sched.h 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/sched/deadline.h>
  5. #include <linux/mutex.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/stop_machine.h>
  8. #include <linux/irq_work.h>
  9. #include <linux/tick.h>
  10. #include <linux/slab.h>
  11. #include "cpupri.h"
  12. #include "cpudeadline.h"
  13. #include "cpuacct.h"
  14. struct rq;
  15. struct cpuidle_state;
  16. /* task_struct::on_rq states: */
  17. #define TASK_ON_RQ_QUEUED 1
  18. #define TASK_ON_RQ_MIGRATING 2
  19. extern __read_mostly int scheduler_running;
  20. extern unsigned long calc_load_update;
  21. extern atomic_long_t calc_load_tasks;
  22. extern void calc_global_load_tick(struct rq *this_rq);
  23. extern long calc_load_fold_active(struct rq *this_rq);
  24. #ifdef CONFIG_SMP
  25. extern void update_cpu_load_active(struct rq *this_rq);
  26. #else
  27. static inline void update_cpu_load_active(struct rq *this_rq) { }
  28. #endif
  29. /*
  30. * Helpers for converting nanosecond timing to jiffy resolution
  31. */
  32. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  33. /*
  34. * Increase resolution of nice-level calculations for 64-bit architectures.
  35. * The extra resolution improves shares distribution and load balancing of
  36. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  37. * hierarchies, especially on larger systems. This is not a user-visible change
  38. * and does not change the user-interface for setting shares/weights.
  39. *
  40. * We increase resolution only if we have enough bits to allow this increased
  41. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  42. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  43. * increased costs.
  44. */
  45. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  46. # define SCHED_LOAD_RESOLUTION 10
  47. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  48. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  49. #else
  50. # define SCHED_LOAD_RESOLUTION 0
  51. # define scale_load(w) (w)
  52. # define scale_load_down(w) (w)
  53. #endif
  54. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  55. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  56. #define NICE_0_LOAD SCHED_LOAD_SCALE
  57. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  58. /*
  59. * Single value that decides SCHED_DEADLINE internal math precision.
  60. * 10 -> just above 1us
  61. * 9 -> just above 0.5us
  62. */
  63. #define DL_SCALE (10)
  64. /*
  65. * These are the 'tuning knobs' of the scheduler:
  66. */
  67. /*
  68. * single value that denotes runtime == period, ie unlimited time.
  69. */
  70. #define RUNTIME_INF ((u64)~0ULL)
  71. static inline int idle_policy(int policy)
  72. {
  73. return policy == SCHED_IDLE;
  74. }
  75. static inline int fair_policy(int policy)
  76. {
  77. return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  78. }
  79. static inline int rt_policy(int policy)
  80. {
  81. return policy == SCHED_FIFO || policy == SCHED_RR;
  82. }
  83. static inline int dl_policy(int policy)
  84. {
  85. return policy == SCHED_DEADLINE;
  86. }
  87. static inline bool valid_policy(int policy)
  88. {
  89. return idle_policy(policy) || fair_policy(policy) ||
  90. rt_policy(policy) || dl_policy(policy);
  91. }
  92. static inline int task_has_rt_policy(struct task_struct *p)
  93. {
  94. return rt_policy(p->policy);
  95. }
  96. static inline int task_has_dl_policy(struct task_struct *p)
  97. {
  98. return dl_policy(p->policy);
  99. }
  100. /*
  101. * Tells if entity @a should preempt entity @b.
  102. */
  103. static inline bool
  104. dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
  105. {
  106. return dl_time_before(a->deadline, b->deadline);
  107. }
  108. /*
  109. * This is the priority-queue data structure of the RT scheduling class:
  110. */
  111. struct rt_prio_array {
  112. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  113. struct list_head queue[MAX_RT_PRIO];
  114. };
  115. struct rt_bandwidth {
  116. /* nests inside the rq lock: */
  117. raw_spinlock_t rt_runtime_lock;
  118. ktime_t rt_period;
  119. u64 rt_runtime;
  120. struct hrtimer rt_period_timer;
  121. unsigned int rt_period_active;
  122. };
  123. void __dl_clear_params(struct task_struct *p);
  124. /*
  125. * To keep the bandwidth of -deadline tasks and groups under control
  126. * we need some place where:
  127. * - store the maximum -deadline bandwidth of the system (the group);
  128. * - cache the fraction of that bandwidth that is currently allocated.
  129. *
  130. * This is all done in the data structure below. It is similar to the
  131. * one used for RT-throttling (rt_bandwidth), with the main difference
  132. * that, since here we are only interested in admission control, we
  133. * do not decrease any runtime while the group "executes", neither we
  134. * need a timer to replenish it.
  135. *
  136. * With respect to SMP, the bandwidth is given on a per-CPU basis,
  137. * meaning that:
  138. * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
  139. * - dl_total_bw array contains, in the i-eth element, the currently
  140. * allocated bandwidth on the i-eth CPU.
  141. * Moreover, groups consume bandwidth on each CPU, while tasks only
  142. * consume bandwidth on the CPU they're running on.
  143. * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
  144. * that will be shown the next time the proc or cgroup controls will
  145. * be red. It on its turn can be changed by writing on its own
  146. * control.
  147. */
  148. struct dl_bandwidth {
  149. raw_spinlock_t dl_runtime_lock;
  150. u64 dl_runtime;
  151. u64 dl_period;
  152. };
  153. static inline int dl_bandwidth_enabled(void)
  154. {
  155. return sysctl_sched_rt_runtime >= 0;
  156. }
  157. extern struct dl_bw *dl_bw_of(int i);
  158. struct dl_bw {
  159. raw_spinlock_t lock;
  160. u64 bw, total_bw;
  161. };
  162. static inline
  163. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  164. {
  165. dl_b->total_bw -= tsk_bw;
  166. }
  167. static inline
  168. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  169. {
  170. dl_b->total_bw += tsk_bw;
  171. }
  172. static inline
  173. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  174. {
  175. return dl_b->bw != -1 &&
  176. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  177. }
  178. extern struct mutex sched_domains_mutex;
  179. #ifdef CONFIG_CGROUP_SCHED
  180. #include <linux/cgroup.h>
  181. struct cfs_rq;
  182. struct rt_rq;
  183. extern struct list_head task_groups;
  184. struct cfs_bandwidth {
  185. #ifdef CONFIG_CFS_BANDWIDTH
  186. raw_spinlock_t lock;
  187. ktime_t period;
  188. u64 quota, runtime;
  189. s64 hierarchical_quota;
  190. u64 runtime_expires;
  191. int idle, period_active;
  192. struct hrtimer period_timer, slack_timer;
  193. struct list_head throttled_cfs_rq;
  194. /* statistics */
  195. int nr_periods, nr_throttled;
  196. u64 throttled_time;
  197. #endif
  198. };
  199. /* task group related information */
  200. struct task_group {
  201. struct cgroup_subsys_state css;
  202. #ifdef CONFIG_FAIR_GROUP_SCHED
  203. /* schedulable entities of this group on each cpu */
  204. struct sched_entity **se;
  205. /* runqueue "owned" by this group on each cpu */
  206. struct cfs_rq **cfs_rq;
  207. unsigned long shares;
  208. #ifdef CONFIG_SMP
  209. /*
  210. * load_avg can be heavily contended at clock tick time, so put
  211. * it in its own cacheline separated from the fields above which
  212. * will also be accessed at each tick.
