verifier.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301
  1. /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/types.h>
  14. #include <linux/slab.h>
  15. #include <linux/bpf.h>
  16. #include <linux/filter.h>
  17. #include <net/netlink.h>
  18. #include <linux/file.h>
  19. #include <linux/vmalloc.h>
  20. /* bpf_check() is a static code analyzer that walks eBPF program
  21. * instruction by instruction and updates register/stack state.
  22. * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  23. *
  24. * The first pass is depth-first-search to check that the program is a DAG.
  25. * It rejects the following programs:
  26. * - larger than BPF_MAXINSNS insns
  27. * - if loop is present (detected via back-edge)
  28. * - unreachable insns exist (shouldn't be a forest. program = one function)
  29. * - out of bounds or malformed jumps
  30. * The second pass is all possible path descent from the 1st insn.
  31. * Since it's analyzing all pathes through the program, the length of the
  32. * analysis is limited to 32k insn, which may be hit even if total number of
  33. * insn is less then 4K, but there are too many branches that change stack/regs.
  34. * Number of 'branches to be analyzed' is limited to 1k
  35. *
  36. * On entry to each instruction, each register has a type, and the instruction
  37. * changes the types of the registers depending on instruction semantics.
  38. * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  39. * copied to R1.
  40. *
  41. * All registers are 64-bit.
  42. * R0 - return register
  43. * R1-R5 argument passing registers
  44. * R6-R9 callee saved registers
  45. * R10 - frame pointer read-only
  46. *
  47. * At the start of BPF program the register R1 contains a pointer to bpf_context
  48. * and has type PTR_TO_CTX.
  49. *
  50. * Verifier tracks arithmetic operations on pointers in case:
  51. * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  52. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  53. * 1st insn copies R10 (which has FRAME_PTR) type into R1
  54. * and 2nd arithmetic instruction is pattern matched to recognize
  55. * that it wants to construct a pointer to some element within stack.
  56. * So after 2nd insn, the register R1 has type PTR_TO_STACK
  57. * (and -20 constant is saved for further stack bounds checking).
  58. * Meaning that this reg is a pointer to stack plus known immediate constant.
  59. *
  60. * Most of the time the registers have UNKNOWN_VALUE type, which
  61. * means the register has some value, but it's not a valid pointer.
  62. * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  63. *
  64. * When verifier sees load or store instructions the type of base register
  65. * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  66. * types recognized by check_mem_access() function.
  67. *
  68. * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  69. * and the range of [ptr, ptr + map's value_size) is accessible.
  70. *
  71. * registers used to pass values to function calls are checked against
  72. * function argument constraints.
  73. *
  74. * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  75. * It means that the register type passed to this function must be
  76. * PTR_TO_STACK and it will be used inside the function as
  77. * 'pointer to map element key'
  78. *
  79. * For example the argument constraints for bpf_map_lookup_elem():
  80. * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  81. * .arg1_type = ARG_CONST_MAP_PTR,
  82. * .arg2_type = ARG_PTR_TO_MAP_KEY,
  83. *
  84. * ret_type says that this function returns 'pointer to map elem value or null'
  85. * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  86. * 2nd argument should be a pointer to stack, which will be used inside
  87. * the helper function as a pointer to map element key.
  88. *
  89. * On the kernel side the helper function looks like:
  90. * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  91. * {
  92. * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  93. * void *key = (void *) (unsigned long) r2;
  94. * void *value;
  95. *
  96. * here kernel can access 'key' and 'map' pointers safely, knowing that
  97. * [key, key + map->key_size) bytes are valid and were initialized on
  98. * the stack of eBPF program.
  99. * }
  100. *
  101. * Corresponding eBPF program may look like:
  102. * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
  103. * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
  104. * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
  105. * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  106. * here verifier looks at prototype of map_lookup_elem() and sees:
  107. * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
  108. * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
  109. *
  110. * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
  111. * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
  112. * and were initialized prior to this call.
  113. * If it's ok, then verifier allows this BPF_CALL insn and looks at
  114. * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
  115. * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
  116. * returns ether pointer to map value or NULL.
  117. *
  118. * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
  119. * insn, the register holding that pointer in the true branch changes state to
  120. * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
  121. * branch. See check_cond_jmp_op().
  122. *
  123. * After the call R0 is set to return type of the function and registers R1-R5
  124. * are set to NOT_INIT to indicate that they are no longer readable.
  125. */
  126. /* types of values stored in eBPF registers */
  127. enum bpf_reg_type {
  128. NOT_INIT = 0, /* nothing was written into register */
  129. UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
  130. PTR_TO_CTX, /* reg points to bpf_context */
  131. CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
  132. PTR_TO_MAP_VALUE, /* reg points to map element value */
  133. PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
  134. FRAME_PTR, /* reg == frame_pointer */
  135. PTR_TO_STACK, /* reg == frame_pointer + imm */
  136. CONST_IMM, /* constant integer value */
  137. };
  138. struct reg_state {
  139. enum bpf_reg_type type;
  140. union {
  141. /* valid when type == CONST_IMM | PTR_TO_STACK */
  142. int imm;
  143. /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  144. * PTR_TO_MAP_VALUE_OR_NULL
  145. */
  146. struct bpf_map *map_ptr;
  147. };
  148. };
  149. enum bpf_stack_slot_type {
  150. STACK_INVALID, /* nothing was stored in this stack slot */
  151. STACK_SPILL, /* register spilled into stack */
  152. STACK_MISC /* BPF program wrote some data into this slot */
  153. };
  154. #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
  155. /* state of the program:
  156. * type of all registers and stack info
  157. */
  158. struct verifier_state {
  159. struct reg_state regs[MAX_BPF_REG];
  160. u8 stack_slot_type[MAX_BPF_STACK];
  161. struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
  162. };
  163. /* linked list of verifier states used to prune search */
  164. struct verifier_state_list {
  165. struct verifier_state state;
  166. struct verifier_state_list *next;
  167. };
  168. /* verifier_state + insn_idx are pushed to stack when branch is encountered */
  169. struct verifier_stack_elem {
  170. /* verifer state is 'st'
  171. * before processing instruction 'insn_idx'
  172. * and after processing instruction 'prev_insn_idx'
  173. */
  174. struct verifier_state st;
  175. int insn_idx;
  176. int prev_insn_idx;
  177. struct verifier_stack_elem *next;
  178. };
  179. #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
  180. /* single container for all structs
  181. * one verifier_env per bpf_check() call
  182. */
  183. struct verifier_env {
  184. struct bpf_prog *prog; /* eBPF program being verified */
  185. struct verifier_stack_elem *head; /* stack of verifier states to be processed */
  186. int stack_size; /* number of states to be processed */
  187. struct verifier_state cur_state; /* current verifier state */
  188. struct verifier_state_list **explored_states; /* search pruning optimization */
  189. struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
  190. u32 used_map_cnt; /* number of used maps */
  191. bool allow_ptr_leaks;
  192. };
  193. /* verbose verifier prints what it's seeing
  194. * bpf_check() is called under lock, so no race to access these global vars
  195. */
  196. static u32 log_level, log_size, log_len;
  197. static char *log_buf;
  198. static DEFINE_MUTEX(bpf_verifier_lock);
  199. /* log_level controls verbosity level of eBPF verifier.
  200. * verbose() is used to dump the verification trace to the log, so the user
  201. * can figure out what's wrong with the program
  202. */
  203. static __printf(1, 2) void verbose(const char *fmt, ...)
