tree.c 142 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/trace_events.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. /*
  68. * In order to export the rcu_state name to the tracing tools, it
  69. * needs to be added in the __tracepoint_string section.
  70. * This requires defining a separate variable tp_<sname>_varname
  71. * that points to the string being used, and this will allow
  72. * the tracing userspace tools to be able to decipher the string
  73. * address to the matching string.
  74. */
  75. #ifdef CONFIG_TRACING
  76. # define DEFINE_RCU_TPS(sname) \
  77. static char sname##_varname[] = #sname; \
  78. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  79. # define RCU_STATE_NAME(sname) sname##_varname
  80. #else
  81. # define DEFINE_RCU_TPS(sname)
  82. # define RCU_STATE_NAME(sname) __stringify(sname)
  83. #endif
  84. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  85. DEFINE_RCU_TPS(sname) \
  86. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  87. struct rcu_state sname##_state = { \
  88. .level = { &sname##_state.node[0] }, \
  89. .rda = &sname##_data, \
  90. .call = cr, \
  91. .gp_state = RCU_GP_IDLE, \
  92. .gpnum = 0UL - 300UL, \
  93. .completed = 0UL - 300UL, \
  94. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  95. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  96. .orphan_donetail = &sname##_state.orphan_donelist, \
  97. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  98. .name = RCU_STATE_NAME(sname), \
  99. .abbr = sabbr, \
  100. }
  101. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  102. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  103. static struct rcu_state *const rcu_state_p;
  104. static struct rcu_data __percpu *const rcu_data_p;
  105. LIST_HEAD(rcu_struct_flavors);
  106. /* Dump rcu_node combining tree at boot to verify correct setup. */
  107. static bool dump_tree;
  108. module_param(dump_tree, bool, 0444);
  109. /* Control rcu_node-tree auto-balancing at boot time. */
  110. static bool rcu_fanout_exact;
  111. module_param(rcu_fanout_exact, bool, 0444);
  112. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  113. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  114. module_param(rcu_fanout_leaf, int, 0444);
  115. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  116. /* Number of rcu_nodes at specified level. */
  117. static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  118. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  119. /*
  120. * The rcu_scheduler_active variable transitions from zero to one just
  121. * before the first task is spawned. So when this variable is zero, RCU
  122. * can assume that there is but one task, allowing RCU to (for example)
  123. * optimize synchronize_sched() to a simple barrier(). When this variable
  124. * is one, RCU must actually do all the hard work required to detect real
  125. * grace periods. This variable is also used to suppress boot-time false
  126. * positives from lockdep-RCU error checking.
  127. */
  128. int rcu_scheduler_active __read_mostly;
  129. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  130. /*
  131. * The rcu_scheduler_fully_active variable transitions from zero to one
  132. * during the early_initcall() processing, which is after the scheduler
  133. * is capable of creating new tasks. So RCU processing (for example,
  134. * creating tasks for RCU priority boosting) must be delayed until after
  135. * rcu_scheduler_fully_active transitions from zero to one. We also
  136. * currently delay invocation of any RCU callbacks until after this point.
  137. *
  138. * It might later prove better for people registering RCU callbacks during
  139. * early boot to take responsibility for these callbacks, but one step at
  140. * a time.
  141. */
  142. static int rcu_scheduler_fully_active __read_mostly;
  143. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  144. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  145. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  146. static void invoke_rcu_core(void);
  147. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  148. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  149. struct rcu_data *rdp, bool wake);
  150. /* rcuc/rcub kthread realtime priority */
  151. #ifdef CONFIG_RCU_KTHREAD_PRIO
  152. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  153. #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
  154. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  155. #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
  156. module_param(kthread_prio, int, 0644);
  157. /* Delay in jiffies for grace-period initialization delays, debug only. */
  158. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
  159. static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
  160. module_param(gp_preinit_delay, int, 0644);
  161. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  162. static const int gp_preinit_delay;
  163. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  164. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
  165. static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
  166. module_param(gp_init_delay, int, 0644);
  167. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  168. static const int gp_init_delay;
  169. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  170. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
  171. static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
  172. module_param(gp_cleanup_delay, int, 0644);
  173. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  174. static const int gp_cleanup_delay;
  175. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  176. /*
  177. * Number of grace periods between delays, normalized by the duration of
  178. * the delay. The longer the the delay, the more the grace periods between
  179. * each delay. The reason for this normalization is that it means that,
  180. * for non-zero delays, the overall slowdown of grace periods is constant
  181. * regardless of the duration of the delay. This arrangement balances
  182. * the need for long delays to increase some race probabilities with the
  183. * need for fast grace periods to increase other race probabilities.
  184. */
  185. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  186. /*
  187. * Track the rcutorture test sequence number and the update version
  188. * number within a given test. The rcutorture_testseq is incremented
  189. * on every rcutorture module load and unload, so has an odd value
  190. * when a test is running. The rcutorture_vernum is set to zero
  191. * when rcutorture starts and is incremented on each rcutorture update.
  192. * These variables enable correlating rcutorture output with the
  193. * RCU tracing information.
  194. */
  195. unsigned long rcutorture_testseq;
  196. unsigned long rcutorture_vernum;
  197. /*
  198. * Compute the mask of online CPUs for the specified rcu_node structure.
  199. * This will not be stable unless the rcu_node structure's ->lock is
  200. * held, but the bit corresponding to the current CPU will be stable
  201. * in most contexts.
  202. */
  203. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  204. {
  205. return READ_ONCE(rnp->qsmaskinitnext);
  206. }
  207. /*
  208. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  209. * permit this function to be invoked without holding the root rcu_node
  210. * structure's ->lock, but of course results can be subject to change.
  211. */
  212. static int rcu_gp_in_progress(struct rcu_state *rsp)
  213. {
  214. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  215. }
  216. /*
  217. * Note a quiescent state. Because we do not need to know
  218. * how many quiescent states passed, just if there was at least
  219. * one since the start of the grace period, this just sets a flag.
  220. * The caller must have disabled preemption.
  221. */
  222. void rcu_sched_qs(void)
  223. {
  224. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
  225. return;
  226. trace_rcu_grace_period(TPS("rcu_sched"),
  227. __this_cpu_read(rcu_sched_data.gpnum),
  228. TPS("cpuqs"));
  229. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  230. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  231. return;
  232. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  233. rcu_report_exp_rdp(&rcu_sched_state,
  234. this_cpu_ptr(&rcu_sched_data), true);
  235. }
  236. void rcu_bh_qs(void)
  237. {
  238. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  239. trace_rcu_grace_period(TPS("rcu_bh"),
  240. __this_cpu_read(rcu_bh_data.gpnum),
  241. TPS("cpuqs"));
  242. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  243. }
  244. }
  245. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  246. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  247. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  248. .dynticks = ATOMIC_INIT(1),
  249. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  250. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  251. .dynticks_idle = ATOMIC_INIT(1),
  252. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  253. };
  254. DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
  255. EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
  256. /*
  257. * Let the RCU core know that this CPU has gone through the scheduler,
  258. * which is a quiescent state. This is called when the need for a
  259. * quiescent state is urgent, so we burn an atomic operation and full
  260. * memory barriers to let the RCU core know about it, regardless of what
  261. * this CPU might (or might not) do in the near future.
  262. *
  263. * We inform the RCU core by emulating a zero-duration dyntick-idle
  264. * period, which we in turn do by incrementing the ->dynticks counter
  265. * by two.
  266. *
  267. * The caller must have disabled interrupts.
  268. */
  269. static void rcu_momentary_dyntick_idle(void)
  270. {
  271. struct rcu_data *rdp;
  272. struct rcu_dynticks *rdtp;
  273. int resched_mask;
  274. struct rcu_state *rsp;
  275. /*
  276. * Yes, we can lose flag-setting operations. This is OK, because
  277. * the flag will be set again after some delay.
  278. */
  279. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  280. raw_cpu_write(rcu_sched_qs_mask, 0);
  281. /* Find the flavor that needs a quiescent state. */
  282. for_each_rcu_flavor(rsp) {
  283. rdp = raw_cpu_ptr(rsp->rda);
  284. if (!(resched_mask & rsp->flavor_mask))
  285. continue;
  286. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  287. if (READ_ONCE(rdp->mynode->completed) !=
  288. READ_ONCE(rdp->cond_resched_completed))
  289. continue;
  290. /*
  291. * Pretend to be momentarily idle for the quiescent state.
  292. * This allows the grace-period kthread to record the
  293. * quiescent state, with no need for this CPU to do anything
  294. * further.
  295. */
  296. rdtp = this_cpu_ptr(&rcu_dynticks);
  297. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  298. atomic_add(2, &rdtp->dynticks); /* QS. */
  299. smp_mb__after_atomic(); /* Later stuff after QS. */
  300. break;
  301. }
  302. }
  303. /*
  304. * Note a context switch. This is a quiescent state for RCU-sched,
  305. * and requires special handling for preemptible RCU.
  306. * The caller must have disabled interrupts.
  307. */
  308. void rcu_note_context_switch(void)
  309. {
  310. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  311. trace_rcu_utilization(TPS("Start context switch"));
  312. rcu_sched_qs();
  313. rcu_preempt_note_context_switch();
  314. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  315. rcu_momentary_dyntick_idle();
  316. trace_rcu_utilization(TPS("End context switch"));
  317. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  318. }
  319. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  320. /*
  321. * Register a quiescent state for all RCU flavors. If there is an
  322. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  323. * dyntick-idle quiescent state visible to other CPUs (but only for those
  324. * RCU flavors in desperate need of a quiescent state, which will normally
  325. * be none of them). Either way, do a lightweight quiescent state for
  326. * all RCU flavors.
  327. *
  328. * The barrier() calls are redundant in the common case when this is
  329. * called externally, but just in case this is called from within this
  330. * file.
  331. *
  332. */
  333. void rcu_all_qs(void)
  334. {
  335. unsigned long flags;
  336. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  337. if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
  338. local_irq_save(flags);
  339. rcu_momentary_dyntick_idle();
  340. local_irq_restore(flags);
  341. }
  342. this_cpu_inc(rcu_qs_ctr);
  343. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  344. }
  345. EXPORT_SYMBOL_GPL(rcu_all_qs);
  346. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  347. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  348. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  349. module_param(blimit, long, 0444);
  350. module_param(qhimark, long, 0444);
  351. module_param(qlowmark, long, 0444);
  352. static ulong jiffies_till_first_fqs = ULONG_MAX;
  353. static ulong jiffies_till_next_fqs = ULONG_MAX;
  354. module_param(jiffies_till_first_fqs, ulong, 0644);
  355. module_param(jiffies_till_next_fqs, ulong, 0644);
  356. /*
  357. * How long the grace period must be before we start recruiting
  358. * quiescent-state help from rcu_note_context_switch().
  359. */
  360. static ulong jiffies_till_sched_qs = HZ / 20;
  361. module_param(jiffies_till_sched_qs, ulong, 0644);
  362. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  363. struct rcu_data *rdp);
  364. static void force_qs_rnp(struct rcu_state *rsp,
  365. int (*f)(struct rcu_data *rsp, bool *isidle,
  366. unsigned long *maxj),
  367. bool *isidle, unsigned long *maxj);
  368. static void force_quiescent_state(struct rcu_state *rsp);
  369. static int rcu_pending(void);
  370. /*
  371. * Return the number of RCU batches started thus far for debug & stats.
  372. */
  373. unsigned long rcu_batches_started(void)
  374. {
  375. return rcu_state_p->gpnum;
  376. }
  377. EXPORT_SYMBOL_GPL(rcu_batches_started);
  378. /*
  379. * Return the number of RCU-sched batches started thus far for debug & stats.
  380. */
  381. unsigned long rcu_batches_started_sched(void)
  382. {
  383. return rcu_sched_state.gpnum;
  384. }
  385. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  386. /*
  387. * Return the number of RCU BH batches started thus far for debug & stats.
  388. */
  389. unsigned long rcu_batches_started_bh(void)
  390. {
  391. return rcu_bh_state.gpnum;
  392. }
  393. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  394. /*
  395. * Return the number of RCU batches completed thus far for debug & stats.
  396. */
  397. unsigned long rcu_batches_completed(void)
  398. {
  399. return rcu_state_p->completed;
  400. }
  401. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  402. /*
  403. * Return the number of RCU-sched batches completed thus far for debug & stats.
  404. */
  405. unsigned long rcu_batches_completed_sched(void)
  406. {
  407. return rcu_sched_state.completed;
  408. }
  409. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  410. /*
  411. * Return the number of RCU BH batches completed thus far for debug & stats.
  412. */
  413. unsigned long rcu_batches_completed_bh(void)
  414. {
  415. return rcu_bh_state.completed;
  416. }
  417. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  418. /*
  419. * Force a quiescent state.
  420. */
  421. void rcu_force_quiescent_state(void)
  422. {
  423. force_quiescent_state(rcu_state_p);
  424. }
  425. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  426. /*
  427. * Force a quiescent state for RCU BH.
  428. */
  429. void rcu_bh_force_quiescent_state(void)
  430. {
  431. force_quiescent_state(&rcu_bh_state);
  432. }
  433. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  434. /*
  435. * Force a quiescent state for RCU-sched.
  436. */
  437. void rcu_sched_force_quiescent_state(void)
  438. {
  439. force_quiescent_state(&rcu_sched_state);
  440. }
  441. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  442. /*
  443. * Show the state of the grace-period kthreads.
  444. */
  445. void show_rcu_gp_kthreads(void)
  446. {
  447. struct rcu_state *rsp;
  448. for_each_rcu_flavor(rsp) {
  449. pr_info("%s: wait state: %d ->state: %#lx\n",
  450. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  451. /* sched_show_task(rsp->gp_kthread); */
  452. }
  453. }
  454. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  455. /*
  456. * Record the number of times rcutorture tests have been initiated and
  457. * terminated. This information allows the debugfs tracing stats to be
  458. * correlated to the rcutorture messages, even when the rcutorture module
  459. * is being repeatedly loaded and unloaded. In other words, we cannot
  460. * store this state in rcutorture itself.
  461. */
  462. void rcutorture_record_test_transition(void)
  463. {
  464. rcutorture_testseq++;
  465. rcutorture_vernum = 0;
  466. }
  467. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  468. /*
  469. * Send along grace-period-related data for rcutorture diagnostics.
  470. */
  471. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  472. unsigned long *gpnum, unsigned long *completed)
  473. {
  474. struct rcu_state *rsp = NULL;
  475. switch (test_type) {
  476. case RCU_FLAVOR:
  477. rsp = rcu_state_p;
  478. break;
  479. case RCU_BH_FLAVOR:
  480. rsp = &rcu_bh_state;
  481. break;
  482. case RCU_SCHED_FLAVOR:
  483. rsp = &rcu_sched_state;
  484. break;
  485. default:
  486. break;
  487. }
  488. if (rsp != NULL) {
  489. *flags = READ_ONCE(rsp->gp_flags);
  490. *gpnum = READ_ONCE(rsp->gpnum);
  491. *completed = READ_ONCE(rsp->completed);
  492. return;
  493. }
  494. *flags = 0;
  495. *gpnum = 0;
  496. *completed = 0;
  497. }
  498. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  499. /*
  500. * Record the number of writer passes through the current rcutorture test.
  501. * This is also used to correlate debugfs tracing stats with the rcutorture
  502. * messages.
  503. */
  504. void rcutorture_record_progress(unsigned long vernum)
  505. {
  506. rcutorture_vernum++;
  507. }
  508. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  509. /*
  510. * Does the CPU have callbacks ready to be invoked?
  511. */
  512. static int
  513. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  514. {
  515. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  516. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  517. }
  518. /*
  519. * Return the root node of the specified rcu_state structure.
  520. */
  521. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  522. {
  523. return &rsp->node[0];
  524. }
  525. /*
  526. * Is there any need for future grace periods?
  527. * Interrupts must be disabled. If the caller does not hold the root
  528. * rnp_node structure's ->lock, the results are advisory only.
  529. */
  530. static int rcu_future_needs_gp(struct rcu_state *rsp)
  531. {
  532. struct rcu_node *rnp = rcu_get_root(rsp);
  533. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  534. int *fp = &rnp->need_future_gp[idx];
  535. return READ_ONCE(*fp);
  536. }
  537. /*
  538. * Does the current CPU require a not-yet-started grace period?
  539. * The caller must have disabled interrupts to prevent races with
  540. * normal callback registry.
  541. */
  542. static bool
  543. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  544. {
  545. int i;
  546. if (rcu_gp_in_progress(rsp))
  547. return false; /* No, a grace period is already in progress. */
  548. if (rcu_future_needs_gp(rsp))
  549. return true; /* Yes, a no-CBs CPU needs one. */
  550. if (!rdp->nxttail[RCU_NEXT_TAIL])
  551. return false; /* No, this is a no-CBs (or offline) CPU. */
  552. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  553. return true; /* Yes, CPU has newly registered callbacks. */
  554. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  555. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  556. ULONG_CMP_LT(READ_ONCE(rsp->completed),
  557. rdp->nxtcompleted[i]))
  558. return true; /* Yes, CBs for future grace period. */
  559. return false; /* No grace period needed. */
  560. }
  561. /*
  562. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  563. *
  564. * If the new value of the ->dynticks_nesting counter now is zero,
  565. * we really have entered idle, and must do the appropriate accounting.
  566. * The caller must have disabled interrupts.
  567. */
  568. static void rcu_eqs_enter_common(long long oldval, bool user)
  569. {
  570. struct rcu_state *rsp;
  571. struct rcu_data *rdp;
  572. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  573. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  574. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  575. !user && !is_idle_task(current)) {
  576. struct task_struct *idle __maybe_unused =
  577. idle_task(smp_processor_id());
  578. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  579. ftrace_dump(DUMP_ORIG);
  580. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  581. current->pid, current->comm,
  582. idle->pid, idle->comm); /* must be idle task! */
  583. }
  584. for_each_rcu_flavor(rsp) {
  585. rdp = this_cpu_ptr(rsp->rda);
  586. do_nocb_deferred_wakeup(rdp);
  587. }
  588. rcu_prepare_for_idle();
  589. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  590. smp_mb__before_atomic(); /* See above. */
  591. atomic_inc(&rdtp->dynticks);
  592. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  593. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  594. atomic_read(&rdtp->dynticks) & 0x1);
  595. rcu_dynticks_task_enter();
  596. /*
  597. * It is illegal to enter an extended quiescent state while
  598. * in an RCU read-side critical section.
