update.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2001
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. *
  23. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25. * Papers:
  26. * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27. * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28. *
  29. * For detailed explanation of Read-Copy Update mechanism see -
  30. * http://lse.sourceforge.net/locking/rcupdate.html
  31. *
  32. */
  33. #include <linux/types.h>
  34. #include <linux/kernel.h>
  35. #include <linux/init.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/smp.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/sched.h>
  40. #include <linux/atomic.h>
  41. #include <linux/bitops.h>
  42. #include <linux/percpu.h>
  43. #include <linux/notifier.h>
  44. #include <linux/cpu.h>
  45. #include <linux/mutex.h>
  46. #include <linux/export.h>
  47. #include <linux/hardirq.h>
  48. #include <linux/delay.h>
  49. #include <linux/module.h>
  50. #include <linux/kthread.h>
  51. #include <linux/tick.h>
  52. #define CREATE_TRACE_POINTS
  53. #include "rcu.h"
  54. MODULE_ALIAS("rcupdate");
  55. #ifdef MODULE_PARAM_PREFIX
  56. #undef MODULE_PARAM_PREFIX
  57. #endif
  58. #define MODULE_PARAM_PREFIX "rcupdate."
  59. #ifndef CONFIG_TINY_RCU
  60. module_param(rcu_expedited, int, 0);
  61. module_param(rcu_normal, int, 0);
  62. static int rcu_normal_after_boot;
  63. module_param(rcu_normal_after_boot, int, 0);
  64. #endif /* #ifndef CONFIG_TINY_RCU */
  65. #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
  66. /**
  67. * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  68. *
  69. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  70. * RCU-sched read-side critical section. In absence of
  71. * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  72. * critical section unless it can prove otherwise. Note that disabling
  73. * of preemption (including disabling irqs) counts as an RCU-sched
  74. * read-side critical section. This is useful for debug checks in functions
  75. * that required that they be called within an RCU-sched read-side
  76. * critical section.
  77. *
  78. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  79. * and while lockdep is disabled.
  80. *
  81. * Note that if the CPU is in the idle loop from an RCU point of
  82. * view (ie: that we are in the section between rcu_idle_enter() and
  83. * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  84. * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
  85. * that are in such a section, considering these as in extended quiescent
  86. * state, so such a CPU is effectively never in an RCU read-side critical
  87. * section regardless of what RCU primitives it invokes. This state of
  88. * affairs is required --- we need to keep an RCU-free window in idle
  89. * where the CPU may possibly enter into low power mode. This way we can
  90. * notice an extended quiescent state to other CPUs that started a grace
  91. * period. Otherwise we would delay any grace period as long as we run in
  92. * the idle task.
  93. *
  94. * Similarly, we avoid claiming an SRCU read lock held if the current
  95. * CPU is offline.
  96. */
  97. int rcu_read_lock_sched_held(void)
  98. {
  99. int lockdep_opinion = 0;
  100. if (!debug_lockdep_rcu_enabled())
  101. return 1;
  102. if (!rcu_is_watching())
  103. return 0;
  104. if (!rcu_lockdep_current_cpu_online())
  105. return 0;
  106. if (debug_locks)
  107. lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
  108. return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
  109. }
  110. EXPORT_SYMBOL(rcu_read_lock_sched_held);
  111. #endif
  112. #ifndef CONFIG_TINY_RCU
  113. /*
  114. * Should expedited grace-period primitives always fall back to their
  115. * non-expedited counterparts? Intended for use within RCU. Note
  116. * that if the user specifies both rcu_expedited and rcu_normal, then
  117. * rcu_normal wins.
  118. */
  119. bool rcu_gp_is_normal(void)
  120. {
  121. return READ_ONCE(rcu_normal);
  122. }
  123. static atomic_t rcu_expedited_nesting =
  124. ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
  125. /*
  126. * Should normal grace-period primitives be expedited? Intended for
  127. * use within RCU. Note that this function takes the rcu_expedited
  128. * sysfs/boot variable into account as well as the rcu_expedite_gp()
  129. * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
  130. * returns false is a -really- bad idea.
  131. */
  132. bool rcu_gp_is_expedited(void)
  133. {
  134. return rcu_expedited || atomic_read(&rcu_expedited_nesting);
  135. }
  136. EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
  137. /**
  138. * rcu_expedite_gp - Expedite future RCU grace periods
  139. *
  140. * After a call to this function, future calls to synchronize_rcu() and
  141. * friends act as the corresponding synchronize_rcu_expedited() function
  142. * had instead been called.
