
  1171. put_object(object);
  1172. object = tmp;
  1173. }
  1174. WARN_ON(!list_empty(&gray_list));
  1175. }
  1176. /*
  1177. * Scan data sections and all the referenced memory blocks allocated via the
  1178. * kernel's standard allocators. This function must be called with the
  1179. * scan_mutex held.
  1180. */
  1181. static void kmemleak_scan(void)
  1182. {
  1183. unsigned long flags;
  1184. struct kmemleak_object *object;
  1185. int i;
  1186. int new_leaks = 0;
  1187. jiffies_last_scan = jiffies;
  1188. /* prepare the kmemleak_object's */
  1189. rcu_read_lock();
  1190. list_for_each_entry_rcu(object, &object_list, object_list) {
  1191. spin_lock_irqsave(&object->lock, flags);
  1192. #ifdef DEBUG
  1193. /*
  1194. * With a few exceptions there should be a maximum of
  1195. * 1 reference to any object at this point.
  1196. */
  1197. if (atomic_read(&object->use_count) > 1) {
  1198. pr_debug("object->use_count = %d\n",
  1199. atomic_read(&object->use_count));
  1200. dump_object_info(object);
  1201. }
  1202. #endif
  1203. /* reset the reference count (whiten the object) */
  1204. object->count = 0;
  1205. if (color_gray(object) && get_object(object))
  1206. list_add_tail(&object->gray_list, &gray_list);
  1207. spin_unlock_irqrestore(&object->lock, flags);
  1208. }
  1209. rcu_read_unlock();
  1210. /* data/bss scanning */
  1211. scan_large_block(_sdata, _edata);
  1212. scan_large_block(__bss_start, __bss_stop);
  1213. #ifdef CONFIG_SMP
  1214. /* per-cpu sections scanning */
  1215. for_each_possible_cpu(i)
  1216. scan_large_block(__per_cpu_start + per_cpu_offset(i),
  1217. __per_cpu_end + per_cpu_offset(i));
  1218. #endif
  1219. /*
  1220. * Struct page scanning for each node.
  1221. */
  1222. get_online_mems();
  1223. for_each_online_node(i) {
  1224. unsigned long start_pfn = node_start_pfn(i);
  1225. unsigned long end_pfn = node_end_pfn(i);
  1226. unsigned long pfn;
  1227. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1228. struct page *page;
  1229. if (!pfn_valid(pfn))
  1230. continue;
  1231. page = pfn_to_page(pfn);
  1232. /* only scan if page is in use */
  1233. if (page_count(page) == 0)
  1234. continue;
  1235. scan_block(page, page + 1, NULL);
  1236. }
  1237. }
  1238. put_online_mems();
  1239. /*
  1240. * Scanning the task stacks (may introduce false negatives).
  1241. */
  1242. if (kmemleak_stack_scan) {
  1243. struct task_struct *p, *g;
  1244. read_lock(&tasklist_lock);
  1245. do_each_thread(g, p) {
  1246. scan_block(task_stack_page(p), task_stack_page(p) +
  1247. THREAD_SIZE, NULL);
  1248. } while_each_thread(g, p);
  1249. read_unlock(&tasklist_lock);
  1250. }
  1251. /*
  1252. * Scan the objects already referenced from the sections scanned
  1253. * above.
  1254. */
  1255. scan_gray_list();
  1256. /*
  1257. * Check for new or unreferenced objects modified since the previous
  1258. * scan and color them gray until the next scan.
  1259. */
  1260. rcu_read_lock();
  1261. list_for_each_entry_rcu(object, &object_list, object_list) {
  1262. spin_lock_irqsave(&object->lock, flags);
  1263. if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
  1264. && update_checksum(object) && get_object(object)) {
  1265. /* color it gray temporarily */
  1266. object->count = object->min_count;
  1267. list_add_tail(&object->gray_list, &gray_list);
  1268. }
  1269. spin_unlock_irqrestore(&object->lock, flags);
  1270. }
  1271. rcu_read_unlock();
  1272. /*
  1273. * Re-scan the gray list for modified unreferenced objects.
  1274. */
  1275. scan_gray_list();
  1276. /*
  1277. * If scanning was stopped do not report any new unreferenced objects.
  1278. */
  1279. if (scan_should_stop())
  1280. return;
  1281. /*
  1282. * Scanning result reporting.
  1283. */
  1284. rcu_read_lock();
  1285. list_for_each_entry_rcu(object, &object_list, object_list) {
  1286. spin_lock_irqsave(&object->lock, flags);
  1287. if (unreferenced_object(object) &&
  1288. !(object->flags & OBJECT_REPORTED)) {
  1289. object->flags |= OBJECT_REPORTED;
  1290. new_leaks++;
  1291. }
  1292. spin_unlock_irqrestore(&object->lock, flags);
  1293. }
  1294. rcu_read_unlock();
  1295. if (new_leaks) {
  1296. kmemleak_found_leaks = true;
  1297. pr_info("%d new suspected memory leaks (see "
  1298. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1299. }
  1300. }
  1301. /*
  1302. * Thread function performing automatic memory scanning. Unreferenced objects
  1303. * at the end of a memory scan are reported but only the first time.
  1304. */
  1305. static int kmemleak_scan_thread(void *arg)
  1306. {
  1307. static int first_run = 1;
  1308. pr_info("Automatic memory scanning thread started\n");
  1309. set_user_nice(current, 10);
  1310. /*
  1311. * Wait before the first scan to allow the system to fully initialize.
  1312. */
  1313. if (first_run) {
  1314. first_run = 0;
  1315. ssleep(SECS_FIRST_SCAN);
  1316. }
  1317. while (!kthread_should_stop()) {
  1318. signed long timeout = jiffies_scan_wait;
  1319. mutex_lock(&scan_mutex);
  1320. kmemleak_scan();
  1321. mutex_unlock(&scan_mutex);
  1322. /* wait before the next scan */
  1323. while (timeout && !kthread_should_stop())
  1324. timeout = schedule_timeout_interruptible(timeout);
  1325. }
  1326. pr_info("Automatic memory scanning thread ended\n");
  1327. return 0;
  1328. }
  1329. /*
  1330. * Start the automatic memory scanning thread. This function must be called
  1331. * with the scan_mutex held.
  1332. */
  1333. static void start_scan_thread(void)
  1334. {
  1335. if (scan_thread)
  1336. return;
  1337. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1338. if (IS_ERR(scan_thread)) {
  1339. pr_warning("Failed to create the scan thread\n");
  1340. scan_thread = NULL;
  1341. }
  1342. }
  1343. /*
  1344. * Stop the automatic memory scanning thread. This function must be called
  1345. * with the scan_mutex held.
  1346. */
  1347. static void stop_scan_thread(void)
  1348. {
  1349. if (scan_thread) {
  1350. kthread_stop(scan_thread);
  1351. scan_thread = NULL;
  1352. }
  1353. }
  1354. /*
  1355. * Iterate over the object_list and return the first valid object at or after
  1356. * the required position with its use_count incremented. The function triggers
  1357. * a memory scanning when the pos argument points to the first position.
  1358. */
  1359. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1360. {
  1361. struct kmemleak_object *object;
  1362. loff_t n = *pos;
  1363. int err;
  1364. err = mutex_lock_interruptible(&scan_mutex);
  1365. if (err < 0)
  1366. return ERR_PTR(err);
  1367. rcu_read_lock();
  1368. list_for_each_entry_rcu(object, &object_list, object_list) {
  1369. if (n-- > 0)
  1370. continue;
  1371. if (get_object(object))
  1372. goto out;
  1373. }
  1374. object = NULL;
  1375. out:
  1376. return object;
  1377. }
  1378. /*
  1379. * Return the next object in the object_list. The function decrements the
  1380. * use_count of the previous object and increases that of the next one.
  1381. */
  1382. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1383. {
  1384. struct kmemleak_object *prev_obj = v;
  1385. struct kmemleak_object *next_obj = NULL;
  1386. struct kmemleak_object *obj = prev_obj;
  1387. ++(*pos);
  1388. list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
  1389. if (get_object(obj)) {
  1390. next_obj = obj;
  1391. break;
  1392. }
  1393. }
  1394. put_object(prev_obj);
  1395. return next_obj;
  1396. }
  1397. /*
  1398. * Decrement the use_count of the last object required, if any.
  1399. */
  1400. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1401. {
  1402. if (!IS_ERR(v)) {
  1403. /*
  1404. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1405. * waiting was interrupted, so only release it if !IS_ERR.
  1406. */
  1407. rcu_read_unlock();
  1408. mutex_unlock(&scan_mutex);
  1409. if (v)
  1410. put_object(v);
  1411. }
  1412. }
  1413. /*
  1414. * Print the information for an unreferenced object to the seq file.
  1415. */
  1416. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1417. {
  1418. struct kmemleak_object *object = v;
  1419. unsigned long flags;
  1420. spin_lock_irqsave(&object->lock, flags);
  1421. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1422. print_unreferenced(seq, object);
  1423. spin_unlock_irqrestore(&object->lock, flags);
  1424. return 0;
  1425. }
  1426. static const struct seq_operations kmemleak_seq_ops = {
  1427. .start = kmemleak_seq_start,
  1428. .next = kmemleak_seq_next,
  1429. .stop = kmemleak_seq_stop,
  1430. .show = kmemleak_seq_show,
  1431. };
  1432. static int kmemleak_open(struct inode *inode, struct file *file)
  1433. {
  1434. return seq_open(file, &kmemleak_seq_ops);
  1435. }
  1436. static int dump_str_object_info(const char *str)
  1437. {
  1438. unsigned long flags;
  1439. struct kmemleak_object *object;
  1440. unsigned long addr;
  1441. if (kstrtoul(str, 0, &addr))
  1442. return -EINVAL;
  1443. object = find_and_get_object(addr, 0);
  1444. if (!object) {
  1445. pr_info("Unknown object at 0x%08lx\n", addr);
  1446. return -EINVAL;
  1447. }
  1448. spin_lock_irqsave(&object->lock, flags);
  1449. dump_object_info(object);
  1450. spin_unlock_irqrestore(&object->lock, flags);
  1451. put_object(object);
  1452. return 0;
  1453. }
  1454. /*
  1455. * We use grey instead of black to ensure we can do future scans on the same
  1456. * objects. If we did not do future scans these black objects could
  1457. * potentially contain references to newly allocated objects in the future and
  1458. * we'd end up with false positives.
  1459. */
  1460. static void kmemleak_clear(void)
  1461. {
  1462. struct kmemleak_object *object;
  1463. unsigned long flags;
  1464. rcu_read_lock();
  1465. list_for_each_entry_rcu(object, &object_list, object_list) {
  1466. spin_lock_irqsave(&object->lock, flags);
  1467. if ((object->flags & OBJECT_REPORTED) &&
  1468. unreferenced_object(object))
  1469. __paint_it(object, KMEMLEAK_GREY);
  1470. spin_unlock_irqrestore(&object->lock, flags);
  1471. }
  1472. rcu_read_unlock();
  1473. kmemleak_found_leaks = false;
  1474. }
  1475. static void __kmemleak_do_cleanup(void);
  1476. /*
  1477. * File write operation to configure kmemleak at run-time. The following
  1478. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1479. * off - disable kmemleak (irreversible)
  1480. * stack=on - enable the task stacks scanning
  1481. * stack=off - disable the tasks stacks scanning
  1482. * scan=on - start the automatic memory scanning thread
  1483. * scan=off - stop the automatic memory scanning thread
  1484. * scan=... - set the automatic memory scanning period in seconds (0 to
  1485. * disable it)
  1486. * scan - trigger a memory scan
  1487. * clear - mark all current reported unreferenced kmemleak objects as
  1488. * grey to ignore printing them, or free all kmemleak objects
  1489. * if kmemleak has been disabled.
  1490. * dump=... - dump information about the object found at the given address
  1491. */
  1492. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1493. size_t size, loff_t *ppos)
  1494. {
  1495. char buf[64];
  1496. int buf_size;
  1497. int ret;
  1498. buf_size = min(size, (sizeof(buf) - 1));
  1499. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1500. return -EFAULT;
  1501. buf[buf_size] = 0;
  1502. ret = mutex_lock_interruptible(&scan_mutex);
  1503. if (ret < 0)
  1504. return ret;
  1505. if (strncmp(buf, "clear", 5) == 0) {
  1506. if (kmemleak_enabled)
  1507. kmemleak_clear();
  1508. else
  1509. __kmemleak_do_cleanup();
  1510. goto out;
  1511. }
  1512. if (!kmemleak_enabled) {
  1513. ret = -EBUSY;
  1514. goto out;
  1515. }
  1516. if (strncmp(buf, "off", 3) == 0)
  1517. kmemleak_disable();
  1518. else if (strncmp(buf, "stack=on", 8) == 0)
  1519. kmemleak_stack_scan = 1;
  1520. else if (strncmp(buf, "stack=off", 9) == 0)
  1521. kmemleak_stack_scan = 0;
  1522. else if (strncmp(buf, "scan=on", 7) == 0)
  1523. start_scan_thread();
  1524. else if (strncmp(buf, "scan=off", 8) == 0)
  1525. stop_scan_thread();
  1526. else if (strncmp(buf, "scan=", 5) == 0) {
  1527. unsigned long secs;
  1528. ret = kstrtoul(buf + 5, 0, &secs);
  1529. if (ret < 0)
  1530. goto out;
  1531. stop_scan_thread();
  1532. if (secs) {
  1533. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1534. start_scan_thread();
  1535. }
  1536. } else if (strncmp(buf, "scan", 4) == 0)
  1537. kmemleak_scan();
  1538. else if (strncmp(buf, "dump=", 5) == 0)
  1539. ret = dump_str_object_info(buf + 5);
  1540. else
  1541. ret = -EINVAL;
  1542. out:
  1543. mutex_unlock(&scan_mutex);
  1544. if (ret < 0)
  1545. return ret;
  1546. /* ignore the rest of the buffer, only one command at a time */
  1547. *ppos += size;
  1548. return size;
  1549. }
  1550. static const struct file_operations kmemleak_fops = {
  1551. .owner = THIS_MODULE,
  1552. .open = kmemleak_open,
  1553. .read = seq_read,
  1554. .write = kmemleak_write,
  1555. .llseek = seq_lseek,
  1556. .release = seq_release,
  1557. };
  1558. static void __kmemleak_do_cleanup(void)
  1559. {
  1560. struct kmemleak_object *object;
  1561. rcu_read_lock();
  1562. list_for_each_entry_rcu(object, &object_list, object_list)
  1563. delete_object_full(object->pointer);
  1564. rcu_read_unlock();
  1565. }
  1566. /*
  1567. * Stop the memory scanning thread and free the kmemleak internal objects if
  1568. * no previous scan thread (otherwise, kmemleak may still have some useful
  1569. * information on memory leaks).
  1570. */
  1571. static void kmemleak_do_cleanup(struct work_struct *work)
  1572. {
  1573. stop_scan_thread();
  1574. /*
  1575. * Once the scan thread has stopped, it is safe to no longer track
  1576. * object freeing. Ordering of the scan thread stopping and the memory
  1577. * accesses below is guaranteed by the kthread_stop() function.
  1578. */
  1579. kmemleak_free_enabled = 0;
  1580. if (!kmemleak_found_leaks)
  1581. __kmemleak_do_cleanup();
  1582. else
  1583. pr_info("Kmemleak disabled without freeing internal data. "
  1584. "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
  1585. }
  1586. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1587. /*
  1588. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1589. * function is called. Disabling kmemleak is an irreversible operation.
  1590. */
  1591. static void kmemleak_disable(void)
  1592. {
  1593. /* atomically check whether it was already invoked */
  1594. if (cmpxchg(&kmemleak_error, 0, 1))
  1595. return;
  1596. /* stop any memory operation tracing */
  1597. kmemleak_enabled = 0;
  1598. /* check whether it is too early for a kernel thread */
  1599. if (kmemleak_initialized)
  1600. schedule_work(&cleanup_work);
  1601. else
  1602. kmemleak_free_enabled = 0;
  1603. pr_info("Kernel memory leak detector disabled\n");
  1604. }
  1605. /*
  1606. * Allow boot-time kmemleak disabling (enabled by default).
  1607. */
  1608. static int kmemleak_boot_config(char *str)
  1609. {
  1610. if (!str)
  1611. return -EINVAL;
  1612. if (strcmp(str, "off") == 0)
  1613. kmemleak_disable();
  1614. else if (strcmp(str, "on") == 0)
  1615. kmemleak_skip_disable = 1;
  1616. else
  1617. return -EINVAL;
  1618. return 0;
  1619. }
  1620. early_param("kmemleak", kmemleak_boot_config);
  1621. static void __init print_log_trace(struct early_log *log)
  1622. {
  1623. struct stack_trace trace;
  1624. trace.nr_entries = log->trace_len;
  1625. trace.entries = log->trace;
  1626. pr_notice("Early log backtrace:\n");
  1627. print_stack_trace(&trace, 2);
  1628. }
  1629. /*
  1630. * Kmemleak initialization.
  1631. */
  1632. void __init kmemleak_init(void)
  1633. {
  1634. int i;
  1635. unsigned long flags;
  1636. #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
  1637. if (!kmemleak_skip_disable) {
  1638. kmemleak_early_log = 0;
  1639. kmemleak_disable();
  1640. return;
  1641. }
  1642. #endif
  1643. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1644. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1645. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1646. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1647. if (crt_early_log > ARRAY_SIZE(early_log))
  1648. pr_warning("Early log buffer exceeded (%d), please increase "
  1649. "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
  1650. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1651. local_irq_save(flags);
  1652. kmemleak_early_log = 0;
  1653. if (kmemleak_error) {
  1654. local_irq_restore(flags);
  1655. return;
  1656. } else {
  1657. kmemleak_enabled = 1;
  1658. kmemleak_free_enabled = 1;
  1659. }
  1660. local_irq_restore(flags);
  1661. /*
  1662. * This is the point where tracking allocations is safe. Automatic
  1663. * scanning is started during the late initcall. Add the early logged
  1664. * callbacks to the kmemleak infrastructure.
  1665. */
  1666. for (i = 0; i < crt_early_log; i++) {
  1667. struct early_log *log = &early_log[i];
  1668. switch (log->op_type) {
  1669. case KMEMLEAK_ALLOC:
  1670. early_alloc(log);
  1671. break;
  1672. case KMEMLEAK_ALLOC_PERCPU:
  1673. early_alloc_percpu(log);
  1674. break;
  1675. case KMEMLEAK_FREE:
  1676. kmemleak_free(log->ptr);
  1677. break;
  1678. case KMEMLEAK_FREE_PART:
  1679. kmemleak_free_part(log->ptr, log->size);
  1680. break;
  1681. case KMEMLEAK_FREE_PERCPU:
  1682. kmemleak_free_percpu(log->ptr);
  1683. break;
  1684. case KMEMLEAK_NOT_LEAK:
  1685. kmemleak_not_leak(log->ptr);
  1686. break;
  1687. case KMEMLEAK_IGNORE:
  1688. kmemleak_ignore(log->ptr);
  1689. break;
  1690. case KMEMLEAK_SCAN_AREA:
  1691. kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
  1692. break;
  1693. case KMEMLEAK_NO_SCAN:
  1694. kmemleak_no_scan(log->ptr);
  1695. break;
  1696. default:
  1697. kmemleak_warn("Unknown early log operation: %d\n",
  1698. log->op_type);
  1699. }
  1700. if (kmemleak_warning) {
  1701. print_log_trace(log);
  1702. kmemleak_warning = 0;
  1703. }
  1704. }
  1705. }
  1706. /*
  1707. * Late initialization function.
  1708. */
  1709. static int __init kmemleak_late_init(void)
  1710. {
  1711. struct dentry *dentry;
  1712. kmemleak_initialized = 1;
  1713. if (kmemleak_error) {
  1714. /*
  1715. * Some error occurred and kmemleak was disabled. There is a
  1716. * small chance that kmemleak_disable() was called immediately
  1717. * after setting kmemleak_initialized and we may end up with
  1718. * two clean-up threads but serialized by scan_mutex.
  1719. */
  1720. schedule_work(&cleanup_work);
  1721. return -ENOMEM;
  1722. }
  1723. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1724. &kmemleak_fops);
  1725. if (!dentry)
  1726. pr_warning("Failed to create the debugfs kmemleak file\n");
  1727. mutex_lock(&scan_mutex);
  1728. start_scan_thread();
  1729. mutex_unlock(&scan_mutex);
  1730. pr_info("Kernel memory leak detector initialized\n");
  1731. return 0;
  1732. }
  1733. late_initcall(kmemleak_late_init);