  213. */
  214. atomic_long_t load_avg ____cacheline_aligned;
  215. #endif
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. #ifdef CONFIG_SCHED_AUTOGROUP
  228. struct autogroup *autogroup;
  229. #endif
  230. struct cfs_bandwidth cfs_bandwidth;
  231. };
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  234. /*
  235. * A weight of 0 or 1 can cause arithmetics problems.
  236. * A weight of a cfs_rq is the sum of weights of which entities
  237. * are queued on this cfs_rq, so a weight of a entity should not be
  238. * too large, so as the shares value of a task group.
  239. * (The default weight is 1024 - so there's no practical
  240. * limitation from this.)
  241. */
  242. #define MIN_SHARES (1UL << 1)
  243. #define MAX_SHARES (1UL << 18)
  244. #endif
  245. typedef int (*tg_visitor)(struct task_group *, void *);
  246. extern int walk_tg_tree_from(struct task_group *from,
  247. tg_visitor down, tg_visitor up, void *data);
  248. /*
  249. * Iterate the full tree, calling @down when first entering a node and @up when
  250. * leaving it for the final time.
  251. *
  252. * Caller must hold rcu_lock or sufficient equivalent.
  253. */
  254. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  255. {
  256. return walk_tg_tree_from(&root_task_group, down, up, data);
  257. }
  258. extern int tg_nop(struct task_group *tg, void *data);
  259. extern void free_fair_sched_group(struct task_group *tg);
  260. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  261. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  262. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  263. struct sched_entity *se, int cpu,
  264. struct sched_entity *parent);
  265. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  266. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  267. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  268. extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  269. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  270. extern void free_rt_sched_group(struct task_group *tg);
  271. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  272. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  273. struct sched_rt_entity *rt_se, int cpu,
  274. struct sched_rt_entity *parent);
  275. extern struct task_group *sched_create_group(struct task_group *parent);
  276. extern void sched_online_group(struct task_group *tg,
  277. struct task_group *parent);
  278. extern void sched_destroy_group(struct task_group *tg);
  279. extern void sched_offline_group(struct task_group *tg);
  280. extern void sched_move_task(struct task_struct *tsk);
  281. #ifdef CONFIG_FAIR_GROUP_SCHED
  282. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  283. #ifdef CONFIG_SMP
  284. extern void set_task_rq_fair(struct sched_entity *se,
  285. struct cfs_rq *prev, struct cfs_rq *next);
  286. #else /* !CONFIG_SMP */
  287. static inline void set_task_rq_fair(struct sched_entity *se,
  288. struct cfs_rq *prev, struct cfs_rq *next) { }
  289. #endif /* CONFIG_SMP */
  290. #endif /* CONFIG_FAIR_GROUP_SCHED */
  291. #else /* CONFIG_CGROUP_SCHED */
  292. struct cfs_bandwidth { };
  293. #endif /* CONFIG_CGROUP_SCHED */
  294. /* CFS-related fields in a runqueue */
  295. struct cfs_rq {
  296. struct load_weight load;
  297. unsigned int nr_running, h_nr_running;
  298. u64 exec_clock;
  299. u64 min_vruntime;
  300. #ifndef CONFIG_64BIT
  301. u64 min_vruntime_copy;
  302. #endif
  303. struct rb_root tasks_timeline;
  304. struct rb_node *rb_leftmost;
  305. /*
  306. * 'curr' points to currently running entity on this cfs_rq.
  307. * It is set to NULL otherwise (i.e when none are currently running).
  308. */
  309. struct sched_entity *curr, *next, *last, *skip;
  310. #ifdef CONFIG_SCHED_DEBUG
  311. unsigned int nr_spread_over;
  312. #endif
  313. #ifdef CONFIG_SMP
  314. /*
  315. * CFS load tracking
  316. */
  317. struct sched_avg avg;
  318. u64 runnable_load_sum;
  319. unsigned long runnable_load_avg;
  320. #ifdef CONFIG_FAIR_GROUP_SCHED
  321. unsigned long tg_load_avg_contrib;
  322. #endif
  323. atomic_long_t removed_load_avg, removed_util_avg;
  324. #ifndef CONFIG_64BIT
  325. u64 load_last_update_time_copy;
  326. #endif
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. /*
  329. * h_load = weight * f(tg)
  330. *
  331. * Where f(tg) is the recursive weight fraction assigned to
  332. * this group.