  599. */
  600. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  601. "Illegal idle entry in RCU read-side critical section.");
  602. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  603. "Illegal idle entry in RCU-bh read-side critical section.");
  604. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  605. "Illegal idle entry in RCU-sched read-side critical section.");
  606. }
  607. /*
  608. * Enter an RCU extended quiescent state, which can be either the
  609. * idle loop or adaptive-tickless usermode execution.
  610. */
  611. static void rcu_eqs_enter(bool user)
  612. {
  613. long long oldval;
  614. struct rcu_dynticks *rdtp;
  615. rdtp = this_cpu_ptr(&rcu_dynticks);
  616. oldval = rdtp->dynticks_nesting;
  617. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  618. (oldval & DYNTICK_TASK_NEST_MASK) == 0);
  619. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  620. rdtp->dynticks_nesting = 0;
  621. rcu_eqs_enter_common(oldval, user);
  622. } else {
  623. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  624. }
  625. }
  626. /**
  627. * rcu_idle_enter - inform RCU that current CPU is entering idle
  628. *
  629. * Enter idle mode, in other words, -leave- the mode in which RCU
  630. * read-side critical sections can occur. (Though RCU read-side
  631. * critical sections can occur in irq handlers in idle, a possibility
  632. * handled by irq_enter() and irq_exit().)
  633. *
  634. * We crowbar the ->dynticks_nesting field to zero to allow for
  635. * the possibility of usermode upcalls having messed up our count
  636. * of interrupt nesting level during the prior busy period.
  637. */
  638. void rcu_idle_enter(void)
  639. {
  640. unsigned long flags;
  641. local_irq_save(flags);
  642. rcu_eqs_enter(false);
  643. rcu_sysidle_enter(0);
  644. local_irq_restore(flags);
  645. }
  646. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  647. #ifdef CONFIG_NO_HZ_FULL
  648. /**
  649. * rcu_user_enter - inform RCU that we are resuming userspace.
  650. *
  651. * Enter RCU idle mode right before resuming userspace. No use of RCU
  652. * is permitted between this call and rcu_user_exit(). This way the
  653. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  654. * when the CPU runs in userspace.
  655. */
  656. void rcu_user_enter(void)
  657. {
  658. rcu_eqs_enter(1);
  659. }
  660. #endif /* CONFIG_NO_HZ_FULL */
  661. /**
  662. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  663. *
  664. * Exit from an interrupt handler, which might possibly result in entering
  665. * idle mode, in other words, leaving the mode in which read-side critical
  666. * sections can occur. The caller must have disabled interrupts.
  667. *
  668. * This code assumes that the idle loop never does anything that might
  669. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  670. * architecture violates this assumption, RCU will give you what you
  671. * deserve, good and hard. But very infrequently and irreproducibly.
  672. *
  673. * Use things like work queues to work around this limitation.
  674. *
  675. * You have been warned.
  676. */
  677. void rcu_irq_exit(void)
  678. {
  679. long long oldval;
  680. struct rcu_dynticks *rdtp;
  681. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
  682. rdtp = this_cpu_ptr(&rcu_dynticks);
  683. oldval = rdtp->dynticks_nesting;
  684. rdtp->dynticks_nesting--;
  685. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  686. rdtp->dynticks_nesting < 0);
  687. if (rdtp->dynticks_nesting)
  688. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  689. else
  690. rcu_eqs_enter_common(oldval, true);
  691. rcu_sysidle_enter(1);
  692. }
  693. /*
  694. * Wrapper for rcu_irq_exit() where interrupts are enabled.
  695. */
  696. void rcu_irq_exit_irqson(void)
  697. {
  698. unsigned long flags;
  699. local_irq_save(flags);
  700. rcu_irq_exit();
  701. local_irq_restore(flags);
  702. }
  703. /*
  704. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  705. *
  706. * If the new value of the ->dynticks_nesting counter was previously zero,
  707. * we really have exited idle, and must do the appropriate accounting.
  708. * The caller must have disabled interrupts.
  709. */
  710. static void rcu_eqs_exit_common(long long oldval, int user)
  711. {
  712. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  713. rcu_dynticks_task_exit();
  714. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  715. atomic_inc(&rdtp->dynticks);
  716. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  717. smp_mb__after_atomic(); /* See above. */
  718. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  719. !(atomic_read(&rdtp->dynticks) & 0x1));
  720. rcu_cleanup_after_idle();
  721. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  722. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  723. !user && !is_idle_task(current)) {
  724. struct task_struct *idle __maybe_unused =
  725. idle_task(smp_processor_id());
  726. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  727. oldval, rdtp->dynticks_nesting);
  728. ftrace_dump(DUMP_ORIG);
  729. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  730. current->pid, current->comm,
  731. idle->pid, idle->comm); /* must be idle task! */
  732. }
  733. }
  734. /*
  735. * Exit an RCU extended quiescent state, which can be either the
  736. * idle loop or adaptive-tickless usermode execution.
  737. */
  738. static void rcu_eqs_exit(bool user)
  739. {
  740. struct rcu_dynticks *rdtp;
  741. long long oldval;
  742. rdtp = this_cpu_ptr(&rcu_dynticks);
  743. oldval = rdtp->dynticks_nesting;
  744. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  745. if (oldval & DYNTICK_TASK_NEST_MASK) {
  746. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  747. } else {
  748. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  749. rcu_eqs_exit_common(oldval, user);
  750. }
  751. }
  752. /**
  753. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  754. *
  755. * Exit idle mode, in other words, -enter- the mode in which RCU
  756. * read-side critical sections can occur.
  757. *
  758. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  759. * allow for the possibility of usermode upcalls messing up our count
  760. * of interrupt nesting level during the busy period that is just
  761. * now starting.
  762. */
  763. void rcu_idle_exit(void)
  764. {
  765. unsigned long flags;
  766. local_irq_save(flags);
  767. rcu_eqs_exit(false);
  768. rcu_sysidle_exit(0);
  769. local_irq_restore(flags);
  770. }
  771. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  772. #ifdef CONFIG_NO_HZ_FULL
  773. /**
  774. * rcu_user_exit - inform RCU that we are exiting userspace.
  775. *
  776. * Exit RCU idle mode while entering the kernel because it can
  777. * run a RCU read side critical section anytime.
  778. */
  779. void rcu_user_exit(void)
  780. {
  781. rcu_eqs_exit(1);
  782. }
  783. #endif /* CONFIG_NO_HZ_FULL */
  784. /**
  785. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  786. *
  787. * Enter an interrupt handler, which might possibly result in exiting
  788. * idle mode, in other words, entering the mode in which read-side critical
  789. * sections can occur. The caller must have disabled interrupts.
  790. *
  791. * Note that the Linux kernel is fully capable of entering an interrupt
  792. * handler that it never exits, for example when doing upcalls to
  793. * user mode! This code assumes that the idle loop never does upcalls to
  794. * user mode. If your architecture does do upcalls from the idle loop (or
  795. * does anything else that results in unbalanced calls to the irq_enter()
  796. * and irq_exit() functions), RCU will give you what you deserve, good
  797. * and hard. But very infrequently and irreproducibly.
  798. *
  799. * Use things like work queues to work around this limitation.
  800. *
  801. * You have been warned.
  802. */
  803. void rcu_irq_enter(void)
  804. {
  805. struct rcu_dynticks *rdtp;
  806. long long oldval;
  807. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
  808. rdtp = this_cpu_ptr(&rcu_dynticks);
  809. oldval = rdtp->dynticks_nesting;
  810. rdtp->dynticks_nesting++;
  811. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  812. rdtp->dynticks_nesting == 0);
  813. if (oldval)
  814. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  815. else
  816. rcu_eqs_exit_common(oldval, true);
  817. rcu_sysidle_exit(1);
  818. }
  819. /*
  820. * Wrapper for rcu_irq_enter() where interrupts are enabled.
  821. */
  822. void rcu_irq_enter_irqson(void)
  823. {
  824. unsigned long flags;
  825. local_irq_save(flags);
  826. rcu_irq_enter();
  827. local_irq_restore(flags);
  828. }
  829. /**
  830. * rcu_nmi_enter - inform RCU of entry to NMI context
  831. *
  832. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  833. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  834. * that the CPU is active. This implementation permits nested NMIs, as
  835. * long as the nesting level does not overflow an int. (You will probably
  836. * run out of stack space first.)
  837. */
  838. void rcu_nmi_enter(void)
  839. {
  840. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  841. int incby = 2;
  842. /* Complain about underflow. */
  843. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  844. /*
  845. * If idle from RCU viewpoint, atomically increment ->dynticks
  846. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  847. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  848. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  849. * to be in the outermost NMI handler that interrupted an RCU-idle
  850. * period (observation due to Andy Lutomirski).
  851. */
  852. if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
  853. smp_mb__before_atomic(); /* Force delay from prior write. */
  854. atomic_inc(&rdtp->dynticks);
  855. /* atomic_inc() before later RCU read-side crit sects */
  856. smp_mb__after_atomic(); /* See above. */
  857. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  858. incby = 1;
  859. }
  860. rdtp->dynticks_nmi_nesting += incby;
  861. barrier();
  862. }
  863. /**
  864. * rcu_nmi_exit - inform RCU of exit from NMI context
  865. *
  866. * If we are returning from the outermost NMI handler that interrupted an
  867. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  868. * to let the RCU grace-period handling know that the CPU is back to
  869. * being RCU-idle.
  870. */
  871. void rcu_nmi_exit(void)
  872. {
  873. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  874. /*
  875. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  876. * (We are exiting an NMI handler, so RCU better be paying attention
  877. * to us!)
  878. */
  879. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  880. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  881. /*
  882. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  883. * leave it in non-RCU-idle state.
  884. */
  885. if (rdtp->dynticks_nmi_nesting != 1) {
  886. rdtp->dynticks_nmi_nesting -= 2;
  887. return;
  888. }
  889. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  890. rdtp->dynticks_nmi_nesting = 0;
  891. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  892. smp_mb__before_atomic(); /* See above. */
  893. atomic_inc(&rdtp->dynticks);
  894. smp_mb__after_atomic(); /* Force delay to next write. */
  895. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  896. }
  897. /**
  898. * __rcu_is_watching - are RCU read-side critical sections safe?
  899. *
  900. * Return true if RCU is watching the running CPU, which means that
  901. * this CPU can safely enter RCU read-side critical sections. Unlike
  902. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  903. * least disabled preemption.
  904. */
  905. bool notrace __rcu_is_watching(void)
  906. {
  907. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  908. }
  909. /**
  910. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  911. *
  912. * If the current CPU is in its idle loop and is neither in an interrupt
  913. * or NMI handler, return true.
  914. */
  915. bool notrace rcu_is_watching(void)
  916. {
  917. bool ret;
  918. preempt_disable_notrace();
  919. ret = __rcu_is_watching();
  920. preempt_enable_notrace();
  921. return ret;
  922. }
  923. EXPORT_SYMBOL_GPL(rcu_is_watching);
  924. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  925. /*
  926. * Is the current CPU online? Disable preemption to avoid false positives
  927. * that could otherwise happen due to the current CPU number being sampled,
  928. * this task being preempted, its old CPU being taken offline, resuming
  929. * on some other CPU, then determining that its old CPU is now offline.
  930. * It is OK to use RCU on an offline processor during initial boot, hence
  931. * the check for rcu_scheduler_fully_active. Note also that it is OK
  932. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  933. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  934. * offline to continue to use RCU for one jiffy after marking itself
  935. * offline in the cpu_online_mask. This leniency is necessary given the
  936. * non-atomic nature of the online and offline processing, for example,
  937. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  938. * notifiers.
  939. *
  940. * This is also why RCU internally marks CPUs online during the
  941. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  942. *
  943. * Disable checking if in an NMI handler because we cannot safely report
  944. * errors from NMI handlers anyway.
  945. */
  946. bool rcu_lockdep_current_cpu_online(void)
  947. {
  948. struct rcu_data *rdp;
  949. struct rcu_node *rnp;
  950. bool ret;
  951. if (in_nmi())
  952. return true;
  953. preempt_disable();
  954. rdp = this_cpu_ptr(&rcu_sched_data);
  955. rnp = rdp->mynode;
  956. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  957. !rcu_scheduler_fully_active;
  958. preempt_enable();
  959. return ret;
  960. }
  961. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  962. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  963. /**
  964. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  965. *
  966. * If the current CPU is idle or running at a first-level (not nested)
  967. * interrupt from idle, return true. The caller must have at least
  968. * disabled preemption.
  969. */
  970. static int rcu_is_cpu_rrupt_from_idle(void)
  971. {
  972. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  973. }
  974. /*
  975. * Snapshot the specified CPU's dynticks counter so that we can later
  976. * credit them with an implicit quiescent state. Return 1 if this CPU
  977. * is in dynticks idle mode, which is an extended quiescent state.
  978. */
  979. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  980. bool *isidle, unsigned long *maxj)
  981. {
  982. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  983. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  984. if ((rdp->dynticks_snap & 0x1) == 0) {
  985. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  986. return 1;
  987. } else {
  988. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
  989. rdp->mynode->gpnum))
  990. WRITE_ONCE(rdp->gpwrap, true);
  991. return 0;
  992. }
  993. }
  994. /*
  995. * Return true if the specified CPU has passed through a quiescent
  996. * state by virtue of being in or having passed through an dynticks
  997. * idle state since the last call to dyntick_save_progress_counter()
  998. * for this same CPU, or by virtue of having been offline.
  999. */
  1000. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  1001. bool *isidle, unsigned long *maxj)
  1002. {
  1003. unsigned int curr;
  1004. int *rcrmp;
  1005. unsigned int snap;
  1006. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  1007. snap = (unsigned int)rdp->dynticks_snap;
  1008. /*
  1009. * If the CPU passed through or entered a dynticks idle phase with
  1010. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1011. * already acknowledged the request to pass through a quiescent
  1012. * state. Either way, that CPU cannot possibly be in an RCU
  1013. * read-side critical section that started before the beginning
  1014. * of the current RCU grace period.
  1015. */
  1016. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  1017. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1018. rdp->dynticks_fqs++;
  1019. return 1;
  1020. }
  1021. /*
  1022. * Check for the CPU being offline, but only if the grace period
  1023. * is old enough. We don't need to worry about the CPU changing
  1024. * state: If we see it offline even once, it has been through a
  1025. * quiescent state.
  1026. *
  1027. * The reason for insisting that the grace period be at least
  1028. * one jiffy old is that CPUs that are not quite online and that
  1029. * have just gone offline can still execute RCU read-side critical
  1030. * sections.
  1031. */
  1032. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  1033. return 0; /* Grace period is not old enough. */
  1034. barrier();
  1035. if (cpu_is_offline(rdp->cpu)) {
  1036. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1037. rdp->offline_fqs++;
  1038. return 1;
  1039. }
  1040. /*
  1041. * A CPU running for an extended time within the kernel can
  1042. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1043. * even context-switching back and forth between a pair of
  1044. * in-kernel CPU-bound tasks cannot advance grace periods.
  1045. * So if the grace period is old enough, make the CPU pay attention.
  1046. * Note that the unsynchronized assignments to the per-CPU
  1047. * rcu_sched_qs_mask variable are safe. Yes, setting of
  1048. * bits can be lost, but they will be set again on the next
  1049. * force-quiescent-state pass. So lost bit sets do not result
  1050. * in incorrect behavior, merely in a grace period lasting
  1051. * a few jiffies longer than it might otherwise. Because
  1052. * there are at most four threads involved, and because the
  1053. * updates are only once every few jiffies, the probability of
  1054. * lossage (and thus of slight grace-period extension) is
  1055. * quite low.
  1056. *
  1057. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  1058. * is set too high, we override with half of the RCU CPU stall
  1059. * warning delay.
  1060. */
  1061. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  1062. if (ULONG_CMP_GE(jiffies,
  1063. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  1064. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1065. if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  1066. WRITE_ONCE(rdp->cond_resched_completed,
  1067. READ_ONCE(rdp->mynode->completed));
  1068. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  1069. WRITE_ONCE(*rcrmp,
  1070. READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
  1071. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1072. rdp->rsp->jiffies_resched += 5; /* Enable beating. */
  1073. } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1074. /* Time to beat on that CPU again! */
  1075. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1076. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  1077. }
  1078. }
  1079. return 0;
  1080. }
  1081. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1082. {
  1083. unsigned long j = jiffies;
  1084. unsigned long j1;
  1085. rsp->gp_start = j;
  1086. smp_wmb(); /* Record start time before stall time. */
  1087. j1 = rcu_jiffies_till_stall_check();
  1088. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1089. rsp->jiffies_resched = j + j1 / 2;
  1090. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1091. }
  1092. /*
  1093. * Convert a ->gp_state value to a character string.
  1094. */
  1095. static const char *gp_state_getname(short gs)
  1096. {
  1097. if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
  1098. return "???";
  1099. return gp_state_names[gs];
  1100. }
  1101. /*
  1102. * Complain about starvation of grace-period kthread.
  1103. */
  1104. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1105. {
  1106. unsigned long gpa;
  1107. unsigned long j;
  1108. j = jiffies;
  1109. gpa = READ_ONCE(rsp->gp_activity);
  1110. if (j - gpa > 2 * HZ) {
  1111. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
  1112. rsp->name, j - gpa,
  1113. rsp->gpnum, rsp->completed,
  1114. rsp->gp_flags,
  1115. gp_state_getname(rsp->gp_state), rsp->gp_state,
  1116. rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
  1117. if (rsp->gp_kthread)
  1118. sched_show_task(rsp->gp_kthread);
  1119. }
  1120. }
  1121. /*
  1122. * Dump stacks of all tasks running on stalled CPUs.