  204. {
  205. va_list args;
  206. if (log_level == 0 || log_len >= log_size - 1)
  207. return;
  208. va_start(args, fmt);
  209. log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
  210. va_end(args);
  211. }
  212. /* string representation of 'enum bpf_reg_type' */
  213. static const char * const reg_type_str[] = {
  214. [NOT_INIT] = "?",
  215. [UNKNOWN_VALUE] = "inv",
  216. [PTR_TO_CTX] = "ctx",
  217. [CONST_PTR_TO_MAP] = "map_ptr",
  218. [PTR_TO_MAP_VALUE] = "map_value",
  219. [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
  220. [FRAME_PTR] = "fp",
  221. [PTR_TO_STACK] = "fp",
  222. [CONST_IMM] = "imm",
  223. };
  224. static const struct {
  225. int map_type;
  226. int func_id;
  227. } func_limit[] = {
  228. {BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call},
  229. {BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read},
  230. {BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_output},
  231. };
  232. static void print_verifier_state(struct verifier_env *env)
  233. {
  234. enum bpf_reg_type t;
  235. int i;
  236. for (i = 0; i < MAX_BPF_REG; i++) {
  237. t = env->cur_state.regs[i].type;
  238. if (t == NOT_INIT)
  239. continue;
  240. verbose(" R%d=%s", i, reg_type_str[t]);
  241. if (t == CONST_IMM || t == PTR_TO_STACK)
  242. verbose("%d", env->cur_state.regs[i].imm);
  243. else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
  244. t == PTR_TO_MAP_VALUE_OR_NULL)
  245. verbose("(ks=%d,vs=%d)",
  246. env->cur_state.regs[i].map_ptr->key_size,
  247. env->cur_state.regs[i].map_ptr->value_size);
  248. }
  249. for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
  250. if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
  251. verbose(" fp%d=%s", -MAX_BPF_STACK + i,
  252. reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
  253. }
  254. verbose("\n");
  255. }
  256. static const char *const bpf_class_string[] = {
  257. [BPF_LD] = "ld",
  258. [BPF_LDX] = "ldx",
  259. [BPF_ST] = "st",
  260. [BPF_STX] = "stx",
  261. [BPF_ALU] = "alu",
  262. [BPF_JMP] = "jmp",
  263. [BPF_RET] = "BUG",
  264. [BPF_ALU64] = "alu64",
  265. };
  266. static const char *const bpf_alu_string[16] = {
  267. [BPF_ADD >> 4] = "+=",
  268. [BPF_SUB >> 4] = "-=",
  269. [BPF_MUL >> 4] = "*=",
  270. [BPF_DIV >> 4] = "/=",
  271. [BPF_OR >> 4] = "|=",
  272. [BPF_AND >> 4] = "&=",
  273. [BPF_LSH >> 4] = "<<=",
  274. [BPF_RSH >> 4] = ">>=",
  275. [BPF_NEG >> 4] = "neg",
  276. [BPF_MOD >> 4] = "%=",
  277. [BPF_XOR >> 4] = "^=",
  278. [BPF_MOV >> 4] = "=",
  279. [BPF_ARSH >> 4] = "s>>=",
  280. [BPF_END >> 4] = "endian",
  281. };
  282. static const char *const bpf_ldst_string[] = {
  283. [BPF_W >> 3] = "u32",
  284. [BPF_H >> 3] = "u16",
  285. [BPF_B >> 3] = "u8",
  286. [BPF_DW >> 3] = "u64",
  287. };
  288. static const char *const bpf_jmp_string[16] = {
  289. [BPF_JA >> 4] = "jmp",
  290. [BPF_JEQ >> 4] = "==",
  291. [BPF_JGT >> 4] = ">",
  292. [BPF_JGE >> 4] = ">=",
  293. [BPF_JSET >> 4] = "&",
  294. [BPF_JNE >> 4] = "!=",
  295. [BPF_JSGT >> 4] = "s>",
  296. [BPF_JSGE >> 4] = "s>=",
  297. [BPF_CALL >> 4] = "call",
  298. [BPF_EXIT >> 4] = "exit",
  299. };
  300. static void print_bpf_insn(struct bpf_insn *insn)
  301. {
  302. u8 class = BPF_CLASS(insn->code);
  303. if (class == BPF_ALU || class == BPF_ALU64) {
  304. if (BPF_SRC(insn->code) == BPF_X)
  305. verbose("(%02x) %sr%d %s %sr%d\n",
  306. insn->code, class == BPF_ALU ? "(u32) " : "",
  307. insn->dst_reg,
  308. bpf_alu_string[BPF_OP(insn->code) >> 4],
  309. class == BPF_ALU ? "(u32) " : "",
  310. insn->src_reg);
  311. else
  312. verbose("(%02x) %sr%d %s %s%d\n",
  313. insn->code, class == BPF_ALU ? "(u32) " : "",
  314. insn->dst_reg,
  315. bpf_alu_string[BPF_OP(insn->code) >> 4],
  316. class == BPF_ALU ? "(u32) " : "",
  317. insn->imm);
  318. } else if (class == BPF_STX) {
  319. if (BPF_MODE(insn->code) == BPF_MEM)
  320. verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
  321. insn->code,
  322. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  323. insn->dst_reg,
  324. insn->off, insn->src_reg);
  325. else if (BPF_MODE(insn->code) == BPF_XADD)
  326. verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
  327. insn->code,
  328. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  329. insn->dst_reg, insn->off,
  330. insn->src_reg);
  331. else
  332. verbose("BUG_%02x\n", insn->code);
  333. } else if (class == BPF_ST) {
  334. if (BPF_MODE(insn->code) != BPF_MEM) {
  335. verbose("BUG_st_%02x\n", insn->code);
  336. return;
  337. }
  338. verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
  339. insn->code,
  340. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  341. insn->dst_reg,
  342. insn->off, insn->imm);
  343. } else if (class == BPF_LDX) {
  344. if (BPF_MODE(insn->code) != BPF_MEM) {
  345. verbose("BUG_ldx_%02x\n", insn->code);
  346. return;
  347. }
  348. verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
  349. insn->code, insn->dst_reg,
  350. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  351. insn->src_reg, insn->off);
  352. } else if (class == BPF_LD) {
  353. if (BPF_MODE(insn->code) == BPF_ABS) {
  354. verbose("(%02x) r0 = *(%s *)skb[%d]\n",
  355. insn->code,
  356. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  357. insn->imm);
  358. } else if (BPF_MODE(insn->code) == BPF_IND) {
  359. verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
  360. insn->code,
  361. bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
  362. insn->src_reg, insn->imm);
  363. } else if (BPF_MODE(insn->code) == BPF_IMM) {
  364. verbose("(%02x) r%d = 0x%x\n",
  365. insn->code, insn->dst_reg, insn->imm);
  366. } else {
  367. verbose("BUG_ld_%02x\n", insn->code);
  368. return;
  369. }
  370. } else if (class == BPF_JMP) {
  371. u8 opcode = BPF_OP(insn->code);
  372. if (opcode == BPF_CALL) {
  373. verbose("(%02x) call %d\n", insn->code, insn->imm);
  374. } else if (insn->code == (BPF_JMP | BPF_JA)) {
  375. verbose("(%02x) goto pc%+d\n",
  376. insn->code, insn->off);
  377. } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
  378. verbose("(%02x) exit\n", insn->code);
  379. } else if (BPF_SRC(insn->code) == BPF_X) {
  380. verbose("(%02x) if r%d %s r%d goto pc%+d\n",
  381. insn->code, insn->dst_reg,
  382. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  383. insn->src_reg, insn->off);
  384. } else {
  385. verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
  386. insn->code, insn->dst_reg,
  387. bpf_jmp_string[BPF_OP(insn->code) >> 4],
  388. insn->imm, insn->off);
  389. }
  390. } else {
  391. verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
  392. }
  393. }
  394. static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
  395. {
  396. struct verifier_stack_elem *elem;
  397. int insn_idx;
  398. if (env->head == NULL)
  399. return -1;
  400. memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
  401. insn_idx = env->head->insn_idx;
  402. if (prev_insn_idx)
  403. *prev_insn_idx = env->head->prev_insn_idx;
  404. elem = env->head->next;
  405. kfree(env->head);
  406. env->head = elem;
  407. env->stack_size--;
  408. return insn_idx;
  409. }
  410. static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
  411. int prev_insn_idx)
  412. {
  413. struct verifier_stack_elem *elem;
  414. elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
  415. if (!elem)
  416. goto err;
  417. memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
  418. elem->insn_idx = insn_idx;
  419. elem->prev_insn_idx = prev_insn_idx;
  420. elem->next = env->head;
  421. env->head = elem;
  422. env->stack_size++;
  423. if (env->stack_size > 1024) {
  424. verbose("BPF program is too complex\n");
  425. goto err;
  426. }
  427. return &elem->st;
  428. err:
  429. /* pop all elements and return */
  430. while (pop_stack(env, NULL) >= 0);
  431. return NULL;
  432. }
  433. #define CALLER_SAVED_REGS 6
  434. static const int caller_saved[CALLER_SAVED_REGS] = {
  435. BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
  436. };
  437. static void init_reg_state(struct reg_state *regs)
  438. {
  439. int i;
  440. for (i = 0; i < MAX_BPF_REG; i++) {
  441. regs[i].type = NOT_INIT;
  442. regs[i].imm = 0;
  443. regs[i].map_ptr = NULL;
  444. }
  445. /* frame pointer */
  446. regs[BPF_REG_FP].type = FRAME_PTR;
  447. /* 1st arg to a function */
  448. regs[BPF_REG_1].type = PTR_TO_CTX;
  449. }
  450. static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
  451. {
  452. BUG_ON(regno >= MAX_BPF_REG);
  453. regs[regno].type = UNKNOWN_VALUE;
  454. regs[regno].imm = 0;
  455. regs[regno].map_ptr = NULL;
  456. }
  457. enum reg_arg_type {
  458. SRC_OP, /* register is used as source operand */
  459. DST_OP, /* register is used as destination operand */
  460. DST_OP_NO_MARK /* same as above, check only, don't mark */
  461. };
  462. static int check_reg_arg(struct reg_state *regs, u32 regno,
  463. enum reg_arg_type t)
  464. {
  465. if (regno >= MAX_BPF_REG) {
  466. verbose("R%d is invalid\n", regno);
  467. return -EINVAL;
  468. }
  469. if (t == SRC_OP) {
  470. /* check whether register used as source operand can be read */
  471. if (regs[regno].type == NOT_INIT) {
  472. verbose("R%d !read_ok\n", regno);
  473. return -EACCES;
  474. }
  475. } else {
  476. /* check whether register used as dest operand can be written to */
  477. if (regno == BPF_REG_FP) {
  478. verbose("frame pointer is read only\n");
  479. return -EACCES;
  480. }
  481. if (t == DST_OP)
  482. mark_reg_unknown_value(regs, regno);
  483. }
  484. return 0;
  485. }
  486. static int bpf_size_to_bytes(int bpf_size)
  487. {
  488. if (bpf_size == BPF_W)
  489. return 4;
  490. else if (bpf_size == BPF_H)
  491. return 2;
  492. else if (bpf_size == BPF_B)
  493. return 1;
  494. else if (bpf_size == BPF_DW)
  495. return 8;
  496. else
  497. return -EINVAL;
  498. }
  499. static bool is_spillable_regtype(enum bpf_reg_type type)
  500. {
  501. switch (type) {
  502. case PTR_TO_MAP_VALUE:
  503. case PTR_TO_MAP_VALUE_OR_NULL:
  504. case PTR_TO_STACK:
  505. case PTR_TO_CTX:
  506. case FRAME_PTR:
  507. case CONST_PTR_TO_MAP:
  508. return true;
  509. default:
  510. return false;
  511. }
  512. }
  513. /* check_stack_read/write functions track spill/fill of registers,
  514. * stack boundary and alignment are checked in check_mem_access()
  515. */
  516. static int check_stack_write(struct verifier_state *state, int off, int size,
  517. int value_regno)
  518. {
  519. int i;
  520. /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
  521. * so it's aligned access and [off, off + size) are within stack limits
  522. */
  523. if (value_regno >= 0 &&
  524. is_spillable_regtype(state->regs[value_regno].type)) {
  525. /* register containing pointer is being spilled into stack */