  143. */
  144. void rcu_expedite_gp(void)
  145. {
  146. atomic_inc(&rcu_expedited_nesting);
  147. }
  148. EXPORT_SYMBOL_GPL(rcu_expedite_gp);
  149. /**
  150. * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
  151. *
  152. * Undo a prior call to rcu_expedite_gp(). If all prior calls to
  153. * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
  154. * and if the rcu_expedited sysfs/boot parameter is not set, then all
  155. * subsequent calls to synchronize_rcu() and friends will return to
  156. * their normal non-expedited behavior.
  157. */
  158. void rcu_unexpedite_gp(void)
  159. {
  160. atomic_dec(&rcu_expedited_nesting);
  161. }
  162. EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
  163. /*
  164. * Inform RCU of the end of the in-kernel boot sequence.
  165. */
  166. void rcu_end_inkernel_boot(void)
  167. {
  168. if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
  169. rcu_unexpedite_gp();
  170. if (rcu_normal_after_boot)
  171. WRITE_ONCE(rcu_normal, 1);
  172. }
  173. #endif /* #ifndef CONFIG_TINY_RCU */
  174. #ifdef CONFIG_PREEMPT_RCU
  175. /*
  176. * Preemptible RCU implementation for rcu_read_lock().
  177. * Just increment ->rcu_read_lock_nesting, shared state will be updated
  178. * if we block.
  179. */
  180. void __rcu_read_lock(void)
  181. {
  182. current->rcu_read_lock_nesting++;
  183. barrier(); /* critical section after entry code. */
  184. }
  185. EXPORT_SYMBOL_GPL(__rcu_read_lock);
  186. /*
  187. * Preemptible RCU implementation for rcu_read_unlock().
  188. * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
  189. * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
  190. * invoke rcu_read_unlock_special() to clean up after a context switch
  191. * in an RCU read-side critical section and other special cases.
  192. */
  193. void __rcu_read_unlock(void)
  194. {
  195. struct task_struct *t = current;
  196. if (t->rcu_read_lock_nesting != 1) {
  197. --t->rcu_read_lock_nesting;
  198. } else {
  199. barrier(); /* critical section before exit code. */
  200. t->rcu_read_lock_nesting = INT_MIN;
  201. barrier(); /* assign before ->rcu_read_unlock_special load */
  202. if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
  203. rcu_read_unlock_special(t);
  204. barrier(); /* ->rcu_read_unlock_special load before assign */
  205. t->rcu_read_lock_nesting = 0;
  206. }
  207. #ifdef CONFIG_PROVE_LOCKING
  208. {
  209. int rrln = READ_ONCE(t->rcu_read_lock_nesting);
  210. WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
  211. }
  212. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  213. }
  214. EXPORT_SYMBOL_GPL(__rcu_read_unlock);
  215. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  216. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  217. static struct lock_class_key rcu_lock_key;
  218. struct lockdep_map rcu_lock_map =
  219. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
  220. EXPORT_SYMBOL_GPL(rcu_lock_map);
  221. static struct lock_class_key rcu_bh_lock_key;
  222. struct lockdep_map rcu_bh_lock_map =
  223. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
  224. EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
  225. static struct lock_class_key rcu_sched_lock_key;
  226. struct lockdep_map rcu_sched_lock_map =
  227. STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
  228. EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
  229. static struct lock_class_key rcu_callback_key;
  230. struct lockdep_map rcu_callback_map =
  231. STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
  232. EXPORT_SYMBOL_GPL(rcu_callback_map);
  233. int notrace debug_lockdep_rcu_enabled(void)
  234. {
  235. return rcu_scheduler_active && debug_locks &&
  236. current->lockdep_recursion == 0;
  237. }
  238. EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
  239. /**
  240. * rcu_read_lock_held() - might we be in RCU read-side critical section?
  241. *
  242. * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
  243. * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
  244. * this assumes we are in an RCU read-side critical section unless it can
  245. * prove otherwise. This is useful for debug checks in functions that
  246. * require that they be called within an RCU read-side critical section.
  247. *
  248. * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
  249. * and while lockdep is disabled.