  1123. */
  1124. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1125. {
  1126. int cpu;
  1127. unsigned long flags;
  1128. struct rcu_node *rnp;
  1129. rcu_for_each_leaf_node(rsp, rnp) {
  1130. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1131. if (rnp->qsmask != 0) {
  1132. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1133. if (rnp->qsmask & (1UL << cpu))
  1134. dump_cpu_task(rnp->grplo + cpu);
  1135. }
  1136. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1137. }
  1138. }
  1139. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1140. {
  1141. int cpu;
  1142. long delta;
  1143. unsigned long flags;
  1144. unsigned long gpa;
  1145. unsigned long j;
  1146. int ndetected = 0;
  1147. struct rcu_node *rnp = rcu_get_root(rsp);
  1148. long totqlen = 0;
  1149. /* Only let one CPU complain about others per time interval. */
  1150. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1151. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1152. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1153. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1154. return;
  1155. }
  1156. WRITE_ONCE(rsp->jiffies_stall,
  1157. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1158. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1159. /*
  1160. * OK, time to rat on our buddy...
  1161. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1162. * RCU CPU stall warnings.
  1163. */
  1164. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1165. rsp->name);
  1166. print_cpu_stall_info_begin();
  1167. rcu_for_each_leaf_node(rsp, rnp) {
  1168. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1169. ndetected += rcu_print_task_stall(rnp);
  1170. if (rnp->qsmask != 0) {
  1171. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1172. if (rnp->qsmask & (1UL << cpu)) {
  1173. print_cpu_stall_info(rsp,
  1174. rnp->grplo + cpu);
  1175. ndetected++;
  1176. }
  1177. }
  1178. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1179. }
  1180. print_cpu_stall_info_end();
  1181. for_each_possible_cpu(cpu)
  1182. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1183. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1184. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1185. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1186. if (ndetected) {
  1187. rcu_dump_cpu_stacks(rsp);
  1188. } else {
  1189. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1190. READ_ONCE(rsp->completed) == gpnum) {
  1191. pr_err("INFO: Stall ended before state dump start\n");
  1192. } else {
  1193. j = jiffies;
  1194. gpa = READ_ONCE(rsp->gp_activity);
  1195. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1196. rsp->name, j - gpa, j, gpa,
  1197. jiffies_till_next_fqs,
  1198. rcu_get_root(rsp)->qsmask);
  1199. /* In this case, the current CPU might be at fault. */
  1200. sched_show_task(current);
  1201. }
  1202. }
  1203. /* Complain about tasks blocking the grace period. */
  1204. rcu_print_detail_task_stall(rsp);
  1205. rcu_check_gp_kthread_starvation(rsp);
  1206. force_quiescent_state(rsp); /* Kick them all. */
  1207. }
  1208. static void print_cpu_stall(struct rcu_state *rsp)
  1209. {
  1210. int cpu;
  1211. unsigned long flags;
  1212. struct rcu_node *rnp = rcu_get_root(rsp);
  1213. long totqlen = 0;
  1214. /*
  1215. * OK, time to rat on ourselves...
  1216. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1217. * RCU CPU stall warnings.
  1218. */
  1219. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1220. print_cpu_stall_info_begin();
  1221. print_cpu_stall_info(rsp, smp_processor_id());
  1222. print_cpu_stall_info_end();
  1223. for_each_possible_cpu(cpu)
  1224. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1225. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1226. jiffies - rsp->gp_start,
  1227. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1228. rcu_check_gp_kthread_starvation(rsp);
  1229. rcu_dump_cpu_stacks(rsp);
  1230. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1231. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1232. WRITE_ONCE(rsp->jiffies_stall,
  1233. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1234. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1235. /*
  1236. * Attempt to revive the RCU machinery by forcing a context switch.
  1237. *
  1238. * A context switch would normally allow the RCU state machine to make
  1239. * progress and it could be we're stuck in kernel space without context
  1240. * switches for an entirely unreasonable amount of time.
  1241. */
  1242. resched_cpu(smp_processor_id());
  1243. }
  1244. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1245. {
  1246. unsigned long completed;
  1247. unsigned long gpnum;
  1248. unsigned long gps;
  1249. unsigned long j;
  1250. unsigned long js;
  1251. struct rcu_node *rnp;
  1252. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1253. return;
  1254. j = jiffies;
  1255. /*
  1256. * Lots of memory barriers to reject false positives.
  1257. *
  1258. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1259. * then rsp->gp_start, and finally rsp->completed. These values
  1260. * are updated in the opposite order with memory barriers (or
  1261. * equivalent) during grace-period initialization and cleanup.
  1262. * Now, a false positive can occur if we get an new value of
  1263. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1264. * the memory barriers, the only way that this can happen is if one
  1265. * grace period ends and another starts between these two fetches.
  1266. * Detect this by comparing rsp->completed with the previous fetch
  1267. * from rsp->gpnum.
  1268. *
  1269. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1270. * and rsp->gp_start suffice to forestall false positives.
  1271. */
  1272. gpnum = READ_ONCE(rsp->gpnum);
  1273. smp_rmb(); /* Pick up ->gpnum first... */
  1274. js = READ_ONCE(rsp->jiffies_stall);
  1275. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1276. gps = READ_ONCE(rsp->gp_start);
  1277. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1278. completed = READ_ONCE(rsp->completed);
  1279. if (ULONG_CMP_GE(completed, gpnum) ||
  1280. ULONG_CMP_LT(j, js) ||
  1281. ULONG_CMP_GE(gps, js))
  1282. return; /* No stall or GP completed since entering function. */
  1283. rnp = rdp->mynode;
  1284. if (rcu_gp_in_progress(rsp) &&
  1285. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1286. /* We haven't checked in, so go dump stack. */
  1287. print_cpu_stall(rsp);
  1288. } else if (rcu_gp_in_progress(rsp) &&
  1289. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1290. /* They had a few time units to dump stack, so complain. */
  1291. print_other_cpu_stall(rsp, gpnum);
  1292. }
  1293. }
  1294. /**
  1295. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1296. *
  1297. * Set the stall-warning timeout way off into the future, thus preventing
  1298. * any RCU CPU stall-warning messages from appearing in the current set of
  1299. * RCU grace periods.
  1300. *
  1301. * The caller must disable hard irqs.
  1302. */
  1303. void rcu_cpu_stall_reset(void)
  1304. {
  1305. struct rcu_state *rsp;
  1306. for_each_rcu_flavor(rsp)
  1307. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1308. }
  1309. /*
  1310. * Initialize the specified rcu_data structure's default callback list
  1311. * to empty. The default callback list is the one that is not used by
  1312. * no-callbacks CPUs.
  1313. */
  1314. static void init_default_callback_list(struct rcu_data *rdp)
  1315. {
  1316. int i;
  1317. rdp->nxtlist = NULL;
  1318. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1319. rdp->nxttail[i] = &rdp->nxtlist;
  1320. }
  1321. /*
  1322. * Initialize the specified rcu_data structure's callback list to empty.
  1323. */
  1324. static void init_callback_list(struct rcu_data *rdp)
  1325. {
  1326. if (init_nocb_callback_list(rdp))
  1327. return;
  1328. init_default_callback_list(rdp);
  1329. }
  1330. /*
  1331. * Determine the value that ->completed will have at the end of the
  1332. * next subsequent grace period. This is used to tag callbacks so that
  1333. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1334. * been dyntick-idle for an extended period with callbacks under the
  1335. * influence of RCU_FAST_NO_HZ.
  1336. *
  1337. * The caller must hold rnp->lock with interrupts disabled.
  1338. */
  1339. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1340. struct rcu_node *rnp)
  1341. {
  1342. /*
  1343. * If RCU is idle, we just wait for the next grace period.
  1344. * But we can only be sure that RCU is idle if we are looking
  1345. * at the root rcu_node structure -- otherwise, a new grace
  1346. * period might have started, but just not yet gotten around
  1347. * to initializing the current non-root rcu_node structure.
  1348. */
  1349. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1350. return rnp->completed + 1;
  1351. /*
  1352. * Otherwise, wait for a possible partial grace period and
  1353. * then the subsequent full grace period.
  1354. */
  1355. return rnp->completed + 2;
  1356. }
  1357. /*
  1358. * Trace-event helper function for rcu_start_future_gp() and
  1359. * rcu_nocb_wait_gp().
  1360. */
  1361. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1362. unsigned long c, const char *s)
  1363. {
  1364. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1365. rnp->completed, c, rnp->level,
  1366. rnp->grplo, rnp->grphi, s);
  1367. }
  1368. /*
  1369. * Start some future grace period, as needed to handle newly arrived
  1370. * callbacks. The required future grace periods are recorded in each
  1371. * rcu_node structure's ->need_future_gp field. Returns true if there
  1372. * is reason to awaken the grace-period kthread.
  1373. *
  1374. * The caller must hold the specified rcu_node structure's ->lock.
  1375. */
  1376. static bool __maybe_unused
  1377. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1378. unsigned long *c_out)
  1379. {
  1380. unsigned long c;
  1381. int i;
  1382. bool ret = false;
  1383. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1384. /*
  1385. * Pick up grace-period number for new callbacks. If this
  1386. * grace period is already marked as needed, return to the caller.
  1387. */
  1388. c = rcu_cbs_completed(rdp->rsp, rnp);
  1389. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1390. if (rnp->need_future_gp[c & 0x1]) {
  1391. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1392. goto out;
  1393. }
  1394. /*
  1395. * If either this rcu_node structure or the root rcu_node structure
  1396. * believe that a grace period is in progress, then we must wait
  1397. * for the one following, which is in "c". Because our request
  1398. * will be noticed at the end of the current grace period, we don't
  1399. * need to explicitly start one. We only do the lockless check
  1400. * of rnp_root's fields if the current rcu_node structure thinks
  1401. * there is no grace period in flight, and because we hold rnp->lock,
  1402. * the only possible change is when rnp_root's two fields are
  1403. * equal, in which case rnp_root->gpnum might be concurrently
  1404. * incremented. But that is OK, as it will just result in our
  1405. * doing some extra useless work.
  1406. */
  1407. if (rnp->gpnum != rnp->completed ||
  1408. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1409. rnp->need_future_gp[c & 0x1]++;
  1410. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1411. goto out;
  1412. }
  1413. /*
  1414. * There might be no grace period in progress. If we don't already
  1415. * hold it, acquire the root rcu_node structure's lock in order to
  1416. * start one (if needed).
  1417. */
  1418. if (rnp != rnp_root)
  1419. raw_spin_lock_rcu_node(rnp_root);
  1420. /*
  1421. * Get a new grace-period number. If there really is no grace
  1422. * period in progress, it will be smaller than the one we obtained
  1423. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1424. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1425. */
  1426. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1427. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1428. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1429. rdp->nxtcompleted[i] = c;
  1430. /*
  1431. * If the needed for the required grace period is already
  1432. * recorded, trace and leave.
  1433. */
  1434. if (rnp_root->need_future_gp[c & 0x1]) {
  1435. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1436. goto unlock_out;
  1437. }
  1438. /* Record the need for the future grace period. */
  1439. rnp_root->need_future_gp[c & 0x1]++;
  1440. /* If a grace period is not already in progress, start one. */
  1441. if (rnp_root->gpnum != rnp_root->completed) {
  1442. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1443. } else {
  1444. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1445. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1446. }
  1447. unlock_out:
  1448. if (rnp != rnp_root)
  1449. raw_spin_unlock(&rnp_root->lock);
  1450. out:
  1451. if (c_out != NULL)
  1452. *c_out = c;
  1453. return ret;
  1454. }
  1455. /*
  1456. * Clean up any old requests for the just-ended grace period. Also return
  1457. * whether any additional grace periods have been requested. Also invoke
  1458. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1459. * waiting for this grace period to complete.
  1460. */
  1461. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1462. {
  1463. int c = rnp->completed;
  1464. int needmore;
  1465. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1466. rcu_nocb_gp_cleanup(rsp, rnp);
  1467. rnp->need_future_gp[c & 0x1] = 0;
  1468. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1469. trace_rcu_future_gp(rnp, rdp, c,
  1470. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1471. return needmore;
  1472. }
  1473. /*
  1474. * Awaken the grace-period kthread for the specified flavor of RCU.
  1475. * Don't do a self-awaken, and don't bother awakening when there is
  1476. * nothing for the grace-period kthread to do (as in several CPUs
  1477. * raced to awaken, and we lost), and finally don't try to awaken
  1478. * a kthread that has not yet been created.
  1479. */
  1480. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1481. {
  1482. if (current == rsp->gp_kthread ||
  1483. !READ_ONCE(rsp->gp_flags) ||
  1484. !rsp->gp_kthread)
  1485. return;
  1486. wake_up(&rsp->gp_wq);
  1487. }
  1488. /*
  1489. * If there is room, assign a ->completed number to any callbacks on
  1490. * this CPU that have not already been assigned. Also accelerate any
  1491. * callbacks that were previously assigned a ->completed number that has
  1492. * since proven to be too conservative, which can happen if callbacks get
  1493. * assigned a ->completed number while RCU is idle, but with reference to
  1494. * a non-root rcu_node structure. This function is idempotent, so it does
  1495. * not hurt to call it repeatedly. Returns an flag saying that we should
  1496. * awaken the RCU grace-period kthread.
  1497. *
  1498. * The caller must hold rnp->lock with interrupts disabled.
  1499. */
  1500. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1501. struct rcu_data *rdp)
  1502. {
  1503. unsigned long c;
  1504. int i;
  1505. bool ret;
  1506. /* If the CPU has no callbacks, nothing to do. */
  1507. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1508. return false;
  1509. /*
  1510. * Starting from the sublist containing the callbacks most
  1511. * recently assigned a ->completed number and working down, find the
  1512. * first sublist that is not assignable to an upcoming grace period.
  1513. * Such a sublist has something in it (first two tests) and has
  1514. * a ->completed number assigned that will complete sooner than
  1515. * the ->completed number for newly arrived callbacks (last test).
  1516. *
  1517. * The key point is that any later sublist can be assigned the
  1518. * same ->completed number as the newly arrived callbacks, which
  1519. * means that the callbacks in any of these later sublist can be
  1520. * grouped into a single sublist, whether or not they have already
  1521. * been assigned a ->completed number.
  1522. */
  1523. c = rcu_cbs_completed(rsp, rnp);
  1524. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1525. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1526. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1527. break;
  1528. /*
  1529. * If there are no sublist for unassigned callbacks, leave.
  1530. * At the same time, advance "i" one sublist, so that "i" will
  1531. * index into the sublist where all the remaining callbacks should
  1532. * be grouped into.
  1533. */
  1534. if (++i >= RCU_NEXT_TAIL)
  1535. return false;
  1536. /*
  1537. * Assign all subsequent callbacks' ->completed number to the next
  1538. * full grace period and group them all in the sublist initially
  1539. * indexed by "i".
  1540. */
  1541. for (; i <= RCU_NEXT_TAIL; i++) {
  1542. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1543. rdp->nxtcompleted[i] = c;
  1544. }
  1545. /* Record any needed additional grace periods. */
  1546. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1547. /* Trace depending on how much we were able to accelerate. */
  1548. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1549. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1550. else
  1551. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1552. return ret;
  1553. }
  1554. /*
  1555. * Move any callbacks whose grace period has completed to the
  1556. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1557. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1558. * sublist. This function is idempotent, so it does not hurt to
  1559. * invoke it repeatedly. As long as it is not invoked -too- often...
  1560. * Returns true if the RCU grace-period kthread needs to be awakened.
  1561. *
  1562. * The caller must hold rnp->lock with interrupts disabled.
  1563. */
  1564. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1565. struct rcu_data *rdp)
  1566. {
  1567. int i, j;
  1568. /* If the CPU has no callbacks, nothing to do. */
  1569. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1570. return false;
  1571. /*
  1572. * Find all callbacks whose ->completed numbers indicate that they
  1573. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1574. */
  1575. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1576. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1577. break;
  1578. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1579. }
  1580. /* Clean up any sublist tail pointers that were misordered above. */
  1581. for (j = RCU_WAIT_TAIL; j < i; j++)
  1582. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1583. /* Copy down callbacks to fill in empty sublists. */
  1584. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1585. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1586. break;
  1587. rdp->nxttail[j] = rdp->nxttail[i];
  1588. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1589. }
  1590. /* Classify any remaining callbacks. */
  1591. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1592. }
  1593. /*
  1594. * Update CPU-local rcu_data state to record the beginnings and ends of
  1595. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1596. * structure corresponding to the current CPU, and must have irqs disabled.
  1597. * Returns true if the grace-period kthread needs to be awakened.
  1598. */
  1599. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1600. struct rcu_data *rdp)
  1601. {
  1602. bool ret;
  1603. /* Handle the ends of any preceding grace periods first. */
  1604. if (rdp->completed == rnp->completed &&
  1605. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1606. /* No grace period end, so just accelerate recent callbacks. */
  1607. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1608. } else {
  1609. /* Advance callbacks. */
  1610. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1611. /* Remember that we saw this grace-period completion. */
  1612. rdp->completed = rnp->completed;
  1613. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1614. }
  1615. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1616. /*
  1617. * If the current grace period is waiting for this CPU,
  1618. * set up to detect a quiescent state, otherwise don't
  1619. * go looking for one.
  1620. */
  1621. rdp->gpnum = rnp->gpnum;
  1622. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1623. rdp->cpu_no_qs.b.norm = true;
  1624. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  1625. rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
  1626. zero_cpu_stall_ticks(rdp);
  1627. WRITE_ONCE(rdp->gpwrap, false);
  1628. }
  1629. return ret;
  1630. }
  1631. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1632. {
  1633. unsigned long flags;
  1634. bool needwake;
  1635. struct rcu_node *rnp;
  1636. local_irq_save(flags);
  1637. rnp = rdp->mynode;
  1638. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1639. rdp->completed == READ_ONCE(rnp->completed) &&
  1640. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1641. !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
  1642. local_irq_restore(flags);
  1643. return;
  1644. }
  1645. needwake = __note_gp_changes(rsp, rnp, rdp);
  1646. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1647. if (needwake)
  1648. rcu_gp_kthread_wake(rsp);
  1649. }
  1650. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1651. {
  1652. if (delay > 0 &&
  1653. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1654. schedule_timeout_uninterruptible(delay);
  1655. }
  1656. /*
  1657. * Initialize a new grace period. Return false if no grace period required.