  526. if (size != BPF_REG_SIZE) {
  527. verbose("invalid size of register spill\n");
  528. return -EACCES;
  529. }
  530. /* save register state */
  531. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  532. state->regs[value_regno];
  533. for (i = 0; i < BPF_REG_SIZE; i++)
  534. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
  535. } else {
  536. /* regular write of data into stack */
  537. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
  538. (struct reg_state) {};
  539. for (i = 0; i < size; i++)
  540. state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
  541. }
  542. return 0;
  543. }
  544. static int check_stack_read(struct verifier_state *state, int off, int size,
  545. int value_regno)
  546. {
  547. u8 *slot_type;
  548. int i;
  549. slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
  550. if (slot_type[0] == STACK_SPILL) {
  551. if (size != BPF_REG_SIZE) {
  552. verbose("invalid size of register spill\n");
  553. return -EACCES;
  554. }
  555. for (i = 1; i < BPF_REG_SIZE; i++) {
  556. if (slot_type[i] != STACK_SPILL) {
  557. verbose("corrupted spill memory\n");
  558. return -EACCES;
  559. }
  560. }
  561. if (value_regno >= 0)
  562. /* restore register state from stack */
  563. state->regs[value_regno] =
  564. state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
  565. return 0;
  566. } else {
  567. for (i = 0; i < size; i++) {
  568. if (slot_type[i] != STACK_MISC) {
  569. verbose("invalid read from stack off %d+%d size %d\n",
  570. off, i, size);
  571. return -EACCES;
  572. }
  573. }
  574. if (value_regno >= 0)
  575. /* have read misc data from the stack */
  576. mark_reg_unknown_value(state->regs, value_regno);
  577. return 0;
  578. }
  579. }
  580. /* check read/write into map element returned by bpf_map_lookup_elem() */
  581. static int check_map_access(struct verifier_env *env, u32 regno, int off,
  582. int size)
  583. {
  584. struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
  585. if (off < 0 || off + size > map->value_size) {
  586. verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
  587. map->value_size, off, size);
  588. return -EACCES;
  589. }
  590. return 0;
  591. }
  592. /* check access to 'struct bpf_context' fields */
  593. static int check_ctx_access(struct verifier_env *env, int off, int size,
  594. enum bpf_access_type t)
  595. {
  596. if (env->prog->aux->ops->is_valid_access &&
  597. env->prog->aux->ops->is_valid_access(off, size, t))
  598. return 0;
  599. verbose("invalid bpf_context access off=%d size=%d\n", off, size);
  600. return -EACCES;
  601. }
  602. static bool is_pointer_value(struct verifier_env *env, int regno)
  603. {
  604. if (env->allow_ptr_leaks)
  605. return false;
  606. switch (env->cur_state.regs[regno].type) {
  607. case UNKNOWN_VALUE:
  608. case CONST_IMM:
  609. return false;
  610. default:
  611. return true;
  612. }
  613. }
  614. /* check whether memory at (regno + off) is accessible for t = (read | write)
  615. * if t==write, value_regno is a register which value is stored into memory
  616. * if t==read, value_regno is a register which will receive the value from memory
  617. * if t==write && value_regno==-1, some unknown value is stored into memory
  618. * if t==read && value_regno==-1, don't care what we read from memory
  619. */
  620. static int check_mem_access(struct verifier_env *env, u32 regno, int off,
  621. int bpf_size, enum bpf_access_type t,
  622. int value_regno)
  623. {
  624. struct verifier_state *state = &env->cur_state;
  625. int size, err = 0;
  626. if (state->regs[regno].type == PTR_TO_STACK)
  627. off += state->regs[regno].imm;
  628. size = bpf_size_to_bytes(bpf_size);
  629. if (size < 0)
  630. return size;
  631. if (off % size != 0) {
  632. verbose("misaligned access off %d size %d\n", off, size);
  633. return -EACCES;
  634. }
  635. if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
  636. if (t == BPF_WRITE && value_regno >= 0 &&
  637. is_pointer_value(env, value_regno)) {
  638. verbose("R%d leaks addr into map\n", value_regno);
  639. return -EACCES;
  640. }
  641. err = check_map_access(env, regno, off, size);
  642. if (!err && t == BPF_READ && value_regno >= 0)
  643. mark_reg_unknown_value(state->regs, value_regno);
  644. } else if (state->regs[regno].type == PTR_TO_CTX) {
  645. if (t == BPF_WRITE && value_regno >= 0 &&
  646. is_pointer_value(env, value_regno)) {
  647. verbose("R%d leaks addr into ctx\n", value_regno);
  648. return -EACCES;
  649. }
  650. err = check_ctx_access(env, off, size, t);
  651. if (!err && t == BPF_READ && value_regno >= 0)
  652. mark_reg_unknown_value(state->regs, value_regno);
  653. } else if (state->regs[regno].type == FRAME_PTR ||
  654. state->regs[regno].type == PTR_TO_STACK) {
  655. if (off >= 0 || off < -MAX_BPF_STACK) {
  656. verbose("invalid stack off=%d size=%d\n", off, size);
  657. return -EACCES;
  658. }
  659. if (t == BPF_WRITE) {
  660. if (!env->allow_ptr_leaks &&
  661. state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
  662. size != BPF_REG_SIZE) {
  663. verbose("attempt to corrupt spilled pointer on stack\n");
  664. return -EACCES;
  665. }
  666. err = check_stack_write(state, off, size, value_regno);
  667. } else {
  668. err = check_stack_read(state, off, size, value_regno);
  669. }
  670. } else {
  671. verbose("R%d invalid mem access '%s'\n",
  672. regno, reg_type_str[state->regs[regno].type]);
  673. return -EACCES;
  674. }
  675. return err;
  676. }
  677. static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
  678. {
  679. struct reg_state *regs = env->cur_state.regs;
  680. int err;
  681. if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
  682. insn->imm != 0) {
  683. verbose("BPF_XADD uses reserved fields\n");
  684. return -EINVAL;
  685. }
  686. /* check src1 operand */
  687. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  688. if (err)
  689. return err;
  690. /* check src2 operand */
  691. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  692. if (err)
  693. return err;
  694. /* check whether atomic_add can read the memory */
  695. err = check_mem_access(env, insn->dst_reg, insn->off,
  696. BPF_SIZE(insn->code), BPF_READ, -1);
  697. if (err)
  698. return err;
  699. /* check whether atomic_add can write into the same memory */
  700. return check_mem_access(env, insn->dst_reg, insn->off,
  701. BPF_SIZE(insn->code), BPF_WRITE, -1);
  702. }
  703. /* when register 'regno' is passed into function that will read 'access_size'
  704. * bytes from that pointer, make sure that it's within stack boundary
  705. * and all elements of stack are initialized
  706. */
  707. static int check_stack_boundary(struct verifier_env *env,
  708. int regno, int access_size)
  709. {
  710. struct verifier_state *state = &env->cur_state;
  711. struct reg_state *regs = state->regs;
  712. int off, i;
  713. if (regs[regno].type != PTR_TO_STACK)
  714. return -EACCES;
  715. off = regs[regno].imm;
  716. if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
  717. access_size <= 0) {
  718. verbose("invalid stack type R%d off=%d access_size=%d\n",
  719. regno, off, access_size);
  720. return -EACCES;
  721. }
  722. for (i = 0; i < access_size; i++) {
  723. if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
  724. verbose("invalid indirect read from stack off %d+%d size %d\n",
  725. off, i, access_size);
  726. return -EACCES;
  727. }
  728. }
  729. return 0;
  730. }
  731. static int check_func_arg(struct verifier_env *env, u32 regno,
  732. enum bpf_arg_type arg_type, struct bpf_map **mapp)
  733. {
  734. struct reg_state *reg = env->cur_state.regs + regno;
  735. enum bpf_reg_type expected_type;
  736. int err = 0;
  737. if (arg_type == ARG_DONTCARE)
  738. return 0;
  739. if (reg->type == NOT_INIT) {
  740. verbose("R%d !read_ok\n", regno);
  741. return -EACCES;
  742. }
  743. if (arg_type == ARG_ANYTHING) {
  744. if (is_pointer_value(env, regno)) {
  745. verbose("R%d leaks addr into helper function\n", regno);
  746. return -EACCES;
  747. }
  748. return 0;
  749. }
  750. if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
  751. arg_type == ARG_PTR_TO_MAP_VALUE) {
  752. expected_type = PTR_TO_STACK;
  753. } else if (arg_type == ARG_CONST_STACK_SIZE) {
  754. expected_type = CONST_IMM;
  755. } else if (arg_type == ARG_CONST_MAP_PTR) {
  756. expected_type = CONST_PTR_TO_MAP;
  757. } else if (arg_type == ARG_PTR_TO_CTX) {
  758. expected_type = PTR_TO_CTX;
  759. } else {
  760. verbose("unsupported arg_type %d\n", arg_type);
  761. return -EFAULT;
  762. }
  763. if (reg->type != expected_type) {
  764. verbose("R%d type=%s expected=%s\n", regno,
  765. reg_type_str[reg->type], reg_type_str[expected_type]);
  766. return -EACCES;
  767. }
  768. if (arg_type == ARG_CONST_MAP_PTR) {
  769. /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
  770. *mapp = reg->map_ptr;
  771. } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
  772. /* bpf_map_xxx(..., map_ptr, ..., key) call:
  773. * check that [key, key + map->key_size) are within
  774. * stack limits and initialized
  775. */
  776. if (!*mapp) {
  777. /* in function declaration map_ptr must come before
  778. * map_key, so that it's verified and known before
  779. * we have to check map_key here. Otherwise it means
  780. * that kernel subsystem misconfigured verifier
  781. */
  782. verbose("invalid map_ptr to access map->key\n");
  783. return -EACCES;
  784. }
  785. err = check_stack_boundary(env, regno, (*mapp)->key_size);
  786. } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
  787. /* bpf_map_xxx(..., map_ptr, ..., value) call:
  788. * check [value, value + map->value_size) validity
  789. */
  790. if (!*mapp) {
  791. /* kernel subsystem misconfigured verifier */
  792. verbose("invalid map_ptr to access map->value\n");
  793. return -EACCES;
  794. }
  795. err = check_stack_boundary(env, regno, (*mapp)->value_size);
  796. } else if (arg_type == ARG_CONST_STACK_SIZE) {
  797. /* bpf_xxx(..., buf, len) call will access 'len' bytes
  798. * from stack pointer 'buf'. Check it
  799. * note: regno == len, regno - 1 == buf
  800. */
  801. if (regno == 0) {
  802. /* kernel subsystem misconfigured verifier */
  803. verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
  804. return -EACCES;
  805. }
  806. err = check_stack_boundary(env, regno - 1, reg->imm);
  807. }
  808. return err;
  809. }
  810. static int check_map_func_compatibility(struct bpf_map *map, int func_id)
  811. {
  812. bool bool_map, bool_func;
  813. int i;
  814. if (!map)
  815. return 0;
  816. for (i = 0; i < ARRAY_SIZE(func_limit); i++) {
  817. bool_map = (map->map_type == func_limit[i].map_type);
  818. bool_func = (func_id == func_limit[i].func_id);
  819. /* only when map & func pair match it can continue.