  333. */
  334. unsigned long h_load;
  335. u64 last_h_load_update;
  336. struct sched_entity *h_load_next;
  337. #endif /* CONFIG_FAIR_GROUP_SCHED */
  338. #endif /* CONFIG_SMP */
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. int on_list;
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_CFS_BANDWIDTH
  353. int runtime_enabled;
  354. u64 runtime_expires;
  355. s64 runtime_remaining;
  356. u64 throttled_clock, throttled_clock_task;
  357. u64 throttled_clock_task_time;
  358. int throttled, throttle_count;
  359. struct list_head throttled_list;
  360. #endif /* CONFIG_CFS_BANDWIDTH */
  361. #endif /* CONFIG_FAIR_GROUP_SCHED */
  362. };
  363. static inline int rt_bandwidth_enabled(void)
  364. {
  365. return sysctl_sched_rt_runtime >= 0;
  366. }
  367. /* RT IPI pull logic requires IRQ_WORK */
  368. #ifdef CONFIG_IRQ_WORK
  369. # define HAVE_RT_PUSH_IPI
  370. #endif
  371. /* Real-Time classes' related field in a runqueue: */
  372. struct rt_rq {
  373. struct rt_prio_array active;
  374. unsigned int rt_nr_running;
  375. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  376. struct {
  377. int curr; /* highest queued rt task prio */
  378. #ifdef CONFIG_SMP
  379. int next; /* next highest */
  380. #endif
  381. } highest_prio;
  382. #endif
  383. #ifdef CONFIG_SMP
  384. unsigned long rt_nr_migratory;
  385. unsigned long rt_nr_total;
  386. int overloaded;
  387. struct plist_head pushable_tasks;
  388. #ifdef HAVE_RT_PUSH_IPI
  389. int push_flags;
  390. int push_cpu;
  391. struct irq_work push_work;
  392. raw_spinlock_t push_lock;
  393. #endif
  394. #endif /* CONFIG_SMP */
  395. int rt_queued;
  396. int rt_throttled;
  397. u64 rt_time;
  398. u64 rt_runtime;
  399. /* Nests inside the rq lock: */
  400. raw_spinlock_t rt_runtime_lock;
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. unsigned long rt_nr_boosted;
  403. struct rq *rq;
  404. struct task_group *tg;
  405. #endif
  406. };
  407. /* Deadline class' related fields in a runqueue */
  408. struct dl_rq {
  409. /* runqueue is an rbtree, ordered by deadline */
  410. struct rb_root rb_root;
  411. struct rb_node *rb_leftmost;
  412. unsigned long dl_nr_running;
  413. #ifdef CONFIG_SMP
  414. /*
  415. * Deadline values of the currently executing and the
  416. * earliest ready task on this rq. Caching these facilitates
  417. * the decision wether or not a ready but not running task
  418. * should migrate somewhere else.
  419. */
  420. struct {
  421. u64 curr;
  422. u64 next;
  423. } earliest_dl;
  424. unsigned long dl_nr_migratory;
  425. int overloaded;
  426. /*
  427. * Tasks on this rq that can be pushed away. They are kept in
  428. * an rb-tree, ordered by tasks' deadlines, with caching
  429. * of the leftmost (earliest deadline) element.
  430. */
  431. struct rb_root pushable_dl_tasks_root;
  432. struct rb_node *pushable_dl_tasks_leftmost;
  433. #else
  434. struct dl_bw dl_bw;
  435. #endif
  436. };
  437. #ifdef CONFIG_SMP
  438. /*
  439. * We add the notion of a root-domain which will be used to define per-domain
  440. * variables. Each exclusive cpuset essentially defines an island domain by
  441. * fully partitioning the member cpus from any other cpuset. Whenever a new
  442. * exclusive cpuset is created, we also create and attach a new root-domain
  443. * object.
  444. *
  445. */
  446. struct root_domain {
  447. atomic_t refcount;
  448. atomic_t rto_count;
  449. struct rcu_head rcu;
  450. cpumask_var_t span;
  451. cpumask_var_t online;
  452. /* Indicate more than one runnable task for any CPU */
  453. bool overload;
  454. /*
  455. * The bit corresponding to a CPU gets set here if such CPU has more
  456. * than one runnable -deadline task (as it is below for RT tasks).
  457. */
  458. cpumask_var_t dlo_mask;
  459. atomic_t dlo_count;
  460. struct dl_bw dl_bw;
  461. struct cpudl cpudl;
  462. /*
  463. * The "RT overload" flag: it gets set if a CPU has more than
  464. * one runnable RT task.
  465. */
  466. cpumask_var_t rto_mask;
  467. struct cpupri cpupri;
  468. };
  469. extern struct root_domain def_root_domain;
  470. #endif /* CONFIG_SMP */
  471. /*
  472. * This is the main, per-CPU runqueue data structure.
  473. *
  474. * Locking rule: those places that want to lock multiple runqueues
  475. * (such as the load balancing or the thread migration code), lock
  476. * acquire operations must be ordered by ascending &runqueue.
  477. */
  478. struct rq {
  479. /* runqueue lock: */
  480. raw_spinlock_t lock;
  481. /*
  482. * nr_running and cpu_load should be in the same cacheline because
  483. * remote CPUs use both these fields when doing load calculation.
  484. */
  485. unsigned int nr_running;
  486. #ifdef CONFIG_NUMA_BALANCING
  487. unsigned int nr_numa_running;
  488. unsigned int nr_preferred_running;
  489. #endif
  490. #define CPU_LOAD_IDX_MAX 5
  491. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  492. unsigned long last_load_update_tick;
  493. #ifdef CONFIG_NO_HZ_COMMON
  494. u64 nohz_stamp;
  495. unsigned long nohz_flags;
  496. #endif
  497. #ifdef CONFIG_NO_HZ_FULL
  498. unsigned long last_sched_tick;
  499. #endif
  500. /* capture load from *all* tasks on this cpu: */
  501. struct load_weight load;
  502. unsigned long nr_load_updates;
  503. u64 nr_switches;
  504. struct cfs_rq cfs;
  505. struct rt_rq rt;
  506. struct dl_rq dl;
  507. #ifdef CONFIG_FAIR_GROUP_SCHED
  508. /* list of leaf cfs_rq on this cpu: */
  509. struct list_head leaf_cfs_rq_list;
  510. #endif /* CONFIG_FAIR_GROUP_SCHED */
  511. /*
  512. * This is part of a global counter where only the total sum
  513. * over all CPUs matters. A task can increase this counter on
  514. * one CPU and if it got migrated afterwards it may decrease
  515. * it on another CPU. Always updated under the runqueue lock:
  516. */
  517. unsigned long nr_uninterruptible;
  518. struct task_struct *curr, *idle, *stop;
  519. unsigned long next_balance;
  520. struct mm_struct *prev_mm;
  521. unsigned int clock_skip_update;
  522. u64 clock;
  523. u64 clock_task;
  524. atomic_t nr_iowait;
  525. #ifdef CONFIG_SMP
  526. struct root_domain *rd;