  1658. */
  1659. static bool rcu_gp_init(struct rcu_state *rsp)
  1660. {
  1661. unsigned long oldmask;
  1662. struct rcu_data *rdp;
  1663. struct rcu_node *rnp = rcu_get_root(rsp);
  1664. WRITE_ONCE(rsp->gp_activity, jiffies);
  1665. raw_spin_lock_irq_rcu_node(rnp);
  1666. if (!READ_ONCE(rsp->gp_flags)) {
  1667. /* Spurious wakeup, tell caller to go back to sleep. */
  1668. raw_spin_unlock_irq(&rnp->lock);
  1669. return false;
  1670. }
  1671. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1672. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1673. /*
  1674. * Grace period already in progress, don't start another.
  1675. * Not supposed to be able to happen.
  1676. */
  1677. raw_spin_unlock_irq(&rnp->lock);
  1678. return false;
  1679. }
  1680. /* Advance to a new grace period and initialize state. */
  1681. record_gp_stall_check_time(rsp);
  1682. /* Record GP times before starting GP, hence smp_store_release(). */
  1683. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1684. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1685. raw_spin_unlock_irq(&rnp->lock);
  1686. /*
  1687. * Apply per-leaf buffered online and offline operations to the
  1688. * rcu_node tree. Note that this new grace period need not wait
  1689. * for subsequent online CPUs, and that quiescent-state forcing
  1690. * will handle subsequent offline CPUs.
  1691. */
  1692. rcu_for_each_leaf_node(rsp, rnp) {
  1693. rcu_gp_slow(rsp, gp_preinit_delay);
  1694. raw_spin_lock_irq_rcu_node(rnp);
  1695. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1696. !rnp->wait_blkd_tasks) {
  1697. /* Nothing to do on this leaf rcu_node structure. */
  1698. raw_spin_unlock_irq(&rnp->lock);
  1699. continue;
  1700. }
  1701. /* Record old state, apply changes to ->qsmaskinit field. */
  1702. oldmask = rnp->qsmaskinit;
  1703. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1704. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1705. if (!oldmask != !rnp->qsmaskinit) {
  1706. if (!oldmask) /* First online CPU for this rcu_node. */
  1707. rcu_init_new_rnp(rnp);
  1708. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1709. rnp->wait_blkd_tasks = true;
  1710. else /* Last offline CPU and can propagate. */
  1711. rcu_cleanup_dead_rnp(rnp);
  1712. }
  1713. /*
  1714. * If all waited-on tasks from prior grace period are
  1715. * done, and if all this rcu_node structure's CPUs are
  1716. * still offline, propagate up the rcu_node tree and
  1717. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1718. * rcu_node structure's CPUs has since come back online,
  1719. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1720. * checks for this, so just call it unconditionally).
  1721. */
  1722. if (rnp->wait_blkd_tasks &&
  1723. (!rcu_preempt_has_tasks(rnp) ||
  1724. rnp->qsmaskinit)) {
  1725. rnp->wait_blkd_tasks = false;
  1726. rcu_cleanup_dead_rnp(rnp);
  1727. }
  1728. raw_spin_unlock_irq(&rnp->lock);
  1729. }
  1730. /*
  1731. * Set the quiescent-state-needed bits in all the rcu_node
  1732. * structures for all currently online CPUs in breadth-first order,
  1733. * starting from the root rcu_node structure, relying on the layout
  1734. * of the tree within the rsp->node[] array. Note that other CPUs
  1735. * will access only the leaves of the hierarchy, thus seeing that no
  1736. * grace period is in progress, at least until the corresponding
  1737. * leaf node has been initialized. In addition, we have excluded
  1738. * CPU-hotplug operations.
  1739. *
  1740. * The grace period cannot complete until the initialization
  1741. * process finishes, because this kthread handles both.
  1742. */
  1743. rcu_for_each_node_breadth_first(rsp, rnp) {
  1744. rcu_gp_slow(rsp, gp_init_delay);
  1745. raw_spin_lock_irq_rcu_node(rnp);
  1746. rdp = this_cpu_ptr(rsp->rda);
  1747. rcu_preempt_check_blocked_tasks(rnp);
  1748. rnp->qsmask = rnp->qsmaskinit;
  1749. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1750. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1751. WRITE_ONCE(rnp->completed, rsp->completed);
  1752. if (rnp == rdp->mynode)
  1753. (void)__note_gp_changes(rsp, rnp, rdp);
  1754. rcu_preempt_boost_start_gp(rnp);
  1755. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1756. rnp->level, rnp->grplo,
  1757. rnp->grphi, rnp->qsmask);
  1758. raw_spin_unlock_irq(&rnp->lock);
  1759. cond_resched_rcu_qs();
  1760. WRITE_ONCE(rsp->gp_activity, jiffies);
  1761. }
  1762. return true;
  1763. }
  1764. /*
  1765. * Helper function for wait_event_interruptible_timeout() wakeup
  1766. * at force-quiescent-state time.
  1767. */
  1768. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1769. {
  1770. struct rcu_node *rnp = rcu_get_root(rsp);
  1771. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1772. *gfp = READ_ONCE(rsp->gp_flags);
  1773. if (*gfp & RCU_GP_FLAG_FQS)
  1774. return true;
  1775. /* The current grace period has completed. */
  1776. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1777. return true;
  1778. return false;
  1779. }
  1780. /*
  1781. * Do one round of quiescent-state forcing.
  1782. */
  1783. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1784. {
  1785. bool isidle = false;
  1786. unsigned long maxj;
  1787. struct rcu_node *rnp = rcu_get_root(rsp);
  1788. WRITE_ONCE(rsp->gp_activity, jiffies);
  1789. rsp->n_force_qs++;
  1790. if (first_time) {
  1791. /* Collect dyntick-idle snapshots. */
  1792. if (is_sysidle_rcu_state(rsp)) {
  1793. isidle = true;
  1794. maxj = jiffies - ULONG_MAX / 4;
  1795. }
  1796. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1797. &isidle, &maxj);
  1798. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1799. } else {
  1800. /* Handle dyntick-idle and offline CPUs. */
  1801. isidle = true;
  1802. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1803. }
  1804. /* Clear flag to prevent immediate re-entry. */
  1805. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1806. raw_spin_lock_irq_rcu_node(rnp);
  1807. WRITE_ONCE(rsp->gp_flags,
  1808. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1809. raw_spin_unlock_irq(&rnp->lock);
  1810. }
  1811. }
  1812. /*
  1813. * Clean up after the old grace period.
  1814. */
  1815. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1816. {
  1817. unsigned long gp_duration;
  1818. bool needgp = false;
  1819. int nocb = 0;
  1820. struct rcu_data *rdp;
  1821. struct rcu_node *rnp = rcu_get_root(rsp);
  1822. WRITE_ONCE(rsp->gp_activity, jiffies);
  1823. raw_spin_lock_irq_rcu_node(rnp);
  1824. gp_duration = jiffies - rsp->gp_start;
  1825. if (gp_duration > rsp->gp_max)
  1826. rsp->gp_max = gp_duration;
  1827. /*
  1828. * We know the grace period is complete, but to everyone else
  1829. * it appears to still be ongoing. But it is also the case
  1830. * that to everyone else it looks like there is nothing that
  1831. * they can do to advance the grace period. It is therefore
  1832. * safe for us to drop the lock in order to mark the grace
  1833. * period as completed in all of the rcu_node structures.
  1834. */
  1835. raw_spin_unlock_irq(&rnp->lock);
  1836. /*
  1837. * Propagate new ->completed value to rcu_node structures so
  1838. * that other CPUs don't have to wait until the start of the next
  1839. * grace period to process their callbacks. This also avoids
  1840. * some nasty RCU grace-period initialization races by forcing
  1841. * the end of the current grace period to be completely recorded in
  1842. * all of the rcu_node structures before the beginning of the next
  1843. * grace period is recorded in any of the rcu_node structures.
  1844. */
  1845. rcu_for_each_node_breadth_first(rsp, rnp) {
  1846. raw_spin_lock_irq_rcu_node(rnp);
  1847. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1848. WARN_ON_ONCE(rnp->qsmask);
  1849. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1850. rdp = this_cpu_ptr(rsp->rda);
  1851. if (rnp == rdp->mynode)
  1852. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1853. /* smp_mb() provided by prior unlock-lock pair. */
  1854. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1855. raw_spin_unlock_irq(&rnp->lock);
  1856. cond_resched_rcu_qs();
  1857. WRITE_ONCE(rsp->gp_activity, jiffies);
  1858. rcu_gp_slow(rsp, gp_cleanup_delay);
  1859. }
  1860. rnp = rcu_get_root(rsp);
  1861. raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
  1862. rcu_nocb_gp_set(rnp, nocb);
  1863. /* Declare grace period done. */
  1864. WRITE_ONCE(rsp->completed, rsp->gpnum);
  1865. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1866. rsp->gp_state = RCU_GP_IDLE;
  1867. rdp = this_cpu_ptr(rsp->rda);
  1868. /* Advance CBs to reduce false positives below. */
  1869. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1870. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1871. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1872. trace_rcu_grace_period(rsp->name,
  1873. READ_ONCE(rsp->gpnum),
  1874. TPS("newreq"));
  1875. }
  1876. raw_spin_unlock_irq(&rnp->lock);
  1877. }
  1878. /*
  1879. * Body of kthread that handles grace periods.
  1880. */
  1881. static int __noreturn rcu_gp_kthread(void *arg)
  1882. {
  1883. bool first_gp_fqs;
  1884. int gf;
  1885. unsigned long j;
  1886. int ret;
  1887. struct rcu_state *rsp = arg;
  1888. struct rcu_node *rnp = rcu_get_root(rsp);
  1889. rcu_bind_gp_kthread();
  1890. for (;;) {
  1891. /* Handle grace-period start. */
  1892. for (;;) {
  1893. trace_rcu_grace_period(rsp->name,
  1894. READ_ONCE(rsp->gpnum),
  1895. TPS("reqwait"));
  1896. rsp->gp_state = RCU_GP_WAIT_GPS;
  1897. wait_event_interruptible(rsp->gp_wq,
  1898. READ_ONCE(rsp->gp_flags) &
  1899. RCU_GP_FLAG_INIT);
  1900. rsp->gp_state = RCU_GP_DONE_GPS;
  1901. /* Locking provides needed memory barrier. */
  1902. if (rcu_gp_init(rsp))
  1903. break;
  1904. cond_resched_rcu_qs();
  1905. WRITE_ONCE(rsp->gp_activity, jiffies);
  1906. WARN_ON(signal_pending(current));
  1907. trace_rcu_grace_period(rsp->name,
  1908. READ_ONCE(rsp->gpnum),
  1909. TPS("reqwaitsig"));
  1910. }
  1911. /* Handle quiescent-state forcing. */
  1912. first_gp_fqs = true;
  1913. j = jiffies_till_first_fqs;
  1914. if (j > HZ) {
  1915. j = HZ;
  1916. jiffies_till_first_fqs = HZ;
  1917. }
  1918. ret = 0;
  1919. for (;;) {
  1920. if (!ret)
  1921. rsp->jiffies_force_qs = jiffies + j;
  1922. trace_rcu_grace_period(rsp->name,
  1923. READ_ONCE(rsp->gpnum),
  1924. TPS("fqswait"));
  1925. rsp->gp_state = RCU_GP_WAIT_FQS;
  1926. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1927. rcu_gp_fqs_check_wake(rsp, &gf), j);
  1928. rsp->gp_state = RCU_GP_DOING_FQS;
  1929. /* Locking provides needed memory barriers. */
  1930. /* If grace period done, leave loop. */
  1931. if (!READ_ONCE(rnp->qsmask) &&
  1932. !rcu_preempt_blocked_readers_cgp(rnp))
  1933. break;
  1934. /* If time for quiescent-state forcing, do it. */
  1935. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1936. (gf & RCU_GP_FLAG_FQS)) {
  1937. trace_rcu_grace_period(rsp->name,
  1938. READ_ONCE(rsp->gpnum),
  1939. TPS("fqsstart"));
  1940. rcu_gp_fqs(rsp, first_gp_fqs);
  1941. first_gp_fqs = false;
  1942. trace_rcu_grace_period(rsp->name,
  1943. READ_ONCE(rsp->gpnum),
  1944. TPS("fqsend"));
  1945. cond_resched_rcu_qs();
  1946. WRITE_ONCE(rsp->gp_activity, jiffies);
  1947. } else {
  1948. /* Deal with stray signal. */
  1949. cond_resched_rcu_qs();
  1950. WRITE_ONCE(rsp->gp_activity, jiffies);
  1951. WARN_ON(signal_pending(current));
  1952. trace_rcu_grace_period(rsp->name,
  1953. READ_ONCE(rsp->gpnum),
  1954. TPS("fqswaitsig"));
  1955. }
  1956. j = jiffies_till_next_fqs;
  1957. if (j > HZ) {
  1958. j = HZ;
  1959. jiffies_till_next_fqs = HZ;
  1960. } else if (j < 1) {
  1961. j = 1;
  1962. jiffies_till_next_fqs = 1;
  1963. }
  1964. }
  1965. /* Handle grace-period end. */
  1966. rsp->gp_state = RCU_GP_CLEANUP;
  1967. rcu_gp_cleanup(rsp);
  1968. rsp->gp_state = RCU_GP_CLEANED;
  1969. }
  1970. }
  1971. /*
  1972. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1973. * in preparation for detecting the next grace period. The caller must hold
  1974. * the root node's ->lock and hard irqs must be disabled.
  1975. *
  1976. * Note that it is legal for a dying CPU (which is marked as offline) to
  1977. * invoke this function. This can happen when the dying CPU reports its
  1978. * quiescent state.
  1979. *
  1980. * Returns true if the grace-period kthread must be awakened.
  1981. */
  1982. static bool
  1983. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1984. struct rcu_data *rdp)
  1985. {
  1986. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1987. /*
  1988. * Either we have not yet spawned the grace-period
  1989. * task, this CPU does not need another grace period,
  1990. * or a grace period is already in progress.
  1991. * Either way, don't start a new grace period.
  1992. */
  1993. return false;
  1994. }
  1995. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1996. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  1997. TPS("newreq"));
  1998. /*
  1999. * We can't do wakeups while holding the rnp->lock, as that
  2000. * could cause possible deadlocks with the rq->lock. Defer
  2001. * the wakeup to our caller.
  2002. */
  2003. return true;
  2004. }
  2005. /*
  2006. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  2007. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  2008. * is invoked indirectly from rcu_advance_cbs(), which would result in
  2009. * endless recursion -- or would do so if it wasn't for the self-deadlock
  2010. * that is encountered beforehand.
  2011. *
  2012. * Returns true if the grace-period kthread needs to be awakened.
  2013. */
  2014. static bool rcu_start_gp(struct rcu_state *rsp)
  2015. {
  2016. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2017. struct rcu_node *rnp = rcu_get_root(rsp);
  2018. bool ret = false;
  2019. /*
  2020. * If there is no grace period in progress right now, any
  2021. * callbacks we have up to this point will be satisfied by the
  2022. * next grace period. Also, advancing the callbacks reduces the
  2023. * probability of false positives from cpu_needs_another_gp()
  2024. * resulting in pointless grace periods. So, advance callbacks
  2025. * then start the grace period!
  2026. */
  2027. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2028. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2029. return ret;
  2030. }
  2031. /*
  2032. * Report a full set of quiescent states to the specified rcu_state
  2033. * data structure. This involves cleaning up after the prior grace
  2034. * period and letting rcu_start_gp() start up the next grace period
  2035. * if one is needed. Note that the caller must hold rnp->lock, which
  2036. * is released before return.
  2037. */
  2038. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2039. __releases(rcu_get_root(rsp)->lock)
  2040. {
  2041. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2042. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2043. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2044. rcu_gp_kthread_wake(rsp);
  2045. }
  2046. /*
  2047. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2048. * Allows quiescent states for a group of CPUs to be reported at one go
  2049. * to the specified rcu_node structure, though all the CPUs in the group
  2050. * must be represented by the same rcu_node structure (which need not be a
  2051. * leaf rcu_node structure, though it often will be). The gps parameter
  2052. * is the grace-period snapshot, which means that the quiescent states
  2053. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2054. * must be held upon entry, and it is released before return.
  2055. */
  2056. static void
  2057. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2058. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2059. __releases(rnp->lock)
  2060. {
  2061. unsigned long oldmask = 0;
  2062. struct rcu_node *rnp_c;
  2063. /* Walk up the rcu_node hierarchy. */
  2064. for (;;) {
  2065. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2066. /*
  2067. * Our bit has already been cleared, or the
  2068. * relevant grace period is already over, so done.
  2069. */
  2070. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2071. return;
  2072. }
  2073. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2074. rnp->qsmask &= ~mask;
  2075. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2076. mask, rnp->qsmask, rnp->level,
  2077. rnp->grplo, rnp->grphi,
  2078. !!rnp->gp_tasks);
  2079. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2080. /* Other bits still set at this level, so done. */
  2081. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2082. return;
  2083. }
  2084. mask = rnp->grpmask;
  2085. if (rnp->parent == NULL) {
  2086. /* No more levels. Exit loop holding root lock. */
  2087. break;
  2088. }
  2089. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2090. rnp_c = rnp;
  2091. rnp = rnp->parent;
  2092. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2093. oldmask = rnp_c->qsmask;
  2094. }
  2095. /*
  2096. * Get here if we are the last CPU to pass through a quiescent
  2097. * state for this grace period. Invoke rcu_report_qs_rsp()
  2098. * to clean up and start the next grace period if one is needed.
  2099. */
  2100. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2101. }
  2102. /*
  2103. * Record a quiescent state for all tasks that were previously queued
  2104. * on the specified rcu_node structure and that were blocking the current
  2105. * RCU grace period. The caller must hold the specified rnp->lock with
  2106. * irqs disabled, and this lock is released upon return, but irqs remain
  2107. * disabled.
  2108. */
  2109. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2110. struct rcu_node *rnp, unsigned long flags)
  2111. __releases(rnp->lock)
  2112. {
  2113. unsigned long gps;
  2114. unsigned long mask;
  2115. struct rcu_node *rnp_p;
  2116. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2117. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2118. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2119. return; /* Still need more quiescent states! */
  2120. }
  2121. rnp_p = rnp->parent;
  2122. if (rnp_p == NULL) {
  2123. /*
  2124. * Only one rcu_node structure in the tree, so don't
  2125. * try to report up to its nonexistent parent!