  820. * don't allow any other map type to be passed into
  821. * the special func;
  822. */
  823. if (bool_func && bool_map != bool_func)
  824. return -EINVAL;
  825. }
  826. return 0;
  827. }
  828. static int check_call(struct verifier_env *env, int func_id)
  829. {
  830. struct verifier_state *state = &env->cur_state;
  831. const struct bpf_func_proto *fn = NULL;
  832. struct reg_state *regs = state->regs;
  833. struct bpf_map *map = NULL;
  834. struct reg_state *reg;
  835. int i, err;
  836. /* find function prototype */
  837. if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
  838. verbose("invalid func %d\n", func_id);
  839. return -EINVAL;
  840. }
  841. if (env->prog->aux->ops->get_func_proto)
  842. fn = env->prog->aux->ops->get_func_proto(func_id);
  843. if (!fn) {
  844. verbose("unknown func %d\n", func_id);
  845. return -EINVAL;
  846. }
  847. /* eBPF programs must be GPL compatible to use GPL-ed functions */
  848. if (!env->prog->gpl_compatible && fn->gpl_only) {
  849. verbose("cannot call GPL only function from proprietary program\n");
  850. return -EINVAL;
  851. }
  852. /* check args */
  853. err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
  854. if (err)
  855. return err;
  856. err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
  857. if (err)
  858. return err;
  859. err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
  860. if (err)
  861. return err;
  862. err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
  863. if (err)
  864. return err;
  865. err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
  866. if (err)
  867. return err;
  868. /* reset caller saved regs */
  869. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  870. reg = regs + caller_saved[i];
  871. reg->type = NOT_INIT;
  872. reg->imm = 0;
  873. }
  874. /* update return register */
  875. if (fn->ret_type == RET_INTEGER) {
  876. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  877. } else if (fn->ret_type == RET_VOID) {
  878. regs[BPF_REG_0].type = NOT_INIT;
  879. } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
  880. regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
  881. /* remember map_ptr, so that check_map_access()
  882. * can check 'value_size' boundary of memory access
  883. * to map element returned from bpf_map_lookup_elem()
  884. */
  885. if (map == NULL) {
  886. verbose("kernel subsystem misconfigured verifier\n");
  887. return -EINVAL;
  888. }
  889. regs[BPF_REG_0].map_ptr = map;
  890. } else {
  891. verbose("unknown return type %d of func %d\n",
  892. fn->ret_type, func_id);
  893. return -EINVAL;
  894. }
  895. err = check_map_func_compatibility(map, func_id);
  896. if (err)
  897. return err;
  898. return 0;
  899. }
  900. /* check validity of 32-bit and 64-bit arithmetic operations */
  901. static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
  902. {
  903. struct reg_state *regs = env->cur_state.regs;
  904. u8 opcode = BPF_OP(insn->code);
  905. int err;
  906. if (opcode == BPF_END || opcode == BPF_NEG) {
  907. if (opcode == BPF_NEG) {
  908. if (BPF_SRC(insn->code) != 0 ||
  909. insn->src_reg != BPF_REG_0 ||
  910. insn->off != 0 || insn->imm != 0) {
  911. verbose("BPF_NEG uses reserved fields\n");
  912. return -EINVAL;
  913. }
  914. } else {
  915. if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
  916. (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
  917. verbose("BPF_END uses reserved fields\n");
  918. return -EINVAL;
  919. }
  920. }
  921. /* check src operand */
  922. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  923. if (err)
  924. return err;
  925. if (is_pointer_value(env, insn->dst_reg)) {
  926. verbose("R%d pointer arithmetic prohibited\n",
  927. insn->dst_reg);
  928. return -EACCES;
  929. }
  930. /* check dest operand */
  931. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  932. if (err)
  933. return err;
  934. } else if (opcode == BPF_MOV) {
  935. if (BPF_SRC(insn->code) == BPF_X) {
  936. if (insn->imm != 0 || insn->off != 0) {
  937. verbose("BPF_MOV uses reserved fields\n");
  938. return -EINVAL;
  939. }
  940. /* check src operand */
  941. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  942. if (err)
  943. return err;
  944. } else {
  945. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  946. verbose("BPF_MOV uses reserved fields\n");
  947. return -EINVAL;
  948. }
  949. }
  950. /* check dest operand */
  951. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  952. if (err)
  953. return err;
  954. if (BPF_SRC(insn->code) == BPF_X) {
  955. if (BPF_CLASS(insn->code) == BPF_ALU64) {
  956. /* case: R1 = R2
  957. * copy register state to dest reg
  958. */
  959. regs[insn->dst_reg] = regs[insn->src_reg];
  960. } else {
  961. if (is_pointer_value(env, insn->src_reg)) {
  962. verbose("R%d partial copy of pointer\n",
  963. insn->src_reg);
  964. return -EACCES;
  965. }
  966. regs[insn->dst_reg].type = UNKNOWN_VALUE;
  967. regs[insn->dst_reg].map_ptr = NULL;
  968. }
  969. } else {
  970. /* case: R = imm
  971. * remember the value we stored into this reg
  972. */
  973. regs[insn->dst_reg].type = CONST_IMM;
  974. regs[insn->dst_reg].imm = insn->imm;
  975. }
  976. } else if (opcode > BPF_END) {
  977. verbose("invalid BPF_ALU opcode %x\n", opcode);
  978. return -EINVAL;
  979. } else { /* all other ALU ops: and, sub, xor, add, ... */
  980. bool stack_relative = false;
  981. if (BPF_SRC(insn->code) == BPF_X) {
  982. if (insn->imm != 0 || insn->off != 0) {
  983. verbose("BPF_ALU uses reserved fields\n");
  984. return -EINVAL;
  985. }
  986. /* check src1 operand */
  987. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  988. if (err)
  989. return err;
  990. } else {
  991. if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
  992. verbose("BPF_ALU uses reserved fields\n");
  993. return -EINVAL;
  994. }
  995. }
  996. /* check src2 operand */
  997. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  998. if (err)
  999. return err;
  1000. if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
  1001. BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
  1002. verbose("div by zero\n");
  1003. return -EINVAL;
  1004. }
  1005. if ((opcode == BPF_LSH || opcode == BPF_RSH ||
  1006. opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
  1007. int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
  1008. if (insn->imm < 0 || insn->imm >= size) {
  1009. verbose("invalid shift %d\n", insn->imm);
  1010. return -EINVAL;
  1011. }
  1012. }
  1013. /* pattern match 'bpf_add Rx, imm' instruction */
  1014. if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
  1015. regs[insn->dst_reg].type == FRAME_PTR &&
  1016. BPF_SRC(insn->code) == BPF_K) {
  1017. stack_relative = true;
  1018. } else if (is_pointer_value(env, insn->dst_reg)) {
  1019. verbose("R%d pointer arithmetic prohibited\n",
  1020. insn->dst_reg);
  1021. return -EACCES;
  1022. } else if (BPF_SRC(insn->code) == BPF_X &&
  1023. is_pointer_value(env, insn->src_reg)) {
  1024. verbose("R%d pointer arithmetic prohibited\n",
  1025. insn->src_reg);
  1026. return -EACCES;
  1027. }
  1028. /* check dest operand */
  1029. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1030. if (err)
  1031. return err;
  1032. if (stack_relative) {
  1033. regs[insn->dst_reg].type = PTR_TO_STACK;
  1034. regs[insn->dst_reg].imm = insn->imm;
  1035. }
  1036. }
  1037. return 0;
  1038. }
  1039. static int check_cond_jmp_op(struct verifier_env *env,
  1040. struct bpf_insn *insn, int *insn_idx)
  1041. {
  1042. struct reg_state *regs = env->cur_state.regs;
  1043. struct verifier_state *other_branch;
  1044. u8 opcode = BPF_OP(insn->code);
  1045. int err;
  1046. if (opcode > BPF_EXIT) {
  1047. verbose("invalid BPF_JMP opcode %x\n", opcode);
  1048. return -EINVAL;
  1049. }
  1050. if (BPF_SRC(insn->code) == BPF_X) {
  1051. if (insn->imm != 0) {