  527. struct sched_domain *sd;
  528. unsigned long cpu_capacity;
  529. unsigned long cpu_capacity_orig;
  530. struct callback_head *balance_callback;
  531. unsigned char idle_balance;
  532. /* For active balancing */
  533. int active_balance;
  534. int push_cpu;
  535. struct cpu_stop_work active_balance_work;
  536. /* cpu of this runqueue: */
  537. int cpu;
  538. int online;
  539. struct list_head cfs_tasks;
  540. u64 rt_avg;
  541. u64 age_stamp;
  542. u64 idle_stamp;
  543. u64 avg_idle;
  544. /* This is used to determine avg_idle's max value */
  545. u64 max_idle_balance_cost;
  546. #endif
  547. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  548. u64 prev_irq_time;
  549. #endif
  550. #ifdef CONFIG_PARAVIRT
  551. u64 prev_steal_time;
  552. #endif
  553. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  554. u64 prev_steal_time_rq;
  555. #endif
  556. /* calc_load related fields */
  557. unsigned long calc_load_update;
  558. long calc_load_active;
  559. #ifdef CONFIG_SCHED_HRTICK
  560. #ifdef CONFIG_SMP
  561. int hrtick_csd_pending;
  562. struct call_single_data hrtick_csd;
  563. #endif
  564. struct hrtimer hrtick_timer;
  565. #endif
  566. #ifdef CONFIG_SCHEDSTATS
  567. /* latency stats */
  568. struct sched_info rq_sched_info;
  569. unsigned long long rq_cpu_time;
  570. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  571. /* sys_sched_yield() stats */
  572. unsigned int yld_count;
  573. /* schedule() stats */
  574. unsigned int sched_count;
  575. unsigned int sched_goidle;
  576. /* try_to_wake_up() stats */
  577. unsigned int ttwu_count;
  578. unsigned int ttwu_local;
  579. #endif
  580. #ifdef CONFIG_SMP
  581. struct llist_head wake_list;
  582. #endif
  583. #ifdef CONFIG_CPU_IDLE
  584. /* Must be inspected within a rcu lock section */
  585. struct cpuidle_state *idle_state;
  586. #endif
  587. };
  588. static inline int cpu_of(struct rq *rq)
  589. {
  590. #ifdef CONFIG_SMP
  591. return rq->cpu;
  592. #else
  593. return 0;
  594. #endif
  595. }
  596. DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  597. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  598. #define this_rq() this_cpu_ptr(&runqueues)
  599. #define task_rq(p) cpu_rq(task_cpu(p))
  600. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  601. #define raw_rq() raw_cpu_ptr(&runqueues)
  602. static inline u64 __rq_clock_broken(struct rq *rq)
  603. {
  604. return READ_ONCE(rq->clock);
  605. }
  606. static inline u64 rq_clock(struct rq *rq)
  607. {
  608. lockdep_assert_held(&rq->lock);
  609. return rq->clock;
  610. }
  611. static inline u64 rq_clock_task(struct rq *rq)
  612. {
  613. lockdep_assert_held(&rq->lock);
  614. return rq->clock_task;
  615. }
  616. #define RQCF_REQ_SKIP 0x01
  617. #define RQCF_ACT_SKIP 0x02
  618. static inline void rq_clock_skip_update(struct rq *rq, bool skip)
  619. {
  620. lockdep_assert_held(&rq->lock);
  621. if (skip)
  622. rq->clock_skip_update |= RQCF_REQ_SKIP;
  623. else
  624. rq->clock_skip_update &= ~RQCF_REQ_SKIP;
  625. }
  626. #ifdef CONFIG_NUMA
  627. enum numa_topology_type {
  628. NUMA_DIRECT,
  629. NUMA_GLUELESS_MESH,
  630. NUMA_BACKPLANE,
  631. };
  632. extern enum numa_topology_type sched_numa_topology_type;
  633. extern int sched_max_numa_distance;
  634. extern bool find_numa_distance(int distance);
  635. #endif
  636. #ifdef CONFIG_NUMA_BALANCING
  637. /* The regions in numa_faults array from task_struct */
  638. enum numa_faults_stats {
  639. NUMA_MEM = 0,
  640. NUMA_CPU,
  641. NUMA_MEMBUF,
  642. NUMA_CPUBUF
  643. };
  644. extern void sched_setnuma(struct task_struct *p, int node);
  645. extern int migrate_task_to(struct task_struct *p, int cpu);
  646. extern int migrate_swap(struct task_struct *, struct task_struct *);
  647. #endif /* CONFIG_NUMA_BALANCING */
  648. #ifdef CONFIG_SMP
  649. static inline void
  650. queue_balance_callback(struct rq *rq,
  651. struct callback_head *head,
  652. void (*func)(struct rq *rq))
  653. {
  654. lockdep_assert_held(&rq->lock);
  655. if (unlikely(head->next))
  656. return;
  657. head->func = (void (*)(struct callback_head *))func;
  658. head->next = rq->balance_callback;
  659. rq->balance_callback = head;
  660. }
  661. extern void sched_ttwu_pending(void);
  662. #define rcu_dereference_check_sched_domain(p) \
  663. rcu_dereference_check((p), \
  664. lockdep_is_held(&sched_domains_mutex))
  665. /*
  666. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  667. * See detach_destroy_domains: synchronize_sched for details.
  668. *
  669. * The domain tree of any CPU may only be accessed from within
  670. * preempt-disabled sections.
  671. */
  672. #define for_each_domain(cpu, __sd) \
  673. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  674. __sd; __sd = __sd->parent)
  675. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  676. /**
  677. * highest_flag_domain - Return highest sched_domain containing flag.
  678. * @cpu: The cpu whose highest level of sched domain is to
  679. * be returned.
  680. * @flag: The flag to check for the highest sched_domain
  681. * for the given cpu.
  682. *
  683. * Returns the highest sched_domain of a cpu which contains the given flag.
  684. */
  685. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  686. {
  687. struct sched_domain *sd, *hsd = NULL;
  688. for_each_domain(cpu, sd) {
  689. if (!(sd->flags & flag))
  690. break;
  691. hsd = sd;
  692. }
  693. return hsd;
  694. }
  695. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  696. {
  697. struct sched_domain *sd;
  698. for_each_domain(cpu, sd) {
  699. if (sd->flags & flag)
  700. break;
  701. }
  702. return sd;
  703. }
  704. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  705. DECLARE_PER_CPU(int, sd_llc_size);
  706. DECLARE_PER_CPU(int, sd_llc_id);
  707. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  708. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  709. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  710. struct sched_group_capacity {
  711. atomic_t ref;
  712. /*
  713. * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
  714. * for a single CPU.