  2126. */
  2127. rcu_report_qs_rsp(rsp, flags);
  2128. return;
  2129. }
  2130. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2131. gps = rnp->gpnum;
  2132. mask = rnp->grpmask;
  2133. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2134. raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
  2135. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2136. }
  2137. /*
  2138. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2139. * structure. This must be either called from the specified CPU, or
  2140. * called when the specified CPU is known to be offline (and when it is
  2141. * also known that no other CPU is concurrently trying to help the offline
  2142. * CPU). The lastcomp argument is used to make sure we are still in the
  2143. * grace period of interest. We don't want to end the current grace period
  2144. * based on quiescent states detected in an earlier grace period!
  2145. */
  2146. static void
  2147. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2148. {
  2149. unsigned long flags;
  2150. unsigned long mask;
  2151. bool needwake;
  2152. struct rcu_node *rnp;
  2153. rnp = rdp->mynode;
  2154. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2155. if ((rdp->cpu_no_qs.b.norm &&
  2156. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
  2157. rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
  2158. rdp->gpwrap) {
  2159. /*
  2160. * The grace period in which this quiescent state was
  2161. * recorded has ended, so don't report it upwards.
  2162. * We will instead need a new quiescent state that lies
  2163. * within the current grace period.
  2164. */
  2165. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2166. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  2167. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2168. return;
  2169. }
  2170. mask = rdp->grpmask;
  2171. if ((rnp->qsmask & mask) == 0) {
  2172. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2173. } else {
  2174. rdp->core_needs_qs = 0;
  2175. /*
  2176. * This GP can't end until cpu checks in, so all of our
  2177. * callbacks can be processed during the next GP.
  2178. */
  2179. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2180. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2181. /* ^^^ Released rnp->lock */
  2182. if (needwake)
  2183. rcu_gp_kthread_wake(rsp);
  2184. }
  2185. }
  2186. /*
  2187. * Check to see if there is a new grace period of which this CPU
  2188. * is not yet aware, and if so, set up local rcu_data state for it.
  2189. * Otherwise, see if this CPU has just passed through its first
  2190. * quiescent state for this grace period, and record that fact if so.
  2191. */
  2192. static void
  2193. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2194. {
  2195. /* Check for grace-period ends and beginnings. */
  2196. note_gp_changes(rsp, rdp);
  2197. /*
  2198. * Does this CPU still need to do its part for current grace period?
  2199. * If no, return and let the other CPUs do their part as well.
  2200. */
  2201. if (!rdp->core_needs_qs)
  2202. return;
  2203. /*
  2204. * Was there a quiescent state since the beginning of the grace
  2205. * period? If no, then exit and wait for the next call.
  2206. */
  2207. if (rdp->cpu_no_qs.b.norm &&
  2208. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
  2209. return;
  2210. /*
  2211. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2212. * judge of that).
  2213. */
  2214. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2215. }
  2216. /*
  2217. * Send the specified CPU's RCU callbacks to the orphanage. The
  2218. * specified CPU must be offline, and the caller must hold the
  2219. * ->orphan_lock.
  2220. */
  2221. static void
  2222. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  2223. struct rcu_node *rnp, struct rcu_data *rdp)
  2224. {
  2225. /* No-CBs CPUs do not have orphanable callbacks. */
  2226. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
  2227. return;
  2228. /*
  2229. * Orphan the callbacks. First adjust the counts. This is safe
  2230. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  2231. * cannot be running now. Thus no memory barrier is required.
  2232. */
  2233. if (rdp->nxtlist != NULL) {
  2234. rsp->qlen_lazy += rdp->qlen_lazy;
  2235. rsp->qlen += rdp->qlen;
  2236. rdp->n_cbs_orphaned += rdp->qlen;
  2237. rdp->qlen_lazy = 0;
  2238. WRITE_ONCE(rdp->qlen, 0);
  2239. }
  2240. /*
  2241. * Next, move those callbacks still needing a grace period to
  2242. * the orphanage, where some other CPU will pick them up.
  2243. * Some of the callbacks might have gone partway through a grace
  2244. * period, but that is too bad. They get to start over because we
  2245. * cannot assume that grace periods are synchronized across CPUs.
  2246. * We don't bother updating the ->nxttail[] array yet, instead
  2247. * we just reset the whole thing later on.
  2248. */
  2249. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  2250. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  2251. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  2252. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2253. }
  2254. /*
  2255. * Then move the ready-to-invoke callbacks to the orphanage,
  2256. * where some other CPU will pick them up. These will not be
  2257. * required to pass though another grace period: They are done.
  2258. */
  2259. if (rdp->nxtlist != NULL) {
  2260. *rsp->orphan_donetail = rdp->nxtlist;
  2261. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  2262. }
  2263. /*
  2264. * Finally, initialize the rcu_data structure's list to empty and
  2265. * disallow further callbacks on this CPU.
  2266. */
  2267. init_callback_list(rdp);
  2268. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2269. }
  2270. /*
  2271. * Adopt the RCU callbacks from the specified rcu_state structure's
  2272. * orphanage. The caller must hold the ->orphan_lock.
  2273. */
  2274. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  2275. {
  2276. int i;
  2277. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2278. /* No-CBs CPUs are handled specially. */
  2279. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2280. rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  2281. return;
  2282. /* Do the accounting first. */
  2283. rdp->qlen_lazy += rsp->qlen_lazy;
  2284. rdp->qlen += rsp->qlen;
  2285. rdp->n_cbs_adopted += rsp->qlen;
  2286. if (rsp->qlen_lazy != rsp->qlen)
  2287. rcu_idle_count_callbacks_posted();
  2288. rsp->qlen_lazy = 0;
  2289. rsp->qlen = 0;
  2290. /*
  2291. * We do not need a memory barrier here because the only way we
  2292. * can get here if there is an rcu_barrier() in flight is if
  2293. * we are the task doing the rcu_barrier().
  2294. */
  2295. /* First adopt the ready-to-invoke callbacks. */
  2296. if (rsp->orphan_donelist != NULL) {
  2297. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  2298. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  2299. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  2300. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2301. rdp->nxttail[i] = rsp->orphan_donetail;
  2302. rsp->orphan_donelist = NULL;
  2303. rsp->orphan_donetail = &rsp->orphan_donelist;
  2304. }
  2305. /* And then adopt the callbacks that still need a grace period. */
  2306. if (rsp->orphan_nxtlist != NULL) {
  2307. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  2308. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  2309. rsp->orphan_nxtlist = NULL;
  2310. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  2311. }
  2312. }
  2313. /*
  2314. * Trace the fact that this CPU is going offline.
  2315. */
  2316. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2317. {
  2318. RCU_TRACE(unsigned long mask);
  2319. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  2320. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  2321. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2322. return;
  2323. RCU_TRACE(mask = rdp->grpmask);
  2324. trace_rcu_grace_period(rsp->name,
  2325. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2326. TPS("cpuofl"));
  2327. }
  2328. /*
  2329. * All CPUs for the specified rcu_node structure have gone offline,
  2330. * and all tasks that were preempted within an RCU read-side critical
  2331. * section while running on one of those CPUs have since exited their RCU
  2332. * read-side critical section. Some other CPU is reporting this fact with
  2333. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2334. * This function therefore goes up the tree of rcu_node structures,
  2335. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2336. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2337. * updated
  2338. *
  2339. * This function does check that the specified rcu_node structure has
  2340. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2341. * prematurely. That said, invoking it after the fact will cost you
  2342. * a needless lock acquisition. So once it has done its work, don't
  2343. * invoke it again.
  2344. */
  2345. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2346. {
  2347. long mask;
  2348. struct rcu_node *rnp = rnp_leaf;
  2349. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2350. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2351. return;
  2352. for (;;) {
  2353. mask = rnp->grpmask;
  2354. rnp = rnp->parent;
  2355. if (!rnp)
  2356. break;
  2357. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  2358. rnp->qsmaskinit &= ~mask;
  2359. rnp->qsmask &= ~mask;
  2360. if (rnp->qsmaskinit) {
  2361. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2362. return;
  2363. }
  2364. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2365. }
  2366. }
  2367. /*
  2368. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  2369. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  2370. * bit masks.
  2371. */
  2372. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  2373. {
  2374. unsigned long flags;
  2375. unsigned long mask;
  2376. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2377. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2378. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2379. return;
  2380. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  2381. mask = rdp->grpmask;
  2382. raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
  2383. rnp->qsmaskinitnext &= ~mask;
  2384. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2385. }
  2386. /*
  2387. * The CPU has been completely removed, and some other CPU is reporting
  2388. * this fact from process context. Do the remainder of the cleanup,
  2389. * including orphaning the outgoing CPU's RCU callbacks, and also
  2390. * adopting them. There can only be one CPU hotplug operation at a time,
  2391. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  2392. */
  2393. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2394. {
  2395. unsigned long flags;
  2396. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2397. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2398. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2399. return;
  2400. /* Adjust any no-longer-needed kthreads. */
  2401. rcu_boost_kthread_setaffinity(rnp, -1);
  2402. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2403. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2404. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2405. rcu_adopt_orphan_cbs(rsp, flags);
  2406. raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
  2407. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2408. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2409. cpu, rdp->qlen, rdp->nxtlist);
  2410. }
  2411. /*
  2412. * Invoke any RCU callbacks that have made it to the end of their grace
  2413. * period. Thottle as specified by rdp->blimit.
  2414. */
  2415. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2416. {
  2417. unsigned long flags;
  2418. struct rcu_head *next, *list, **tail;
  2419. long bl, count, count_lazy;
  2420. int i;
  2421. /* If no callbacks are ready, just return. */
  2422. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2423. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2424. trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
  2425. need_resched(), is_idle_task(current),
  2426. rcu_is_callbacks_kthread());
  2427. return;
  2428. }
  2429. /*
  2430. * Extract the list of ready callbacks, disabling to prevent
  2431. * races with call_rcu() from interrupt handlers.
  2432. */
  2433. local_irq_save(flags);
  2434. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2435. bl = rdp->blimit;
  2436. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2437. list = rdp->nxtlist;
  2438. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2439. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2440. tail = rdp->nxttail[RCU_DONE_TAIL];
  2441. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2442. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2443. rdp->nxttail[i] = &rdp->nxtlist;
  2444. local_irq_restore(flags);
  2445. /* Invoke callbacks. */
  2446. count = count_lazy = 0;
  2447. while (list) {
  2448. next = list->next;
  2449. prefetch(next);
  2450. debug_rcu_head_unqueue(list);
  2451. if (__rcu_reclaim(rsp->name, list))
  2452. count_lazy++;
  2453. list = next;
  2454. /* Stop only if limit reached and CPU has something to do. */
  2455. if (++count >= bl &&
  2456. (need_resched() ||
  2457. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2458. break;
  2459. }
  2460. local_irq_save(flags);
  2461. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2462. is_idle_task(current),
  2463. rcu_is_callbacks_kthread());
  2464. /* Update count, and requeue any remaining callbacks. */
  2465. if (list != NULL) {
  2466. *tail = rdp->nxtlist;
  2467. rdp->nxtlist = list;
  2468. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2469. if (&rdp->nxtlist == rdp->nxttail[i])
  2470. rdp->nxttail[i] = tail;
  2471. else
  2472. break;
  2473. }
  2474. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2475. rdp->qlen_lazy -= count_lazy;
  2476. WRITE_ONCE(rdp->qlen, rdp->qlen - count);
  2477. rdp->n_cbs_invoked += count;
  2478. /* Reinstate batch limit if we have worked down the excess. */
  2479. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2480. rdp->blimit = blimit;
  2481. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2482. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2483. rdp->qlen_last_fqs_check = 0;
  2484. rdp->n_force_qs_snap = rsp->n_force_qs;
  2485. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2486. rdp->qlen_last_fqs_check = rdp->qlen;
  2487. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2488. local_irq_restore(flags);
  2489. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2490. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2491. invoke_rcu_core();
  2492. }
  2493. /*
  2494. * Check to see if this CPU is in a non-context-switch quiescent state
  2495. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2496. * Also schedule RCU core processing.
  2497. *
  2498. * This function must be called from hardirq context. It is normally
  2499. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2500. * false, there is no point in invoking rcu_check_callbacks().
  2501. */
  2502. void rcu_check_callbacks(int user)
  2503. {
  2504. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2505. increment_cpu_stall_ticks();
  2506. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2507. /*
  2508. * Get here if this CPU took its interrupt from user
  2509. * mode or from the idle loop, and if this is not a
  2510. * nested interrupt. In this case, the CPU is in
  2511. * a quiescent state, so note it.
  2512. *
  2513. * No memory barrier is required here because both
  2514. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2515. * variables that other CPUs neither access nor modify,
  2516. * at least not while the corresponding CPU is online.
  2517. */
  2518. rcu_sched_qs();
  2519. rcu_bh_qs();
  2520. } else if (!in_softirq()) {
  2521. /*
  2522. * Get here if this CPU did not take its interrupt from
  2523. * softirq, in other words, if it is not interrupting
  2524. * a rcu_bh read-side critical section. This is an _bh
  2525. * critical section, so note it.
  2526. */
  2527. rcu_bh_qs();
  2528. }
  2529. rcu_preempt_check_callbacks();
  2530. if (rcu_pending())
  2531. invoke_rcu_core();
  2532. if (user)
  2533. rcu_note_voluntary_context_switch(current);
  2534. trace_rcu_utilization(TPS("End scheduler-tick"));
  2535. }
  2536. /*
  2537. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2538. * have not yet encountered a quiescent state, using the function specified.
  2539. * Also initiate boosting for any threads blocked on the root rcu_node.
  2540. *
  2541. * The caller must have suppressed start of new grace periods.
  2542. */
  2543. static void force_qs_rnp(struct rcu_state *rsp,
  2544. int (*f)(struct rcu_data *rsp, bool *isidle,
  2545. unsigned long *maxj),
  2546. bool *isidle, unsigned long *maxj)
  2547. {
  2548. unsigned long bit;
  2549. int cpu;
  2550. unsigned long flags;
  2551. unsigned long mask;
  2552. struct rcu_node *rnp;
  2553. rcu_for_each_leaf_node(rsp, rnp) {
  2554. cond_resched_rcu_qs();
  2555. mask = 0;
  2556. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2557. if (rnp->qsmask == 0) {
  2558. if (rcu_state_p == &rcu_sched_state ||
  2559. rsp != rcu_state_p ||
  2560. rcu_preempt_blocked_readers_cgp(rnp)) {
  2561. /*
  2562. * No point in scanning bits because they
  2563. * are all zero. But we might need to
  2564. * priority-boost blocked readers.
  2565. */
  2566. rcu_initiate_boost(rnp, flags);
  2567. /* rcu_initiate_boost() releases rnp->lock */
  2568. continue;
  2569. }
  2570. if (rnp->parent &&
  2571. (rnp->parent->qsmask & rnp->grpmask)) {
  2572. /*
  2573. * Race between grace-period
  2574. * initialization and task exiting RCU
  2575. * read-side critical section: Report.
  2576. */
  2577. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2578. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2579. continue;
  2580. }
  2581. }
  2582. cpu = rnp->grplo;
  2583. bit = 1;
  2584. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2585. if ((rnp->qsmask & bit) != 0) {
  2586. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2587. mask |= bit;
  2588. }
  2589. }
  2590. if (mask != 0) {
  2591. /* Idle/offline CPUs, report (releases rnp->lock. */
  2592. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2593. } else {
  2594. /* Nothing to do here, so just drop the lock. */
  2595. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2596. }
  2597. }
  2598. }
  2599. /*
  2600. * Force quiescent states on reluctant CPUs, and also detect which
  2601. * CPUs are in dyntick-idle mode.
  2602. */
  2603. static void force_quiescent_state(struct rcu_state *rsp)
  2604. {
  2605. unsigned long flags;
  2606. bool ret;
  2607. struct rcu_node *rnp;
  2608. struct rcu_node *rnp_old = NULL;
  2609. /* Funnel through hierarchy to reduce memory contention. */
  2610. rnp = __this_cpu_read(rsp->rda->mynode);
  2611. for (; rnp != NULL; rnp = rnp->parent) {
  2612. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2613. !raw_spin_trylock(&rnp->fqslock);
  2614. if (rnp_old != NULL)
  2615. raw_spin_unlock(&rnp_old->fqslock);
  2616. if (ret) {
  2617. rsp->n_force_qs_lh++;
  2618. return;
  2619. }
  2620. rnp_old = rnp;
  2621. }
  2622. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2623. /* Reached the root of the rcu_node tree, acquire lock. */
  2624. raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
  2625. raw_spin_unlock(&rnp_old->fqslock);
  2626. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2627. rsp->n_force_qs_lh++;
  2628. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2629. return; /* Someone beat us to it. */
  2630. }
  2631. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2632. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2633. rcu_gp_kthread_wake(rsp);
  2634. }
  2635. /*
  2636. * This does the RCU core processing work for the specified rcu_state
  2637. * and rcu_data structures. This may be called only from the CPU to
  2638. * whom the rdp belongs.
  2639. */
  2640. static void
  2641. __rcu_process_callbacks(struct rcu_state *rsp)
  2642. {
  2643. unsigned long flags;
  2644. bool needwake;
  2645. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2646. WARN_ON_ONCE(rdp->beenonline == 0);
  2647. /* Update RCU state based on any recent quiescent states. */
  2648. rcu_check_quiescent_state(rsp, rdp);
  2649. /* Does this CPU require a not-yet-started grace period? */
  2650. local_irq_save(flags);
  2651. if (cpu_needs_another_gp(rsp, rdp)) {
  2652. raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
  2653. needwake = rcu_start_gp(rsp);
  2654. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2655. if (needwake)
  2656. rcu_gp_kthread_wake(rsp);
  2657. } else {
  2658. local_irq_restore(flags);
  2659. }
  2660. /* If there are callbacks ready, invoke them. */
  2661. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2662. invoke_rcu_callbacks(rsp, rdp);
  2663. /* Do any needed deferred wakeups of rcuo kthreads. */
  2664. do_nocb_deferred_wakeup(rdp);
  2665. }
  2666. /*
  2667. * Do RCU core processing for the current CPU.