  1052. verbose("BPF_JMP uses reserved fields\n");
  1053. return -EINVAL;
  1054. }
  1055. /* check src1 operand */
  1056. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1057. if (err)
  1058. return err;
  1059. if (is_pointer_value(env, insn->src_reg)) {
  1060. verbose("R%d pointer comparison prohibited\n",
  1061. insn->src_reg);
  1062. return -EACCES;
  1063. }
  1064. } else {
  1065. if (insn->src_reg != BPF_REG_0) {
  1066. verbose("BPF_JMP uses reserved fields\n");
  1067. return -EINVAL;
  1068. }
  1069. }
  1070. /* check src2 operand */
  1071. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1072. if (err)
  1073. return err;
  1074. /* detect if R == 0 where R was initialized to zero earlier */
  1075. if (BPF_SRC(insn->code) == BPF_K &&
  1076. (opcode == BPF_JEQ || opcode == BPF_JNE) &&
  1077. regs[insn->dst_reg].type == CONST_IMM &&
  1078. regs[insn->dst_reg].imm == insn->imm) {
  1079. if (opcode == BPF_JEQ) {
  1080. /* if (imm == imm) goto pc+off;
  1081. * only follow the goto, ignore fall-through
  1082. */
  1083. *insn_idx += insn->off;
  1084. return 0;
  1085. } else {
  1086. /* if (imm != imm) goto pc+off;
  1087. * only follow fall-through branch, since
  1088. * that's where the program will go
  1089. */
  1090. return 0;
  1091. }
  1092. }
  1093. other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
  1094. if (!other_branch)
  1095. return -EFAULT;
  1096. /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
  1097. if (BPF_SRC(insn->code) == BPF_K &&
  1098. insn->imm == 0 && (opcode == BPF_JEQ ||
  1099. opcode == BPF_JNE) &&
  1100. regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
  1101. if (opcode == BPF_JEQ) {
  1102. /* next fallthrough insn can access memory via
  1103. * this register
  1104. */
  1105. regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1106. /* branch targer cannot access it, since reg == 0 */
  1107. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1108. other_branch->regs[insn->dst_reg].imm = 0;
  1109. } else {
  1110. other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
  1111. regs[insn->dst_reg].type = CONST_IMM;
  1112. regs[insn->dst_reg].imm = 0;
  1113. }
  1114. } else if (is_pointer_value(env, insn->dst_reg)) {
  1115. verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
  1116. return -EACCES;
  1117. } else if (BPF_SRC(insn->code) == BPF_K &&
  1118. (opcode == BPF_JEQ || opcode == BPF_JNE)) {
  1119. if (opcode == BPF_JEQ) {
  1120. /* detect if (R == imm) goto
  1121. * and in the target state recognize that R = imm
  1122. */
  1123. other_branch->regs[insn->dst_reg].type = CONST_IMM;
  1124. other_branch->regs[insn->dst_reg].imm = insn->imm;
  1125. } else {
  1126. /* detect if (R != imm) goto
  1127. * and in the fall-through state recognize that R = imm
  1128. */
  1129. regs[insn->dst_reg].type = CONST_IMM;
  1130. regs[insn->dst_reg].imm = insn->imm;
  1131. }
  1132. }
  1133. if (log_level)
  1134. print_verifier_state(env);
  1135. return 0;
  1136. }
  1137. /* return the map pointer stored inside BPF_LD_IMM64 instruction */
  1138. static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
  1139. {
  1140. u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
  1141. return (struct bpf_map *) (unsigned long) imm64;
  1142. }
  1143. /* verify BPF_LD_IMM64 instruction */
  1144. static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
  1145. {
  1146. struct reg_state *regs = env->cur_state.regs;
  1147. int err;
  1148. if (BPF_SIZE(insn->code) != BPF_DW) {
  1149. verbose("invalid BPF_LD_IMM insn\n");
  1150. return -EINVAL;
  1151. }
  1152. if (insn->off != 0) {
  1153. verbose("BPF_LD_IMM64 uses reserved fields\n");
  1154. return -EINVAL;
  1155. }
  1156. err = check_reg_arg(regs, insn->dst_reg, DST_OP);
  1157. if (err)
  1158. return err;
  1159. if (insn->src_reg == 0)
  1160. /* generic move 64-bit immediate into a register */
  1161. return 0;
  1162. /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
  1163. BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
  1164. regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
  1165. regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
  1166. return 0;
  1167. }
  1168. static bool may_access_skb(enum bpf_prog_type type)
  1169. {
  1170. switch (type) {
  1171. case BPF_PROG_TYPE_SOCKET_FILTER:
  1172. case BPF_PROG_TYPE_SCHED_CLS:
  1173. case BPF_PROG_TYPE_SCHED_ACT:
  1174. return true;
  1175. default:
  1176. return false;
  1177. }
  1178. }
  1179. /* verify safety of LD_ABS|LD_IND instructions:
  1180. * - they can only appear in the programs where ctx == skb
  1181. * - since they are wrappers of function calls, they scratch R1-R5 registers,
  1182. * preserve R6-R9, and store return value into R0
  1183. *
  1184. * Implicit input:
  1185. * ctx == skb == R6 == CTX
  1186. *
  1187. * Explicit input:
  1188. * SRC == any register
  1189. * IMM == 32-bit immediate
  1190. *
  1191. * Output:
  1192. * R0 - 8/16/32-bit skb data converted to cpu endianness
  1193. */
  1194. static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
  1195. {
  1196. struct reg_state *regs = env->cur_state.regs;
  1197. u8 mode = BPF_MODE(insn->code);
  1198. struct reg_state *reg;
  1199. int i, err;
  1200. if (!may_access_skb(env->prog->type)) {
  1201. verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
  1202. return -EINVAL;
  1203. }
  1204. if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
  1205. (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
  1206. verbose("BPF_LD_ABS uses reserved fields\n");
  1207. return -EINVAL;
  1208. }
  1209. /* check whether implicit source operand (register R6) is readable */
  1210. err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
  1211. if (err)
  1212. return err;
  1213. if (regs[BPF_REG_6].type != PTR_TO_CTX) {
  1214. verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
  1215. return -EINVAL;
  1216. }
  1217. if (mode == BPF_IND) {
  1218. /* check explicit source operand */
  1219. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1220. if (err)
  1221. return err;
  1222. }
  1223. /* reset caller saved regs to unreadable */
  1224. for (i = 0; i < CALLER_SAVED_REGS; i++) {
  1225. reg = regs + caller_saved[i];
  1226. reg->type = NOT_INIT;
  1227. reg->imm = 0;
  1228. }
  1229. /* mark destination R0 register as readable, since it contains
  1230. * the value fetched from the packet
  1231. */
  1232. regs[BPF_REG_0].type = UNKNOWN_VALUE;
  1233. return 0;
  1234. }
  1235. /* non-recursive DFS pseudo code
  1236. * 1 procedure DFS-iterative(G,v):
  1237. * 2 label v as discovered
  1238. * 3 let S be a stack
  1239. * 4 S.push(v)
  1240. * 5 while S is not empty
  1241. * 6 t <- S.pop()
  1242. * 7 if t is what we're looking for:
  1243. * 8 return t
  1244. * 9 for all edges e in G.adjacentEdges(t) do
  1245. * 10 if edge e is already labelled
  1246. * 11 continue with the next edge
  1247. * 12 w <- G.adjacentVertex(t,e)
  1248. * 13 if vertex w is not discovered and not explored
  1249. * 14 label e as tree-edge
  1250. * 15 label w as discovered
  1251. * 16 S.push(w)
  1252. * 17 continue at 5
  1253. * 18 else if vertex w is discovered
  1254. * 19 label e as back-edge
  1255. * 20 else
  1256. * 21 // vertex w is explored
  1257. * 22 label e as forward- or cross-edge
  1258. * 23 label t as explored
  1259. * 24 S.pop()
  1260. *
  1261. * convention:
  1262. * 0x10 - discovered
  1263. * 0x11 - discovered and fall-through edge labelled
  1264. * 0x12 - discovered and fall-through and branch edges labelled
  1265. * 0x20 - explored
  1266. */
  1267. enum {
  1268. DISCOVERED = 0x10,
  1269. EXPLORED = 0x20,
  1270. FALLTHROUGH = 1,
  1271. BRANCH = 2,
  1272. };
  1273. #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
  1274. static int *insn_stack; /* stack of insns to process */
  1275. static int cur_stack; /* current stack index */
  1276. static int *insn_state;