  250. *
  251. * Note that rcu_read_lock() and the matching rcu_read_unlock() must
  252. * occur in the same context, for example, it is illegal to invoke
  253. * rcu_read_unlock() in process context if the matching rcu_read_lock()
  254. * was invoked from within an irq handler.
  255. *
  256. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  257. * offline from an RCU perspective, so check for those as well.
  258. */
  259. int rcu_read_lock_held(void)
  260. {
  261. if (!debug_lockdep_rcu_enabled())
  262. return 1;
  263. if (!rcu_is_watching())
  264. return 0;
  265. if (!rcu_lockdep_current_cpu_online())
  266. return 0;
  267. return lock_is_held(&rcu_lock_map);
  268. }
  269. EXPORT_SYMBOL_GPL(rcu_read_lock_held);
  270. /**
  271. * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
  272. *
  273. * Check for bottom half being disabled, which covers both the
  274. * CONFIG_PROVE_RCU and not cases. Note that if someone uses
  275. * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
  276. * will show the situation. This is useful for debug checks in functions
  277. * that require that they be called within an RCU read-side critical
  278. * section.
  279. *
  280. * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
  281. *
  282. * Note that rcu_read_lock() is disallowed if the CPU is either idle or
  283. * offline from an RCU perspective, so check for those as well.
  284. */
  285. int rcu_read_lock_bh_held(void)
  286. {
  287. if (!debug_lockdep_rcu_enabled())
  288. return 1;
  289. if (!rcu_is_watching())
  290. return 0;
  291. if (!rcu_lockdep_current_cpu_online())
  292. return 0;
  293. return in_softirq() || irqs_disabled();
  294. }
  295. EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
  296. #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
  297. /**
  298. * wakeme_after_rcu() - Callback function to awaken a task after grace period
  299. * @head: Pointer to rcu_head member within rcu_synchronize structure
  300. *
  301. * Awaken the corresponding task now that a grace period has elapsed.
  302. */
  303. void wakeme_after_rcu(struct rcu_head *head)
  304. {
  305. struct rcu_synchronize *rcu;
  306. rcu = container_of(head, struct rcu_synchronize, head);
  307. complete(&rcu->completion);
  308. }
  309. EXPORT_SYMBOL_GPL(wakeme_after_rcu);
  310. void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
  311. struct rcu_synchronize *rs_array)
  312. {
  313. int i;
  314. /* Initialize and register callbacks for each flavor specified. */
  315. for (i = 0; i < n; i++) {
  316. if (checktiny &&
  317. (crcu_array[i] == call_rcu ||
  318. crcu_array[i] == call_rcu_bh)) {
  319. might_sleep();
  320. continue;
  321. }
  322. init_rcu_head_on_stack(&rs_array[i].head);
  323. init_completion(&rs_array[i].completion);
  324. (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
  325. }
  326. /* Wait for all callbacks to be invoked. */
  327. for (i = 0; i < n; i++) {
  328. if (checktiny &&
  329. (crcu_array[i] == call_rcu ||
  330. crcu_array[i] == call_rcu_bh))
  331. continue;
  332. wait_for_completion(&rs_array[i].completion);
  333. destroy_rcu_head_on_stack(&rs_array[i].head);
  334. }
  335. }
  336. EXPORT_SYMBOL_GPL(__wait_rcu_gp);
  337. #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
  338. void init_rcu_head(struct rcu_head *head)
  339. {
  340. debug_object_init(head, &rcuhead_debug_descr);
  341. }
  342. void destroy_rcu_head(struct rcu_head *head)
  343. {
  344. debug_object_free(head, &rcuhead_debug_descr);
  345. }
  346. /*
  347. * fixup_activate is called when:
  348. * - an active object is activated
  349. * - an unknown object is activated (might be a statically initialized object)
  350. * Activation is performed internally by call_rcu().
  351. */
  352. static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
  353. {
  354. struct rcu_head *head = addr;
  355. switch (state) {
  356. case ODEBUG_STATE_NOTAVAILABLE:
  357. /*
  358. * This is not really a fixup. We just make sure that it is
  359. * tracked in the object tracker.