  2668. */
  2669. static void rcu_process_callbacks(struct softirq_action *unused)
  2670. {
  2671. struct rcu_state *rsp;
  2672. if (cpu_is_offline(smp_processor_id()))
  2673. return;
  2674. trace_rcu_utilization(TPS("Start RCU core"));
  2675. for_each_rcu_flavor(rsp)
  2676. __rcu_process_callbacks(rsp);
  2677. trace_rcu_utilization(TPS("End RCU core"));
  2678. }
  2679. /*
  2680. * Schedule RCU callback invocation. If the specified type of RCU
  2681. * does not support RCU priority boosting, just do a direct call,
  2682. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2683. * are running on the current CPU with softirqs disabled, the
  2684. * rcu_cpu_kthread_task cannot disappear out from under us.
  2685. */
  2686. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2687. {
  2688. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2689. return;
  2690. if (likely(!rsp->boost)) {
  2691. rcu_do_batch(rsp, rdp);
  2692. return;
  2693. }
  2694. invoke_rcu_callbacks_kthread();
  2695. }
  2696. static void invoke_rcu_core(void)
  2697. {
  2698. if (cpu_online(smp_processor_id()))
  2699. raise_softirq(RCU_SOFTIRQ);
  2700. }
  2701. /*
  2702. * Handle any core-RCU processing required by a call_rcu() invocation.
  2703. */
  2704. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2705. struct rcu_head *head, unsigned long flags)
  2706. {
  2707. bool needwake;
  2708. /*
  2709. * If called from an extended quiescent state, invoke the RCU
  2710. * core in order to force a re-evaluation of RCU's idleness.
  2711. */
  2712. if (!rcu_is_watching())
  2713. invoke_rcu_core();
  2714. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2715. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2716. return;
  2717. /*
  2718. * Force the grace period if too many callbacks or too long waiting.
  2719. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2720. * if some other CPU has recently done so. Also, don't bother
  2721. * invoking force_quiescent_state() if the newly enqueued callback
  2722. * is the only one waiting for a grace period to complete.
  2723. */
  2724. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2725. /* Are we ignoring a completed grace period? */
  2726. note_gp_changes(rsp, rdp);
  2727. /* Start a new grace period if one not already started. */
  2728. if (!rcu_gp_in_progress(rsp)) {
  2729. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2730. raw_spin_lock_rcu_node(rnp_root);
  2731. needwake = rcu_start_gp(rsp);
  2732. raw_spin_unlock(&rnp_root->lock);
  2733. if (needwake)
  2734. rcu_gp_kthread_wake(rsp);
  2735. } else {
  2736. /* Give the grace period a kick. */
  2737. rdp->blimit = LONG_MAX;
  2738. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2739. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2740. force_quiescent_state(rsp);
  2741. rdp->n_force_qs_snap = rsp->n_force_qs;
  2742. rdp->qlen_last_fqs_check = rdp->qlen;
  2743. }
  2744. }
  2745. }
  2746. /*
  2747. * RCU callback function to leak a callback.
  2748. */
  2749. static void rcu_leak_callback(struct rcu_head *rhp)
  2750. {
  2751. }
  2752. /*
  2753. * Helper function for call_rcu() and friends. The cpu argument will
  2754. * normally be -1, indicating "currently running CPU". It may specify
  2755. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2756. * is expected to specify a CPU.
  2757. */
  2758. static void
  2759. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2760. struct rcu_state *rsp, int cpu, bool lazy)
  2761. {
  2762. unsigned long flags;
  2763. struct rcu_data *rdp;
  2764. WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
  2765. if (debug_rcu_head_queue(head)) {
  2766. /* Probable double call_rcu(), so leak the callback. */
  2767. WRITE_ONCE(head->func, rcu_leak_callback);
  2768. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2769. return;
  2770. }
  2771. head->func = func;
  2772. head->next = NULL;
  2773. /*
  2774. * Opportunistically note grace-period endings and beginnings.
  2775. * Note that we might see a beginning right after we see an
  2776. * end, but never vice versa, since this CPU has to pass through
  2777. * a quiescent state betweentimes.
  2778. */
  2779. local_irq_save(flags);
  2780. rdp = this_cpu_ptr(rsp->rda);
  2781. /* Add the callback to our list. */
  2782. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2783. int offline;
  2784. if (cpu != -1)
  2785. rdp = per_cpu_ptr(rsp->rda, cpu);
  2786. if (likely(rdp->mynode)) {
  2787. /* Post-boot, so this should be for a no-CBs CPU. */
  2788. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2789. WARN_ON_ONCE(offline);
  2790. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2791. local_irq_restore(flags);
  2792. return;
  2793. }
  2794. /*
  2795. * Very early boot, before rcu_init(). Initialize if needed
  2796. * and then drop through to queue the callback.
  2797. */
  2798. BUG_ON(cpu != -1);
  2799. WARN_ON_ONCE(!rcu_is_watching());
  2800. if (!likely(rdp->nxtlist))
  2801. init_default_callback_list(rdp);
  2802. }
  2803. WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
  2804. if (lazy)
  2805. rdp->qlen_lazy++;
  2806. else
  2807. rcu_idle_count_callbacks_posted();
  2808. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2809. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2810. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2811. if (__is_kfree_rcu_offset((unsigned long)func))
  2812. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2813. rdp->qlen_lazy, rdp->qlen);
  2814. else
  2815. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2816. /* Go handle any RCU core processing required. */
  2817. __call_rcu_core(rsp, rdp, head, flags);
  2818. local_irq_restore(flags);
  2819. }
  2820. /*
  2821. * Queue an RCU-sched callback for invocation after a grace period.
  2822. */
  2823. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2824. {
  2825. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2826. }
  2827. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2828. /*
  2829. * Queue an RCU callback for invocation after a quicker grace period.
  2830. */
  2831. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2832. {
  2833. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2834. }
  2835. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2836. /*
  2837. * Queue an RCU callback for lazy invocation after a grace period.
  2838. * This will likely be later named something like "call_rcu_lazy()",
  2839. * but this change will require some way of tagging the lazy RCU
  2840. * callbacks in the list of pending callbacks. Until then, this
  2841. * function may only be called from __kfree_rcu().
  2842. */
  2843. void kfree_call_rcu(struct rcu_head *head,
  2844. rcu_callback_t func)
  2845. {
  2846. __call_rcu(head, func, rcu_state_p, -1, 1);
  2847. }
  2848. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2849. /*
  2850. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2851. * any blocking grace-period wait automatically implies a grace period
  2852. * if there is only one CPU online at any point time during execution
  2853. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2854. * occasionally incorrectly indicate that there are multiple CPUs online
  2855. * when there was in fact only one the whole time, as this just adds
  2856. * some overhead: RCU still operates correctly.
  2857. */
  2858. static inline int rcu_blocking_is_gp(void)
  2859. {
  2860. int ret;
  2861. might_sleep(); /* Check for RCU read-side critical section. */
  2862. preempt_disable();
  2863. ret = num_online_cpus() <= 1;
  2864. preempt_enable();
  2865. return ret;
  2866. }
  2867. /**
  2868. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2869. *
  2870. * Control will return to the caller some time after a full rcu-sched
  2871. * grace period has elapsed, in other words after all currently executing
  2872. * rcu-sched read-side critical sections have completed. These read-side
  2873. * critical sections are delimited by rcu_read_lock_sched() and
  2874. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2875. * local_irq_disable(), and so on may be used in place of
  2876. * rcu_read_lock_sched().
  2877. *
  2878. * This means that all preempt_disable code sequences, including NMI and
  2879. * non-threaded hardware-interrupt handlers, in progress on entry will
  2880. * have completed before this primitive returns. However, this does not
  2881. * guarantee that softirq handlers will have completed, since in some
  2882. * kernels, these handlers can run in process context, and can block.
  2883. *
  2884. * Note that this guarantee implies further memory-ordering guarantees.
  2885. * On systems with more than one CPU, when synchronize_sched() returns,
  2886. * each CPU is guaranteed to have executed a full memory barrier since the
  2887. * end of its last RCU-sched read-side critical section whose beginning
  2888. * preceded the call to synchronize_sched(). In addition, each CPU having
  2889. * an RCU read-side critical section that extends beyond the return from
  2890. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2891. * after the beginning of synchronize_sched() and before the beginning of
  2892. * that RCU read-side critical section. Note that these guarantees include
  2893. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2894. * that are executing in the kernel.
  2895. *
  2896. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2897. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2898. * to have executed a full memory barrier during the execution of
  2899. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2900. * again only if the system has more than one CPU).
  2901. *
  2902. * This primitive provides the guarantees made by the (now removed)
  2903. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2904. * guarantees that rcu_read_lock() sections will have completed.
  2905. * In "classic RCU", these two guarantees happen to be one and
  2906. * the same, but can differ in realtime RCU implementations.
  2907. */
  2908. void synchronize_sched(void)
  2909. {
  2910. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2911. lock_is_held(&rcu_lock_map) ||
  2912. lock_is_held(&rcu_sched_lock_map),
  2913. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2914. if (rcu_blocking_is_gp())
  2915. return;
  2916. if (rcu_gp_is_expedited())
  2917. synchronize_sched_expedited();
  2918. else
  2919. wait_rcu_gp(call_rcu_sched);
  2920. }
  2921. EXPORT_SYMBOL_GPL(synchronize_sched);
  2922. /**
  2923. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2924. *
  2925. * Control will return to the caller some time after a full rcu_bh grace
  2926. * period has elapsed, in other words after all currently executing rcu_bh
  2927. * read-side critical sections have completed. RCU read-side critical
  2928. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2929. * and may be nested.
  2930. *
  2931. * See the description of synchronize_sched() for more detailed information
  2932. * on memory ordering guarantees.
  2933. */
  2934. void synchronize_rcu_bh(void)
  2935. {
  2936. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2937. lock_is_held(&rcu_lock_map) ||
  2938. lock_is_held(&rcu_sched_lock_map),
  2939. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2940. if (rcu_blocking_is_gp())
  2941. return;
  2942. if (rcu_gp_is_expedited())
  2943. synchronize_rcu_bh_expedited();
  2944. else
  2945. wait_rcu_gp(call_rcu_bh);
  2946. }
  2947. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2948. /**
  2949. * get_state_synchronize_rcu - Snapshot current RCU state
  2950. *
  2951. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2952. * to determine whether or not a full grace period has elapsed in the
  2953. * meantime.
  2954. */
  2955. unsigned long get_state_synchronize_rcu(void)
  2956. {
  2957. /*
  2958. * Any prior manipulation of RCU-protected data must happen
  2959. * before the load from ->gpnum.
  2960. */
  2961. smp_mb(); /* ^^^ */
  2962. /*
  2963. * Make sure this load happens before the purportedly
  2964. * time-consuming work between get_state_synchronize_rcu()
  2965. * and cond_synchronize_rcu().
  2966. */
  2967. return smp_load_acquire(&rcu_state_p->gpnum);
  2968. }
  2969. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2970. /**
  2971. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2972. *
  2973. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2974. *
  2975. * If a full RCU grace period has elapsed since the earlier call to
  2976. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2977. * synchronize_rcu() to wait for a full grace period.
  2978. *
  2979. * Yes, this function does not take counter wrap into account. But
  2980. * counter wrap is harmless. If the counter wraps, we have waited for
  2981. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2982. * so waiting for one additional grace period should be just fine.
  2983. */
  2984. void cond_synchronize_rcu(unsigned long oldstate)
  2985. {
  2986. unsigned long newstate;
  2987. /*
  2988. * Ensure that this load happens before any RCU-destructive
  2989. * actions the caller might carry out after we return.
  2990. */
  2991. newstate = smp_load_acquire(&rcu_state_p->completed);
  2992. if (ULONG_CMP_GE(oldstate, newstate))
  2993. synchronize_rcu();
  2994. }
  2995. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2996. /**
  2997. * get_state_synchronize_sched - Snapshot current RCU-sched state
  2998. *
  2999. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  3000. * to determine whether or not a full grace period has elapsed in the
  3001. * meantime.
  3002. */
  3003. unsigned long get_state_synchronize_sched(void)
  3004. {
  3005. /*
  3006. * Any prior manipulation of RCU-protected data must happen
  3007. * before the load from ->gpnum.
  3008. */
  3009. smp_mb(); /* ^^^ */
  3010. /*
  3011. * Make sure this load happens before the purportedly
  3012. * time-consuming work between get_state_synchronize_sched()
  3013. * and cond_synchronize_sched().
  3014. */
  3015. return smp_load_acquire(&rcu_sched_state.gpnum);
  3016. }
  3017. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  3018. /**
  3019. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  3020. *
  3021. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3022. *
  3023. * If a full RCU-sched grace period has elapsed since the earlier call to
  3024. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3025. * synchronize_sched() to wait for a full grace period.
  3026. *
  3027. * Yes, this function does not take counter wrap into account. But
  3028. * counter wrap is harmless. If the counter wraps, we have waited for
  3029. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3030. * so waiting for one additional grace period should be just fine.
  3031. */
  3032. void cond_synchronize_sched(unsigned long oldstate)
  3033. {
  3034. unsigned long newstate;
  3035. /*
  3036. * Ensure that this load happens before any RCU-destructive
  3037. * actions the caller might carry out after we return.
  3038. */
  3039. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3040. if (ULONG_CMP_GE(oldstate, newstate))
  3041. synchronize_sched();
  3042. }
  3043. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3044. /* Adjust sequence number for start of update-side operation. */
  3045. static void rcu_seq_start(unsigned long *sp)
  3046. {
  3047. WRITE_ONCE(*sp, *sp + 1);
  3048. smp_mb(); /* Ensure update-side operation after counter increment. */
  3049. WARN_ON_ONCE(!(*sp & 0x1));
  3050. }
  3051. /* Adjust sequence number for end of update-side operation. */
  3052. static void rcu_seq_end(unsigned long *sp)
  3053. {
  3054. smp_mb(); /* Ensure update-side operation before counter increment. */
  3055. WRITE_ONCE(*sp, *sp + 1);
  3056. WARN_ON_ONCE(*sp & 0x1);
  3057. }
  3058. /* Take a snapshot of the update side's sequence number. */
  3059. static unsigned long rcu_seq_snap(unsigned long *sp)
  3060. {
  3061. unsigned long s;
  3062. s = (READ_ONCE(*sp) + 3) & ~0x1;
  3063. smp_mb(); /* Above access must not bleed into critical section. */
  3064. return s;
  3065. }
  3066. /*
  3067. * Given a snapshot from rcu_seq_snap(), determine whether or not a
  3068. * full update-side operation has occurred.
  3069. */
  3070. static bool rcu_seq_done(unsigned long *sp, unsigned long s)
  3071. {
  3072. return ULONG_CMP_GE(READ_ONCE(*sp), s);
  3073. }
  3074. /* Wrapper functions for expedited grace periods. */
  3075. static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
  3076. {
  3077. rcu_seq_start(&rsp->expedited_sequence);
  3078. }
  3079. static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
  3080. {
  3081. rcu_seq_end(&rsp->expedited_sequence);
  3082. smp_mb(); /* Ensure that consecutive grace periods serialize. */
  3083. }
  3084. static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
  3085. {
  3086. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  3087. return rcu_seq_snap(&rsp->expedited_sequence);
  3088. }
  3089. static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
  3090. {
  3091. return rcu_seq_done(&rsp->expedited_sequence, s);
  3092. }
  3093. /*
  3094. * Reset the ->expmaskinit values in the rcu_node tree to reflect any
  3095. * recent CPU-online activity. Note that these masks are not cleared
  3096. * when CPUs go offline, so they reflect the union of all CPUs that have
  3097. * ever been online. This means that this function normally takes its
  3098. * no-work-to-do fastpath.
  3099. */
  3100. static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
  3101. {
  3102. bool done;
  3103. unsigned long flags;
  3104. unsigned long mask;
  3105. unsigned long oldmask;
  3106. int ncpus = READ_ONCE(rsp->ncpus);
  3107. struct rcu_node *rnp;
  3108. struct rcu_node *rnp_up;
  3109. /* If no new CPUs onlined since last time, nothing to do. */
  3110. if (likely(ncpus == rsp->ncpus_snap))
  3111. return;
  3112. rsp->ncpus_snap = ncpus;
  3113. /*
  3114. * Each pass through the following loop propagates newly onlined
  3115. * CPUs for the current rcu_node structure up the rcu_node tree.
  3116. */
  3117. rcu_for_each_leaf_node(rsp, rnp) {
  3118. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3119. if (rnp->expmaskinit == rnp->expmaskinitnext) {
  3120. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3121. continue; /* No new CPUs, nothing to do. */
  3122. }
  3123. /* Update this node's mask, track old value for propagation. */
  3124. oldmask = rnp->expmaskinit;
  3125. rnp->expmaskinit = rnp->expmaskinitnext;
  3126. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3127. /* If was already nonzero, nothing to propagate. */
  3128. if (oldmask)
  3129. continue;
  3130. /* Propagate the new CPU up the tree. */
  3131. mask = rnp->grpmask;
  3132. rnp_up = rnp->parent;
  3133. done = false;
  3134. while (rnp_up) {
  3135. raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
  3136. if (rnp_up->expmaskinit)
  3137. done = true;
  3138. rnp_up->expmaskinit |= mask;
  3139. raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
  3140. if (done)
  3141. break;
  3142. mask = rnp_up->grpmask;
  3143. rnp_up = rnp_up->parent;
  3144. }
  3145. }
  3146. }
  3147. /*
  3148. * Reset the ->expmask values in the rcu_node tree in preparation for
  3149. * a new expedited grace period.
  3150. */
  3151. static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
  3152. {
  3153. unsigned long flags;
  3154. struct rcu_node *rnp;
  3155. sync_exp_reset_tree_hotplug(rsp);
  3156. rcu_for_each_node_breadth_first(rsp, rnp) {
  3157. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3158. WARN_ON_ONCE(rnp->expmask);
  3159. rnp->expmask = rnp->expmaskinit;
  3160. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3161. }
  3162. }
  3163. /*
  3164. * Return non-zero if there is no RCU expedited grace period in progress
  3165. * for the specified rcu_node structure, in other words, if all CPUs and
  3166. * tasks covered by the specified rcu_node structure have done their bit
  3167. * for the current expedited grace period. Works only for preemptible
  3168. * RCU -- other RCU implementation use other means.
