huge_memory.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL
  57. };
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/huge_memory.h>
  60. /*
  61. * By default transparent hugepage support is disabled in order that avoid
  62. * to risk increase the memory footprint of applications without a guaranteed
  63. * benefit. When transparent hugepage support is enabled, is for all mappings,
  64. * and khugepaged scans all mappings.
  65. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  66. * for all hugepage allocations.
  67. */
  68. unsigned long transparent_hugepage_flags __read_mostly =
  69. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  70. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  71. #endif
  72. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  73. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  74. #endif
  75. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  78. /* default scan 8*512 pte (or vmas) every 30 second */
  79. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  80. static unsigned int khugepaged_pages_collapsed;
  81. static unsigned int khugepaged_full_scans;
  82. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  83. /* during fragmentation poll the hugepage allocator once every minute */
  84. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  85. static struct task_struct *khugepaged_thread __read_mostly;
  86. static DEFINE_MUTEX(khugepaged_mutex);
  87. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  88. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  89. /*
  90. * default collapse hugepages if there is at least one pte mapped like
  91. * it would have happened if the vma was large enough during page
  92. * fault.
  93. */
  94. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  95. static int khugepaged(void *none);
  96. static int khugepaged_slab_init(void);
  97. static void khugepaged_slab_exit(void);
  98. #define MM_SLOTS_HASH_BITS 10
  99. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  100. static struct kmem_cache *mm_slot_cache __read_mostly;
  101. /**
  102. * struct mm_slot - hash lookup from mm to mm_slot
  103. * @hash: hash collision list
  104. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  105. * @mm: the mm that this information is valid for
  106. */
  107. struct mm_slot {
  108. struct hlist_node hash;
  109. struct list_head mm_node;
  110. struct mm_struct *mm;
  111. };
  112. /**
  113. * struct khugepaged_scan - cursor for scanning
  114. * @mm_head: the head of the mm list to scan
  115. * @mm_slot: the current mm_slot we are scanning
  116. * @address: the next address inside that to be scanned
  117. *
  118. * There is only the one khugepaged_scan instance of this cursor structure.
  119. */
  120. struct khugepaged_scan {
  121. struct list_head mm_head;
  122. struct mm_slot *mm_slot;
  123. unsigned long address;
  124. };
  125. static struct khugepaged_scan khugepaged_scan = {
  126. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  127. };
  128. static DEFINE_SPINLOCK(split_queue_lock);
  129. static LIST_HEAD(split_queue);
  130. static unsigned long split_queue_len;
  131. static struct shrinker deferred_split_shrinker;
  132. static void set_recommended_min_free_kbytes(void)
  133. {
  134. struct zone *zone;
  135. int nr_zones = 0;
  136. unsigned long recommended_min;
  137. for_each_populated_zone(zone)
  138. nr_zones++;
  139. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  140. recommended_min = pageblock_nr_pages * nr_zones * 2;
  141. /*
  142. * Make sure that on average at least two pageblocks are almost free
  143. * of another type, one for a migratetype to fall back to and a
  144. * second to avoid subsequent fallbacks of other types There are 3
  145. * MIGRATE_TYPES we care about.
  146. */
  147. recommended_min += pageblock_nr_pages * nr_zones *
  148. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  149. /* don't ever allow to reserve more than 5% of the lowmem */
  150. recommended_min = min(recommended_min,
  151. (unsigned long) nr_free_buffer_pages() / 20);
  152. recommended_min <<= (PAGE_SHIFT-10);
  153. if (recommended_min > min_free_kbytes) {
  154. if (user_min_free_kbytes >= 0)
  155. pr_info("raising min_free_kbytes from %d to %lu "
  156. "to help transparent hugepage allocations\n",
  157. min_free_kbytes, recommended_min);
  158. min_free_kbytes = recommended_min;
  159. }
  160. setup_per_zone_wmarks();
  161. }
  162. static int start_stop_khugepaged(void)
  163. {
  164. int err = 0;
  165. if (khugepaged_enabled()) {
  166. if (!khugepaged_thread)
  167. khugepaged_thread = kthread_run(khugepaged, NULL,
  168. "khugepaged");
  169. if (IS_ERR(khugepaged_thread)) {
  170. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  171. err = PTR_ERR(khugepaged_thread);
  172. khugepaged_thread = NULL;
  173. goto fail;
  174. }
  175. if (!list_empty(&khugepaged_scan.mm_head))
  176. wake_up_interruptible(&khugepaged_wait);
  177. set_recommended_min_free_kbytes();
  178. } else if (khugepaged_thread) {
  179. kthread_stop(khugepaged_thread);
  180. khugepaged_thread = NULL;
  181. }
  182. fail:
  183. return err;
  184. }
  185. static atomic_t huge_zero_refcount;
  186. struct page *huge_zero_page __read_mostly;
  187. struct page *get_huge_zero_page(void)
  188. {
  189. struct page *zero_page;
  190. retry:
  191. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  192. return READ_ONCE(huge_zero_page);
  193. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  194. HPAGE_PMD_ORDER);
  195. if (!zero_page) {
  196. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  197. return NULL;
  198. }
  199. count_vm_event(THP_ZERO_PAGE_ALLOC);
  200. preempt_disable();
  201. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  202. preempt_enable();
  203. __free_pages(zero_page, compound_order(zero_page));
  204. goto retry;
  205. }
  206. /* We take additional reference here. It will be put back by shrinker */
  207. atomic_set(&huge_zero_refcount, 2);
  208. preempt_enable();
  209. return READ_ONCE(huge_zero_page);
  210. }
  211. static void put_huge_zero_page(void)
  212. {
  213. /*
  214. * Counter should never go to zero here. Only shrinker can put
  215. * last reference.
  216. */
  217. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  218. }
  219. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  220. struct shrink_control *sc)
  221. {
  222. /* we can free zero page only if last reference remains */
  223. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  224. }
  225. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  226. struct shrink_control *sc)
  227. {
  228. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  229. struct page *zero_page = xchg(&huge_zero_page, NULL);
  230. BUG_ON(zero_page == NULL);
  231. __free_pages(zero_page, compound_order(zero_page));
  232. return HPAGE_PMD_NR;
  233. }
  234. return 0;
  235. }
  236. static struct shrinker huge_zero_page_shrinker = {
  237. .count_objects = shrink_huge_zero_page_count,
  238. .scan_objects = shrink_huge_zero_page_scan,
  239. .seeks = DEFAULT_SEEKS,
  240. };
  241. #ifdef CONFIG_SYSFS
  242. static ssize_t double_flag_show(struct kobject *kobj,
  243. struct kobj_attribute *attr, char *buf,
  244. enum transparent_hugepage_flag enabled,
  245. enum transparent_hugepage_flag req_madv)
  246. {
  247. if (test_bit(enabled, &transparent_hugepage_flags)) {
  248. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  249. return sprintf(buf, "[always] madvise never\n");
  250. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  251. return sprintf(buf, "always [madvise] never\n");
  252. else
  253. return sprintf(buf, "always madvise [never]\n");
  254. }
  255. static ssize_t double_flag_store(struct kobject *kobj,
  256. struct kobj_attribute *attr,
  257. const char *buf, size_t count,
  258. enum transparent_hugepage_flag enabled,
  259. enum transparent_hugepage_flag req_madv)
  260. {
  261. if (!memcmp("always", buf,
  262. min(sizeof("always")-1, count))) {
  263. set_bit(enabled, &transparent_hugepage_flags);
  264. clear_bit(req_madv, &transparent_hugepage_flags);
  265. } else if (!memcmp("madvise", buf,
  266. min(sizeof("madvise")-1, count))) {
  267. clear_bit(enabled, &transparent_hugepage_flags);
  268. set_bit(req_madv, &transparent_hugepage_flags);
  269. } else if (!memcmp("never", buf,
  270. min(sizeof("never")-1, count))) {
  271. clear_bit(enabled, &transparent_hugepage_flags);
  272. clear_bit(req_madv, &transparent_hugepage_flags);
  273. } else
  274. return -EINVAL;
  275. return count;
  276. }
  277. static ssize_t enabled_show(struct kobject *kobj,
  278. struct kobj_attribute *attr, char *buf)
  279. {
  280. return double_flag_show(kobj, attr, buf,
  281. TRANSPARENT_HUGEPAGE_FLAG,
  282. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  283. }
  284. static ssize_t enabled_store(struct kobject *kobj,
  285. struct kobj_attribute *attr,
  286. const char *buf, size_t count)
  287. {
  288. ssize_t ret;
  289. ret = double_flag_store(kobj, attr, buf, count,
  290. TRANSPARENT_HUGEPAGE_FLAG,
  291. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  292. if (ret > 0) {
  293. int err;
  294. mutex_lock(&khugepaged_mutex);
  295. err = start_stop_khugepaged();
  296. mutex_unlock(&khugepaged_mutex);
  297. if (err)
  298. ret = err;
  299. }
  300. return ret;
  301. }
  302. static struct kobj_attribute enabled_attr =
  303. __ATTR(enabled, 0644, enabled_show, enabled_store);
  304. static ssize_t single_flag_show(struct kobject *kobj,
  305. struct kobj_attribute *attr, char *buf,
  306. enum transparent_hugepage_flag flag)
  307. {
  308. return sprintf(buf, "%d\n",
  309. !!test_bit(flag, &transparent_hugepage_flags));
  310. }
  311. static ssize_t single_flag_store(struct kobject *kobj,
  312. struct kobj_attribute *attr,
  313. const char *buf, size_t count,
  314. enum transparent_hugepage_flag flag)
  315. {
  316. unsigned long value;
  317. int ret;
  318. ret = kstrtoul(buf, 10, &value);
  319. if (ret < 0)
  320. return ret;
  321. if (value > 1)
  322. return -EINVAL;
  323. if (value)
  324. set_bit(flag, &transparent_hugepage_flags);
  325. else
  326. clear_bit(flag, &transparent_hugepage_flags);
  327. return count;
  328. }
  329. /*
  330. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  331. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  332. * memory just to allocate one more hugepage.
  333. */
  334. static ssize_t defrag_show(struct kobject *kobj,
  335. struct kobj_attribute *attr, char *buf)
  336. {
  337. return double_flag_show(kobj, attr, buf,
  338. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  339. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  340. }
  341. static ssize_t defrag_store(struct kobject *kobj,
  342. struct kobj_attribute *attr,
  343. const char *buf, size_t count)
  344. {
  345. return double_flag_store(kobj, attr, buf, count,
  346. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  347. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  348. }
  349. static struct kobj_attribute defrag_attr =
  350. __ATTR(defrag, 0644, defrag_show, defrag_store);
  351. static ssize_t use_zero_page_show(struct kobject *kobj,
  352. struct kobj_attribute *attr, char *buf)
  353. {
  354. return single_flag_show(kobj, attr, buf,
  355. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  356. }
  357. static ssize_t use_zero_page_store(struct kobject *kobj,
  358. struct kobj_attribute *attr, const char *buf, size_t count)
  359. {
  360. return single_flag_store(kobj, attr, buf, count,
  361. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  362. }
  363. static struct kobj_attribute use_zero_page_attr =
  364. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  365. #ifdef CONFIG_DEBUG_VM
  366. static ssize_t debug_cow_show(struct kobject *kobj,
  367. struct kobj_attribute *attr, char *buf)
  368. {
  369. return single_flag_show(kobj, attr, buf,
  370. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  371. }
  372. static ssize_t debug_cow_store(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. const char *buf, size_t count)
  375. {
  376. return single_flag_store(kobj, attr, buf, count,
  377. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  378. }
  379. static struct kobj_attribute debug_cow_attr =
  380. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  381. #endif /* CONFIG_DEBUG_VM */
  382. static struct attribute *hugepage_attr[] = {
  383. &enabled_attr.attr,
  384. &defrag_attr.attr,
  385. &use_zero_page_attr.attr,
  386. #ifdef CONFIG_DEBUG_VM
  387. &debug_cow_attr.attr,
  388. #endif
  389. NULL,
  390. };
  391. static struct attribute_group hugepage_attr_group = {
  392. .attrs = hugepage_attr,
  393. };
  394. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. char *buf)
  397. {
  398. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  399. }
  400. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  401. struct kobj_attribute *attr,
  402. const char *buf, size_t count)
  403. {
  404. unsigned long msecs;
  405. int err;
  406. err = kstrtoul(buf, 10, &msecs);
  407. if (err || msecs > UINT_MAX)
  408. return -EINVAL;
  409. khugepaged_scan_sleep_millisecs = msecs;
  410. wake_up_interruptible(&khugepaged_wait);
  411. return count;
  412. }
  413. static struct kobj_attribute scan_sleep_millisecs_attr =
  414. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  415. scan_sleep_millisecs_store);
  416. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  417. struct kobj_attribute *attr,
  418. char *buf)
  419. {
  420. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  421. }
  422. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  423. struct kobj_attribute *attr,
  424. const char *buf, size_t count)
  425. {
  426. unsigned long msecs;
  427. int err;
  428. err = kstrtoul(buf, 10, &msecs);
  429. if (err || msecs > UINT_MAX)
  430. return -EINVAL;
  431. khugepaged_alloc_sleep_millisecs = msecs;
  432. wake_up_interruptible(&khugepaged_wait);
  433. return count;
  434. }
  435. static struct kobj_attribute alloc_sleep_millisecs_attr =
  436. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  437. alloc_sleep_millisecs_store);
  438. static ssize_t pages_to_scan_show(struct kobject *kobj,
  439. struct kobj_attribute *attr,
  440. char *buf)
  441. {
  442. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  443. }
  444. static ssize_t pages_to_scan_store(struct kobject *kobj,
  445. struct kobj_attribute *attr,
  446. const char *buf, size_t count)
  447. {
  448. int err;
  449. unsigned long pages;
  450. err = kstrtoul(buf, 10, &pages);
  451. if (err || !pages || pages > UINT_MAX)
  452. return -EINVAL;
  453. khugepaged_pages_to_scan = pages;
  454. return count;
  455. }
  456. static struct kobj_attribute pages_to_scan_attr =
  457. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  458. pages_to_scan_store);
  459. static ssize_t pages_collapsed_show(struct kobject *kobj,
  460. struct kobj_attribute *attr,
  461. char *buf)
  462. {
  463. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  464. }
  465. static struct kobj_attribute pages_collapsed_attr =
  466. __ATTR_RO(pages_collapsed);
  467. static ssize_t full_scans_show(struct kobject *kobj,
  468. struct kobj_attribute *attr,
  469. char *buf)
  470. {
  471. return sprintf(buf, "%u\n", khugepaged_full_scans);
  472. }
  473. static struct kobj_attribute full_scans_attr =
  474. __ATTR_RO(full_scans);
  475. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  476. struct kobj_attribute *attr, char *buf)
  477. {
  478. return single_flag_show(kobj, attr, buf,
  479. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  480. }
  481. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  482. struct kobj_attribute *attr,
  483. const char *buf, size_t count)
  484. {
  485. return single_flag_store(kobj, attr, buf, count,
  486. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  487. }
  488. static struct kobj_attribute khugepaged_defrag_attr =
  489. __ATTR(defrag, 0644, khugepaged_defrag_show,
  490. khugepaged_defrag_store);
  491. /*
  492. * max_ptes_none controls if khugepaged should collapse hugepages over
  493. * any unmapped ptes in turn potentially increasing the memory
  494. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  495. * reduce the available free memory in the system as it
  496. * runs. Increasing max_ptes_none will instead potentially reduce the
  497. * free memory in the system during the khugepaged scan.