  360. */
  361. debug_object_init(head, &rcuhead_debug_descr);
  362. debug_object_activate(head, &rcuhead_debug_descr);
  363. return 0;
  364. default:
  365. return 1;
  366. }
  367. }
  368. /**
  369. * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
  370. * @head: pointer to rcu_head structure to be initialized
  371. *
  372. * This function informs debugobjects of a new rcu_head structure that
  373. * has been allocated as an auto variable on the stack. This function
  374. * is not required for rcu_head structures that are statically defined or
  375. * that are dynamically allocated on the heap. This function has no
  376. * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  377. */
  378. void init_rcu_head_on_stack(struct rcu_head *head)
  379. {
  380. debug_object_init_on_stack(head, &rcuhead_debug_descr);
  381. }
  382. EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
  383. /**
  384. * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
  385. * @head: pointer to rcu_head structure to be initialized
  386. *
  387. * This function informs debugobjects that an on-stack rcu_head structure
  388. * is about to go out of scope. As with init_rcu_head_on_stack(), this
  389. * function is not required for rcu_head structures that are statically
  390. * defined or that are dynamically allocated on the heap. Also as with
  391. * init_rcu_head_on_stack(), this function has no effect for
  392. * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
  393. */
  394. void destroy_rcu_head_on_stack(struct rcu_head *head)
  395. {
  396. debug_object_free(head, &rcuhead_debug_descr);
  397. }
  398. EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
  399. struct debug_obj_descr rcuhead_debug_descr = {
  400. .name = "rcu_head",
  401. .fixup_activate = rcuhead_fixup_activate,
  402. };
  403. EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
  404. #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
  405. #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
  406. void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
  407. unsigned long secs,
  408. unsigned long c_old, unsigned long c)
  409. {
  410. trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
  411. }
  412. EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
  413. #else
  414. #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  415. do { } while (0)
  416. #endif
  417. #ifdef CONFIG_RCU_STALL_COMMON
  418. #ifdef CONFIG_PROVE_RCU
  419. #define RCU_STALL_DELAY_DELTA (5 * HZ)
  420. #else
  421. #define RCU_STALL_DELAY_DELTA 0
  422. #endif
  423. int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
  424. static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
  425. module_param(rcu_cpu_stall_suppress, int, 0644);
  426. module_param(rcu_cpu_stall_timeout, int, 0644);
  427. int rcu_jiffies_till_stall_check(void)
  428. {
  429. int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
  430. /*
  431. * Limit check must be consistent with the Kconfig limits
  432. * for CONFIG_RCU_CPU_STALL_TIMEOUT.
  433. */
  434. if (till_stall_check < 3) {
  435. WRITE_ONCE(rcu_cpu_stall_timeout, 3);
  436. till_stall_check = 3;
  437. } else if (till_stall_check > 300) {
  438. WRITE_ONCE(rcu_cpu_stall_timeout, 300);
  439. till_stall_check = 300;
  440. }
  441. return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
  442. }
  443. void rcu_sysrq_start(void)
  444. {
  445. if (!rcu_cpu_stall_suppress)
  446. rcu_cpu_stall_suppress = 2;
  447. }
  448. void rcu_sysrq_end(void)
  449. {
  450. if (rcu_cpu_stall_suppress == 2)
  451. rcu_cpu_stall_suppress = 0;
  452. }
  453. static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
  454. {
  455. rcu_cpu_stall_suppress = 1;
  456. return NOTIFY_DONE;
  457. }
  458. static struct notifier_block rcu_panic_block = {
  459. .notifier_call = rcu_panic,
  460. };
  461. static int __init check_cpu_stall_init(void)
  462. {
  463. atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
  464. return 0;
  465. }
  466. early_initcall(check_cpu_stall_init);
  467. #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
  468. #ifdef CONFIG_TASKS_RCU
  469. /*
  470. * Simple variant of RCU whose quiescent states are voluntary context switch,
  471. * user-space execution, and idle. As such, grace periods can take one good
  472. * long time. There are no read-side primitives similar to rcu_read_lock()
  473. * and rcu_read_unlock() because this implementation is intended to get
  474. * the system into a safe state for some of the manipulations involved in
  475. * tracing and the like. Finally, this implementation does not support
  476. * high call_rcu_tasks() rates from multiple CPUs. If this is required,
  477. * per-CPU callback lists will be needed.