  3169. *
  3170. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3171. */
  3172. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  3173. {
  3174. return rnp->exp_tasks == NULL &&
  3175. READ_ONCE(rnp->expmask) == 0;
  3176. }
  3177. /*
  3178. * Report the exit from RCU read-side critical section for the last task
  3179. * that queued itself during or before the current expedited preemptible-RCU
  3180. * grace period. This event is reported either to the rcu_node structure on
  3181. * which the task was queued or to one of that rcu_node structure's ancestors,
  3182. * recursively up the tree. (Calm down, calm down, we do the recursion
  3183. * iteratively!)
  3184. *
  3185. * Caller must hold the root rcu_node's exp_funnel_mutex and the
  3186. * specified rcu_node structure's ->lock.
  3187. */
  3188. static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  3189. bool wake, unsigned long flags)
  3190. __releases(rnp->lock)
  3191. {
  3192. unsigned long mask;
  3193. for (;;) {
  3194. if (!sync_rcu_preempt_exp_done(rnp)) {
  3195. if (!rnp->expmask)
  3196. rcu_initiate_boost(rnp, flags);
  3197. else
  3198. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3199. break;
  3200. }
  3201. if (rnp->parent == NULL) {
  3202. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3203. if (wake) {
  3204. smp_mb(); /* EGP done before wake_up(). */
  3205. wake_up(&rsp->expedited_wq);
  3206. }
  3207. break;
  3208. }
  3209. mask = rnp->grpmask;
  3210. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  3211. rnp = rnp->parent;
  3212. raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
  3213. WARN_ON_ONCE(!(rnp->expmask & mask));
  3214. rnp->expmask &= ~mask;
  3215. }
  3216. }
  3217. /*
  3218. * Report expedited quiescent state for specified node. This is a
  3219. * lock-acquisition wrapper function for __rcu_report_exp_rnp().
  3220. *
  3221. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3222. */
  3223. static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
  3224. struct rcu_node *rnp, bool wake)
  3225. {
  3226. unsigned long flags;
  3227. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3228. __rcu_report_exp_rnp(rsp, rnp, wake, flags);
  3229. }
  3230. /*
  3231. * Report expedited quiescent state for multiple CPUs, all covered by the
  3232. * specified leaf rcu_node structure. Caller must hold the root
  3233. * rcu_node's exp_funnel_mutex.
  3234. */
  3235. static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
  3236. unsigned long mask, bool wake)
  3237. {
  3238. unsigned long flags;
  3239. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3240. if (!(rnp->expmask & mask)) {
  3241. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3242. return;
  3243. }
  3244. rnp->expmask &= ~mask;
  3245. __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
  3246. }
  3247. /*
  3248. * Report expedited quiescent state for specified rcu_data (CPU).
  3249. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3250. */
  3251. static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
  3252. bool wake)
  3253. {
  3254. rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
  3255. }
  3256. /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
  3257. static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
  3258. struct rcu_data *rdp,
  3259. atomic_long_t *stat, unsigned long s)
  3260. {
  3261. if (rcu_exp_gp_seq_done(rsp, s)) {
  3262. if (rnp)
  3263. mutex_unlock(&rnp->exp_funnel_mutex);
  3264. else if (rdp)
  3265. mutex_unlock(&rdp->exp_funnel_mutex);
  3266. /* Ensure test happens before caller kfree(). */
  3267. smp_mb__before_atomic(); /* ^^^ */
  3268. atomic_long_inc(stat);
  3269. return true;
  3270. }
  3271. return false;
  3272. }
  3273. /*
  3274. * Funnel-lock acquisition for expedited grace periods. Returns a
  3275. * pointer to the root rcu_node structure, or NULL if some other
  3276. * task did the expedited grace period for us.
  3277. */
  3278. static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
  3279. {
  3280. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
  3281. struct rcu_node *rnp0;
  3282. struct rcu_node *rnp1 = NULL;
  3283. /*
  3284. * First try directly acquiring the root lock in order to reduce
  3285. * latency in the common case where expedited grace periods are
  3286. * rare. We check mutex_is_locked() to avoid pathological levels of
  3287. * memory contention on ->exp_funnel_mutex in the heavy-load case.
  3288. */
  3289. rnp0 = rcu_get_root(rsp);
  3290. if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
  3291. if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
  3292. if (sync_exp_work_done(rsp, rnp0, NULL,
  3293. &rdp->expedited_workdone0, s))
  3294. return NULL;
  3295. return rnp0;
  3296. }
  3297. }
  3298. /*
  3299. * Each pass through the following loop works its way
  3300. * up the rcu_node tree, returning if others have done the
  3301. * work or otherwise falls through holding the root rnp's
  3302. * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
  3303. * can be inexact, as it is just promoting locality and is not
  3304. * strictly needed for correctness.
  3305. */
  3306. if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
  3307. return NULL;
  3308. mutex_lock(&rdp->exp_funnel_mutex);
  3309. rnp0 = rdp->mynode;
  3310. for (; rnp0 != NULL; rnp0 = rnp0->parent) {
  3311. if (sync_exp_work_done(rsp, rnp1, rdp,
  3312. &rdp->expedited_workdone2, s))
  3313. return NULL;
  3314. mutex_lock(&rnp0->exp_funnel_mutex);
  3315. if (rnp1)
  3316. mutex_unlock(&rnp1->exp_funnel_mutex);
  3317. else
  3318. mutex_unlock(&rdp->exp_funnel_mutex);
  3319. rnp1 = rnp0;
  3320. }
  3321. if (sync_exp_work_done(rsp, rnp1, rdp,
  3322. &rdp->expedited_workdone3, s))
  3323. return NULL;
  3324. return rnp1;
  3325. }
  3326. /* Invoked on each online non-idle CPU for expedited quiescent state. */
  3327. static void sync_sched_exp_handler(void *data)
  3328. {
  3329. struct rcu_data *rdp;
  3330. struct rcu_node *rnp;
  3331. struct rcu_state *rsp = data;
  3332. rdp = this_cpu_ptr(rsp->rda);
  3333. rnp = rdp->mynode;
  3334. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
  3335. __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  3336. return;
  3337. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
  3338. resched_cpu(smp_processor_id());
  3339. }
  3340. /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
  3341. static void sync_sched_exp_online_cleanup(int cpu)
  3342. {
  3343. struct rcu_data *rdp;
  3344. int ret;
  3345. struct rcu_node *rnp;
  3346. struct rcu_state *rsp = &rcu_sched_state;
  3347. rdp = per_cpu_ptr(rsp->rda, cpu);
  3348. rnp = rdp->mynode;
  3349. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
  3350. return;
  3351. ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
  3352. WARN_ON_ONCE(ret);
  3353. }
  3354. /*
  3355. * Select the nodes that the upcoming expedited grace period needs
  3356. * to wait for.
  3357. */
  3358. static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
  3359. smp_call_func_t func)
  3360. {
  3361. int cpu;
  3362. unsigned long flags;
  3363. unsigned long mask;
  3364. unsigned long mask_ofl_test;
  3365. unsigned long mask_ofl_ipi;
  3366. int ret;
  3367. struct rcu_node *rnp;
  3368. sync_exp_reset_tree(rsp);
  3369. rcu_for_each_leaf_node(rsp, rnp) {
  3370. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3371. /* Each pass checks a CPU for identity, offline, and idle. */
  3372. mask_ofl_test = 0;
  3373. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
  3374. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3375. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  3376. if (raw_smp_processor_id() == cpu ||
  3377. !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
  3378. mask_ofl_test |= rdp->grpmask;
  3379. }
  3380. mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
  3381. /*
  3382. * Need to wait for any blocked tasks as well. Note that
  3383. * additional blocking tasks will also block the expedited
  3384. * GP until such time as the ->expmask bits are cleared.
  3385. */
  3386. if (rcu_preempt_has_tasks(rnp))
  3387. rnp->exp_tasks = rnp->blkd_tasks.next;
  3388. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3389. /* IPI the remaining CPUs for expedited quiescent state. */
  3390. mask = 1;
  3391. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3392. if (!(mask_ofl_ipi & mask))
  3393. continue;
  3394. retry_ipi:
  3395. ret = smp_call_function_single(cpu, func, rsp, 0);
  3396. if (!ret) {
  3397. mask_ofl_ipi &= ~mask;
  3398. continue;
  3399. }
  3400. /* Failed, raced with offline. */
  3401. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3402. if (cpu_online(cpu) &&
  3403. (rnp->expmask & mask)) {
  3404. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3405. schedule_timeout_uninterruptible(1);
  3406. if (cpu_online(cpu) &&
  3407. (rnp->expmask & mask))
  3408. goto retry_ipi;
  3409. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3410. }
  3411. if (!(rnp->expmask & mask))
  3412. mask_ofl_ipi &= ~mask;
  3413. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3414. }
  3415. /* Report quiescent states for those that went offline. */
  3416. mask_ofl_test |= mask_ofl_ipi;
  3417. if (mask_ofl_test)
  3418. rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
  3419. }
  3420. }
  3421. static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
  3422. {
  3423. int cpu;
  3424. unsigned long jiffies_stall;
  3425. unsigned long jiffies_start;
  3426. unsigned long mask;
  3427. int ndetected;
  3428. struct rcu_node *rnp;
  3429. struct rcu_node *rnp_root = rcu_get_root(rsp);
  3430. int ret;
  3431. jiffies_stall = rcu_jiffies_till_stall_check();
  3432. jiffies_start = jiffies;
  3433. for (;;) {
  3434. ret = wait_event_interruptible_timeout(
  3435. rsp->expedited_wq,
  3436. sync_rcu_preempt_exp_done(rnp_root),
  3437. jiffies_stall);
  3438. if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
  3439. return;
  3440. if (ret < 0) {
  3441. /* Hit a signal, disable CPU stall warnings. */
  3442. wait_event(rsp->expedited_wq,
  3443. sync_rcu_preempt_exp_done(rnp_root));
  3444. return;
  3445. }
  3446. pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
  3447. rsp->name);
  3448. ndetected = 0;
  3449. rcu_for_each_leaf_node(rsp, rnp) {
  3450. ndetected = rcu_print_task_exp_stall(rnp);
  3451. mask = 1;
  3452. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3453. struct rcu_data *rdp;
  3454. if (!(rnp->expmask & mask))
  3455. continue;
  3456. ndetected++;
  3457. rdp = per_cpu_ptr(rsp->rda, cpu);
  3458. pr_cont(" %d-%c%c%c", cpu,
  3459. "O."[cpu_online(cpu)],
  3460. "o."[!!(rdp->grpmask & rnp->expmaskinit)],
  3461. "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
  3462. }
  3463. mask <<= 1;
  3464. }
  3465. pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
  3466. jiffies - jiffies_start, rsp->expedited_sequence,
  3467. rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
  3468. if (!ndetected) {
  3469. pr_err("blocking rcu_node structures:");
  3470. rcu_for_each_node_breadth_first(rsp, rnp) {
  3471. if (rnp == rnp_root)
  3472. continue; /* printed unconditionally */
  3473. if (sync_rcu_preempt_exp_done(rnp))
  3474. continue;
  3475. pr_cont(" l=%u:%d-%d:%#lx/%c",
  3476. rnp->level, rnp->grplo, rnp->grphi,
  3477. rnp->expmask,
  3478. ".T"[!!rnp->exp_tasks]);
  3479. }
  3480. pr_cont("\n");
  3481. }
  3482. rcu_for_each_leaf_node(rsp, rnp) {
  3483. mask = 1;
  3484. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3485. if (!(rnp->expmask & mask))
  3486. continue;
  3487. dump_cpu_task(cpu);
  3488. }
  3489. }
  3490. jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
  3491. }
  3492. }
  3493. /**
  3494. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  3495. *
  3496. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  3497. * approach to force the grace period to end quickly. This consumes
  3498. * significant time on all CPUs and is unfriendly to real-time workloads,
  3499. * so is thus not recommended for any sort of common-case code. In fact,
  3500. * if you are using synchronize_sched_expedited() in a loop, please
  3501. * restructure your code to batch your updates, and then use a single
  3502. * synchronize_sched() instead.
  3503. *
  3504. * This implementation can be thought of as an application of sequence
  3505. * locking to expedited grace periods, but using the sequence counter to
  3506. * determine when someone else has already done the work instead of for
  3507. * retrying readers.
  3508. */
  3509. void synchronize_sched_expedited(void)
  3510. {
  3511. unsigned long s;
  3512. struct rcu_node *rnp;
  3513. struct rcu_state *rsp = &rcu_sched_state;
  3514. /* If only one CPU, this is automatically a grace period. */
  3515. if (rcu_blocking_is_gp())
  3516. return;
  3517. /* If expedited grace periods are prohibited, fall back to normal. */
  3518. if (rcu_gp_is_normal()) {
  3519. wait_rcu_gp(call_rcu_sched);
  3520. return;
  3521. }
  3522. /* Take a snapshot of the sequence number. */
  3523. s = rcu_exp_gp_seq_snap(rsp);
  3524. rnp = exp_funnel_lock(rsp, s);
  3525. if (rnp == NULL)
  3526. return; /* Someone else did our work for us. */
  3527. rcu_exp_gp_seq_start(rsp);
  3528. sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
  3529. synchronize_sched_expedited_wait(rsp);
  3530. rcu_exp_gp_seq_end(rsp);
  3531. mutex_unlock(&rnp->exp_funnel_mutex);
  3532. }
  3533. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  3534. /*
  3535. * Check to see if there is any immediate RCU-related work to be done
  3536. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3537. * The checks are in order of increasing expense: checks that can be
  3538. * carried out against CPU-local state are performed first. However,
  3539. * we must check for CPU stalls first, else we might not get a chance.
  3540. */
  3541. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3542. {
  3543. struct rcu_node *rnp = rdp->mynode;
  3544. rdp->n_rcu_pending++;
  3545. /* Check for CPU stalls, if enabled. */
  3546. check_cpu_stall(rsp, rdp);
  3547. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3548. if (rcu_nohz_full_cpu(rsp))
  3549. return 0;
  3550. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3551. if (rcu_scheduler_fully_active &&
  3552. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3553. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
  3554. rdp->n_rp_core_needs_qs++;
  3555. } else if (rdp->core_needs_qs &&
  3556. (!rdp->cpu_no_qs.b.norm ||
  3557. rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
  3558. rdp->n_rp_report_qs++;
  3559. return 1;
  3560. }
  3561. /* Does this CPU have callbacks ready to invoke? */
  3562. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  3563. rdp->n_rp_cb_ready++;
  3564. return 1;
  3565. }
  3566. /* Has RCU gone idle with this CPU needing another grace period? */
  3567. if (cpu_needs_another_gp(rsp, rdp)) {
  3568. rdp->n_rp_cpu_needs_gp++;
  3569. return 1;
  3570. }
  3571. /* Has another RCU grace period completed? */
  3572. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3573. rdp->n_rp_gp_completed++;
  3574. return 1;
  3575. }
  3576. /* Has a new RCU grace period started? */
  3577. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3578. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3579. rdp->n_rp_gp_started++;
  3580. return 1;
  3581. }
  3582. /* Does this CPU need a deferred NOCB wakeup? */
  3583. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3584. rdp->n_rp_nocb_defer_wakeup++;
  3585. return 1;
  3586. }
  3587. /* nothing to do */
  3588. rdp->n_rp_need_nothing++;
  3589. return 0;
  3590. }
  3591. /*
  3592. * Check to see if there is any immediate RCU-related work to be done
  3593. * by the current CPU, returning 1 if so. This function is part of the
  3594. * RCU implementation; it is -not- an exported member of the RCU API.
  3595. */
  3596. static int rcu_pending(void)
  3597. {
  3598. struct rcu_state *rsp;
  3599. for_each_rcu_flavor(rsp)
  3600. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3601. return 1;
  3602. return 0;
  3603. }
  3604. /*
  3605. * Return true if the specified CPU has any callback. If all_lazy is
  3606. * non-NULL, store an indication of whether all callbacks are lazy.
  3607. * (If there are no callbacks, all of them are deemed to be lazy.)
  3608. */
  3609. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3610. {
  3611. bool al = true;
  3612. bool hc = false;
  3613. struct rcu_data *rdp;
  3614. struct rcu_state *rsp;
  3615. for_each_rcu_flavor(rsp) {
  3616. rdp = this_cpu_ptr(rsp->rda);
  3617. if (!rdp->nxtlist)
  3618. continue;
  3619. hc = true;
  3620. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  3621. al = false;
  3622. break;
  3623. }
  3624. }
  3625. if (all_lazy)
  3626. *all_lazy = al;
  3627. return hc;
  3628. }
  3629. /*
  3630. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3631. * the compiler is expected to optimize this away.
  3632. */
  3633. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3634. int cpu, unsigned long done)
  3635. {
  3636. trace_rcu_barrier(rsp->name, s, cpu,
  3637. atomic_read(&rsp->barrier_cpu_count), done);
  3638. }
  3639. /*
  3640. * RCU callback function for _rcu_barrier(). If we are last, wake
  3641. * up the task executing _rcu_barrier().
  3642. */
  3643. static void rcu_barrier_callback(struct rcu_head *rhp)
  3644. {
  3645. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3646. struct rcu_state *rsp = rdp->rsp;
  3647. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3648. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
  3649. complete(&rsp->barrier_completion);
  3650. } else {
  3651. _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
  3652. }
  3653. }
  3654. /*
  3655. * Called with preemption disabled, and from cross-cpu IRQ context.
  3656. */
  3657. static void rcu_barrier_func(void *type)
  3658. {
  3659. struct rcu_state *rsp = type;
  3660. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3661. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
  3662. atomic_inc(&rsp->barrier_cpu_count);
  3663. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  3664. }
  3665. /*
  3666. * Orchestrate the specified type of RCU barrier, waiting for all
  3667. * RCU callbacks of the specified type to complete.
  3668. */
  3669. static void _rcu_barrier(struct rcu_state *rsp)
  3670. {
  3671. int cpu;
  3672. struct rcu_data *rdp;
  3673. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3674. _rcu_barrier_trace(rsp, "Begin", -1, s);
  3675. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3676. mutex_lock(&rsp->barrier_mutex);
  3677. /* Did someone else do our work for us? */
  3678. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3679. _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
  3680. smp_mb(); /* caller's subsequent code after above check. */
  3681. mutex_unlock(&rsp->barrier_mutex);
  3682. return;
  3683. }
  3684. /* Mark the start of the barrier operation. */
  3685. rcu_seq_start(&rsp->barrier_sequence);
  3686. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
  3687. /*
  3688. * Initialize the count to one rather than to zero in order to
  3689. * avoid a too-soon return to zero in case of a short grace period
  3690. * (or preemption of this task). Exclude CPU-hotplug operations
  3691. * to ensure that no offline CPU has callbacks queued.