  1277. /* t, w, e - match pseudo-code above:
  1278. * t - index of current instruction
  1279. * w - next instruction
  1280. * e - edge
  1281. */
  1282. static int push_insn(int t, int w, int e, struct verifier_env *env)
  1283. {
  1284. if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
  1285. return 0;
  1286. if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
  1287. return 0;
  1288. if (w < 0 || w >= env->prog->len) {
  1289. verbose("jump out of range from insn %d to %d\n", t, w);
  1290. return -EINVAL;
  1291. }
  1292. if (e == BRANCH)
  1293. /* mark branch target for state pruning */
  1294. env->explored_states[w] = STATE_LIST_MARK;
  1295. if (insn_state[w] == 0) {
  1296. /* tree-edge */
  1297. insn_state[t] = DISCOVERED | e;
  1298. insn_state[w] = DISCOVERED;
  1299. if (cur_stack >= env->prog->len)
  1300. return -E2BIG;
  1301. insn_stack[cur_stack++] = w;
  1302. return 1;
  1303. } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
  1304. verbose("back-edge from insn %d to %d\n", t, w);
  1305. return -EINVAL;
  1306. } else if (insn_state[w] == EXPLORED) {
  1307. /* forward- or cross-edge */
  1308. insn_state[t] = DISCOVERED | e;
  1309. } else {
  1310. verbose("insn state internal bug\n");
  1311. return -EFAULT;
  1312. }
  1313. return 0;
  1314. }
  1315. /* non-recursive depth-first-search to detect loops in BPF program
  1316. * loop == back-edge in directed graph
  1317. */
  1318. static int check_cfg(struct verifier_env *env)
  1319. {
  1320. struct bpf_insn *insns = env->prog->insnsi;
  1321. int insn_cnt = env->prog->len;
  1322. int ret = 0;
  1323. int i, t;
  1324. insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1325. if (!insn_state)
  1326. return -ENOMEM;
  1327. insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
  1328. if (!insn_stack) {
  1329. kfree(insn_state);
  1330. return -ENOMEM;
  1331. }
  1332. insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
  1333. insn_stack[0] = 0; /* 0 is the first instruction */
  1334. cur_stack = 1;
  1335. peek_stack:
  1336. if (cur_stack == 0)
  1337. goto check_state;
  1338. t = insn_stack[cur_stack - 1];
  1339. if (BPF_CLASS(insns[t].code) == BPF_JMP) {
  1340. u8 opcode = BPF_OP(insns[t].code);
  1341. if (opcode == BPF_EXIT) {
  1342. goto mark_explored;
  1343. } else if (opcode == BPF_CALL) {
  1344. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1345. if (ret == 1)
  1346. goto peek_stack;
  1347. else if (ret < 0)
  1348. goto err_free;
  1349. } else if (opcode == BPF_JA) {
  1350. if (BPF_SRC(insns[t].code) != BPF_K) {
  1351. ret = -EINVAL;
  1352. goto err_free;
  1353. }
  1354. /* unconditional jump with single edge */
  1355. ret = push_insn(t, t + insns[t].off + 1,
  1356. FALLTHROUGH, env);
  1357. if (ret == 1)
  1358. goto peek_stack;
  1359. else if (ret < 0)
  1360. goto err_free;
  1361. /* tell verifier to check for equivalent states
  1362. * after every call and jump
  1363. */
  1364. if (t + 1 < insn_cnt)
  1365. env->explored_states[t + 1] = STATE_LIST_MARK;
  1366. } else {
  1367. /* conditional jump with two edges */
  1368. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1369. if (ret == 1)
  1370. goto peek_stack;
  1371. else if (ret < 0)
  1372. goto err_free;
  1373. ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
  1374. if (ret == 1)
  1375. goto peek_stack;
  1376. else if (ret < 0)
  1377. goto err_free;
  1378. }
  1379. } else {
  1380. /* all other non-branch instructions with single
  1381. * fall-through edge
  1382. */
  1383. ret = push_insn(t, t + 1, FALLTHROUGH, env);
  1384. if (ret == 1)
  1385. goto peek_stack;
  1386. else if (ret < 0)
  1387. goto err_free;
  1388. }
  1389. mark_explored:
  1390. insn_state[t] = EXPLORED;
  1391. if (cur_stack-- <= 0) {
  1392. verbose("pop stack internal bug\n");
  1393. ret = -EFAULT;
  1394. goto err_free;
  1395. }
  1396. goto peek_stack;
  1397. check_state:
  1398. for (i = 0; i < insn_cnt; i++) {
  1399. if (insn_state[i] != EXPLORED) {
  1400. verbose("unreachable insn %d\n", i);
  1401. ret = -EINVAL;
  1402. goto err_free;
  1403. }
  1404. }
  1405. ret = 0; /* cfg looks good */
  1406. err_free:
  1407. kfree(insn_state);
  1408. kfree(insn_stack);
  1409. return ret;
  1410. }
  1411. /* compare two verifier states
  1412. *
  1413. * all states stored in state_list are known to be valid, since
  1414. * verifier reached 'bpf_exit' instruction through them
  1415. *
  1416. * this function is called when verifier exploring different branches of
  1417. * execution popped from the state stack. If it sees an old state that has
  1418. * more strict register state and more strict stack state then this execution
  1419. * branch doesn't need to be explored further, since verifier already
  1420. * concluded that more strict state leads to valid finish.
  1421. *
  1422. * Therefore two states are equivalent if register state is more conservative
  1423. * and explored stack state is more conservative than the current one.
  1424. * Example:
  1425. * explored current
  1426. * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
  1427. * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
  1428. *
  1429. * In other words if current stack state (one being explored) has more
  1430. * valid slots than old one that already passed validation, it means
  1431. * the verifier can stop exploring and conclude that current state is valid too
  1432. *
  1433. * Similarly with registers. If explored state has register type as invalid
  1434. * whereas register type in current state is meaningful, it means that
  1435. * the current state will reach 'bpf_exit' instruction safely
  1436. */
  1437. static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
  1438. {
  1439. int i;
  1440. for (i = 0; i < MAX_BPF_REG; i++) {
  1441. if (memcmp(&old->regs[i], &cur->regs[i],
  1442. sizeof(old->regs[0])) != 0) {
  1443. if (old->regs[i].type == NOT_INIT ||
  1444. (old->regs[i].type == UNKNOWN_VALUE &&
  1445. cur->regs[i].type != NOT_INIT))
  1446. continue;
  1447. return false;
  1448. }
  1449. }
  1450. for (i = 0; i < MAX_BPF_STACK; i++) {
  1451. if (old->stack_slot_type[i] == STACK_INVALID)
  1452. continue;
  1453. if (old->stack_slot_type[i] != cur->stack_slot_type[i])
  1454. /* Ex: old explored (safe) state has STACK_SPILL in
  1455. * this stack slot, but current has has STACK_MISC ->
  1456. * this verifier states are not equivalent,
  1457. * return false to continue verification of this path
  1458. */
  1459. return false;
  1460. if (i % BPF_REG_SIZE)
  1461. continue;
  1462. if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
  1463. &cur->spilled_regs[i / BPF_REG_SIZE],
  1464. sizeof(old->spilled_regs[0])))
  1465. /* when explored and current stack slot types are
  1466. * the same, check that stored pointers types
  1467. * are the same as well.
  1468. * Ex: explored safe path could have stored
  1469. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
  1470. * but current path has stored:
  1471. * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
  1472. * such verifier states are not equivalent.
  1473. * return false to continue verification of this path
  1474. */
  1475. return false;
  1476. else
  1477. continue;
  1478. }
  1479. return true;
  1480. }
  1481. static int is_state_visited(struct verifier_env *env, int insn_idx)
  1482. {
  1483. struct verifier_state_list *new_sl;
  1484. struct verifier_state_list *sl;
  1485. sl = env->explored_states[insn_idx];
  1486. if (!sl)
  1487. /* this 'insn_idx' instruction wasn't marked, so we will not
  1488. * be doing state search here
  1489. */
  1490. return 0;
  1491. while (sl != STATE_LIST_MARK) {
  1492. if (states_equal(&sl->state, &env->cur_state))
  1493. /* reached equivalent register/stack state,
  1494. * prune the search
  1495. */
  1496. return 1;
  1497. sl = sl->next;
  1498. }
  1499. /* there were no equivalent states, remember current one.