  715. */
  716. unsigned int capacity;
  717. unsigned long next_update;
  718. int imbalance; /* XXX unrelated to capacity but shared group state */
  719. /*
  720. * Number of busy cpus in this group.
  721. */
  722. atomic_t nr_busy_cpus;
  723. unsigned long cpumask[0]; /* iteration mask */
  724. };
  725. struct sched_group {
  726. struct sched_group *next; /* Must be a circular list */
  727. atomic_t ref;
  728. unsigned int group_weight;
  729. struct sched_group_capacity *sgc;
  730. /*
  731. * The CPUs this group covers.
  732. *
  733. * NOTE: this field is variable length. (Allocated dynamically
  734. * by attaching extra space to the end of the structure,
  735. * depending on how many CPUs the kernel has booted up with)
  736. */
  737. unsigned long cpumask[0];
  738. };
  739. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  740. {
  741. return to_cpumask(sg->cpumask);
  742. }
  743. /*
  744. * cpumask masking which cpus in the group are allowed to iterate up the domain
  745. * tree.
  746. */
  747. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  748. {
  749. return to_cpumask(sg->sgc->cpumask);
  750. }
  751. /**
  752. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  753. * @group: The group whose first cpu is to be returned.
  754. */
  755. static inline unsigned int group_first_cpu(struct sched_group *group)
  756. {
  757. return cpumask_first(sched_group_cpus(group));
  758. }
  759. extern int group_balance_cpu(struct sched_group *sg);
  760. #else
  761. static inline void sched_ttwu_pending(void) { }
  762. #endif /* CONFIG_SMP */
  763. #include "stats.h"
  764. #include "auto_group.h"
  765. #ifdef CONFIG_CGROUP_SCHED
  766. /*
  767. * Return the group to which this tasks belongs.
  768. *
  769. * We cannot use task_css() and friends because the cgroup subsystem
  770. * changes that value before the cgroup_subsys::attach() method is called,
  771. * therefore we cannot pin it and might observe the wrong value.
  772. *
  773. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  774. * core changes this before calling sched_move_task().
  775. *
  776. * Instead we use a 'copy' which is updated from sched_move_task() while
  777. * holding both task_struct::pi_lock and rq::lock.
  778. */
  779. static inline struct task_group *task_group(struct task_struct *p)
  780. {
  781. return p->sched_task_group;
  782. }
  783. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  784. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  785. {
  786. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  787. struct task_group *tg = task_group(p);
  788. #endif
  789. #ifdef CONFIG_FAIR_GROUP_SCHED
  790. set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
  791. p->se.cfs_rq = tg->cfs_rq[cpu];
  792. p->se.parent = tg->se[cpu];
  793. #endif
  794. #ifdef CONFIG_RT_GROUP_SCHED
  795. p->rt.rt_rq = tg->rt_rq[cpu];
  796. p->rt.parent = tg->rt_se[cpu];
  797. #endif
  798. }
  799. #else /* CONFIG_CGROUP_SCHED */
  800. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  801. static inline struct task_group *task_group(struct task_struct *p)
  802. {
  803. return NULL;
  804. }
  805. #endif /* CONFIG_CGROUP_SCHED */
  806. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  807. {
  808. set_task_rq(p, cpu);
  809. #ifdef CONFIG_SMP
  810. /*
  811. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  812. * successfuly executed on another CPU. We must ensure that updates of
  813. * per-task data have been completed by this moment.
  814. */
  815. smp_wmb();
  816. task_thread_info(p)->cpu = cpu;
  817. p->wake_cpu = cpu;
  818. #endif
  819. }
  820. /*
  821. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  822. */
  823. #ifdef CONFIG_SCHED_DEBUG
  824. # include <linux/static_key.h>
  825. # define const_debug __read_mostly
  826. #else
  827. # define const_debug const
  828. #endif
  829. extern const_debug unsigned int sysctl_sched_features;
  830. #define SCHED_FEAT(name, enabled) \
  831. __SCHED_FEAT_##name ,
  832. enum {
  833. #include "features.h"
  834. __SCHED_FEAT_NR,
  835. };
  836. #undef SCHED_FEAT
  837. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  838. #define SCHED_FEAT(name, enabled) \
  839. static __always_inline bool static_branch_##name(struct static_key *key) \
  840. { \
  841. return static_key_##enabled(key); \
  842. }
  843. #include "features.h"
  844. #undef SCHED_FEAT
  845. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  846. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  847. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  848. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  849. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  850. extern struct static_key_false sched_numa_balancing;
  851. static inline u64 global_rt_period(void)
  852. {
  853. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  854. }
  855. static inline u64 global_rt_runtime(void)
  856. {
  857. if (sysctl_sched_rt_runtime < 0)
  858. return RUNTIME_INF;
  859. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  860. }
  861. static inline int task_current(struct rq *rq, struct task_struct *p)
  862. {
  863. return rq->curr == p;
  864. }
  865. static inline int task_running(struct rq *rq, struct task_struct *p)
  866. {
  867. #ifdef CONFIG_SMP
  868. return p->on_cpu;
  869. #else
  870. return task_current(rq, p);
  871. #endif
  872. }
  873. static inline int task_on_rq_queued(struct task_struct *p)
  874. {
  875. return p->on_rq == TASK_ON_RQ_QUEUED;
  876. }
  877. static inline int task_on_rq_migrating(struct task_struct *p)
  878. {
  879. return p->on_rq == TASK_ON_RQ_MIGRATING;
  880. }
  881. #ifndef prepare_arch_switch
  882. # define prepare_arch_switch(next) do { } while (0)
  883. #endif
  884. #ifndef finish_arch_post_lock_switch
  885. # define finish_arch_post_lock_switch() do { } while (0)
  886. #endif
  887. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  888. {
  889. #ifdef CONFIG_SMP
  890. /*
  891. * We can optimise this out completely for !SMP, because the
  892. * SMP rebalancing from interrupt is the only thing that cares
  893. * here.
  894. */
  895. next->on_cpu = 1;
  896. #endif
  897. }
  898. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  899. {
  900. #ifdef CONFIG_SMP
  901. /*
  902. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  903. * We must ensure this doesn't happen until the switch is completely
  904. * finished.
  905. *
  906. * In particular, the load of prev->state in finish_task_switch() must
  907. * happen before this.
  908. *
  909. * Pairs with the smp_cond_acquire() in try_to_wake_up().