  3692. */
  3693. init_completion(&rsp->barrier_completion);
  3694. atomic_set(&rsp->barrier_cpu_count, 1);
  3695. get_online_cpus();
  3696. /*
  3697. * Force each CPU with callbacks to register a new callback.
  3698. * When that callback is invoked, we will know that all of the
  3699. * corresponding CPU's preceding callbacks have been invoked.
  3700. */
  3701. for_each_possible_cpu(cpu) {
  3702. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3703. continue;
  3704. rdp = per_cpu_ptr(rsp->rda, cpu);
  3705. if (rcu_is_nocb_cpu(cpu)) {
  3706. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3707. _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
  3708. rsp->barrier_sequence);
  3709. } else {
  3710. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  3711. rsp->barrier_sequence);
  3712. smp_mb__before_atomic();
  3713. atomic_inc(&rsp->barrier_cpu_count);
  3714. __call_rcu(&rdp->barrier_head,
  3715. rcu_barrier_callback, rsp, cpu, 0);
  3716. }
  3717. } else if (READ_ONCE(rdp->qlen)) {
  3718. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  3719. rsp->barrier_sequence);
  3720. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3721. } else {
  3722. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  3723. rsp->barrier_sequence);
  3724. }
  3725. }
  3726. put_online_cpus();
  3727. /*
  3728. * Now that we have an rcu_barrier_callback() callback on each
  3729. * CPU, and thus each counted, remove the initial count.
  3730. */
  3731. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3732. complete(&rsp->barrier_completion);
  3733. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3734. wait_for_completion(&rsp->barrier_completion);
  3735. /* Mark the end of the barrier operation. */
  3736. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
  3737. rcu_seq_end(&rsp->barrier_sequence);
  3738. /* Other rcu_barrier() invocations can now safely proceed. */
  3739. mutex_unlock(&rsp->barrier_mutex);
  3740. }
  3741. /**
  3742. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3743. */
  3744. void rcu_barrier_bh(void)
  3745. {
  3746. _rcu_barrier(&rcu_bh_state);
  3747. }
  3748. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3749. /**
  3750. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3751. */
  3752. void rcu_barrier_sched(void)
  3753. {
  3754. _rcu_barrier(&rcu_sched_state);
  3755. }
  3756. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3757. /*
  3758. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3759. * first CPU in a given leaf rcu_node structure coming online. The caller
  3760. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3761. * disabled.
  3762. */
  3763. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3764. {
  3765. long mask;
  3766. struct rcu_node *rnp = rnp_leaf;
  3767. for (;;) {
  3768. mask = rnp->grpmask;
  3769. rnp = rnp->parent;
  3770. if (rnp == NULL)
  3771. return;
  3772. raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
  3773. rnp->qsmaskinit |= mask;
  3774. raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
  3775. }
  3776. }
  3777. /*
  3778. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3779. */
  3780. static void __init
  3781. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3782. {
  3783. unsigned long flags;
  3784. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3785. struct rcu_node *rnp = rcu_get_root(rsp);
  3786. /* Set up local state, ensuring consistent view of global state. */
  3787. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3788. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3789. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3790. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3791. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3792. rdp->cpu = cpu;
  3793. rdp->rsp = rsp;
  3794. mutex_init(&rdp->exp_funnel_mutex);
  3795. rcu_boot_init_nocb_percpu_data(rdp);
  3796. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3797. }
  3798. /*
  3799. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3800. * offline event can be happening at a given time. Note also that we
  3801. * can accept some slop in the rsp->completed access due to the fact
  3802. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3803. */
  3804. static void
  3805. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3806. {
  3807. unsigned long flags;
  3808. unsigned long mask;
  3809. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3810. struct rcu_node *rnp = rcu_get_root(rsp);
  3811. /* Set up local state, ensuring consistent view of global state. */
  3812. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3813. rdp->qlen_last_fqs_check = 0;
  3814. rdp->n_force_qs_snap = rsp->n_force_qs;
  3815. rdp->blimit = blimit;
  3816. if (!rdp->nxtlist)
  3817. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3818. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3819. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3820. atomic_set(&rdp->dynticks->dynticks,
  3821. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3822. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  3823. /*
  3824. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3825. * propagation up the rcu_node tree will happen at the beginning
  3826. * of the next grace period.
  3827. */
  3828. rnp = rdp->mynode;
  3829. mask = rdp->grpmask;
  3830. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  3831. rnp->qsmaskinitnext |= mask;
  3832. rnp->expmaskinitnext |= mask;
  3833. if (!rdp->beenonline)
  3834. WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
  3835. rdp->beenonline = true; /* We have now been online. */
  3836. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3837. rdp->completed = rnp->completed;
  3838. rdp->cpu_no_qs.b.norm = true;
  3839. rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
  3840. rdp->core_needs_qs = false;
  3841. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3842. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3843. }
  3844. static void rcu_prepare_cpu(int cpu)
  3845. {
  3846. struct rcu_state *rsp;
  3847. for_each_rcu_flavor(rsp)
  3848. rcu_init_percpu_data(cpu, rsp);
  3849. }
  3850. /*
  3851. * Handle CPU online/offline notification events.
  3852. */
  3853. int rcu_cpu_notify(struct notifier_block *self,
  3854. unsigned long action, void *hcpu)
  3855. {
  3856. long cpu = (long)hcpu;
  3857. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3858. struct rcu_node *rnp = rdp->mynode;
  3859. struct rcu_state *rsp;
  3860. switch (action) {
  3861. case CPU_UP_PREPARE:
  3862. case CPU_UP_PREPARE_FROZEN:
  3863. rcu_prepare_cpu(cpu);
  3864. rcu_prepare_kthreads(cpu);
  3865. rcu_spawn_all_nocb_kthreads(cpu);
  3866. break;
  3867. case CPU_ONLINE:
  3868. case CPU_DOWN_FAILED:
  3869. sync_sched_exp_online_cleanup(cpu);
  3870. rcu_boost_kthread_setaffinity(rnp, -1);
  3871. break;
  3872. case CPU_DOWN_PREPARE:
  3873. rcu_boost_kthread_setaffinity(rnp, cpu);
  3874. break;
  3875. case CPU_DYING:
  3876. case CPU_DYING_FROZEN:
  3877. for_each_rcu_flavor(rsp)
  3878. rcu_cleanup_dying_cpu(rsp);
  3879. break;
  3880. case CPU_DYING_IDLE:
  3881. /* QS for any half-done expedited RCU-sched GP. */
  3882. preempt_disable();
  3883. rcu_report_exp_rdp(&rcu_sched_state,
  3884. this_cpu_ptr(rcu_sched_state.rda), true);
  3885. preempt_enable();
  3886. for_each_rcu_flavor(rsp) {
  3887. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3888. }
  3889. break;
  3890. case CPU_DEAD:
  3891. case CPU_DEAD_FROZEN:
  3892. case CPU_UP_CANCELED:
  3893. case CPU_UP_CANCELED_FROZEN:
  3894. for_each_rcu_flavor(rsp) {
  3895. rcu_cleanup_dead_cpu(cpu, rsp);
  3896. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3897. }
  3898. break;
  3899. default:
  3900. break;
  3901. }
  3902. return NOTIFY_OK;
  3903. }
  3904. static int rcu_pm_notify(struct notifier_block *self,
  3905. unsigned long action, void *hcpu)
  3906. {
  3907. switch (action) {
  3908. case PM_HIBERNATION_PREPARE:
  3909. case PM_SUSPEND_PREPARE:
  3910. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3911. rcu_expedite_gp();
  3912. break;
  3913. case PM_POST_HIBERNATION:
  3914. case PM_POST_SUSPEND:
  3915. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3916. rcu_unexpedite_gp();
  3917. break;
  3918. default:
  3919. break;
  3920. }
  3921. return NOTIFY_OK;
  3922. }
  3923. /*
  3924. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3925. */
  3926. static int __init rcu_spawn_gp_kthread(void)
  3927. {
  3928. unsigned long flags;
  3929. int kthread_prio_in = kthread_prio;
  3930. struct rcu_node *rnp;
  3931. struct rcu_state *rsp;
  3932. struct sched_param sp;
  3933. struct task_struct *t;
  3934. /* Force priority into range. */
  3935. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3936. kthread_prio = 1;
  3937. else if (kthread_prio < 0)
  3938. kthread_prio = 0;
  3939. else if (kthread_prio > 99)
  3940. kthread_prio = 99;
  3941. if (kthread_prio != kthread_prio_in)
  3942. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3943. kthread_prio, kthread_prio_in);
  3944. rcu_scheduler_fully_active = 1;
  3945. for_each_rcu_flavor(rsp) {
  3946. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3947. BUG_ON(IS_ERR(t));
  3948. rnp = rcu_get_root(rsp);
  3949. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3950. rsp->gp_kthread = t;
  3951. if (kthread_prio) {
  3952. sp.sched_priority = kthread_prio;
  3953. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3954. }
  3955. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3956. wake_up_process(t);
  3957. }
  3958. rcu_spawn_nocb_kthreads();
  3959. rcu_spawn_boost_kthreads();
  3960. return 0;
  3961. }
  3962. early_initcall(rcu_spawn_gp_kthread);
  3963. /*
  3964. * This function is invoked towards the end of the scheduler's initialization
  3965. * process. Before this is called, the idle task might contain
  3966. * RCU read-side critical sections (during which time, this idle
  3967. * task is booting the system). After this function is called, the
  3968. * idle tasks are prohibited from containing RCU read-side critical
  3969. * sections. This function also enables RCU lockdep checking.
  3970. */
  3971. void rcu_scheduler_starting(void)
  3972. {
  3973. WARN_ON(num_online_cpus() != 1);
  3974. WARN_ON(nr_context_switches() > 0);
  3975. rcu_scheduler_active = 1;
  3976. }
  3977. /*
  3978. * Compute the per-level fanout, either using the exact fanout specified
  3979. * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
  3980. */
  3981. static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
  3982. {
  3983. int i;
  3984. if (rcu_fanout_exact) {
  3985. levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3986. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3987. levelspread[i] = RCU_FANOUT;
  3988. } else {
  3989. int ccur;
  3990. int cprv;
  3991. cprv = nr_cpu_ids;
  3992. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3993. ccur = levelcnt[i];
  3994. levelspread[i] = (cprv + ccur - 1) / ccur;
  3995. cprv = ccur;
  3996. }
  3997. }
  3998. }
  3999. /*
  4000. * Helper function for rcu_init() that initializes one rcu_state structure.
  4001. */
  4002. static void __init rcu_init_one(struct rcu_state *rsp)
  4003. {
  4004. static const char * const buf[] = RCU_NODE_NAME_INIT;
  4005. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  4006. static const char * const exp[] = RCU_EXP_NAME_INIT;
  4007. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  4008. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  4009. static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
  4010. static u8 fl_mask = 0x1;
  4011. int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
  4012. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  4013. int cpustride = 1;
  4014. int i;
  4015. int j;
  4016. struct rcu_node *rnp;
  4017. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  4018. /* Silence gcc 4.8 false positive about array index out of range. */
  4019. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  4020. panic("rcu_init_one: rcu_num_lvls out of range");
  4021. /* Initialize the level-tracking arrays. */
  4022. for (i = 0; i < rcu_num_lvls; i++)
  4023. levelcnt[i] = num_rcu_lvl[i];
  4024. for (i = 1; i < rcu_num_lvls; i++)
  4025. rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
  4026. rcu_init_levelspread(levelspread, levelcnt);
  4027. rsp->flavor_mask = fl_mask;
  4028. fl_mask <<= 1;
  4029. /* Initialize the elements themselves, starting from the leaves. */
  4030. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  4031. cpustride *= levelspread[i];
  4032. rnp = rsp->level[i];
  4033. for (j = 0; j < levelcnt[i]; j++, rnp++) {
  4034. raw_spin_lock_init(&rnp->lock);
  4035. lockdep_set_class_and_name(&rnp->lock,
  4036. &rcu_node_class[i], buf[i]);
  4037. raw_spin_lock_init(&rnp->fqslock);
  4038. lockdep_set_class_and_name(&rnp->fqslock,
  4039. &rcu_fqs_class[i], fqs[i]);
  4040. rnp->gpnum = rsp->gpnum;
  4041. rnp->completed = rsp->completed;
  4042. rnp->qsmask = 0;
  4043. rnp->qsmaskinit = 0;
  4044. rnp->grplo = j * cpustride;
  4045. rnp->grphi = (j + 1) * cpustride - 1;
  4046. if (rnp->grphi >= nr_cpu_ids)
  4047. rnp->grphi = nr_cpu_ids - 1;
  4048. if (i == 0) {
  4049. rnp->grpnum = 0;
  4050. rnp->grpmask = 0;
  4051. rnp->parent = NULL;
  4052. } else {
  4053. rnp->grpnum = j % levelspread[i - 1];
  4054. rnp->grpmask = 1UL << rnp->grpnum;
  4055. rnp->parent = rsp->level[i - 1] +
  4056. j / levelspread[i - 1];
  4057. }
  4058. rnp->level = i;
  4059. INIT_LIST_HEAD(&rnp->blkd_tasks);
  4060. rcu_init_one_nocb(rnp);
  4061. mutex_init(&rnp->exp_funnel_mutex);
  4062. lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
  4063. &rcu_exp_class[i], exp[i]);
  4064. }
  4065. }
  4066. init_waitqueue_head(&rsp->gp_wq);
  4067. init_waitqueue_head(&rsp->expedited_wq);
  4068. rnp = rsp->level[rcu_num_lvls - 1];
  4069. for_each_possible_cpu(i) {
  4070. while (i > rnp->grphi)
  4071. rnp++;
  4072. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  4073. rcu_boot_init_percpu_data(i, rsp);
  4074. }
  4075. list_add(&rsp->flavors, &rcu_struct_flavors);
  4076. }
  4077. /*
  4078. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  4079. * replace the definitions in tree.h because those are needed to size
  4080. * the ->node array in the rcu_state structure.
  4081. */
  4082. static void __init rcu_init_geometry(void)
  4083. {
  4084. ulong d;
  4085. int i;
  4086. int rcu_capacity[RCU_NUM_LVLS];
  4087. /*
  4088. * Initialize any unspecified boot parameters.
  4089. * The default values of jiffies_till_first_fqs and
  4090. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  4091. * value, which is a function of HZ, then adding one for each
  4092. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  4093. */
  4094. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  4095. if (jiffies_till_first_fqs == ULONG_MAX)
  4096. jiffies_till_first_fqs = d;
  4097. if (jiffies_till_next_fqs == ULONG_MAX)
  4098. jiffies_till_next_fqs = d;
  4099. /* If the compile-time values are accurate, just leave. */
  4100. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  4101. nr_cpu_ids == NR_CPUS)
  4102. return;
  4103. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  4104. rcu_fanout_leaf, nr_cpu_ids);
  4105. /*
  4106. * The boot-time rcu_fanout_leaf parameter must be at least two
  4107. * and cannot exceed the number of bits in the rcu_node masks.
  4108. * Complain and fall back to the compile-time values if this
  4109. * limit is exceeded.
  4110. */
  4111. if (rcu_fanout_leaf < 2 ||
  4112. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  4113. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4114. WARN_ON(1);
  4115. return;
  4116. }
  4117. /*
  4118. * Compute number of nodes that can be handled an rcu_node tree
  4119. * with the given number of levels.
  4120. */
  4121. rcu_capacity[0] = rcu_fanout_leaf;
  4122. for (i = 1; i < RCU_NUM_LVLS; i++)
  4123. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  4124. /*
  4125. * The tree must be able to accommodate the configured number of CPUs.
  4126. * If this limit is exceeded, fall back to the compile-time values.
  4127. */
  4128. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  4129. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4130. WARN_ON(1);
  4131. return;
  4132. }
  4133. /* Calculate the number of levels in the tree. */
  4134. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  4135. }
  4136. rcu_num_lvls = i + 1;
  4137. /* Calculate the number of rcu_nodes at each level of the tree. */
  4138. for (i = 0; i < rcu_num_lvls; i++) {
  4139. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  4140. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  4141. }
  4142. /* Calculate the total number of rcu_node structures. */
  4143. rcu_num_nodes = 0;
  4144. for (i = 0; i < rcu_num_lvls; i++)
  4145. rcu_num_nodes += num_rcu_lvl[i];
  4146. }
  4147. /*
  4148. * Dump out the structure of the rcu_node combining tree associated
  4149. * with the rcu_state structure referenced by rsp.
  4150. */
  4151. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  4152. {
  4153. int level = 0;
  4154. struct rcu_node *rnp;
  4155. pr_info("rcu_node tree layout dump\n");
  4156. pr_info(" ");
  4157. rcu_for_each_node_breadth_first(rsp, rnp) {
  4158. if (rnp->level != level) {
  4159. pr_cont("\n");
  4160. pr_info(" ");
  4161. level = rnp->level;
  4162. }
  4163. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  4164. }
  4165. pr_cont("\n");
  4166. }
  4167. void __init rcu_init(void)
  4168. {
  4169. int cpu;
  4170. rcu_early_boot_tests();
  4171. rcu_bootup_announce();
  4172. rcu_init_geometry();
  4173. rcu_init_one(&rcu_bh_state);
  4174. rcu_init_one(&rcu_sched_state);
  4175. if (dump_tree)
  4176. rcu_dump_rcu_node_tree(&rcu_sched_state);
  4177. __rcu_init_preempt();
  4178. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  4179. /*
  4180. * We don't need protection against CPU-hotplug here because
  4181. * this is called early in boot, before either interrupts
  4182. * or the scheduler are operational.
  4183. */
  4184. cpu_notifier(rcu_cpu_notify, 0);
  4185. pm_notifier(rcu_pm_notify, 0);
  4186. for_each_online_cpu(cpu)
  4187. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  4188. }
  4189. #include "tree_plugin.h"