  1500. * technically the current state is not proven to be safe yet,
  1501. * but it will either reach bpf_exit (which means it's safe) or
  1502. * it will be rejected. Since there are no loops, we won't be
  1503. * seeing this 'insn_idx' instruction again on the way to bpf_exit
  1504. */
  1505. new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
  1506. if (!new_sl)
  1507. return -ENOMEM;
  1508. /* add new state to the head of linked list */
  1509. memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
  1510. new_sl->next = env->explored_states[insn_idx];
  1511. env->explored_states[insn_idx] = new_sl;
  1512. return 0;
  1513. }
  1514. static int do_check(struct verifier_env *env)
  1515. {
  1516. struct verifier_state *state = &env->cur_state;
  1517. struct bpf_insn *insns = env->prog->insnsi;
  1518. struct reg_state *regs = state->regs;
  1519. int insn_cnt = env->prog->len;
  1520. int insn_idx, prev_insn_idx = 0;
  1521. int insn_processed = 0;
  1522. bool do_print_state = false;
  1523. init_reg_state(regs);
  1524. insn_idx = 0;
  1525. for (;;) {
  1526. struct bpf_insn *insn;
  1527. u8 class;
  1528. int err;
  1529. if (insn_idx >= insn_cnt) {
  1530. verbose("invalid insn idx %d insn_cnt %d\n",
  1531. insn_idx, insn_cnt);
  1532. return -EFAULT;
  1533. }
  1534. insn = &insns[insn_idx];
  1535. class = BPF_CLASS(insn->code);
  1536. if (++insn_processed > 32768) {
  1537. verbose("BPF program is too large. Proccessed %d insn\n",
  1538. insn_processed);
  1539. return -E2BIG;
  1540. }
  1541. err = is_state_visited(env, insn_idx);
  1542. if (err < 0)
  1543. return err;
  1544. if (err == 1) {
  1545. /* found equivalent state, can prune the search */
  1546. if (log_level) {
  1547. if (do_print_state)
  1548. verbose("\nfrom %d to %d: safe\n",
  1549. prev_insn_idx, insn_idx);
  1550. else
  1551. verbose("%d: safe\n", insn_idx);
  1552. }
  1553. goto process_bpf_exit;
  1554. }
  1555. if (log_level && do_print_state) {
  1556. verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
  1557. print_verifier_state(env);
  1558. do_print_state = false;
  1559. }
  1560. if (log_level) {
  1561. verbose("%d: ", insn_idx);
  1562. print_bpf_insn(insn);
  1563. }
  1564. if (class == BPF_ALU || class == BPF_ALU64) {
  1565. err = check_alu_op(env, insn);
  1566. if (err)
  1567. return err;
  1568. } else if (class == BPF_LDX) {
  1569. enum bpf_reg_type src_reg_type;
  1570. /* check for reserved fields is already done */
  1571. /* check src operand */
  1572. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1573. if (err)
  1574. return err;
  1575. err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
  1576. if (err)
  1577. return err;
  1578. src_reg_type = regs[insn->src_reg].type;
  1579. /* check that memory (src_reg + off) is readable,
  1580. * the state of dst_reg will be updated by this func
  1581. */
  1582. err = check_mem_access(env, insn->src_reg, insn->off,
  1583. BPF_SIZE(insn->code), BPF_READ,
  1584. insn->dst_reg);
  1585. if (err)
  1586. return err;
  1587. if (BPF_SIZE(insn->code) != BPF_W) {
  1588. insn_idx++;
  1589. continue;
  1590. }
  1591. if (insn->imm == 0) {
  1592. /* saw a valid insn
  1593. * dst_reg = *(u32 *)(src_reg + off)
  1594. * use reserved 'imm' field to mark this insn
  1595. */
  1596. insn->imm = src_reg_type;
  1597. } else if (src_reg_type != insn->imm &&
  1598. (src_reg_type == PTR_TO_CTX ||
  1599. insn->imm == PTR_TO_CTX)) {
  1600. /* ABuser program is trying to use the same insn
  1601. * dst_reg = *(u32*) (src_reg + off)
  1602. * with different pointer types:
  1603. * src_reg == ctx in one branch and
  1604. * src_reg == stack|map in some other branch.
  1605. * Reject it.
  1606. */
  1607. verbose("same insn cannot be used with different pointers\n");
  1608. return -EINVAL;
  1609. }
  1610. } else if (class == BPF_STX) {
  1611. enum bpf_reg_type dst_reg_type;
  1612. if (BPF_MODE(insn->code) == BPF_XADD) {
  1613. err = check_xadd(env, insn);
  1614. if (err)
  1615. return err;
  1616. insn_idx++;
  1617. continue;
  1618. }
  1619. /* check src1 operand */
  1620. err = check_reg_arg(regs, insn->src_reg, SRC_OP);
  1621. if (err)
  1622. return err;
  1623. /* check src2 operand */
  1624. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1625. if (err)
  1626. return err;
  1627. dst_reg_type = regs[insn->dst_reg].type;
  1628. /* check that memory (dst_reg + off) is writeable */
  1629. err = check_mem_access(env, insn->dst_reg, insn->off,
  1630. BPF_SIZE(insn->code), BPF_WRITE,
  1631. insn->src_reg);
  1632. if (err)
  1633. return err;
  1634. if (insn->imm == 0) {
  1635. insn->imm = dst_reg_type;
  1636. } else if (dst_reg_type != insn->imm &&
  1637. (dst_reg_type == PTR_TO_CTX ||
  1638. insn->imm == PTR_TO_CTX)) {
  1639. verbose("same insn cannot be used with different pointers\n");
  1640. return -EINVAL;
  1641. }
  1642. } else if (class == BPF_ST) {
  1643. if (BPF_MODE(insn->code) != BPF_MEM ||
  1644. insn->src_reg != BPF_REG_0) {
  1645. verbose("BPF_ST uses reserved fields\n");
  1646. return -EINVAL;
  1647. }
  1648. /* check src operand */
  1649. err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
  1650. if (err)
  1651. return err;
  1652. /* check that memory (dst_reg + off) is writeable */
  1653. err = check_mem_access(env, insn->dst_reg, insn->off,
  1654. BPF_SIZE(insn->code), BPF_WRITE,
  1655. -1);
  1656. if (err)
  1657. return err;
  1658. } else if (class == BPF_JMP) {
  1659. u8 opcode = BPF_OP(insn->code);
  1660. if (opcode == BPF_CALL) {
  1661. if (BPF_SRC(insn->code) != BPF_K ||
  1662. insn->off != 0 ||
  1663. insn->src_reg != BPF_REG_0 ||
  1664. insn->dst_reg != BPF_REG_0) {
  1665. verbose("BPF_CALL uses reserved fields\n");
  1666. return -EINVAL;
  1667. }
  1668. err = check_call(env, insn->imm);
  1669. if (err)
  1670. return err;
  1671. } else if (opcode == BPF_JA) {
  1672. if (BPF_SRC(insn->code) != BPF_K ||
  1673. insn->imm != 0 ||
  1674. insn->src_reg != BPF_REG_0 ||
  1675. insn->dst_reg != BPF_REG_0) {
  1676. verbose("BPF_JA uses reserved fields\n");
  1677. return -EINVAL;
  1678. }
  1679. insn_idx += insn->off + 1;
  1680. continue;
  1681. } else if (opcode == BPF_EXIT) {
  1682. if (BPF_SRC(insn->code) != BPF_K ||
  1683. insn->imm != 0 ||
  1684. insn->src_reg != BPF_REG_0 ||
  1685. insn->dst_reg != BPF_REG_0) {
  1686. verbose("BPF_EXIT uses reserved fields\n");
  1687. return -EINVAL;
  1688. }
  1689. /* eBPF calling convetion is such that R0 is used
  1690. * to return the value from eBPF program.
  1691. * Make sure that it's readable at this time
  1692. * of bpf_exit, which means that program wrote
  1693. * something into it earlier
  1694. */
  1695. err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
  1696. if (err)
  1697. return err;
  1698. if (is_pointer_value(env, BPF_REG_0)) {
  1699. verbose("R0 leaks addr as return value\n");
  1700. return -EACCES;
  1701. }
  1702. process_bpf_exit:
  1703. insn_idx = pop_stack(env, &prev_insn_idx);
  1704. if (insn_idx < 0) {
  1705. break;
  1706. } else {
  1707. do_print_state = true;
  1708. continue;
  1709. }
  1710. } else {
  1711. err = check_cond_jmp_op(env, insn, &insn_idx);
  1712. if (err)
  1713. return err;
  1714. }
  1715. } else if (class == BPF_LD) {
  1716. u8 mode = BPF_MODE(insn->code);
  1717. if (mode == BPF_ABS || mode == BPF_IND) {
  1718. err = check_ld_abs(env, insn);
  1719. if (err)
  1720. return err;
  1721. } else if (mode == BPF_IMM) {
  1722. err = check_ld_imm(env, insn);
  1723. if (err)
  1724. return err;
  1725. insn_idx++;
  1726. } else {
  1727. verbose("invalid BPF_LD mode\n");
  1728. return -EINVAL;
  1729. }
  1730. } else {
  1731. verbose("unknown insn class %d\n", class);
  1732. return -EINVAL;
  1733. }
  1734. insn_idx++;
  1735. }
  1736. return 0;
  1737. }
  1738. /* look for pseudo eBPF instructions that access map FDs and
  1739. * replace them with actual map pointers
  1740. */
  1741. static int replace_map_fd_with_map_ptr(struct verifier_env *env)
  1742. {
  1743. struct bpf_insn *insn = env->prog->insnsi;
  1744. int insn_cnt = env->prog->len;
  1745. int i, j;
  1746. for (i = 0; i < insn_cnt; i++, insn++) {
  1747. if (BPF_CLASS(insn->code) == BPF_LDX &&
  1748. (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
  1749. verbose("BPF_LDX uses reserved fields\n");
  1750. return -EINVAL;
  1751. }
  1752. if (BPF_CLASS(insn->code) == BPF_STX &&
  1753. ((BPF_MODE(insn->code) != BPF_MEM &&
  1754. BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
  1755. verbose("BPF_STX uses reserved fields\n");
  1756. return -EINVAL;
  1757. }
  1758. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
  1759. struct bpf_map *map;
  1760. struct fd f;
  1761. if (i == insn_cnt - 1 || insn[1].code != 0 ||
  1762. insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
  1763. insn[1].off != 0) {
  1764. verbose("invalid bpf_ld_imm64 insn\n");
  1765. return -EINVAL;
  1766. }
  1767. if (insn->src_reg == 0)
  1768. /* valid generic load 64-bit imm */
  1769. goto next_insn;
  1770. if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
  1771. verbose("unrecognized bpf_ld_imm64 insn\n");
  1772. return -EINVAL;
  1773. }
  1774. f = fdget(insn->imm);
  1775. map = __bpf_map_get(f);
  1776. if (IS_ERR(map)) {
  1777. verbose("fd %d is not pointing to valid bpf_map\n",
  1778. insn->imm);
  1779. fdput(f);
  1780. return PTR_ERR(map);
  1781. }
  1782. /* store map pointer inside BPF_LD_IMM64 instruction */
  1783. insn[0].imm = (u32) (unsigned long) map;
  1784. insn[1].imm = ((u64) (unsigned long) map) >> 32;
  1785. /* check whether we recorded this map already */
  1786. for (j = 0; j < env->used_map_cnt; j++)
  1787. if (env->used_maps[j] == map) {
  1788. fdput(f);
  1789. goto next_insn;
  1790. }
  1791. if (env->used_map_cnt >= MAX_USED_MAPS) {
  1792. fdput(f);
  1793. return -E2BIG;
  1794. }
  1795. /* remember this map */
  1796. env->used_maps[env->used_map_cnt++] = map;
  1797. /* hold the map. If the program is rejected by verifier,
  1798. * the map will be released by release_maps() or it
  1799. * will be used by the valid program until it's unloaded
  1800. * and all maps are released in free_bpf_prog_info()
  1801. */
  1802. bpf_map_inc(map, false);
  1803. fdput(f);
  1804. next_insn:
  1805. insn++;
  1806. i++;
  1807. }
  1808. }
  1809. /* now all pseudo BPF_LD_IMM64 instructions load valid
  1810. * 'struct bpf_map *' into a register instead of user map_fd.