  478. */
  479. /* Global list of callbacks and associated lock. */
  480. static struct rcu_head *rcu_tasks_cbs_head;
  481. static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  482. static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
  483. static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
  484. /* Track exiting tasks in order to allow them to be waited for. */
  485. DEFINE_SRCU(tasks_rcu_exit_srcu);
  486. /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
  487. static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
  488. module_param(rcu_task_stall_timeout, int, 0644);
  489. static void rcu_spawn_tasks_kthread(void);
  490. /*
  491. * Post an RCU-tasks callback. First call must be from process context
  492. * after the scheduler if fully operational.
  493. */
  494. void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
  495. {
  496. unsigned long flags;
  497. bool needwake;
  498. rhp->next = NULL;
  499. rhp->func = func;
  500. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  501. needwake = !rcu_tasks_cbs_head;
  502. *rcu_tasks_cbs_tail = rhp;
  503. rcu_tasks_cbs_tail = &rhp->next;
  504. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  505. if (needwake) {
  506. rcu_spawn_tasks_kthread();
  507. wake_up(&rcu_tasks_cbs_wq);
  508. }
  509. }
  510. EXPORT_SYMBOL_GPL(call_rcu_tasks);
  511. /**
  512. * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
  513. *
  514. * Control will return to the caller some time after a full rcu-tasks
  515. * grace period has elapsed, in other words after all currently
  516. * executing rcu-tasks read-side critical sections have elapsed. These
  517. * read-side critical sections are delimited by calls to schedule(),
  518. * cond_resched_rcu_qs(), idle execution, userspace execution, calls
  519. * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
  520. *
  521. * This is a very specialized primitive, intended only for a few uses in
  522. * tracing and other situations requiring manipulation of function
  523. * preambles and profiling hooks. The synchronize_rcu_tasks() function
  524. * is not (yet) intended for heavy use from multiple CPUs.
  525. *
  526. * Note that this guarantee implies further memory-ordering guarantees.
  527. * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
  528. * each CPU is guaranteed to have executed a full memory barrier since the
  529. * end of its last RCU-tasks read-side critical section whose beginning
  530. * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
  531. * having an RCU-tasks read-side critical section that extends beyond
  532. * the return from synchronize_rcu_tasks() is guaranteed to have executed
  533. * a full memory barrier after the beginning of synchronize_rcu_tasks()
  534. * and before the beginning of that RCU-tasks read-side critical section.
  535. * Note that these guarantees include CPUs that are offline, idle, or
  536. * executing in user mode, as well as CPUs that are executing in the kernel.
  537. *
  538. * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
  539. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  540. * to have executed a full memory barrier during the execution of
  541. * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
  542. * (but again only if the system has more than one CPU).
  543. */
  544. void synchronize_rcu_tasks(void)
  545. {
  546. /* Complain if the scheduler has not started. */
  547. RCU_LOCKDEP_WARN(!rcu_scheduler_active,
  548. "synchronize_rcu_tasks called too soon");
  549. /* Wait for the grace period. */
  550. wait_rcu_gp(call_rcu_tasks);
  551. }
  552. EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
  553. /**
  554. * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
  555. *
  556. * Although the current implementation is guaranteed to wait, it is not
  557. * obligated to, for example, if there are no pending callbacks.
  558. */
  559. void rcu_barrier_tasks(void)
  560. {
  561. /* There is only one callback queue, so this is easy. ;-) */
  562. synchronize_rcu_tasks();
  563. }
  564. EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
  565. /* See if tasks are still holding out, complain if so. */
  566. static void check_holdout_task(struct task_struct *t,
  567. bool needreport, bool *firstreport)
  568. {
  569. int cpu;
  570. if (!READ_ONCE(t->rcu_tasks_holdout) ||
  571. t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
  572. !READ_ONCE(t->on_rq) ||
  573. (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
  574. !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
  575. WRITE_ONCE(t->rcu_tasks_holdout, false);
  576. list_del_init(&t->rcu_tasks_holdout_list);
  577. put_task_struct(t);
  578. return;
  579. }
  580. if (!needreport)
  581. return;
  582. if (*firstreport) {
  583. pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
  584. *firstreport = false;
  585. }
  586. cpu = task_cpu(t);
  587. pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
  588. t, ".I"[is_idle_task(t)],
  589. "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
  590. t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
  591. t->rcu_tasks_idle_cpu, cpu);
  592. sched_show_task(t);
  593. }
  594. /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
  595. static int __noreturn rcu_tasks_kthread(void *arg)
  596. {
  597. unsigned long flags;
  598. struct task_struct *g, *t;
  599. unsigned long lastreport;
  600. struct rcu_head *list;
  601. struct rcu_head *next;
  602. LIST_HEAD(rcu_tasks_holdouts);
  603. /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
  604. housekeeping_affine(current);
  605. /*
  606. * Each pass through the following loop makes one check for
  607. * newly arrived callbacks, and, if there are some, waits for
  608. * one RCU-tasks grace period and then invokes the callbacks.