  910. */
  911. smp_store_release(&prev->on_cpu, 0);
  912. #endif
  913. #ifdef CONFIG_DEBUG_SPINLOCK
  914. /* this is a valid case when another task releases the spinlock */
  915. rq->lock.owner = current;
  916. #endif
  917. /*
  918. * If we are tracking spinlock dependencies then we have to
  919. * fix up the runqueue lock - which gets 'carried over' from
  920. * prev into current:
  921. */
  922. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  923. raw_spin_unlock_irq(&rq->lock);
  924. }
  925. /*
  926. * wake flags
  927. */
  928. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  929. #define WF_FORK 0x02 /* child wakeup after fork */
  930. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  931. /*
  932. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  933. * of tasks with abnormal "nice" values across CPUs the contribution that
  934. * each task makes to its run queue's load is weighted according to its
  935. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  936. * scaled version of the new time slice allocation that they receive on time
  937. * slice expiry etc.
  938. */
  939. #define WEIGHT_IDLEPRIO 3
  940. #define WMULT_IDLEPRIO 1431655765
  941. extern const int sched_prio_to_weight[40];
  942. extern const u32 sched_prio_to_wmult[40];
  943. #define ENQUEUE_WAKEUP 0x01
  944. #define ENQUEUE_HEAD 0x02
  945. #ifdef CONFIG_SMP
  946. #define ENQUEUE_WAKING 0x04 /* sched_class::task_waking was called */
  947. #else
  948. #define ENQUEUE_WAKING 0x00
  949. #endif
  950. #define ENQUEUE_REPLENISH 0x08
  951. #define ENQUEUE_RESTORE 0x10
  952. #define DEQUEUE_SLEEP 0x01
  953. #define DEQUEUE_SAVE 0x02
  954. #define RETRY_TASK ((void *)-1UL)
  955. struct sched_class {
  956. const struct sched_class *next;
  957. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  958. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  959. void (*yield_task) (struct rq *rq);
  960. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  961. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  962. /*
  963. * It is the responsibility of the pick_next_task() method that will
  964. * return the next task to call put_prev_task() on the @prev task or
  965. * something equivalent.
  966. *
  967. * May return RETRY_TASK when it finds a higher prio class has runnable
  968. * tasks.
  969. */
  970. struct task_struct * (*pick_next_task) (struct rq *rq,
  971. struct task_struct *prev);
  972. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  973. #ifdef CONFIG_SMP
  974. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  975. void (*migrate_task_rq)(struct task_struct *p);
  976. void (*task_waking) (struct task_struct *task);
  977. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  978. void (*set_cpus_allowed)(struct task_struct *p,
  979. const struct cpumask *newmask);
  980. void (*rq_online)(struct rq *rq);
  981. void (*rq_offline)(struct rq *rq);
  982. #endif
  983. void (*set_curr_task) (struct rq *rq);
  984. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  985. void (*task_fork) (struct task_struct *p);
  986. void (*task_dead) (struct task_struct *p);
  987. /*
  988. * The switched_from() call is allowed to drop rq->lock, therefore we
  989. * cannot assume the switched_from/switched_to pair is serliazed by
  990. * rq->lock. They are however serialized by p->pi_lock.
  991. */
  992. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  993. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  994. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  995. int oldprio);
  996. unsigned int (*get_rr_interval) (struct rq *rq,
  997. struct task_struct *task);
  998. void (*update_curr) (struct rq *rq);
  999. #ifdef CONFIG_FAIR_GROUP_SCHED
  1000. void (*task_move_group) (struct task_struct *p);
  1001. #endif
  1002. };
  1003. static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
  1004. {
  1005. prev->sched_class->put_prev_task(rq, prev);
  1006. }
  1007. #define sched_class_highest (&stop_sched_class)
  1008. #define for_each_class(class) \
  1009. for (class = sched_class_highest; class; class = class->next)
  1010. extern const struct sched_class stop_sched_class;
  1011. extern const struct sched_class dl_sched_class;
  1012. extern const struct sched_class rt_sched_class;
  1013. extern const struct sched_class fair_sched_class;
  1014. extern const struct sched_class idle_sched_class;
  1015. #ifdef CONFIG_SMP
  1016. extern void update_group_capacity(struct sched_domain *sd, int cpu);
  1017. extern void trigger_load_balance(struct rq *rq);
  1018. extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
  1019. #endif
  1020. #ifdef CONFIG_CPU_IDLE
  1021. static inline void idle_set_state(struct rq *rq,
  1022. struct cpuidle_state *idle_state)
  1023. {
  1024. rq->idle_state = idle_state;
  1025. }
  1026. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1027. {
  1028. WARN_ON(!rcu_read_lock_held());
  1029. return rq->idle_state;
  1030. }
  1031. #else
  1032. static inline void idle_set_state(struct rq *rq,
  1033. struct cpuidle_state *idle_state)
  1034. {
  1035. }
  1036. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1037. {
  1038. return NULL;
  1039. }
  1040. #endif
  1041. extern void sysrq_sched_debug_show(void);
  1042. extern void sched_init_granularity(void);
  1043. extern void update_max_interval(void);
  1044. extern void init_sched_dl_class(void);
  1045. extern void init_sched_rt_class(void);
  1046. extern void init_sched_fair_class(void);
  1047. extern void resched_curr(struct rq *rq);
  1048. extern void resched_cpu(int cpu);
  1049. extern struct rt_bandwidth def_rt_bandwidth;
  1050. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  1051. extern struct dl_bandwidth def_dl_bandwidth;
  1052. extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
  1053. extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
  1054. unsigned long to_ratio(u64 period, u64 runtime);
  1055. extern void init_entity_runnable_average(struct sched_entity *se);
  1056. static inline void add_nr_running(struct rq *rq, unsigned count)
  1057. {
  1058. unsigned prev_nr = rq->nr_running;
  1059. rq->nr_running = prev_nr + count;
  1060. if (prev_nr < 2 && rq->nr_running >= 2) {
  1061. #ifdef CONFIG_SMP
  1062. if (!rq->rd->overload)
  1063. rq->rd->overload = true;
  1064. #endif
  1065. #ifdef CONFIG_NO_HZ_FULL
  1066. if (tick_nohz_full_cpu(rq->cpu)) {
  1067. /*
  1068. * Tick is needed if more than one task runs on a CPU.
  1069. * Send the target an IPI to kick it out of nohz mode.