  1811. * These pointers will be used later by verifier to validate map access.
  1812. */
  1813. return 0;
  1814. }
  1815. /* drop refcnt of maps used by the rejected program */
  1816. static void release_maps(struct verifier_env *env)
  1817. {
  1818. int i;
  1819. for (i = 0; i < env->used_map_cnt; i++)
  1820. bpf_map_put(env->used_maps[i]);
  1821. }
  1822. /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
  1823. static void convert_pseudo_ld_imm64(struct verifier_env *env)
  1824. {
  1825. struct bpf_insn *insn = env->prog->insnsi;
  1826. int insn_cnt = env->prog->len;
  1827. int i;
  1828. for (i = 0; i < insn_cnt; i++, insn++)
  1829. if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
  1830. insn->src_reg = 0;
  1831. }
  1832. static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
  1833. {
  1834. struct bpf_insn *insn = prog->insnsi;
  1835. int insn_cnt = prog->len;
  1836. int i;
  1837. for (i = 0; i < insn_cnt; i++, insn++) {
  1838. if (BPF_CLASS(insn->code) != BPF_JMP ||
  1839. BPF_OP(insn->code) == BPF_CALL ||
  1840. BPF_OP(insn->code) == BPF_EXIT)
  1841. continue;
  1842. /* adjust offset of jmps if necessary */
  1843. if (i < pos && i + insn->off + 1 > pos)
  1844. insn->off += delta;
  1845. else if (i > pos && i + insn->off + 1 < pos)
  1846. insn->off -= delta;
  1847. }
  1848. }
  1849. /* convert load instructions that access fields of 'struct __sk_buff'
  1850. * into sequence of instructions that access fields of 'struct sk_buff'
  1851. */
  1852. static int convert_ctx_accesses(struct verifier_env *env)
  1853. {
  1854. struct bpf_insn *insn = env->prog->insnsi;
  1855. int insn_cnt = env->prog->len;
  1856. struct bpf_insn insn_buf[16];
  1857. struct bpf_prog *new_prog;
  1858. u32 cnt;
  1859. int i;
  1860. enum bpf_access_type type;
  1861. if (!env->prog->aux->ops->convert_ctx_access)
  1862. return 0;
  1863. for (i = 0; i < insn_cnt; i++, insn++) {
  1864. if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
  1865. type = BPF_READ;
  1866. else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
  1867. type = BPF_WRITE;
  1868. else
  1869. continue;
  1870. if (insn->imm != PTR_TO_CTX) {
  1871. /* clear internal mark */
  1872. insn->imm = 0;
  1873. continue;
  1874. }
  1875. cnt = env->prog->aux->ops->
  1876. convert_ctx_access(type, insn->dst_reg, insn->src_reg,
  1877. insn->off, insn_buf, env->prog);
  1878. if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
  1879. verbose("bpf verifier is misconfigured\n");
  1880. return -EINVAL;
  1881. }
  1882. if (cnt == 1) {
  1883. memcpy(insn, insn_buf, sizeof(*insn));
  1884. continue;
  1885. }
  1886. /* several new insns need to be inserted. Make room for them */
  1887. insn_cnt += cnt - 1;
  1888. new_prog = bpf_prog_realloc(env->prog,
  1889. bpf_prog_size(insn_cnt),
  1890. GFP_USER);
  1891. if (!new_prog)
  1892. return -ENOMEM;
  1893. new_prog->len = insn_cnt;
  1894. memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
  1895. sizeof(*insn) * (insn_cnt - i - cnt));
  1896. /* copy substitute insns in place of load instruction */
  1897. memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
  1898. /* adjust branches in the whole program */
  1899. adjust_branches(new_prog, i, cnt - 1);
  1900. /* keep walking new program and skip insns we just inserted */
  1901. env->prog = new_prog;
  1902. insn = new_prog->insnsi + i + cnt - 1;
  1903. i += cnt - 1;
  1904. }
  1905. return 0;
  1906. }
  1907. static void free_states(struct verifier_env *env)
  1908. {
  1909. struct verifier_state_list *sl, *sln;
  1910. int i;
  1911. if (!env->explored_states)
  1912. return;
  1913. for (i = 0; i < env->prog->len; i++) {
  1914. sl = env->explored_states[i];
  1915. if (sl)
  1916. while (sl != STATE_LIST_MARK) {
  1917. sln = sl->next;
  1918. kfree(sl);
  1919. sl = sln;
  1920. }
  1921. }
  1922. kfree(env->explored_states);
  1923. }
  1924. int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
  1925. {
  1926. char __user *log_ubuf = NULL;
  1927. struct verifier_env *env;
  1928. int ret = -EINVAL;
  1929. if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
  1930. return -E2BIG;
  1931. /* 'struct verifier_env' can be global, but since it's not small,
  1932. * allocate/free it every time bpf_check() is called
  1933. */
  1934. env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
  1935. if (!env)
  1936. return -ENOMEM;
  1937. env->prog = *prog;
  1938. /* grab the mutex to protect few globals used by verifier */
  1939. mutex_lock(&bpf_verifier_lock);
  1940. if (attr->log_level || attr->log_buf || attr->log_size) {
  1941. /* user requested verbose verifier output
  1942. * and supplied buffer to store the verification trace
  1943. */
  1944. log_level = attr->log_level;
  1945. log_ubuf = (char __user *) (unsigned long) attr->log_buf;
  1946. log_size = attr->log_size;
  1947. log_len = 0;
  1948. ret = -EINVAL;
  1949. /* log_* values have to be sane */
  1950. if (log_size < 128 || log_size > UINT_MAX >> 8 ||
  1951. log_level == 0 || log_ubuf == NULL)
  1952. goto free_env;
  1953. ret = -ENOMEM;
  1954. log_buf = vmalloc(log_size);
  1955. if (!log_buf)
  1956. goto free_env;
  1957. } else {
  1958. log_level = 0;
  1959. }
  1960. ret = replace_map_fd_with_map_ptr(env);
  1961. if (ret < 0)
  1962. goto skip_full_check;
  1963. env->explored_states = kcalloc(env->prog->len,
  1964. sizeof(struct verifier_state_list *),
  1965. GFP_USER);
  1966. ret = -ENOMEM;
  1967. if (!env->explored_states)
  1968. goto skip_full_check;
  1969. ret = check_cfg(env);
  1970. if (ret < 0)
  1971. goto skip_full_check;
  1972. env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
  1973. ret = do_check(env);
  1974. skip_full_check:
  1975. while (pop_stack(env, NULL) >= 0);
  1976. free_states(env);
  1977. if (ret == 0)
  1978. /* program is valid, convert *(u32*)(ctx + off) accesses */
  1979. ret = convert_ctx_accesses(env);
  1980. if (log_level && log_len >= log_size - 1) {
  1981. BUG_ON(log_len >= log_size);
  1982. /* verifier log exceeded user supplied buffer */
  1983. ret = -ENOSPC;
  1984. /* fall through to return what was recorded */
  1985. }
  1986. /* copy verifier log back to user space including trailing zero */
  1987. if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
  1988. ret = -EFAULT;
  1989. goto free_log_buf;
  1990. }
  1991. if (ret == 0 && env->used_map_cnt) {
  1992. /* if program passed verifier, update used_maps in bpf_prog_info */
  1993. env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
  1994. sizeof(env->used_maps[0]),
  1995. GFP_KERNEL);
  1996. if (!env->prog->aux->used_maps) {
  1997. ret = -ENOMEM;
  1998. goto free_log_buf;
  1999. }
  2000. memcpy(env->prog->aux->used_maps, env->used_maps,
  2001. sizeof(env->used_maps[0]) * env->used_map_cnt);
  2002. env->prog->aux->used_map_cnt = env->used_map_cnt;
  2003. /* program is valid. Convert pseudo bpf_ld_imm64 into generic
  2004. * bpf_ld_imm64 instructions
  2005. */
  2006. convert_pseudo_ld_imm64(env);
  2007. }
  2008. free_log_buf:
  2009. if (log_level)
  2010. vfree(log_buf);
  2011. free_env:
  2012. if (!env->prog->aux->used_maps)
  2013. /* if we didn't copy map pointers into bpf_prog_info, release
  2014. * them now. Otherwise free_bpf_prog_info() will release them.
  2015. */
  2016. release_maps(env);
  2017. *prog = env->prog;
  2018. kfree(env);
  2019. mutex_unlock(&bpf_verifier_lock);
  2020. return ret;
  2021. }