  609. * This loop is terminated by the system going down. ;-)
  610. */
  611. for (;;) {
  612. /* Pick up any new callbacks. */
  613. raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
  614. list = rcu_tasks_cbs_head;
  615. rcu_tasks_cbs_head = NULL;
  616. rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
  617. raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
  618. /* If there were none, wait a bit and start over. */
  619. if (!list) {
  620. wait_event_interruptible(rcu_tasks_cbs_wq,
  621. rcu_tasks_cbs_head);
  622. if (!rcu_tasks_cbs_head) {
  623. WARN_ON(signal_pending(current));
  624. schedule_timeout_interruptible(HZ/10);
  625. }
  626. continue;
  627. }
  628. /*
  629. * Wait for all pre-existing t->on_rq and t->nvcsw
  630. * transitions to complete. Invoking synchronize_sched()
  631. * suffices because all these transitions occur with
  632. * interrupts disabled. Without this synchronize_sched(),
  633. * a read-side critical section that started before the
  634. * grace period might be incorrectly seen as having started
  635. * after the grace period.
  636. *
  637. * This synchronize_sched() also dispenses with the
  638. * need for a memory barrier on the first store to
  639. * ->rcu_tasks_holdout, as it forces the store to happen
  640. * after the beginning of the grace period.
  641. */
  642. synchronize_sched();
  643. /*
  644. * There were callbacks, so we need to wait for an
  645. * RCU-tasks grace period. Start off by scanning
  646. * the task list for tasks that are not already
  647. * voluntarily blocked. Mark these tasks and make
  648. * a list of them in rcu_tasks_holdouts.
  649. */
  650. rcu_read_lock();
  651. for_each_process_thread(g, t) {
  652. if (t != current && READ_ONCE(t->on_rq) &&
  653. !is_idle_task(t)) {
  654. get_task_struct(t);
  655. t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
  656. WRITE_ONCE(t->rcu_tasks_holdout, true);
  657. list_add(&t->rcu_tasks_holdout_list,
  658. &rcu_tasks_holdouts);
  659. }
  660. }
  661. rcu_read_unlock();
  662. /*
  663. * Wait for tasks that are in the process of exiting.
  664. * This does only part of the job, ensuring that all
  665. * tasks that were previously exiting reach the point
  666. * where they have disabled preemption, allowing the
  667. * later synchronize_sched() to finish the job.
  668. */
  669. synchronize_srcu(&tasks_rcu_exit_srcu);
  670. /*
  671. * Each pass through the following loop scans the list
  672. * of holdout tasks, removing any that are no longer
  673. * holdouts. When the list is empty, we are done.
  674. */
  675. lastreport = jiffies;
  676. while (!list_empty(&rcu_tasks_holdouts)) {
  677. bool firstreport;
  678. bool needreport;
  679. int rtst;
  680. struct task_struct *t1;
  681. schedule_timeout_interruptible(HZ);
  682. rtst = READ_ONCE(rcu_task_stall_timeout);
  683. needreport = rtst > 0 &&
  684. time_after(jiffies, lastreport + rtst);
  685. if (needreport)
  686. lastreport = jiffies;
  687. firstreport = true;
  688. WARN_ON(signal_pending(current));
  689. list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
  690. rcu_tasks_holdout_list) {
  691. check_holdout_task(t, needreport, &firstreport);
  692. cond_resched();
  693. }
  694. }
  695. /*
  696. * Because ->on_rq and ->nvcsw are not guaranteed
  697. * to have a full memory barriers prior to them in the
  698. * schedule() path, memory reordering on other CPUs could
  699. * cause their RCU-tasks read-side critical sections to
  700. * extend past the end of the grace period. However,
  701. * because these ->nvcsw updates are carried out with
  702. * interrupts disabled, we can use synchronize_sched()
  703. * to force the needed ordering on all such CPUs.