  498. */
  499. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  500. struct kobj_attribute *attr,
  501. char *buf)
  502. {
  503. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  504. }
  505. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  506. struct kobj_attribute *attr,
  507. const char *buf, size_t count)
  508. {
  509. int err;
  510. unsigned long max_ptes_none;
  511. err = kstrtoul(buf, 10, &max_ptes_none);
  512. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  513. return -EINVAL;
  514. khugepaged_max_ptes_none = max_ptes_none;
  515. return count;
  516. }
  517. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  518. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  519. khugepaged_max_ptes_none_store);
  520. static struct attribute *khugepaged_attr[] = {
  521. &khugepaged_defrag_attr.attr,
  522. &khugepaged_max_ptes_none_attr.attr,
  523. &pages_to_scan_attr.attr,
  524. &pages_collapsed_attr.attr,
  525. &full_scans_attr.attr,
  526. &scan_sleep_millisecs_attr.attr,
  527. &alloc_sleep_millisecs_attr.attr,
  528. NULL,
  529. };
  530. static struct attribute_group khugepaged_attr_group = {
  531. .attrs = khugepaged_attr,
  532. .name = "khugepaged",
  533. };
  534. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  535. {
  536. int err;
  537. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  538. if (unlikely(!*hugepage_kobj)) {
  539. pr_err("failed to create transparent hugepage kobject\n");
  540. return -ENOMEM;
  541. }
  542. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  543. if (err) {
  544. pr_err("failed to register transparent hugepage group\n");
  545. goto delete_obj;
  546. }
  547. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  548. if (err) {
  549. pr_err("failed to register transparent hugepage group\n");
  550. goto remove_hp_group;
  551. }
  552. return 0;
  553. remove_hp_group:
  554. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  555. delete_obj:
  556. kobject_put(*hugepage_kobj);
  557. return err;
  558. }
  559. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  560. {
  561. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  562. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  563. kobject_put(hugepage_kobj);
  564. }
  565. #else
  566. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  567. {
  568. return 0;
  569. }
  570. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  571. {
  572. }
  573. #endif /* CONFIG_SYSFS */
  574. static int __init hugepage_init(void)
  575. {
  576. int err;
  577. struct kobject *hugepage_kobj;
  578. if (!has_transparent_hugepage()) {
  579. transparent_hugepage_flags = 0;
  580. return -EINVAL;
  581. }
  582. err = hugepage_init_sysfs(&hugepage_kobj);
  583. if (err)
  584. goto err_sysfs;
  585. err = khugepaged_slab_init();
  586. if (err)
  587. goto err_slab;
  588. err = register_shrinker(&huge_zero_page_shrinker);
  589. if (err)
  590. goto err_hzp_shrinker;
  591. err = register_shrinker(&deferred_split_shrinker);
  592. if (err)
  593. goto err_split_shrinker;
  594. /*
  595. * By default disable transparent hugepages on smaller systems,
  596. * where the extra memory used could hurt more than TLB overhead
  597. * is likely to save. The admin can still enable it through /sys.
  598. */
  599. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  600. transparent_hugepage_flags = 0;
  601. return 0;
  602. }
  603. err = start_stop_khugepaged();
  604. if (err)
  605. goto err_khugepaged;
  606. return 0;
  607. err_khugepaged:
  608. unregister_shrinker(&deferred_split_shrinker);
  609. err_split_shrinker:
  610. unregister_shrinker(&huge_zero_page_shrinker);
  611. err_hzp_shrinker:
  612. khugepaged_slab_exit();
  613. err_slab:
  614. hugepage_exit_sysfs(hugepage_kobj);
  615. err_sysfs:
  616. return err;
  617. }
  618. subsys_initcall(hugepage_init);
  619. static int __init setup_transparent_hugepage(char *str)
  620. {
  621. int ret = 0;
  622. if (!str)
  623. goto out;
  624. if (!strcmp(str, "always")) {
  625. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  626. &transparent_hugepage_flags);
  627. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  628. &transparent_hugepage_flags);
  629. ret = 1;
  630. } else if (!strcmp(str, "madvise")) {
  631. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  632. &transparent_hugepage_flags);
  633. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  634. &transparent_hugepage_flags);
  635. ret = 1;
  636. } else if (!strcmp(str, "never")) {
  637. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  638. &transparent_hugepage_flags);
  639. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  640. &transparent_hugepage_flags);
  641. ret = 1;
  642. }
  643. out:
  644. if (!ret)
  645. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  646. return ret;
  647. }
  648. __setup("transparent_hugepage=", setup_transparent_hugepage);
  649. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  650. {
  651. if (likely(vma->vm_flags & VM_WRITE))
  652. pmd = pmd_mkwrite(pmd);
  653. return pmd;
  654. }
  655. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  656. {
  657. pmd_t entry;
  658. entry = mk_pmd(page, prot);
  659. entry = pmd_mkhuge(entry);
  660. return entry;
  661. }
  662. static inline struct list_head *page_deferred_list(struct page *page)
  663. {
  664. /*
  665. * ->lru in the tail pages is occupied by compound_head.
  666. * Let's use ->mapping + ->index in the second tail page as list_head.
  667. */
  668. return (struct list_head *)&page[2].mapping;
  669. }
  670. void prep_transhuge_page(struct page *page)
  671. {
  672. /*
  673. * we use page->mapping and page->indexlru in second tail page
  674. * as list_head: assuming THP order >= 2
  675. */
  676. BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  677. INIT_LIST_HEAD(page_deferred_list(page));
  678. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  679. }
  680. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  681. struct vm_area_struct *vma,
  682. unsigned long address, pmd_t *pmd,
  683. struct page *page, gfp_t gfp,
  684. unsigned int flags)
  685. {
  686. struct mem_cgroup *memcg;
  687. pgtable_t pgtable;
  688. spinlock_t *ptl;
  689. unsigned long haddr = address & HPAGE_PMD_MASK;
  690. VM_BUG_ON_PAGE(!PageCompound(page), page);
  691. if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
  692. put_page(page);
  693. count_vm_event(THP_FAULT_FALLBACK);
  694. return VM_FAULT_FALLBACK;
  695. }
  696. pgtable = pte_alloc_one(mm, haddr);
  697. if (unlikely(!pgtable)) {
  698. mem_cgroup_cancel_charge(page, memcg, true);
  699. put_page(page);
  700. return VM_FAULT_OOM;
  701. }
  702. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  703. /*
  704. * The memory barrier inside __SetPageUptodate makes sure that
  705. * clear_huge_page writes become visible before the set_pmd_at()
  706. * write.
  707. */
  708. __SetPageUptodate(page);
  709. ptl = pmd_lock(mm, pmd);
  710. if (unlikely(!pmd_none(*pmd))) {
  711. spin_unlock(ptl);
  712. mem_cgroup_cancel_charge(page, memcg, true);
  713. put_page(page);
  714. pte_free(mm, pgtable);
  715. } else {
  716. pmd_t entry;
  717. /* Deliver the page fault to userland */
  718. if (userfaultfd_missing(vma)) {
  719. int ret;
  720. spin_unlock(ptl);
  721. mem_cgroup_cancel_charge(page, memcg, true);
  722. put_page(page);
  723. pte_free(mm, pgtable);
  724. ret = handle_userfault(vma, address, flags,
  725. VM_UFFD_MISSING);
  726. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  727. return ret;
  728. }
  729. entry = mk_huge_pmd(page, vma->vm_page_prot);
  730. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  731. page_add_new_anon_rmap(page, vma, haddr, true);
  732. mem_cgroup_commit_charge(page, memcg, false, true);
  733. lru_cache_add_active_or_unevictable(page, vma);
  734. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  735. set_pmd_at(mm, haddr, pmd, entry);
  736. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  737. atomic_long_inc(&mm->nr_ptes);
  738. spin_unlock(ptl);
  739. count_vm_event(THP_FAULT_ALLOC);
  740. }
  741. return 0;
  742. }
  743. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  744. {
  745. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
  746. }
  747. /* Caller must hold page table lock. */
  748. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  749. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  750. struct page *zero_page)
  751. {
  752. pmd_t entry;
  753. if (!pmd_none(*pmd))
  754. return false;
  755. entry = mk_pmd(zero_page, vma->vm_page_prot);
  756. entry = pmd_mkhuge(entry);
  757. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  758. set_pmd_at(mm, haddr, pmd, entry);
  759. atomic_long_inc(&mm->nr_ptes);
  760. return true;
  761. }
  762. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  763. unsigned long address, pmd_t *pmd,
  764. unsigned int flags)
  765. {
  766. gfp_t gfp;
  767. struct page *page;
  768. unsigned long haddr = address & HPAGE_PMD_MASK;
  769. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  770. return VM_FAULT_FALLBACK;
  771. if (unlikely(anon_vma_prepare(vma)))
  772. return VM_FAULT_OOM;
  773. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  774. return VM_FAULT_OOM;
  775. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  776. transparent_hugepage_use_zero_page()) {
  777. spinlock_t *ptl;
  778. pgtable_t pgtable;
  779. struct page *zero_page;
  780. bool set;
  781. int ret;
  782. pgtable = pte_alloc_one(mm, haddr);
  783. if (unlikely(!pgtable))
  784. return VM_FAULT_OOM;
  785. zero_page = get_huge_zero_page();
  786. if (unlikely(!zero_page)) {
  787. pte_free(mm, pgtable);
  788. count_vm_event(THP_FAULT_FALLBACK);
  789. return VM_FAULT_FALLBACK;
  790. }
  791. ptl = pmd_lock(mm, pmd);
  792. ret = 0;
  793. set = false;
  794. if (pmd_none(*pmd)) {
  795. if (userfaultfd_missing(vma)) {
  796. spin_unlock(ptl);
  797. ret = handle_userfault(vma, address, flags,
  798. VM_UFFD_MISSING);
  799. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  800. } else {
  801. set_huge_zero_page(pgtable, mm, vma,
  802. haddr, pmd,
  803. zero_page);
  804. spin_unlock(ptl);
  805. set = true;
  806. }
  807. } else
  808. spin_unlock(ptl);
  809. if (!set) {
  810. pte_free(mm, pgtable);
  811. put_huge_zero_page();
  812. }
  813. return ret;
  814. }
  815. gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  816. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  817. if (unlikely(!page)) {
  818. count_vm_event(THP_FAULT_FALLBACK);
  819. return VM_FAULT_FALLBACK;
  820. }
  821. prep_transhuge_page(page);
  822. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  823. flags);
  824. }
  825. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  826. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  827. {
  828. struct mm_struct *mm = vma->vm_mm;
  829. pmd_t entry;
  830. spinlock_t *ptl;
  831. ptl = pmd_lock(mm, pmd);
  832. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  833. if (pfn_t_devmap(pfn))
  834. entry = pmd_mkdevmap(entry);
  835. if (write) {
  836. entry = pmd_mkyoung(pmd_mkdirty(entry));
  837. entry = maybe_pmd_mkwrite(entry, vma);
  838. }
  839. set_pmd_at(mm, addr, pmd, entry);
  840. update_mmu_cache_pmd(vma, addr, pmd);
  841. spin_unlock(ptl);
  842. }
  843. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  844. pmd_t *pmd, pfn_t pfn, bool write)
  845. {
  846. pgprot_t pgprot = vma->vm_page_prot;
  847. /*
  848. * If we had pmd_special, we could avoid all these restrictions,
  849. * but we need to be consistent with PTEs and architectures that
  850. * can't support a 'special' bit.
  851. */
  852. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  853. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  854. (VM_PFNMAP|VM_MIXEDMAP));
  855. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  856. BUG_ON(!pfn_t_devmap(pfn));
  857. if (addr < vma->vm_start || addr >= vma->vm_end)
  858. return VM_FAULT_SIGBUS;
  859. if (track_pfn_insert(vma, &pgprot, pfn))
  860. return VM_FAULT_SIGBUS;
  861. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  862. return VM_FAULT_NOPAGE;
  863. }
  864. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  865. pmd_t *pmd)
  866. {
  867. pmd_t _pmd;
  868. /*
  869. * We should set the dirty bit only for FOLL_WRITE but for now
  870. * the dirty bit in the pmd is meaningless. And if the dirty
  871. * bit will become meaningful and we'll only set it with
  872. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  873. * set the young bit, instead of the current set_pmd_at.
  874. */
  875. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  876. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  877. pmd, _pmd, 1))
  878. update_mmu_cache_pmd(vma, addr, pmd);
  879. }
  880. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  881. pmd_t *pmd, int flags)
  882. {
  883. unsigned long pfn = pmd_pfn(*pmd);
  884. struct mm_struct *mm = vma->vm_mm;
  885. struct dev_pagemap *pgmap;
  886. struct page *page;
  887. assert_spin_locked(pmd_lockptr(mm, pmd));
  888. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  889. return NULL;
  890. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  891. /* pass */;
  892. else
  893. return NULL;
  894. if (flags & FOLL_TOUCH)
  895. touch_pmd(vma, addr, pmd);
  896. /*
  897. * device mapped pages can only be returned if the
  898. * caller will manage the page reference count.
  899. */
  900. if (!(flags & FOLL_GET))
  901. return ERR_PTR(-EEXIST);
  902. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  903. pgmap = get_dev_pagemap(pfn, NULL);
  904. if (!pgmap)
  905. return ERR_PTR(-EFAULT);
  906. page = pfn_to_page(pfn);
  907. get_page(page);
  908. put_dev_pagemap(pgmap);
  909. return page;
  910. }
  911. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  912. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  913. struct vm_area_struct *vma)
  914. {
  915. spinlock_t *dst_ptl, *src_ptl;
  916. struct page *src_page;
  917. pmd_t pmd;
  918. pgtable_t pgtable;
  919. int ret;
  920. ret = -ENOMEM;
  921. pgtable = pte_alloc_one(dst_mm, addr);
  922. if (unlikely(!pgtable))
  923. goto out;
  924. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  925. src_ptl = pmd_lockptr(src_mm, src_pmd);
  926. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  927. ret = -EAGAIN;
  928. pmd = *src_pmd;
  929. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  930. pte_free(dst_mm, pgtable);
  931. goto out_unlock;
  932. }
  933. /*
  934. * When page table lock is held, the huge zero pmd should not be
  935. * under splitting since we don't split the page itself, only pmd to
  936. * a page table.
  937. */
  938. if (is_huge_zero_pmd(pmd)) {
  939. struct page *zero_page;
  940. /*
  941. * get_huge_zero_page() will never allocate a new page here,
  942. * since we already have a zero page to copy. It just takes a
  943. * reference.
  944. */
  945. zero_page = get_huge_zero_page();
  946. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  947. zero_page);
  948. ret = 0;
  949. goto out_unlock;
  950. }
  951. if (pmd_trans_huge(pmd)) {
  952. /* thp accounting separate from pmd_devmap accounting */
  953. src_page = pmd_page(pmd);
  954. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  955. get_page(src_page);
  956. page_dup_rmap(src_page, true);
  957. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  958. atomic_long_inc(&dst_mm->nr_ptes);
  959. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  960. }
  961. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  962. pmd = pmd_mkold(pmd_wrprotect(pmd));
  963. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  964. ret = 0;
  965. out_unlock:
  966. spin_unlock(src_ptl);
  967. spin_unlock(dst_ptl);
  968. out:
  969. return ret;
  970. }
  971. void huge_pmd_set_accessed(struct mm_struct *mm,
  972. struct vm_area_struct *vma,
  973. unsigned long address,
  974. pmd_t *pmd, pmd_t orig_pmd,
  975. int dirty)
  976. {
  977. spinlock_t *ptl;
  978. pmd_t entry;
  979. unsigned long haddr;
  980. ptl = pmd_lock(mm, pmd);
  981. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  982. goto unlock;
  983. entry = pmd_mkyoung(orig_pmd);
  984. haddr = address & HPAGE_PMD_MASK;
  985. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  986. update_mmu_cache_pmd(vma, address, pmd);
  987. unlock:
  988. spin_unlock(ptl);
  989. }
  990. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  991. struct vm_area_struct *vma,
  992. unsigned long address,
  993. pmd_t *pmd, pmd_t orig_pmd,
  994. struct page *page,
  995. unsigned long haddr)
  996. {
  997. struct mem_cgroup *memcg;
  998. spinlock_t *ptl;
  999. pgtable_t pgtable;
  1000. pmd_t _pmd;
  1001. int ret = 0, i;
  1002. struct page **pages;
  1003. unsigned long mmun_start; /* For mmu_notifiers */
  1004. unsigned long mmun_end; /* For mmu_notifiers */
  1005. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1006. GFP_KERNEL);
  1007. if (unlikely(!pages)) {
  1008. ret |= VM_FAULT_OOM;
  1009. goto out;
  1010. }
  1011. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1012. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1013. __GFP_OTHER_NODE,
  1014. vma, address, page_to_nid(page));
  1015. if (unlikely(!pages[i] ||
  1016. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  1017. &memcg, false))) {
  1018. if (pages[i])
  1019. put_page(pages[i]);
  1020. while (--i >= 0) {
  1021. memcg = (void *)page_private(pages[i]);
  1022. set_page_private(pages[i], 0);
  1023. mem_cgroup_cancel_charge(pages[i], memcg,
  1024. false);
  1025. put_page(pages[i]);
  1026. }
  1027. kfree(pages);
  1028. ret |= VM_FAULT_OOM;
  1029. goto out;
  1030. }
  1031. set_page_private(pages[i], (unsigned long)memcg);
  1032. }
  1033. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1034. copy_user_highpage(pages[i], page + i,
  1035. haddr + PAGE_SIZE * i, vma);
  1036. __SetPageUptodate(pages[i]);
  1037. cond_resched();
  1038. }
  1039. mmun_start = haddr;
  1040. mmun_end = haddr + HPAGE_PMD_SIZE;
  1041. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1042. ptl = pmd_lock(mm, pmd);
  1043. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1044. goto out_free_pages;
  1045. VM_BUG_ON_PAGE(!PageHead(page), page);
  1046. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1047. /* leave pmd empty until pte is filled */
  1048. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1049. pmd_populate(mm, &_pmd, pgtable);
  1050. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1051. pte_t *pte, entry;
  1052. entry = mk_pte(pages[i], vma->vm_page_prot);
  1053. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1054. memcg = (void *)page_private(pages[i]);
  1055. set_page_private(pages[i], 0);
  1056. page_add_new_anon_rmap(pages[i], vma, haddr, false);
  1057. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1058. lru_cache_add_active_or_unevictable(pages[i], vma);
  1059. pte = pte_offset_map(&_pmd, haddr);
  1060. VM_BUG_ON(!pte_none(*pte));
  1061. set_pte_at(mm, haddr, pte, entry);
  1062. pte_unmap(pte);
  1063. }
  1064. kfree(pages);
  1065. smp_wmb(); /* make pte visible before pmd */
  1066. pmd_populate(mm, pmd, pgtable);
  1067. page_remove_rmap(page, true);
  1068. spin_unlock(ptl);
  1069. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1070. ret |= VM_FAULT_WRITE;
  1071. put_page(page);
  1072. out:
  1073. return ret;
  1074. out_free_pages:
  1075. spin_unlock(ptl);
  1076. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1077. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1078. memcg = (void *)page_private(pages[i]);
  1079. set_page_private(pages[i], 0);
  1080. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1081. put_page(pages[i]);
  1082. }
  1083. kfree(pages);
  1084. goto out;
  1085. }
  1086. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1087. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1088. {
  1089. spinlock_t *ptl;
  1090. int ret = 0;
  1091. struct page *page = NULL, *new_page;
  1092. struct mem_cgroup *memcg;
  1093. unsigned long haddr;
  1094. unsigned long mmun_start; /* For mmu_notifiers */
  1095. unsigned long mmun_end; /* For mmu_notifiers */
  1096. gfp_t huge_gfp; /* for allocation and charge */
  1097. ptl = pmd_lockptr(mm, pmd);
  1098. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1099. haddr = address & HPAGE_PMD_MASK;
  1100. if (is_huge_zero_pmd(orig_pmd))
  1101. goto alloc;
  1102. spin_lock(ptl);
  1103. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1104. goto out_unlock;
  1105. page = pmd_page(orig_pmd);
  1106. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1107. /*
  1108. * We can only reuse the page if nobody else maps the huge page or it's
  1109. * part. We can do it by checking page_mapcount() on each sub-page, but
  1110. * it's expensive.
  1111. * The cheaper way is to check page_count() to be equal 1: every
  1112. * mapcount takes page reference reference, so this way we can
  1113. * guarantee, that the PMD is the only mapping.
  1114. * This can give false negative if somebody pinned the page, but that's
  1115. * fine.
  1116. */
  1117. if (page_mapcount(page) == 1 && page_count(page) == 1) {
  1118. pmd_t entry;
  1119. entry = pmd_mkyoung(orig_pmd);
  1120. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1121. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1122. update_mmu_cache_pmd(vma, address, pmd);
  1123. ret |= VM_FAULT_WRITE;
  1124. goto out_unlock;
  1125. }
  1126. get_page(page);
  1127. spin_unlock(ptl);
  1128. alloc:
  1129. if (transparent_hugepage_enabled(vma) &&
  1130. !transparent_hugepage_debug_cow()) {
  1131. huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  1132. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1133. } else
  1134. new_page = NULL;
  1135. if (likely(new_page)) {
  1136. prep_transhuge_page(new_page);
  1137. } else {
  1138. if (!page) {
  1139. split_huge_pmd(vma, pmd, address);
  1140. ret |= VM_FAULT_FALLBACK;
  1141. } else {
  1142. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1143. pmd, orig_pmd, page, haddr);
  1144. if (ret & VM_FAULT_OOM) {
  1145. split_huge_pmd(vma, pmd, address);
  1146. ret |= VM_FAULT_FALLBACK;
  1147. }
  1148. put_page(page);
  1149. }
  1150. count_vm_event(THP_FAULT_FALLBACK);
  1151. goto out;
  1152. }
  1153. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
  1154. true))) {
  1155. put_page(new_page);
  1156. if (page) {
  1157. split_huge_pmd(vma, pmd, address);
  1158. put_page(page);
  1159. } else
  1160. split_huge_pmd(vma, pmd, address);
  1161. ret |= VM_FAULT_FALLBACK;
  1162. count_vm_event(THP_FAULT_FALLBACK);
  1163. goto out;
  1164. }
  1165. count_vm_event(THP_FAULT_ALLOC);
  1166. if (!page)
  1167. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1168. else
  1169. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1170. __SetPageUptodate(new_page);
  1171. mmun_start = haddr;
  1172. mmun_end = haddr + HPAGE_PMD_SIZE;
  1173. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1174. spin_lock(ptl);
  1175. if (page)
  1176. put_page(page);
  1177. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1178. spin_unlock(ptl);
  1179. mem_cgroup_cancel_charge(new_page, memcg, true);
  1180. put_page(new_page);
  1181. goto out_mn;
  1182. } else {
  1183. pmd_t entry;
  1184. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1185. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1186. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1187. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1188. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1189. lru_cache_add_active_or_unevictable(new_page, vma);
  1190. set_pmd_at(mm, haddr, pmd, entry);
  1191. update_mmu_cache_pmd(vma, address, pmd);
  1192. if (!page) {
  1193. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1194. put_huge_zero_page();
  1195. } else {
  1196. VM_BUG_ON_PAGE(!PageHead(page), page);
  1197. page_remove_rmap(page, true);
  1198. put_page(page);
  1199. }
  1200. ret |= VM_FAULT_WRITE;
  1201. }
  1202. spin_unlock(ptl);
  1203. out_mn:
  1204. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1205. out:
  1206. return ret;
  1207. out_unlock:
  1208. spin_unlock(ptl);
  1209. return ret;
  1210. }
  1211. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1212. unsigned long addr,
  1213. pmd_t *pmd,
  1214. unsigned int flags)
  1215. {
  1216. struct mm_struct *mm = vma->vm_mm;
  1217. struct page *page = NULL;
  1218. assert_spin_locked(pmd_lockptr(mm, pmd));
  1219. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1220. goto out;
  1221. /* Avoid dumping huge zero page */
  1222. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1223. return ERR_PTR(-EFAULT);
  1224. /* Full NUMA hinting faults to serialise migration in fault paths */
  1225. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1226. goto out;
  1227. page = pmd_page(*pmd);
  1228. VM_BUG_ON_PAGE(!PageHead(page), page);
  1229. if (flags & FOLL_TOUCH)
  1230. touch_pmd(vma, addr, pmd);
  1231. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1232. /*
  1233. * We don't mlock() pte-mapped THPs. This way we can avoid
  1234. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1235. *
  1236. * In most cases the pmd is the only mapping of the page as we
  1237. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1238. * writable private mappings in populate_vma_page_range().
  1239. *
  1240. * The only scenario when we have the page shared here is if we
  1241. * mlocking read-only mapping shared over fork(). We skip
  1242. * mlocking such pages.