  1070. *
  1071. * We assume that IPI implies full memory barrier and the
  1072. * new value of rq->nr_running is visible on reception
  1073. * from the target.
  1074. */
  1075. tick_nohz_full_kick_cpu(rq->cpu);
  1076. }
  1077. #endif
  1078. }
  1079. }
  1080. static inline void sub_nr_running(struct rq *rq, unsigned count)
  1081. {
  1082. rq->nr_running -= count;
  1083. }
  1084. static inline void rq_last_tick_reset(struct rq *rq)
  1085. {
  1086. #ifdef CONFIG_NO_HZ_FULL
  1087. rq->last_sched_tick = jiffies;
  1088. #endif
  1089. }
  1090. extern void update_rq_clock(struct rq *rq);
  1091. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  1092. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  1093. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  1094. extern const_debug unsigned int sysctl_sched_time_avg;
  1095. extern const_debug unsigned int sysctl_sched_nr_migrate;
  1096. extern const_debug unsigned int sysctl_sched_migration_cost;
  1097. static inline u64 sched_avg_period(void)
  1098. {
  1099. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1100. }
  1101. #ifdef CONFIG_SCHED_HRTICK
  1102. /*
  1103. * Use hrtick when:
  1104. * - enabled by features
  1105. * - hrtimer is actually high res
  1106. */
  1107. static inline int hrtick_enabled(struct rq *rq)
  1108. {
  1109. if (!sched_feat(HRTICK))
  1110. return 0;
  1111. if (!cpu_active(cpu_of(rq)))
  1112. return 0;
  1113. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1114. }
  1115. void hrtick_start(struct rq *rq, u64 delay);
  1116. #else
  1117. static inline int hrtick_enabled(struct rq *rq)
  1118. {
  1119. return 0;
  1120. }
  1121. #endif /* CONFIG_SCHED_HRTICK */
  1122. #ifdef CONFIG_SMP
  1123. extern void sched_avg_update(struct rq *rq);
  1124. #ifndef arch_scale_freq_capacity
  1125. static __always_inline
  1126. unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
  1127. {
  1128. return SCHED_CAPACITY_SCALE;
  1129. }
  1130. #endif
  1131. #ifndef arch_scale_cpu_capacity
  1132. static __always_inline
  1133. unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
  1134. {
  1135. if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
  1136. return sd->smt_gain / sd->span_weight;
  1137. return SCHED_CAPACITY_SCALE;
  1138. }
  1139. #endif
  1140. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1141. {
  1142. rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
  1143. sched_avg_update(rq);
  1144. }
  1145. #else
  1146. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  1147. static inline void sched_avg_update(struct rq *rq) { }
  1148. #endif
  1149. /*
  1150. * __task_rq_lock - lock the rq @p resides on.
  1151. */
  1152. static inline struct rq *__task_rq_lock(struct task_struct *p)
  1153. __acquires(rq->lock)
  1154. {
  1155. struct rq *rq;
  1156. lockdep_assert_held(&p->pi_lock);
  1157. for (;;) {
  1158. rq = task_rq(p);
  1159. raw_spin_lock(&rq->lock);
  1160. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  1161. lockdep_pin_lock(&rq->lock);
  1162. return rq;
  1163. }
  1164. raw_spin_unlock(&rq->lock);
  1165. while (unlikely(task_on_rq_migrating(p)))
  1166. cpu_relax();
  1167. }
  1168. }
  1169. /*
  1170. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  1171. */
  1172. static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  1173. __acquires(p->pi_lock)
  1174. __acquires(rq->lock)
  1175. {
  1176. struct rq *rq;
  1177. for (;;) {
  1178. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  1179. rq = task_rq(p);
  1180. raw_spin_lock(&rq->lock);
  1181. /*
  1182. * move_queued_task() task_rq_lock()
  1183. *
  1184. * ACQUIRE (rq->lock)
  1185. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  1186. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  1187. * [S] ->cpu = new_cpu [L] task_rq()
  1188. * [L] ->on_rq
  1189. * RELEASE (rq->lock)
  1190. *
  1191. * If we observe the old cpu in task_rq_lock, the acquire of
  1192. * the old rq->lock will fully serialize against the stores.
  1193. *
  1194. * If we observe the new cpu in task_rq_lock, the acquire will
  1195. * pair with the WMB to ensure we must then also see migrating.
  1196. */
  1197. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  1198. lockdep_pin_lock(&rq->lock);
  1199. return rq;
  1200. }
  1201. raw_spin_unlock(&rq->lock);
  1202. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  1203. while (unlikely(task_on_rq_migrating(p)))
  1204. cpu_relax();
  1205. }
  1206. }
  1207. static inline void __task_rq_unlock(struct rq *rq)
  1208. __releases(rq->lock)
  1209. {
  1210. lockdep_unpin_lock(&rq->lock);
  1211. raw_spin_unlock(&rq->lock);
  1212. }
  1213. static inline void
  1214. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  1215. __releases(rq->lock)
  1216. __releases(p->pi_lock)
  1217. {
  1218. lockdep_unpin_lock(&rq->lock);
  1219. raw_spin_unlock(&rq->lock);
  1220. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  1221. }
  1222. #ifdef CONFIG_SMP
  1223. #ifdef CONFIG_PREEMPT
  1224. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1225. /*
  1226. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1227. * way at the expense of forcing extra atomic operations in all
  1228. * invocations. This assures that the double_lock is acquired using the
  1229. * same underlying policy as the spinlock_t on this architecture, which
  1230. * reduces latency compared to the unfair variant below. However, it
  1231. * also adds more overhead and therefore may reduce throughput.
  1232. */
  1233. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1234. __releases(this_rq->lock)
  1235. __acquires(busiest->lock)
  1236. __acquires(this_rq->lock)
  1237. {
  1238. raw_spin_unlock(&this_rq->lock);
  1239. double_rq_lock(this_rq, busiest);
  1240. return 1;
  1241. }
  1242. #else
  1243. /*
  1244. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1245. * latency by eliminating extra atomic operations when the locks are
  1246. * already in proper order on entry. This favors lower cpu-ids and will
  1247. * grant the double lock to lower cpus over higher ids under contention,
  1248. * regardless of entry order into the function.