  704. *
  705. * This synchronize_sched() also confines all
  706. * ->rcu_tasks_holdout accesses to be within the grace
  707. * period, avoiding the need for memory barriers for
  708. * ->rcu_tasks_holdout accesses.
  709. *
  710. * In addition, this synchronize_sched() waits for exiting
  711. * tasks to complete their final preempt_disable() region
  712. * of execution, cleaning up after the synchronize_srcu()
  713. * above.
  714. */
  715. synchronize_sched();
  716. /* Invoke the callbacks. */
  717. while (list) {
  718. next = list->next;
  719. local_bh_disable();
  720. list->func(list);
  721. local_bh_enable();
  722. list = next;
  723. cond_resched();
  724. }
  725. schedule_timeout_uninterruptible(HZ/10);
  726. }
  727. }
  728. /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
  729. static void rcu_spawn_tasks_kthread(void)
  730. {
  731. static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
  732. static struct task_struct *rcu_tasks_kthread_ptr;
  733. struct task_struct *t;
  734. if (READ_ONCE(rcu_tasks_kthread_ptr)) {
  735. smp_mb(); /* Ensure caller sees full kthread. */
  736. return;
  737. }
  738. mutex_lock(&rcu_tasks_kthread_mutex);
  739. if (rcu_tasks_kthread_ptr) {
  740. mutex_unlock(&rcu_tasks_kthread_mutex);
  741. return;
  742. }
  743. t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
  744. BUG_ON(IS_ERR(t));
  745. smp_mb(); /* Ensure others see full kthread. */
  746. WRITE_ONCE(rcu_tasks_kthread_ptr, t);
  747. mutex_unlock(&rcu_tasks_kthread_mutex);
  748. }
  749. #endif /* #ifdef CONFIG_TASKS_RCU */
  750. #ifdef CONFIG_PROVE_RCU
  751. /*
  752. * Early boot self test parameters, one for each flavor
  753. */
  754. static bool rcu_self_test;
  755. static bool rcu_self_test_bh;
  756. static bool rcu_self_test_sched;
  757. module_param(rcu_self_test, bool, 0444);
  758. module_param(rcu_self_test_bh, bool, 0444);
  759. module_param(rcu_self_test_sched, bool, 0444);
  760. static int rcu_self_test_counter;
  761. static void test_callback(struct rcu_head *r)
  762. {
  763. rcu_self_test_counter++;
  764. pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
  765. }
  766. static void early_boot_test_call_rcu(void)
  767. {
  768. static struct rcu_head head;
  769. call_rcu(&head, test_callback);
  770. }
  771. static void early_boot_test_call_rcu_bh(void)
  772. {
  773. static struct rcu_head head;
  774. call_rcu_bh(&head, test_callback);
  775. }
  776. static void early_boot_test_call_rcu_sched(void)
  777. {
  778. static struct rcu_head head;
  779. call_rcu_sched(&head, test_callback);
  780. }
  781. void rcu_early_boot_tests(void)
  782. {
  783. pr_info("Running RCU self tests\n");
  784. if (rcu_self_test)
  785. early_boot_test_call_rcu();
  786. if (rcu_self_test_bh)
  787. early_boot_test_call_rcu_bh();
  788. if (rcu_self_test_sched)
  789. early_boot_test_call_rcu_sched();
  790. }
  791. static int rcu_verify_early_boot_tests(void)
  792. {
  793. int ret = 0;
  794. int early_boot_test_counter = 0;
  795. if (rcu_self_test) {
  796. early_boot_test_counter++;
  797. rcu_barrier();
  798. }
  799. if (rcu_self_test_bh) {
  800. early_boot_test_counter++;
  801. rcu_barrier_bh();
  802. }
  803. if (rcu_self_test_sched) {
  804. early_boot_test_counter++;
  805. rcu_barrier_sched();
  806. }
  807. if (rcu_self_test_counter != early_boot_test_counter) {
  808. WARN_ON(1);
  809. ret = -1;
  810. }
  811. return ret;
  812. }
  813. late_initcall(rcu_verify_early_boot_tests);
  814. #else
  815. void rcu_early_boot_tests(void) {}
  816. #endif /* CONFIG_PROVE_RCU */