  1243. */
  1244. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1245. page->mapping && trylock_page(page)) {
  1246. lru_add_drain();
  1247. if (page->mapping)
  1248. mlock_vma_page(page);
  1249. unlock_page(page);
  1250. }
  1251. }
  1252. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1253. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1254. if (flags & FOLL_GET)
  1255. get_page(page);
  1256. out:
  1257. return page;
  1258. }
  1259. /* NUMA hinting page fault entry point for trans huge pmds */
  1260. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1261. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1262. {
  1263. spinlock_t *ptl;
  1264. struct anon_vma *anon_vma = NULL;
  1265. struct page *page;
  1266. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1267. int page_nid = -1, this_nid = numa_node_id();
  1268. int target_nid, last_cpupid = -1;
  1269. bool page_locked;
  1270. bool migrated = false;
  1271. bool was_writable;
  1272. int flags = 0;
  1273. /* A PROT_NONE fault should not end up here */
  1274. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1275. ptl = pmd_lock(mm, pmdp);
  1276. if (unlikely(!pmd_same(pmd, *pmdp)))
  1277. goto out_unlock;
  1278. /*
  1279. * If there are potential migrations, wait for completion and retry
  1280. * without disrupting NUMA hinting information. Do not relock and
  1281. * check_same as the page may no longer be mapped.
  1282. */
  1283. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1284. page = pmd_page(*pmdp);
  1285. spin_unlock(ptl);
  1286. wait_on_page_locked(page);
  1287. goto out;
  1288. }
  1289. page = pmd_page(pmd);
  1290. BUG_ON(is_huge_zero_page(page));
  1291. page_nid = page_to_nid(page);
  1292. last_cpupid = page_cpupid_last(page);
  1293. count_vm_numa_event(NUMA_HINT_FAULTS);
  1294. if (page_nid == this_nid) {
  1295. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1296. flags |= TNF_FAULT_LOCAL;
  1297. }
  1298. /* See similar comment in do_numa_page for explanation */
  1299. if (!(vma->vm_flags & VM_WRITE))
  1300. flags |= TNF_NO_GROUP;
  1301. /*
  1302. * Acquire the page lock to serialise THP migrations but avoid dropping
  1303. * page_table_lock if at all possible
  1304. */
  1305. page_locked = trylock_page(page);
  1306. target_nid = mpol_misplaced(page, vma, haddr);
  1307. if (target_nid == -1) {
  1308. /* If the page was locked, there are no parallel migrations */
  1309. if (page_locked)
  1310. goto clear_pmdnuma;
  1311. }
  1312. /* Migration could have started since the pmd_trans_migrating check */
  1313. if (!page_locked) {
  1314. spin_unlock(ptl);
  1315. wait_on_page_locked(page);
  1316. page_nid = -1;
  1317. goto out;
  1318. }
  1319. /*
  1320. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1321. * to serialises splits
  1322. */
  1323. get_page(page);
  1324. spin_unlock(ptl);
  1325. anon_vma = page_lock_anon_vma_read(page);
  1326. /* Confirm the PMD did not change while page_table_lock was released */
  1327. spin_lock(ptl);
  1328. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1329. unlock_page(page);
  1330. put_page(page);
  1331. page_nid = -1;
  1332. goto out_unlock;
  1333. }
  1334. /* Bail if we fail to protect against THP splits for any reason */
  1335. if (unlikely(!anon_vma)) {
  1336. put_page(page);
  1337. page_nid = -1;
  1338. goto clear_pmdnuma;
  1339. }
  1340. /*
  1341. * Migrate the THP to the requested node, returns with page unlocked
  1342. * and access rights restored.
  1343. */
  1344. spin_unlock(ptl);
  1345. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1346. pmdp, pmd, addr, page, target_nid);
  1347. if (migrated) {
  1348. flags |= TNF_MIGRATED;
  1349. page_nid = target_nid;
  1350. } else
  1351. flags |= TNF_MIGRATE_FAIL;
  1352. goto out;
  1353. clear_pmdnuma:
  1354. BUG_ON(!PageLocked(page));
  1355. was_writable = pmd_write(pmd);
  1356. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1357. pmd = pmd_mkyoung(pmd);
  1358. if (was_writable)
  1359. pmd = pmd_mkwrite(pmd);
  1360. set_pmd_at(mm, haddr, pmdp, pmd);
  1361. update_mmu_cache_pmd(vma, addr, pmdp);
  1362. unlock_page(page);
  1363. out_unlock:
  1364. spin_unlock(ptl);
  1365. out:
  1366. if (anon_vma)
  1367. page_unlock_anon_vma_read(anon_vma);
  1368. if (page_nid != -1)
  1369. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1370. return 0;
  1371. }
  1372. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1373. pmd_t *pmd, unsigned long addr, unsigned long next)
  1374. {
  1375. spinlock_t *ptl;
  1376. pmd_t orig_pmd;
  1377. struct page *page;
  1378. struct mm_struct *mm = tlb->mm;
  1379. int ret = 0;
  1380. ptl = pmd_trans_huge_lock(pmd, vma);
  1381. if (!ptl)
  1382. goto out_unlocked;
  1383. orig_pmd = *pmd;
  1384. if (is_huge_zero_pmd(orig_pmd)) {
  1385. ret = 1;
  1386. goto out;
  1387. }
  1388. page = pmd_page(orig_pmd);
  1389. /*
  1390. * If other processes are mapping this page, we couldn't discard
  1391. * the page unless they all do MADV_FREE so let's skip the page.
  1392. */
  1393. if (page_mapcount(page) != 1)
  1394. goto out;
  1395. if (!trylock_page(page))
  1396. goto out;
  1397. /*
  1398. * If user want to discard part-pages of THP, split it so MADV_FREE
  1399. * will deactivate only them.
  1400. */
  1401. if (next - addr != HPAGE_PMD_SIZE) {
  1402. get_page(page);
  1403. spin_unlock(ptl);
  1404. if (split_huge_page(page)) {
  1405. put_page(page);
  1406. unlock_page(page);
  1407. goto out_unlocked;
  1408. }
  1409. put_page(page);
  1410. unlock_page(page);
  1411. ret = 1;
  1412. goto out_unlocked;
  1413. }
  1414. if (PageDirty(page))
  1415. ClearPageDirty(page);
  1416. unlock_page(page);
  1417. if (PageActive(page))
  1418. deactivate_page(page);
  1419. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1420. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1421. tlb->fullmm);
  1422. orig_pmd = pmd_mkold(orig_pmd);
  1423. orig_pmd = pmd_mkclean(orig_pmd);
  1424. set_pmd_at(mm, addr, pmd, orig_pmd);
  1425. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1426. }
  1427. ret = 1;
  1428. out:
  1429. spin_unlock(ptl);
  1430. out_unlocked:
  1431. return ret;
  1432. }
  1433. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1434. pmd_t *pmd, unsigned long addr)
  1435. {
  1436. pmd_t orig_pmd;
  1437. spinlock_t *ptl;
  1438. ptl = __pmd_trans_huge_lock(pmd, vma);
  1439. if (!ptl)
  1440. return 0;
  1441. /*
  1442. * For architectures like ppc64 we look at deposited pgtable
  1443. * when calling pmdp_huge_get_and_clear. So do the
  1444. * pgtable_trans_huge_withdraw after finishing pmdp related
  1445. * operations.
  1446. */
  1447. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1448. tlb->fullmm);
  1449. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1450. if (vma_is_dax(vma)) {
  1451. spin_unlock(ptl);
  1452. if (is_huge_zero_pmd(orig_pmd))
  1453. put_huge_zero_page();
  1454. } else if (is_huge_zero_pmd(orig_pmd)) {
  1455. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1456. atomic_long_dec(&tlb->mm->nr_ptes);
  1457. spin_unlock(ptl);
  1458. put_huge_zero_page();
  1459. } else {
  1460. struct page *page = pmd_page(orig_pmd);
  1461. page_remove_rmap(page, true);
  1462. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1463. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1464. VM_BUG_ON_PAGE(!PageHead(page), page);
  1465. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1466. atomic_long_dec(&tlb->mm->nr_ptes);
  1467. spin_unlock(ptl);
  1468. tlb_remove_page(tlb, page);
  1469. }
  1470. return 1;
  1471. }
  1472. bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1473. unsigned long old_addr,
  1474. unsigned long new_addr, unsigned long old_end,
  1475. pmd_t *old_pmd, pmd_t *new_pmd)
  1476. {
  1477. spinlock_t *old_ptl, *new_ptl;
  1478. pmd_t pmd;
  1479. struct mm_struct *mm = vma->vm_mm;
  1480. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1481. (new_addr & ~HPAGE_PMD_MASK) ||
  1482. old_end - old_addr < HPAGE_PMD_SIZE ||
  1483. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1484. return false;
  1485. /*
  1486. * The destination pmd shouldn't be established, free_pgtables()
  1487. * should have release it.
  1488. */
  1489. if (WARN_ON(!pmd_none(*new_pmd))) {
  1490. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1491. return false;
  1492. }
  1493. /*
  1494. * We don't have to worry about the ordering of src and dst
  1495. * ptlocks because exclusive mmap_sem prevents deadlock.
  1496. */
  1497. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1498. if (old_ptl) {
  1499. new_ptl = pmd_lockptr(mm, new_pmd);
  1500. if (new_ptl != old_ptl)
  1501. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1502. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1503. VM_BUG_ON(!pmd_none(*new_pmd));
  1504. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1505. pgtable_t pgtable;
  1506. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1507. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1508. }
  1509. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1510. if (new_ptl != old_ptl)
  1511. spin_unlock(new_ptl);
  1512. spin_unlock(old_ptl);
  1513. return true;
  1514. }
  1515. return false;
  1516. }
  1517. /*
  1518. * Returns
  1519. * - 0 if PMD could not be locked
  1520. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1521. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1522. */
  1523. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1524. unsigned long addr, pgprot_t newprot, int prot_numa)
  1525. {
  1526. struct mm_struct *mm = vma->vm_mm;
  1527. spinlock_t *ptl;
  1528. int ret = 0;
  1529. ptl = __pmd_trans_huge_lock(pmd, vma);
  1530. if (ptl) {
  1531. pmd_t entry;
  1532. bool preserve_write = prot_numa && pmd_write(*pmd);
  1533. ret = 1;
  1534. /*
  1535. * Avoid trapping faults against the zero page. The read-only
  1536. * data is likely to be read-cached on the local CPU and
  1537. * local/remote hits to the zero page are not interesting.
  1538. */
  1539. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1540. spin_unlock(ptl);
  1541. return ret;
  1542. }
  1543. if (!prot_numa || !pmd_protnone(*pmd)) {
  1544. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1545. entry = pmd_modify(entry, newprot);
  1546. if (preserve_write)
  1547. entry = pmd_mkwrite(entry);
  1548. ret = HPAGE_PMD_NR;
  1549. set_pmd_at(mm, addr, pmd, entry);
  1550. BUG_ON(!preserve_write && pmd_write(entry));
  1551. }
  1552. spin_unlock(ptl);
  1553. }
  1554. return ret;
  1555. }
  1556. /*
  1557. * Returns true if a given pmd maps a thp, false otherwise.
  1558. *
  1559. * Note that if it returns true, this routine returns without unlocking page
  1560. * table lock. So callers must unlock it.
  1561. */
  1562. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1563. {
  1564. spinlock_t *ptl;
  1565. ptl = pmd_lock(vma->vm_mm, pmd);
  1566. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1567. return ptl;
  1568. spin_unlock(ptl);
  1569. return NULL;
  1570. }
  1571. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1572. int hugepage_madvise(struct vm_area_struct *vma,
  1573. unsigned long *vm_flags, int advice)
  1574. {
  1575. switch (advice) {
  1576. case MADV_HUGEPAGE:
  1577. #ifdef CONFIG_S390
  1578. /*
  1579. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1580. * can't handle this properly after s390_enable_sie, so we simply
  1581. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1582. */
  1583. if (mm_has_pgste(vma->vm_mm))
  1584. return 0;
  1585. #endif
  1586. /*
  1587. * Be somewhat over-protective like KSM for now!
  1588. */
  1589. if (*vm_flags & VM_NO_THP)
  1590. return -EINVAL;
  1591. *vm_flags &= ~VM_NOHUGEPAGE;
  1592. *vm_flags |= VM_HUGEPAGE;
  1593. /*
  1594. * If the vma become good for khugepaged to scan,
  1595. * register it here without waiting a page fault that
  1596. * may not happen any time soon.
  1597. */
  1598. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1599. return -ENOMEM;
  1600. break;
  1601. case MADV_NOHUGEPAGE:
  1602. /*
  1603. * Be somewhat over-protective like KSM for now!
  1604. */
  1605. if (*vm_flags & VM_NO_THP)
  1606. return -EINVAL;
  1607. *vm_flags &= ~VM_HUGEPAGE;
  1608. *vm_flags |= VM_NOHUGEPAGE;
  1609. /*
  1610. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1611. * this vma even if we leave the mm registered in khugepaged if
  1612. * it got registered before VM_NOHUGEPAGE was set.
  1613. */
  1614. break;
  1615. }
  1616. return 0;
  1617. }
  1618. static int __init khugepaged_slab_init(void)
  1619. {
  1620. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1621. sizeof(struct mm_slot),
  1622. __alignof__(struct mm_slot), 0, NULL);
  1623. if (!mm_slot_cache)
  1624. return -ENOMEM;
  1625. return 0;
  1626. }
  1627. static void __init khugepaged_slab_exit(void)
  1628. {
  1629. kmem_cache_destroy(mm_slot_cache);
  1630. }
  1631. static inline struct mm_slot *alloc_mm_slot(void)
  1632. {
  1633. if (!mm_slot_cache) /* initialization failed */
  1634. return NULL;
  1635. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1636. }
  1637. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1638. {
  1639. kmem_cache_free(mm_slot_cache, mm_slot);
  1640. }
  1641. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1642. {
  1643. struct mm_slot *mm_slot;
  1644. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1645. if (mm == mm_slot->mm)
  1646. return mm_slot;
  1647. return NULL;
  1648. }
  1649. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1650. struct mm_slot *mm_slot)
  1651. {
  1652. mm_slot->mm = mm;
  1653. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1654. }
  1655. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1656. {
  1657. return atomic_read(&mm->mm_users) == 0;
  1658. }
  1659. int __khugepaged_enter(struct mm_struct *mm)
  1660. {
  1661. struct mm_slot *mm_slot;
  1662. int wakeup;
  1663. mm_slot = alloc_mm_slot();
  1664. if (!mm_slot)
  1665. return -ENOMEM;
  1666. /* __khugepaged_exit() must not run from under us */
  1667. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1668. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1669. free_mm_slot(mm_slot);
  1670. return 0;
  1671. }
  1672. spin_lock(&khugepaged_mm_lock);
  1673. insert_to_mm_slots_hash(mm, mm_slot);
  1674. /*
  1675. * Insert just behind the scanning cursor, to let the area settle
  1676. * down a little.
  1677. */
  1678. wakeup = list_empty(&khugepaged_scan.mm_head);
  1679. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1680. spin_unlock(&khugepaged_mm_lock);
  1681. atomic_inc(&mm->mm_count);
  1682. if (wakeup)
  1683. wake_up_interruptible(&khugepaged_wait);
  1684. return 0;
  1685. }
  1686. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1687. unsigned long vm_flags)
  1688. {
  1689. unsigned long hstart, hend;
  1690. if (!vma->anon_vma)
  1691. /*
  1692. * Not yet faulted in so we will register later in the
  1693. * page fault if needed.
  1694. */
  1695. return 0;
  1696. if (vma->vm_ops)
  1697. /* khugepaged not yet working on file or special mappings */
  1698. return 0;
  1699. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1700. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1701. hend = vma->vm_end & HPAGE_PMD_MASK;
  1702. if (hstart < hend)
  1703. return khugepaged_enter(vma, vm_flags);
  1704. return 0;
  1705. }
  1706. void __khugepaged_exit(struct mm_struct *mm)
  1707. {
  1708. struct mm_slot *mm_slot;
  1709. int free = 0;
  1710. spin_lock(&khugepaged_mm_lock);
  1711. mm_slot = get_mm_slot(mm);
  1712. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1713. hash_del(&mm_slot->hash);
  1714. list_del(&mm_slot->mm_node);
  1715. free = 1;
  1716. }
  1717. spin_unlock(&khugepaged_mm_lock);
  1718. if (free) {
  1719. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1720. free_mm_slot(mm_slot);
  1721. mmdrop(mm);
  1722. } else if (mm_slot) {
  1723. /*
  1724. * This is required to serialize against
  1725. * khugepaged_test_exit() (which is guaranteed to run
  1726. * under mmap sem read mode). Stop here (after we
  1727. * return all pagetables will be destroyed) until
  1728. * khugepaged has finished working on the pagetables
  1729. * under the mmap_sem.
  1730. */
  1731. down_write(&mm->mmap_sem);
  1732. up_write(&mm->mmap_sem);
  1733. }
  1734. }
  1735. static void release_pte_page(struct page *page)
  1736. {
  1737. /* 0 stands for page_is_file_cache(page) == false */
  1738. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1739. unlock_page(page);
  1740. putback_lru_page(page);
  1741. }
  1742. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1743. {
  1744. while (--_pte >= pte) {
  1745. pte_t pteval = *_pte;
  1746. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1747. release_pte_page(pte_page(pteval));
  1748. }
  1749. }
  1750. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1751. unsigned long address,
  1752. pte_t *pte)
  1753. {
  1754. struct page *page = NULL;
  1755. pte_t *_pte;
  1756. int none_or_zero = 0, result = 0;
  1757. bool referenced = false, writable = false;
  1758. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1759. _pte++, address += PAGE_SIZE) {
  1760. pte_t pteval = *_pte;
  1761. if (pte_none(pteval) || (pte_present(pteval) &&
  1762. is_zero_pfn(pte_pfn(pteval)))) {
  1763. if (!userfaultfd_armed(vma) &&
  1764. ++none_or_zero <= khugepaged_max_ptes_none) {
  1765. continue;
  1766. } else {
  1767. result = SCAN_EXCEED_NONE_PTE;
  1768. goto out;
  1769. }
  1770. }
  1771. if (!pte_present(pteval)) {
  1772. result = SCAN_PTE_NON_PRESENT;
  1773. goto out;
  1774. }
  1775. page = vm_normal_page(vma, address, pteval);
  1776. if (unlikely(!page)) {
  1777. result = SCAN_PAGE_NULL;
  1778. goto out;
  1779. }
  1780. VM_BUG_ON_PAGE(PageCompound(page), page);
  1781. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1782. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1783. /*
  1784. * We can do it before isolate_lru_page because the
  1785. * page can't be freed from under us. NOTE: PG_lock
  1786. * is needed to serialize against split_huge_page
  1787. * when invoked from the VM.
  1788. */
  1789. if (!trylock_page(page)) {
  1790. result = SCAN_PAGE_LOCK;
  1791. goto out;
  1792. }
  1793. /*
  1794. * cannot use mapcount: can't collapse if there's a gup pin.
  1795. * The page must only be referenced by the scanned process
  1796. * and page swap cache.
  1797. */
  1798. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1799. unlock_page(page);
  1800. result = SCAN_PAGE_COUNT;
  1801. goto out;
  1802. }
  1803. if (pte_write(pteval)) {
  1804. writable = true;
  1805. } else {
  1806. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1807. unlock_page(page);
  1808. result = SCAN_SWAP_CACHE_PAGE;
  1809. goto out;
  1810. }
  1811. /*
  1812. * Page is not in the swap cache. It can be collapsed
  1813. * into a THP.
  1814. */
  1815. }
  1816. /*
  1817. * Isolate the page to avoid collapsing an hugepage
  1818. * currently in use by the VM.
  1819. */
  1820. if (isolate_lru_page(page)) {
  1821. unlock_page(page);
  1822. result = SCAN_DEL_PAGE_LRU;
  1823. goto out;
  1824. }
  1825. /* 0 stands for page_is_file_cache(page) == false */
  1826. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1827. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1828. VM_BUG_ON_PAGE(PageLRU(page), page);
  1829. /* If there is no mapped pte young don't collapse the page */
  1830. if (pte_young(pteval) ||
  1831. page_is_young(page) || PageReferenced(page) ||
  1832. mmu_notifier_test_young(vma->vm_mm, address))
  1833. referenced = true;
  1834. }
  1835. if (likely(writable)) {
  1836. if (likely(referenced)) {
  1837. result = SCAN_SUCCEED;
  1838. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1839. referenced, writable, result);
  1840. return 1;
  1841. }
  1842. } else {
  1843. result = SCAN_PAGE_RO;
  1844. }
  1845. out:
  1846. release_pte_pages(pte, _pte);
  1847. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1848. referenced, writable, result);
  1849. return 0;
  1850. }
  1851. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1852. struct vm_area_struct *vma,
  1853. unsigned long address,
  1854. spinlock_t *ptl)
  1855. {
  1856. pte_t *_pte;
  1857. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1858. pte_t pteval = *_pte;
  1859. struct page *src_page;
  1860. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1861. clear_user_highpage(page, address);
  1862. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1863. if (is_zero_pfn(pte_pfn(pteval))) {
  1864. /*
  1865. * ptl mostly unnecessary.
  1866. */
  1867. spin_lock(ptl);
  1868. /*
  1869. * paravirt calls inside pte_clear here are
  1870. * superfluous.
  1871. */
  1872. pte_clear(vma->vm_mm, address, _pte);
  1873. spin_unlock(ptl);
  1874. }
  1875. } else {
  1876. src_page = pte_page(pteval);
  1877. copy_user_highpage(page, src_page, address, vma);
  1878. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1879. release_pte_page(src_page);
  1880. /*
  1881. * ptl mostly unnecessary, but preempt has to
  1882. * be disabled to update the per-cpu stats
  1883. * inside page_remove_rmap().
  1884. */
  1885. spin_lock(ptl);
  1886. /*
  1887. * paravirt calls inside pte_clear here are
  1888. * superfluous.
  1889. */
  1890. pte_clear(vma->vm_mm, address, _pte);
  1891. page_remove_rmap(src_page, false);
  1892. spin_unlock(ptl);
  1893. free_page_and_swap_cache(src_page);
  1894. }
  1895. address += PAGE_SIZE;
  1896. page++;
  1897. }
  1898. }
  1899. static void khugepaged_alloc_sleep(void)
  1900. {
  1901. DEFINE_WAIT(wait);
  1902. add_wait_queue(&khugepaged_wait, &wait);
  1903. freezable_schedule_timeout_interruptible(
  1904. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1905. remove_wait_queue(&khugepaged_wait, &wait);
  1906. }
  1907. static int khugepaged_node_load[MAX_NUMNODES];
  1908. static bool khugepaged_scan_abort(int nid)
  1909. {
  1910. int i;
  1911. /*
  1912. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1913. * allocate memory locally.
  1914. */
  1915. if (!zone_reclaim_mode)
  1916. return false;
  1917. /* If there is a count for this node already, it must be acceptable */
  1918. if (khugepaged_node_load[nid])
  1919. return false;
  1920. for (i = 0; i < MAX_NUMNODES; i++) {
  1921. if (!khugepaged_node_load[i])
  1922. continue;
  1923. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1924. return true;
  1925. }
  1926. return false;
  1927. }
  1928. #ifdef CONFIG_NUMA
  1929. static int khugepaged_find_target_node(void)
  1930. {
  1931. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1932. int nid, target_node = 0, max_value = 0;
  1933. /* find first node with max normal pages hit */
  1934. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1935. if (khugepaged_node_load[nid] > max_value) {
  1936. max_value = khugepaged_node_load[nid];
  1937. target_node = nid;
  1938. }
  1939. /* do some balance if several nodes have the same hit record */
  1940. if (target_node <= last_khugepaged_target_node)
  1941. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1942. nid++)
  1943. if (max_value == khugepaged_node_load[nid]) {
  1944. target_node = nid;
  1945. break;
  1946. }
  1947. last_khugepaged_target_node = target_node;
  1948. return target_node;
  1949. }
  1950. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1951. {
  1952. if (IS_ERR(*hpage)) {
  1953. if (!*wait)
  1954. return false;
  1955. *wait = false;
  1956. *hpage = NULL;
  1957. khugepaged_alloc_sleep();
  1958. } else if (*hpage) {
  1959. put_page(*hpage);
  1960. *hpage = NULL;
  1961. }
  1962. return true;
  1963. }
  1964. static struct page *
  1965. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  1966. unsigned long address, int node)
  1967. {
  1968. VM_BUG_ON_PAGE(*hpage, *hpage);
  1969. /*
  1970. * Before allocating the hugepage, release the mmap_sem read lock.
  1971. * The allocation can take potentially a long time if it involves
  1972. * sync compaction, and we do not need to hold the mmap_sem during
  1973. * that. We will recheck the vma after taking it again in write mode.
  1974. */
  1975. up_read(&mm->mmap_sem);
  1976. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  1977. if (unlikely(!*hpage)) {
  1978. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1979. *hpage = ERR_PTR(-ENOMEM);
  1980. return NULL;
  1981. }
  1982. prep_transhuge_page(*hpage);
  1983. count_vm_event(THP_COLLAPSE_ALLOC);
  1984. return *hpage;
  1985. }
  1986. #else
  1987. static int khugepaged_find_target_node(void)
  1988. {
  1989. return 0;
  1990. }
  1991. static inline struct page *alloc_hugepage(int defrag)
  1992. {
  1993. struct page *page;
  1994. page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
  1995. if (page)
  1996. prep_transhuge_page(page);
  1997. return page;
  1998. }
  1999. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2000. {
  2001. struct page *hpage;
  2002. do {
  2003. hpage = alloc_hugepage(khugepaged_defrag());
  2004. if (!hpage) {
  2005. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2006. if (!*wait)
  2007. return NULL;
  2008. *wait = false;
  2009. khugepaged_alloc_sleep();
  2010. } else
  2011. count_vm_event(THP_COLLAPSE_ALLOC);
  2012. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2013. return hpage;
  2014. }
  2015. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2016. {
  2017. if (!*hpage)
  2018. *hpage = khugepaged_alloc_hugepage(wait);
  2019. if (unlikely(!*hpage))
  2020. return false;
  2021. return true;
  2022. }
  2023. static struct page *
  2024. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2025. unsigned long address, int node)
  2026. {
  2027. up_read(&mm->mmap_sem);
  2028. VM_BUG_ON(!*hpage);
  2029. return *hpage;
  2030. }
  2031. #endif
  2032. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2033. {
  2034. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2035. (vma->vm_flags & VM_NOHUGEPAGE))
  2036. return false;
  2037. if (!vma->anon_vma || vma->vm_ops)
  2038. return false;
  2039. if (is_vma_temporary_stack(vma))
  2040. return false;
  2041. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2042. return true;
  2043. }
  2044. static void collapse_huge_page(struct mm_struct *mm,
  2045. unsigned long address,
  2046. struct page **hpage,
  2047. struct vm_area_struct *vma,
  2048. int node)
  2049. {
  2050. pmd_t *pmd, _pmd;
  2051. pte_t *pte;
  2052. pgtable_t pgtable;
  2053. struct page *new_page;
  2054. spinlock_t *pmd_ptl, *pte_ptl;
  2055. int isolated = 0, result = 0;
  2056. unsigned long hstart, hend;
  2057. struct mem_cgroup *memcg;
  2058. unsigned long mmun_start; /* For mmu_notifiers */
  2059. unsigned long mmun_end; /* For mmu_notifiers */
  2060. gfp_t gfp;
  2061. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2062. /* Only allocate from the target node */
  2063. gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
  2064. __GFP_THISNODE;
  2065. /* release the mmap_sem read lock. */
  2066. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2067. if (!new_page) {
  2068. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2069. goto out_nolock;
  2070. }
  2071. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2072. result = SCAN_CGROUP_CHARGE_FAIL;
  2073. goto out_nolock;
  2074. }
  2075. /*
  2076. * Prevent all access to pagetables with the exception of
  2077. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2078. * handled by the anon_vma lock + PG_lock.
  2079. */
  2080. down_write(&mm->mmap_sem);
  2081. if (unlikely(khugepaged_test_exit(mm))) {
  2082. result = SCAN_ANY_PROCESS;
  2083. goto out;
  2084. }
  2085. vma = find_vma(mm, address);
  2086. if (!vma) {
  2087. result = SCAN_VMA_NULL;
  2088. goto out;
  2089. }
  2090. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2091. hend = vma->vm_end & HPAGE_PMD_MASK;
  2092. if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
  2093. result = SCAN_ADDRESS_RANGE;
  2094. goto out;
  2095. }
  2096. if (!hugepage_vma_check(vma)) {
  2097. result = SCAN_VMA_CHECK;
  2098. goto out;
  2099. }
  2100. pmd = mm_find_pmd(mm, address);
  2101. if (!pmd) {
  2102. result = SCAN_PMD_NULL;
  2103. goto out;
  2104. }
  2105. anon_vma_lock_write(vma->anon_vma);
  2106. pte = pte_offset_map(pmd, address);
  2107. pte_ptl = pte_lockptr(mm, pmd);
  2108. mmun_start = address;
  2109. mmun_end = address + HPAGE_PMD_SIZE;
  2110. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2111. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2112. /*
  2113. * After this gup_fast can't run anymore. This also removes
  2114. * any huge TLB entry from the CPU so we won't allow
  2115. * huge and small TLB entries for the same virtual address
  2116. * to avoid the risk of CPU bugs in that area.
  2117. */
  2118. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2119. spin_unlock(pmd_ptl);
  2120. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2121. spin_lock(pte_ptl);
  2122. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2123. spin_unlock(pte_ptl);
  2124. if (unlikely(!isolated)) {
  2125. pte_unmap(pte);
  2126. spin_lock(pmd_ptl);
  2127. BUG_ON(!pmd_none(*pmd));
  2128. /*
  2129. * We can only use set_pmd_at when establishing
  2130. * hugepmds and never for establishing regular pmds that
  2131. * points to regular pagetables. Use pmd_populate for that
  2132. */
  2133. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2134. spin_unlock(pmd_ptl);
  2135. anon_vma_unlock_write(vma->anon_vma);
  2136. result = SCAN_FAIL;
  2137. goto out;
  2138. }
  2139. /*
  2140. * All pages are isolated and locked so anon_vma rmap
  2141. * can't run anymore.
  2142. */
  2143. anon_vma_unlock_write(vma->anon_vma);
  2144. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2145. pte_unmap(pte);
  2146. __SetPageUptodate(new_page);
  2147. pgtable = pmd_pgtable(_pmd);
  2148. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2149. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2150. /*
  2151. * spin_lock() below is not the equivalent of smp_wmb(), so
  2152. * this is needed to avoid the copy_huge_page writes to become
  2153. * visible after the set_pmd_at() write.
  2154. */
  2155. smp_wmb();
  2156. spin_lock(pmd_ptl);
  2157. BUG_ON(!pmd_none(*pmd));
  2158. page_add_new_anon_rmap(new_page, vma, address, true);
  2159. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2160. lru_cache_add_active_or_unevictable(new_page, vma);
  2161. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2162. set_pmd_at(mm, address, pmd, _pmd);
  2163. update_mmu_cache_pmd(vma, address, pmd);
  2164. spin_unlock(pmd_ptl);
  2165. *hpage = NULL;
  2166. khugepaged_pages_collapsed++;
  2167. result = SCAN_SUCCEED;
  2168. out_up_write:
  2169. up_write(&mm->mmap_sem);
  2170. trace_mm_collapse_huge_page(mm, isolated, result);
  2171. return;
  2172. out_nolock:
  2173. trace_mm_collapse_huge_page(mm, isolated, result);
  2174. return;
  2175. out:
  2176. mem_cgroup_cancel_charge(new_page, memcg, true);
  2177. goto out_up_write;
  2178. }
  2179. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2180. struct vm_area_struct *vma,
  2181. unsigned long address,
  2182. struct page **hpage)
  2183. {
  2184. pmd_t *pmd;
  2185. pte_t *pte, *_pte;
  2186. int ret = 0, none_or_zero = 0, result = 0;
  2187. struct page *page = NULL;
  2188. unsigned long _address;
  2189. spinlock_t *ptl;
  2190. int node = NUMA_NO_NODE;
  2191. bool writable = false, referenced = false;
  2192. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2193. pmd = mm_find_pmd(mm, address);
  2194. if (!pmd) {
  2195. result = SCAN_PMD_NULL;
  2196. goto out;
  2197. }
  2198. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2199. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2200. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2201. _pte++, _address += PAGE_SIZE) {
  2202. pte_t pteval = *_pte;
  2203. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2204. if (!userfaultfd_armed(vma) &&
  2205. ++none_or_zero <= khugepaged_max_ptes_none) {
  2206. continue;
  2207. } else {
  2208. result = SCAN_EXCEED_NONE_PTE;
  2209. goto out_unmap;
  2210. }
  2211. }
  2212. if (!pte_present(pteval)) {
  2213. result = SCAN_PTE_NON_PRESENT;
  2214. goto out_unmap;
  2215. }
  2216. if (pte_write(pteval))
  2217. writable = true;
  2218. page = vm_normal_page(vma, _address, pteval);
  2219. if (unlikely(!page)) {
  2220. result = SCAN_PAGE_NULL;
  2221. goto out_unmap;
  2222. }
  2223. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2224. if (PageCompound(page)) {
  2225. result = SCAN_PAGE_COMPOUND;
  2226. goto out_unmap;
  2227. }
  2228. /*
  2229. * Record which node the original page is from and save this
  2230. * information to khugepaged_node_load[].
  2231. * Khupaged will allocate hugepage from the node has the max
  2232. * hit record.
  2233. */
  2234. node = page_to_nid(page);
  2235. if (khugepaged_scan_abort(node)) {
  2236. result = SCAN_SCAN_ABORT;
  2237. goto out_unmap;
  2238. }
  2239. khugepaged_node_load[node]++;
  2240. if (!PageLRU(page)) {
  2241. result = SCAN_SCAN_ABORT;
  2242. goto out_unmap;
  2243. }
  2244. if (PageLocked(page)) {
  2245. result = SCAN_PAGE_LOCK;
  2246. goto out_unmap;
  2247. }
  2248. if (!PageAnon(page)) {
  2249. result = SCAN_PAGE_ANON;
  2250. goto out_unmap;
  2251. }
  2252. /*
  2253. * cannot use mapcount: can't collapse if there's a gup pin.
  2254. * The page must only be referenced by the scanned process
  2255. * and page swap cache.
  2256. */
  2257. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2258. result = SCAN_PAGE_COUNT;
  2259. goto out_unmap;
  2260. }
  2261. if (pte_young(pteval) ||
  2262. page_is_young(page) || PageReferenced(page) ||
  2263. mmu_notifier_test_young(vma->vm_mm, address))
  2264. referenced = true;
  2265. }
  2266. if (writable) {
  2267. if (referenced) {
  2268. result = SCAN_SUCCEED;
  2269. ret = 1;
  2270. } else {
  2271. result = SCAN_NO_REFERENCED_PAGE;
  2272. }
  2273. } else {
  2274. result = SCAN_PAGE_RO;
  2275. }
  2276. out_unmap:
  2277. pte_unmap_unlock(pte, ptl);
  2278. if (ret) {
  2279. node = khugepaged_find_target_node();
  2280. /* collapse_huge_page will return with the mmap_sem released */
  2281. collapse_huge_page(mm, address, hpage, vma, node);
  2282. }
  2283. out:
  2284. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2285. none_or_zero, result);
  2286. return ret;
  2287. }
  2288. static void collect_mm_slot(struct mm_slot *mm_slot)
  2289. {
  2290. struct mm_struct *mm = mm_slot->mm;
  2291. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2292. if (khugepaged_test_exit(mm)) {
  2293. /* free mm_slot */
  2294. hash_del(&mm_slot->hash);
  2295. list_del(&mm_slot->mm_node);
  2296. /*
  2297. * Not strictly needed because the mm exited already.
  2298. *
  2299. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2300. */
  2301. /* khugepaged_mm_lock actually not necessary for the below */
  2302. free_mm_slot(mm_slot);
  2303. mmdrop(mm);
  2304. }
  2305. }
  2306. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2307. struct page **hpage)
  2308. __releases(&khugepaged_mm_lock)
  2309. __acquires(&khugepaged_mm_lock)
  2310. {
  2311. struct mm_slot *mm_slot;
  2312. struct mm_struct *mm;
  2313. struct vm_area_struct *vma;
  2314. int progress = 0;
  2315. VM_BUG_ON(!pages);
  2316. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2317. if (khugepaged_scan.mm_slot)
  2318. mm_slot = khugepaged_scan.mm_slot;
  2319. else {
  2320. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2321. struct mm_slot, mm_node);
  2322. khugepaged_scan.address = 0;
  2323. khugepaged_scan.mm_slot = mm_slot;
  2324. }
  2325. spin_unlock(&khugepaged_mm_lock);
  2326. mm = mm_slot->mm;
  2327. down_read(&mm->mmap_sem);
  2328. if (unlikely(khugepaged_test_exit(mm)))
  2329. vma = NULL;
  2330. else
  2331. vma = find_vma(mm, khugepaged_scan.address);
  2332. progress++;
  2333. for (; vma; vma = vma->vm_next) {
  2334. unsigned long hstart, hend;
  2335. cond_resched();
  2336. if (unlikely(khugepaged_test_exit(mm))) {
  2337. progress++;
  2338. break;
  2339. }
  2340. if (!hugepage_vma_check(vma)) {
  2341. skip:
  2342. progress++;
  2343. continue;
  2344. }
  2345. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2346. hend = vma->vm_end & HPAGE_PMD_MASK;
  2347. if (hstart >= hend)
  2348. goto skip;
  2349. if (khugepaged_scan.address > hend)
  2350. goto skip;
  2351. if (khugepaged_scan.address < hstart)
  2352. khugepaged_scan.address = hstart;
  2353. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2354. while (khugepaged_scan.address < hend) {
  2355. int ret;
  2356. cond_resched();
  2357. if (unlikely(khugepaged_test_exit(mm)))
  2358. goto breakouterloop;
  2359. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2360. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2361. hend);
  2362. ret = khugepaged_scan_pmd(mm, vma,
  2363. khugepaged_scan.address,
  2364. hpage);
  2365. /* move to next address */
  2366. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2367. progress += HPAGE_PMD_NR;
  2368. if (ret)
  2369. /* we released mmap_sem so break loop */
  2370. goto breakouterloop_mmap_sem;
  2371. if (progress >= pages)
  2372. goto breakouterloop;
  2373. }
  2374. }
  2375. breakouterloop:
  2376. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2377. breakouterloop_mmap_sem:
  2378. spin_lock(&khugepaged_mm_lock);
  2379. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2380. /*
  2381. * Release the current mm_slot if this mm is about to die, or
  2382. * if we scanned all vmas of this mm.
  2383. */
  2384. if (khugepaged_test_exit(mm) || !vma) {
  2385. /*
  2386. * Make sure that if mm_users is reaching zero while
  2387. * khugepaged runs here, khugepaged_exit will find
  2388. * mm_slot not pointing to the exiting mm.
  2389. */
  2390. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2391. khugepaged_scan.mm_slot = list_entry(
  2392. mm_slot->mm_node.next,
  2393. struct mm_slot, mm_node);
  2394. khugepaged_scan.address = 0;
  2395. } else {
  2396. khugepaged_scan.mm_slot = NULL;
  2397. khugepaged_full_scans++;
  2398. }
  2399. collect_mm_slot(mm_slot);
  2400. }
  2401. return progress;
  2402. }
  2403. static int khugepaged_has_work(void)
  2404. {
  2405. return !list_empty(&khugepaged_scan.mm_head) &&
  2406. khugepaged_enabled();
  2407. }
  2408. static int khugepaged_wait_event(void)
  2409. {
  2410. return !list_empty(&khugepaged_scan.mm_head) ||
  2411. kthread_should_stop();
  2412. }
  2413. static void khugepaged_do_scan(void)
  2414. {
  2415. struct page *hpage = NULL;
  2416. unsigned int progress = 0, pass_through_head = 0;
  2417. unsigned int pages = khugepaged_pages_to_scan;
  2418. bool wait = true;
  2419. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2420. while (progress < pages) {
  2421. if (!khugepaged_prealloc_page(&hpage, &wait))
  2422. break;
  2423. cond_resched();
  2424. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2425. break;
  2426. spin_lock(&khugepaged_mm_lock);
  2427. if (!khugepaged_scan.mm_slot)
  2428. pass_through_head++;
  2429. if (khugepaged_has_work() &&
  2430. pass_through_head < 2)
  2431. progress += khugepaged_scan_mm_slot(pages - progress,
  2432. &hpage);
  2433. else
  2434. progress = pages;
  2435. spin_unlock(&khugepaged_mm_lock);
  2436. }
  2437. if (!IS_ERR_OR_NULL(hpage))
  2438. put_page(hpage);
  2439. }
  2440. static void khugepaged_wait_work(void)
  2441. {
  2442. if (khugepaged_has_work()) {
  2443. if (!khugepaged_scan_sleep_millisecs)
  2444. return;
  2445. wait_event_freezable_timeout(khugepaged_wait,
  2446. kthread_should_stop(),
  2447. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2448. return;
  2449. }
  2450. if (khugepaged_enabled())
  2451. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2452. }
  2453. static int khugepaged(void *none)
  2454. {
  2455. struct mm_slot *mm_slot;
  2456. set_freezable();
  2457. set_user_nice(current, MAX_NICE);
  2458. while (!kthread_should_stop()) {
  2459. khugepaged_do_scan();
  2460. khugepaged_wait_work();
  2461. }
  2462. spin_lock(&khugepaged_mm_lock);
  2463. mm_slot = khugepaged_scan.mm_slot;
  2464. khugepaged_scan.mm_slot = NULL;
  2465. if (mm_slot)
  2466. collect_mm_slot(mm_slot);
  2467. spin_unlock(&khugepaged_mm_lock);
  2468. return 0;
  2469. }
  2470. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2471. unsigned long haddr, pmd_t *pmd)
  2472. {
  2473. struct mm_struct *mm = vma->vm_mm;
  2474. pgtable_t pgtable;
  2475. pmd_t _pmd;
  2476. int i;
  2477. /* leave pmd empty until pte is filled */
  2478. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2479. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2480. pmd_populate(mm, &_pmd, pgtable);
  2481. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2482. pte_t *pte, entry;
  2483. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2484. entry = pte_mkspecial(entry);
  2485. pte = pte_offset_map(&_pmd, haddr);
  2486. VM_BUG_ON(!pte_none(*pte));
  2487. set_pte_at(mm, haddr, pte, entry);
  2488. pte_unmap(pte);
  2489. }
  2490. smp_wmb(); /* make pte visible before pmd */
  2491. pmd_populate(mm, pmd, pgtable);
  2492. put_huge_zero_page();
  2493. }
  2494. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2495. unsigned long haddr, bool freeze)
  2496. {
  2497. struct mm_struct *mm = vma->vm_mm;
  2498. struct page *page;
  2499. pgtable_t pgtable;
  2500. pmd_t _pmd;
  2501. bool young, write, dirty;
  2502. int i;
  2503. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2504. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2505. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2506. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2507. count_vm_event(THP_SPLIT_PMD);
  2508. if (vma_is_dax(vma)) {
  2509. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2510. if (is_huge_zero_pmd(_pmd))
  2511. put_huge_zero_page();
  2512. return;
  2513. } else if (is_huge_zero_pmd(*pmd)) {
  2514. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2515. }
  2516. page = pmd_page(*pmd);
  2517. VM_BUG_ON_PAGE(!page_count(page), page);
  2518. atomic_add(HPAGE_PMD_NR - 1, &page->_count);
  2519. write = pmd_write(*pmd);
  2520. young = pmd_young(*pmd);
  2521. dirty = pmd_dirty(*pmd);
  2522. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2523. pmd_populate(mm, &_pmd, pgtable);
  2524. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2525. pte_t entry, *pte;
  2526. /*
  2527. * Note that NUMA hinting access restrictions are not
  2528. * transferred to avoid any possibility of altering
  2529. * permissions across VMAs.
  2530. */
  2531. if (freeze) {
  2532. swp_entry_t swp_entry;
  2533. swp_entry = make_migration_entry(page + i, write);
  2534. entry = swp_entry_to_pte(swp_entry);
  2535. } else {
  2536. entry = mk_pte(page + i, vma->vm_page_prot);
  2537. entry = maybe_mkwrite(entry, vma);
  2538. if (!write)
  2539. entry = pte_wrprotect(entry);
  2540. if (!young)
  2541. entry = pte_mkold(entry);
  2542. }
  2543. if (dirty)
  2544. SetPageDirty(page + i);
  2545. pte = pte_offset_map(&_pmd, haddr);
  2546. BUG_ON(!pte_none(*pte));
  2547. set_pte_at(mm, haddr, pte, entry);
  2548. atomic_inc(&page[i]._mapcount);
  2549. pte_unmap(pte);
  2550. }
  2551. /*
  2552. * Set PG_double_map before dropping compound_mapcount to avoid
  2553. * false-negative page_mapped().
  2554. */
  2555. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2556. for (i = 0; i < HPAGE_PMD_NR; i++)
  2557. atomic_inc(&page[i]._mapcount);
  2558. }
  2559. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2560. /* Last compound_mapcount is gone. */
  2561. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2562. if (TestClearPageDoubleMap(page)) {
  2563. /* No need in mapcount reference anymore */
  2564. for (i = 0; i < HPAGE_PMD_NR; i++)
  2565. atomic_dec(&page[i]._mapcount);
  2566. }
  2567. }
  2568. smp_wmb(); /* make pte visible before pmd */
  2569. /*
  2570. * Up to this point the pmd is present and huge and userland has the
  2571. * whole access to the hugepage during the split (which happens in
  2572. * place). If we overwrite the pmd with the not-huge version pointing
  2573. * to the pte here (which of course we could if all CPUs were bug
  2574. * free), userland could trigger a small page size TLB miss on the
  2575. * small sized TLB while the hugepage TLB entry is still established in
  2576. * the huge TLB. Some CPU doesn't like that.
  2577. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2578. * 383 on page 93. Intel should be safe but is also warns that it's
  2579. * only safe if the permission and cache attributes of the two entries
  2580. * loaded in the two TLB is identical (which should be the case here).
  2581. * But it is generally safer to never allow small and huge TLB entries
  2582. * for the same virtual address to be loaded simultaneously. So instead
  2583. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2584. * current pmd notpresent (atomically because here the pmd_trans_huge
  2585. * and pmd_trans_splitting must remain set at all times on the pmd
  2586. * until the split is complete for this pmd), then we flush the SMP TLB
  2587. * and finally we write the non-huge version of the pmd entry with
  2588. * pmd_populate.
  2589. */
  2590. pmdp_invalidate(vma, haddr, pmd);
  2591. pmd_populate(mm, pmd, pgtable);
  2592. if (freeze) {
  2593. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2594. page_remove_rmap(page + i, false);
  2595. put_page(page + i);
  2596. }
  2597. }
  2598. }
  2599. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2600. unsigned long address)
  2601. {
  2602. spinlock_t *ptl;
  2603. struct mm_struct *mm = vma->vm_mm;
  2604. struct page *page = NULL;
  2605. unsigned long haddr = address & HPAGE_PMD_MASK;
  2606. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2607. ptl = pmd_lock(mm, pmd);
  2608. if (pmd_trans_huge(*pmd)) {
  2609. page = pmd_page(*pmd);
  2610. if (PageMlocked(page))
  2611. get_page(page);
  2612. else
  2613. page = NULL;
  2614. } else if (!pmd_devmap(*pmd))
  2615. goto out;
  2616. __split_huge_pmd_locked(vma, pmd, haddr, false);
  2617. out:
  2618. spin_unlock(ptl);
  2619. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2620. if (page) {
  2621. lock_page(page);
  2622. munlock_vma_page(page);
  2623. unlock_page(page);
  2624. put_page(page);
  2625. }
  2626. }
  2627. static void split_huge_pmd_address(struct vm_area_struct *vma,
  2628. unsigned long address)
  2629. {
  2630. pgd_t *pgd;
  2631. pud_t *pud;
  2632. pmd_t *pmd;
  2633. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2634. pgd = pgd_offset(vma->vm_mm, address);
  2635. if (!pgd_present(*pgd))
  2636. return;
  2637. pud = pud_offset(pgd, address);
  2638. if (!pud_present(*pud))
  2639. return;
  2640. pmd = pmd_offset(pud, address);
  2641. if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
  2642. return;
  2643. /*
  2644. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2645. * materialize from under us.
  2646. */
  2647. split_huge_pmd(vma, pmd, address);
  2648. }
  2649. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2650. unsigned long start,
  2651. unsigned long end,
  2652. long adjust_next)
  2653. {
  2654. /*
  2655. * If the new start address isn't hpage aligned and it could
  2656. * previously contain an hugepage: check if we need to split
  2657. * an huge pmd.
  2658. */
  2659. if (start & ~HPAGE_PMD_MASK &&
  2660. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2661. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2662. split_huge_pmd_address(vma, start);
  2663. /*
  2664. * If the new end address isn't hpage aligned and it could
  2665. * previously contain an hugepage: check if we need to split
  2666. * an huge pmd.
  2667. */
  2668. if (end & ~HPAGE_PMD_MASK &&
  2669. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2670. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2671. split_huge_pmd_address(vma, end);
  2672. /*
  2673. * If we're also updating the vma->vm_next->vm_start, if the new
  2674. * vm_next->vm_start isn't page aligned and it could previously
  2675. * contain an hugepage: check if we need to split an huge pmd.
  2676. */
  2677. if (adjust_next > 0) {
  2678. struct vm_area_struct *next = vma->vm_next;
  2679. unsigned long nstart = next->vm_start;
  2680. nstart += adjust_next << PAGE_SHIFT;
  2681. if (nstart & ~HPAGE_PMD_MASK &&
  2682. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2683. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2684. split_huge_pmd_address(next, nstart);
  2685. }
  2686. }
  2687. static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
  2688. unsigned long address)
  2689. {
  2690. unsigned long haddr = address & HPAGE_PMD_MASK;
  2691. spinlock_t *ptl;
  2692. pgd_t *pgd;
  2693. pud_t *pud;
  2694. pmd_t *pmd;
  2695. pte_t *pte;
  2696. int i, nr = HPAGE_PMD_NR;
  2697. /* Skip pages which doesn't belong to the VMA */
  2698. if (address < vma->vm_start) {
  2699. int off = (vma->vm_start - address) >> PAGE_SHIFT;
  2700. page += off;
  2701. nr -= off;
  2702. address = vma->vm_start;
  2703. }
  2704. pgd = pgd_offset(vma->vm_mm, address);
  2705. if (!pgd_present(*pgd))
  2706. return;
  2707. pud = pud_offset(pgd, address);
  2708. if (!pud_present(*pud))
  2709. return;
  2710. pmd = pmd_offset(pud, address);
  2711. ptl = pmd_lock(vma->vm_mm, pmd);
  2712. if (!pmd_present(*pmd)) {
  2713. spin_unlock(ptl);
  2714. return;
  2715. }
  2716. if (pmd_trans_huge(*pmd)) {
  2717. if (page == pmd_page(*pmd))
  2718. __split_huge_pmd_locked(vma, pmd, haddr, true);
  2719. spin_unlock(ptl);
  2720. return;
  2721. }
  2722. spin_unlock(ptl);
  2723. pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
  2724. for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
  2725. pte_t entry, swp_pte;
  2726. swp_entry_t swp_entry;
  2727. /*
  2728. * We've just crossed page table boundary: need to map next one.
  2729. * It can happen if THP was mremaped to non PMD-aligned address.
  2730. */
  2731. if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
  2732. pte_unmap_unlock(pte - 1, ptl);
  2733. pmd = mm_find_pmd(vma->vm_mm, address);
  2734. if (!pmd)
  2735. return;
  2736. pte = pte_offset_map_lock(vma->vm_mm, pmd,
  2737. address, &ptl);
  2738. }
  2739. if (!pte_present(*pte))
  2740. continue;
  2741. if (page_to_pfn(page) != pte_pfn(*pte))
  2742. continue;
  2743. flush_cache_page(vma, address, page_to_pfn(page));
  2744. entry = ptep_clear_flush(vma, address, pte);
  2745. if (pte_dirty(entry))
  2746. SetPageDirty(page);
  2747. swp_entry = make_migration_entry(page, pte_write(entry));
  2748. swp_pte = swp_entry_to_pte(swp_entry);
  2749. if (pte_soft_dirty(entry))
  2750. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  2751. set_pte_at(vma->vm_mm, address, pte, swp_pte);
  2752. page_remove_rmap(page, false);
  2753. put_page(page);
  2754. }
  2755. pte_unmap_unlock(pte - 1, ptl);
  2756. }
  2757. static void freeze_page(struct anon_vma *anon_vma, struct page *page)
  2758. {
  2759. struct anon_vma_chain *avc;
  2760. pgoff_t pgoff = page_to_pgoff(page);
  2761. VM_BUG_ON_PAGE(!PageHead(page), page);
  2762. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
  2763. pgoff + HPAGE_PMD_NR - 1) {
  2764. unsigned long address = __vma_address(page, avc->vma);
  2765. mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
  2766. address, address + HPAGE_PMD_SIZE);
  2767. freeze_page_vma(avc->vma, page, address);
  2768. mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
  2769. address, address + HPAGE_PMD_SIZE);
  2770. }
  2771. }
  2772. static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
  2773. unsigned long address)
  2774. {
  2775. spinlock_t *ptl;
  2776. pmd_t *pmd;
  2777. pte_t *pte, entry;
  2778. swp_entry_t swp_entry;
  2779. unsigned long haddr = address & HPAGE_PMD_MASK;
  2780. int i, nr = HPAGE_PMD_NR;
  2781. /* Skip pages which doesn't belong to the VMA */
  2782. if (address < vma->vm_start) {
  2783. int off = (vma->vm_start - address) >> PAGE_SHIFT;
  2784. page += off;
  2785. nr -= off;
  2786. address = vma->vm_start;
  2787. }
  2788. pmd = mm_find_pmd(vma->vm_mm, address);
  2789. if (!pmd)
  2790. return;
  2791. pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
  2792. for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
  2793. /*
  2794. * We've just crossed page table boundary: need to map next one.
  2795. * It can happen if THP was mremaped to non-PMD aligned address.
  2796. */
  2797. if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
  2798. pte_unmap_unlock(pte - 1, ptl);
  2799. pmd = mm_find_pmd(vma->vm_mm, address);
  2800. if (!pmd)
  2801. return;
  2802. pte = pte_offset_map_lock(vma->vm_mm, pmd,
  2803. address, &ptl);
  2804. }
  2805. if (!is_swap_pte(*pte))
  2806. continue;
  2807. swp_entry = pte_to_swp_entry(*pte);
  2808. if (!is_migration_entry(swp_entry))
  2809. continue;
  2810. if (migration_entry_to_page(swp_entry) != page)
  2811. continue;
  2812. get_page(page);
  2813. page_add_anon_rmap(page, vma, address, false);
  2814. entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
  2815. if (PageDirty(page))
  2816. entry = pte_mkdirty(entry);
  2817. if (is_write_migration_entry(swp_entry))
  2818. entry = maybe_mkwrite(entry, vma);
  2819. flush_dcache_page(page);
  2820. set_pte_at(vma->vm_mm, address, pte, entry);
  2821. /* No need to invalidate - it was non-present before */
  2822. update_mmu_cache(vma, address, pte);
  2823. }
  2824. pte_unmap_unlock(pte - 1, ptl);
  2825. }
  2826. static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
  2827. {
  2828. struct anon_vma_chain *avc;
  2829. pgoff_t pgoff = page_to_pgoff(page);
  2830. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
  2831. pgoff, pgoff + HPAGE_PMD_NR - 1) {
  2832. unsigned long address = __vma_address(page, avc->vma);
  2833. mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
  2834. address, address + HPAGE_PMD_SIZE);
  2835. unfreeze_page_vma(avc->vma, page, address);
  2836. mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
  2837. address, address + HPAGE_PMD_SIZE);
  2838. }
  2839. }
  2840. static int __split_huge_page_tail(struct page *head, int tail,
  2841. struct lruvec *lruvec, struct list_head *list)
  2842. {
  2843. int mapcount;
  2844. struct page *page_tail = head + tail;
  2845. mapcount = atomic_read(&page_tail->_mapcount) + 1;
  2846. VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
  2847. /*
  2848. * tail_page->_count is zero and not changing from under us. But
  2849. * get_page_unless_zero() may be running from under us on the
  2850. * tail_page. If we used atomic_set() below instead of atomic_add(), we
  2851. * would then run atomic_set() concurrently with
  2852. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2853. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2854. * because of PPro errata 66, 92, so unless somebody can guarantee
  2855. * atomic_set() here would be safe on all archs (and not only on x86),
  2856. * it's safer to use atomic_add().
  2857. */
  2858. atomic_add(mapcount + 1, &page_tail->_count);
  2859. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2860. page_tail->flags |= (head->flags &
  2861. ((1L << PG_referenced) |
  2862. (1L << PG_swapbacked) |
  2863. (1L << PG_mlocked) |
  2864. (1L << PG_uptodate) |
  2865. (1L << PG_active) |
  2866. (1L << PG_locked) |
  2867. (1L << PG_unevictable) |
  2868. (1L << PG_dirty)));
  2869. /*
  2870. * After clearing PageTail the gup refcount can be released.
  2871. * Page flags also must be visible before we make the page non-compound.
  2872. */
  2873. smp_wmb();
  2874. clear_compound_head(page_tail);
  2875. if (page_is_young(head))
  2876. set_page_young(page_tail);
  2877. if (page_is_idle(head))
  2878. set_page_idle(page_tail);
  2879. /* ->mapping in first tail page is compound_mapcount */
  2880. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2881. page_tail);
  2882. page_tail->mapping = head->mapping;
  2883. page_tail->index = head->index + tail;
  2884. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2885. lru_add_page_tail(head, page_tail, lruvec, list);
  2886. return mapcount;
  2887. }
  2888. static void __split_huge_page(struct page *page, struct list_head *list)
  2889. {
  2890. struct page *head = compound_head(page);
  2891. struct zone *zone = page_zone(head);
  2892. struct lruvec *lruvec;
  2893. int i, tail_mapcount;
  2894. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2895. spin_lock_irq(&zone->lru_lock);
  2896. lruvec = mem_cgroup_page_lruvec(head, zone);
  2897. /* complete memcg works before add pages to LRU */
  2898. mem_cgroup_split_huge_fixup(head);
  2899. tail_mapcount = 0;
  2900. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2901. tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
  2902. atomic_sub(tail_mapcount, &head->_count);
  2903. ClearPageCompound(head);
  2904. spin_unlock_irq(&zone->lru_lock);
  2905. unfreeze_page(page_anon_vma(head), head);
  2906. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2907. struct page *subpage = head + i;
  2908. if (subpage == page)
  2909. continue;
  2910. unlock_page(subpage);
  2911. /*
  2912. * Subpages may be freed if there wasn't any mapping
  2913. * like if add_to_swap() is running on a lru page that
  2914. * had its mapping zapped. And freeing these pages
  2915. * requires taking the lru_lock so we do the put_page
  2916. * of the tail pages after the split is complete.
  2917. */
  2918. put_page(subpage);
  2919. }
  2920. }
  2921. int total_mapcount(struct page *page)
  2922. {
  2923. int i, ret;
  2924. VM_BUG_ON_PAGE(PageTail(page), page);
  2925. if (likely(!PageCompound(page)))
  2926. return atomic_read(&page->_mapcount) + 1;
  2927. ret = compound_mapcount(page);
  2928. if (PageHuge(page))
  2929. return ret;
  2930. for (i = 0; i < HPAGE_PMD_NR; i++)
  2931. ret += atomic_read(&page[i]._mapcount) + 1;
  2932. if (PageDoubleMap(page))
  2933. ret -= HPAGE_PMD_NR;
  2934. return ret;
  2935. }
  2936. /*
  2937. * This function splits huge page into normal pages. @page can point to any
  2938. * subpage of huge page to split. Split doesn't change the position of @page.
  2939. *
  2940. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2941. * The huge page must be locked.
  2942. *
  2943. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2944. *
  2945. * Both head page and tail pages will inherit mapping, flags, and so on from
  2946. * the hugepage.
  2947. *
  2948. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2949. * they are not mapped.
  2950. *
  2951. * Returns 0 if the hugepage is split successfully.
  2952. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2953. * us.
  2954. */
  2955. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2956. {
  2957. struct page *head = compound_head(page);
  2958. struct anon_vma *anon_vma;
  2959. int count, mapcount, ret;
  2960. bool mlocked;
  2961. unsigned long flags;
  2962. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2963. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2964. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2965. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2966. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2967. /*
  2968. * The caller does not necessarily hold an mmap_sem that would prevent
  2969. * the anon_vma disappearing so we first we take a reference to it
  2970. * and then lock the anon_vma for write. This is similar to
  2971. * page_lock_anon_vma_read except the write lock is taken to serialise
  2972. * against parallel split or collapse operations.
  2973. */
  2974. anon_vma = page_get_anon_vma(head);
  2975. if (!anon_vma) {
  2976. ret = -EBUSY;
  2977. goto out;
  2978. }
  2979. anon_vma_lock_write(anon_vma);
  2980. /*
  2981. * Racy check if we can split the page, before freeze_page() will
  2982. * split PMDs
  2983. */
  2984. if (total_mapcount(head) != page_count(head) - 1) {
  2985. ret = -EBUSY;
  2986. goto out_unlock;
  2987. }
  2988. mlocked = PageMlocked(page);
  2989. freeze_page(anon_vma, head);
  2990. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2991. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2992. if (mlocked)
  2993. lru_add_drain();
  2994. /* Prevent deferred_split_scan() touching ->_count */
  2995. spin_lock_irqsave(&split_queue_lock, flags);
  2996. count = page_count(head);
  2997. mapcount = total_mapcount(head);
  2998. if (!mapcount && count == 1) {
  2999. if (!list_empty(page_deferred_list(head))) {
  3000. split_queue_len--;
  3001. list_del(page_deferred_list(head));
  3002. }
  3003. spin_unlock_irqrestore(&split_queue_lock, flags);
  3004. __split_huge_page(page, list);
  3005. ret = 0;
  3006. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  3007. spin_unlock_irqrestore(&split_queue_lock, flags);
  3008. pr_alert("total_mapcount: %u, page_count(): %u\n",
  3009. mapcount, count);
  3010. if (PageTail(page))
  3011. dump_page(head, NULL);
  3012. dump_page(page, "total_mapcount(head) > 0");
  3013. BUG();
  3014. } else {
  3015. spin_unlock_irqrestore(&split_queue_lock, flags);
  3016. unfreeze_page(anon_vma, head);
  3017. ret = -EBUSY;
  3018. }
  3019. out_unlock:
  3020. anon_vma_unlock_write(anon_vma);
  3021. put_anon_vma(anon_vma);
  3022. out:
  3023. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  3024. return ret;
  3025. }
  3026. void free_transhuge_page(struct page *page)
  3027. {
  3028. unsigned long flags;
  3029. spin_lock_irqsave(&split_queue_lock, flags);
  3030. if (!list_empty(page_deferred_list(page))) {
  3031. split_queue_len--;
  3032. list_del(page_deferred_list(page));
  3033. }
  3034. spin_unlock_irqrestore(&split_queue_lock, flags);
  3035. free_compound_page(page);
  3036. }
  3037. void deferred_split_huge_page(struct page *page)
  3038. {
  3039. unsigned long flags;
  3040. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  3041. spin_lock_irqsave(&split_queue_lock, flags);
  3042. if (list_empty(page_deferred_list(page))) {
  3043. list_add_tail(page_deferred_list(page), &split_queue);
  3044. split_queue_len++;
  3045. }
  3046. spin_unlock_irqrestore(&split_queue_lock, flags);
  3047. }
  3048. static unsigned long deferred_split_count(struct shrinker *shrink,
  3049. struct shrink_control *sc)
  3050. {
  3051. /*
  3052. * Split a page from split_queue will free up at least one page,
  3053. * at most HPAGE_PMD_NR - 1. We don't track exact number.
  3054. * Let's use HPAGE_PMD_NR / 2 as ballpark.
  3055. */
  3056. return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
  3057. }
  3058. static unsigned long deferred_split_scan(struct shrinker *shrink,
  3059. struct shrink_control *sc)
  3060. {
  3061. unsigned long flags;
  3062. LIST_HEAD(list), *pos, *next;
  3063. struct page *page;
  3064. int split = 0;
  3065. spin_lock_irqsave(&split_queue_lock, flags);
  3066. list_splice_init(&split_queue, &list);
  3067. /* Take pin on all head pages to avoid freeing them under us */
  3068. list_for_each_safe(pos, next, &list) {
  3069. page = list_entry((void *)pos, struct page, mapping);
  3070. page = compound_head(page);
  3071. /* race with put_compound_page() */
  3072. if (!get_page_unless_zero(page)) {
  3073. list_del_init(page_deferred_list(page));
  3074. split_queue_len--;
  3075. }
  3076. }
  3077. spin_unlock_irqrestore(&split_queue_lock, flags);
  3078. list_for_each_safe(pos, next, &list) {
  3079. page = list_entry((void *)pos, struct page, mapping);
  3080. lock_page(page);
  3081. /* split_huge_page() removes page from list on success */
  3082. if (!split_huge_page(page))
  3083. split++;
  3084. unlock_page(page);
  3085. put_page(page);
  3086. }
  3087. spin_lock_irqsave(&split_queue_lock, flags);
  3088. list_splice_tail(&list, &split_queue);
  3089. spin_unlock_irqrestore(&split_queue_lock, flags);
  3090. return split * HPAGE_PMD_NR / 2;
  3091. }
  3092. static struct shrinker deferred_split_shrinker = {
  3093. .count_objects = deferred_split_count,
  3094. .scan_objects = deferred_split_scan,
  3095. .seeks = DEFAULT_SEEKS,
  3096. };
  3097. #ifdef CONFIG_DEBUG_FS
  3098. static int split_huge_pages_set(void *data, u64 val)
  3099. {
  3100. struct zone *zone;
  3101. struct page *page;
  3102. unsigned long pfn, max_zone_pfn;
  3103. unsigned long total = 0, split = 0;
  3104. if (val != 1)
  3105. return -EINVAL;
  3106. for_each_populated_zone(zone) {
  3107. max_zone_pfn = zone_end_pfn(zone);
  3108. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3109. if (!pfn_valid(pfn))
  3110. continue;
  3111. page = pfn_to_page(pfn);
  3112. if (!get_page_unless_zero(page))
  3113. continue;
  3114. if (zone != page_zone(page))
  3115. goto next;
  3116. if (!PageHead(page) || !PageAnon(page) ||
  3117. PageHuge(page))
  3118. goto next;
  3119. total++;
  3120. lock_page(page);
  3121. if (!split_huge_page(page))
  3122. split++;
  3123. unlock_page(page);
  3124. next:
  3125. put_page(page);
  3126. }
  3127. }
  3128. pr_info("%lu of %lu THP split", split, total);
  3129. return 0;
  3130. }
  3131. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3132. "%llu\n");
  3133. static int __init split_huge_pages_debugfs(void)
  3134. {
  3135. void *ret;
  3136. ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
  3137. &split_huge_pages_fops);
  3138. if (!ret)
  3139. pr_warn("Failed to create split_huge_pages in debugfs");
  3140. return 0;
  3141. }
  3142. late_initcall(split_huge_pages_debugfs);
  3143. #endif