  1249. */
  1250. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1251. __releases(this_rq->lock)
  1252. __acquires(busiest->lock)
  1253. __acquires(this_rq->lock)
  1254. {
  1255. int ret = 0;
  1256. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1257. if (busiest < this_rq) {
  1258. raw_spin_unlock(&this_rq->lock);
  1259. raw_spin_lock(&busiest->lock);
  1260. raw_spin_lock_nested(&this_rq->lock,
  1261. SINGLE_DEPTH_NESTING);
  1262. ret = 1;
  1263. } else
  1264. raw_spin_lock_nested(&busiest->lock,
  1265. SINGLE_DEPTH_NESTING);
  1266. }
  1267. return ret;
  1268. }
  1269. #endif /* CONFIG_PREEMPT */
  1270. /*
  1271. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1272. */
  1273. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1274. {
  1275. if (unlikely(!irqs_disabled())) {
  1276. /* printk() doesn't work good under rq->lock */
  1277. raw_spin_unlock(&this_rq->lock);
  1278. BUG_ON(1);
  1279. }
  1280. return _double_lock_balance(this_rq, busiest);
  1281. }
  1282. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1283. __releases(busiest->lock)
  1284. {
  1285. raw_spin_unlock(&busiest->lock);
  1286. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1287. }
  1288. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1289. {
  1290. if (l1 > l2)
  1291. swap(l1, l2);
  1292. spin_lock(l1);
  1293. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1294. }
  1295. static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
  1296. {
  1297. if (l1 > l2)
  1298. swap(l1, l2);
  1299. spin_lock_irq(l1);
  1300. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1301. }
  1302. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1303. {
  1304. if (l1 > l2)
  1305. swap(l1, l2);
  1306. raw_spin_lock(l1);
  1307. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1308. }
  1309. /*
  1310. * double_rq_lock - safely lock two runqueues
  1311. *
  1312. * Note this does not disable interrupts like task_rq_lock,
  1313. * you need to do so manually before calling.
  1314. */
  1315. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1316. __acquires(rq1->lock)
  1317. __acquires(rq2->lock)
  1318. {
  1319. BUG_ON(!irqs_disabled());
  1320. if (rq1 == rq2) {
  1321. raw_spin_lock(&rq1->lock);
  1322. __acquire(rq2->lock); /* Fake it out ;) */
  1323. } else {
  1324. if (rq1 < rq2) {
  1325. raw_spin_lock(&rq1->lock);
  1326. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1327. } else {
  1328. raw_spin_lock(&rq2->lock);
  1329. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1330. }
  1331. }
  1332. }
  1333. /*
  1334. * double_rq_unlock - safely unlock two runqueues
  1335. *
  1336. * Note this does not restore interrupts like task_rq_unlock,
  1337. * you need to do so manually after calling.
  1338. */
  1339. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1340. __releases(rq1->lock)
  1341. __releases(rq2->lock)
  1342. {
  1343. raw_spin_unlock(&rq1->lock);
  1344. if (rq1 != rq2)
  1345. raw_spin_unlock(&rq2->lock);
  1346. else
  1347. __release(rq2->lock);
  1348. }
  1349. #else /* CONFIG_SMP */
  1350. /*
  1351. * double_rq_lock - safely lock two runqueues
  1352. *
  1353. * Note this does not disable interrupts like task_rq_lock,
  1354. * you need to do so manually before calling.
  1355. */
  1356. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1357. __acquires(rq1->lock)
  1358. __acquires(rq2->lock)
  1359. {
  1360. BUG_ON(!irqs_disabled());
  1361. BUG_ON(rq1 != rq2);
  1362. raw_spin_lock(&rq1->lock);
  1363. __acquire(rq2->lock); /* Fake it out ;) */
  1364. }
  1365. /*
  1366. * double_rq_unlock - safely unlock two runqueues
  1367. *
  1368. * Note this does not restore interrupts like task_rq_unlock,
  1369. * you need to do so manually after calling.
  1370. */
  1371. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1372. __releases(rq1->lock)
  1373. __releases(rq2->lock)
  1374. {
  1375. BUG_ON(rq1 != rq2);
  1376. raw_spin_unlock(&rq1->lock);
  1377. __release(rq2->lock);
  1378. }
  1379. #endif
  1380. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1381. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1382. #ifdef CONFIG_SCHED_DEBUG
  1383. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1384. extern void print_rt_stats(struct seq_file *m, int cpu);
  1385. extern void print_dl_stats(struct seq_file *m, int cpu);
  1386. extern void
  1387. print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
  1388. #ifdef CONFIG_NUMA_BALANCING
  1389. extern void
  1390. show_numa_stats(struct task_struct *p, struct seq_file *m);
  1391. extern void
  1392. print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
  1393. unsigned long tpf, unsigned long gsf, unsigned long gpf);
  1394. #endif /* CONFIG_NUMA_BALANCING */
  1395. #endif /* CONFIG_SCHED_DEBUG */
  1396. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1397. extern void init_rt_rq(struct rt_rq *rt_rq);
  1398. extern void init_dl_rq(struct dl_rq *dl_rq);
  1399. extern void cfs_bandwidth_usage_inc(void);
  1400. extern void cfs_bandwidth_usage_dec(void);
  1401. #ifdef CONFIG_NO_HZ_COMMON
  1402. enum rq_nohz_flag_bits {
  1403. NOHZ_TICK_STOPPED,
  1404. NOHZ_BALANCE_KICK,
  1405. };
  1406. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1407. #endif
  1408. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1409. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1410. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1411. #ifndef CONFIG_64BIT
  1412. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1413. static inline void irq_time_write_begin(void)
  1414. {
  1415. __this_cpu_inc(irq_time_seq.sequence);
  1416. smp_wmb();
  1417. }
  1418. static inline void irq_time_write_end(void)
  1419. {
  1420. smp_wmb();
  1421. __this_cpu_inc(irq_time_seq.sequence);
  1422. }
  1423. static inline u64 irq_time_read(int cpu)
  1424. {
  1425. u64 irq_time;
  1426. unsigned seq;
  1427. do {
  1428. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1429. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1430. per_cpu(cpu_hardirq_time, cpu);
  1431. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1432. return irq_time;
  1433. }
  1434. #else /* CONFIG_64BIT */
  1435. static inline void irq_time_write_begin(void)
  1436. {
  1437. }
  1438. static inline void irq_time_write_end(void)
  1439. {
  1440. }
  1441. static inline u64 irq_time_read(int cpu)
  1442. {
  1443. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1444. }
  1445. #endif /* CONFIG_64BIT */
  1446. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */