extent_cache.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * f2fs extent cache support
  3. *
  4. * Copyright (c) 2015 Motorola Mobility
  5. * Copyright (c) 2015 Samsung Electronics
  6. * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
  7. * Chao Yu <chao2.yu@samsung.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/fs.h>
  14. #include <linux/f2fs_fs.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. #include <trace/events/f2fs.h>
  18. static struct kmem_cache *extent_tree_slab;
  19. static struct kmem_cache *extent_node_slab;
  20. static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
  21. struct extent_tree *et, struct extent_info *ei,
  22. struct rb_node *parent, struct rb_node **p)
  23. {
  24. struct extent_node *en;
  25. en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
  26. if (!en)
  27. return NULL;
  28. en->ei = *ei;
  29. INIT_LIST_HEAD(&en->list);
  30. rb_link_node(&en->rb_node, parent, p);
  31. rb_insert_color(&en->rb_node, &et->root);
  32. atomic_inc(&et->node_cnt);
  33. atomic_inc(&sbi->total_ext_node);
  34. return en;
  35. }
  36. static void __detach_extent_node(struct f2fs_sb_info *sbi,
  37. struct extent_tree *et, struct extent_node *en)
  38. {
  39. rb_erase(&en->rb_node, &et->root);
  40. atomic_dec(&et->node_cnt);
  41. atomic_dec(&sbi->total_ext_node);
  42. if (et->cached_en == en)
  43. et->cached_en = NULL;
  44. }
  45. static struct extent_tree *__grab_extent_tree(struct inode *inode)
  46. {
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct extent_tree *et;
  49. nid_t ino = inode->i_ino;
  50. down_write(&sbi->extent_tree_lock);
  51. et = radix_tree_lookup(&sbi->extent_tree_root, ino);
  52. if (!et) {
  53. et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
  54. f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
  55. memset(et, 0, sizeof(struct extent_tree));
  56. et->ino = ino;
  57. et->root = RB_ROOT;
  58. et->cached_en = NULL;
  59. rwlock_init(&et->lock);
  60. INIT_LIST_HEAD(&et->list);
  61. atomic_set(&et->node_cnt, 0);
  62. atomic_inc(&sbi->total_ext_tree);
  63. } else {
  64. atomic_dec(&sbi->total_zombie_tree);
  65. list_del_init(&et->list);
  66. }
  67. up_write(&sbi->extent_tree_lock);
  68. /* never died until evict_inode */
  69. F2FS_I(inode)->extent_tree = et;
  70. return et;
  71. }
  72. static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
  73. struct extent_tree *et, unsigned int fofs)
  74. {
  75. struct rb_node *node = et->root.rb_node;
  76. struct extent_node *en = et->cached_en;
  77. if (en) {
  78. struct extent_info *cei = &en->ei;
  79. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
  80. stat_inc_cached_node_hit(sbi);
  81. return en;
  82. }
  83. }
  84. while (node) {
  85. en = rb_entry(node, struct extent_node, rb_node);
  86. if (fofs < en->ei.fofs) {
  87. node = node->rb_left;
  88. } else if (fofs >= en->ei.fofs + en->ei.len) {
  89. node = node->rb_right;
  90. } else {
  91. stat_inc_rbtree_node_hit(sbi);
  92. return en;
  93. }
  94. }
  95. return NULL;
  96. }
  97. static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
  98. struct extent_tree *et, struct extent_info *ei)
  99. {
  100. struct rb_node **p = &et->root.rb_node;
  101. struct extent_node *en;
  102. en = __attach_extent_node(sbi, et, ei, NULL, p);
  103. if (!en)
  104. return NULL;
  105. et->largest = en->ei;
  106. et->cached_en = en;
  107. return en;
  108. }
  109. static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
  110. struct extent_tree *et, bool free_all)
  111. {
  112. struct rb_node *node, *next;
  113. struct extent_node *en;
  114. unsigned int count = atomic_read(&et->node_cnt);
  115. node = rb_first(&et->root);
  116. while (node) {
  117. next = rb_next(node);
  118. en = rb_entry(node, struct extent_node, rb_node);
  119. if (free_all) {
  120. spin_lock(&sbi->extent_lock);
  121. if (!list_empty(&en->list))
  122. list_del_init(&en->list);
  123. spin_unlock(&sbi->extent_lock);
  124. }
  125. if (free_all || list_empty(&en->list)) {
  126. __detach_extent_node(sbi, et, en);
  127. kmem_cache_free(extent_node_slab, en);
  128. }
  129. node = next;
  130. }
  131. return count - atomic_read(&et->node_cnt);
  132. }
  133. static void __drop_largest_extent(struct inode *inode,
  134. pgoff_t fofs, unsigned int len)
  135. {
  136. struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
  137. if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs)
  138. largest->len = 0;
  139. }
  140. /* return true, if inode page is changed */
  141. bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
  142. {
  143. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  144. struct extent_tree *et;
  145. struct extent_node *en;
  146. struct extent_info ei;
  147. if (!f2fs_may_extent_tree(inode)) {
  148. /* drop largest extent */
  149. if (i_ext && i_ext->len) {
  150. i_ext->len = 0;
  151. return true;
  152. }
  153. return false;
  154. }
  155. et = __grab_extent_tree(inode);
  156. if (!i_ext || !i_ext->len)
  157. return false;
  158. set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
  159. le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
  160. write_lock(&et->lock);
  161. if (atomic_read(&et->node_cnt))
  162. goto out;
  163. en = __init_extent_tree(sbi, et, &ei);
  164. if (en) {
  165. spin_lock(&sbi->extent_lock);
  166. list_add_tail(&en->list, &sbi->extent_list);
  167. spin_unlock(&sbi->extent_lock);
  168. }
  169. out:
  170. write_unlock(&et->lock);
  171. return false;
  172. }
  173. static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
  174. struct extent_info *ei)
  175. {
  176. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  177. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  178. struct extent_node *en;
  179. bool ret = false;
  180. f2fs_bug_on(sbi, !et);
  181. trace_f2fs_lookup_extent_tree_start(inode, pgofs);
  182. read_lock(&et->lock);
  183. if (et->largest.fofs <= pgofs &&
  184. et->largest.fofs + et->largest.len > pgofs) {
  185. *ei = et->largest;
  186. ret = true;
  187. stat_inc_largest_node_hit(sbi);
  188. goto out;
  189. }
  190. en = __lookup_extent_tree(sbi, et, pgofs);
  191. if (en) {
  192. *ei = en->ei;
  193. spin_lock(&sbi->extent_lock);
  194. if (!list_empty(&en->list))
  195. list_move_tail(&en->list, &sbi->extent_list);
  196. et->cached_en = en;
  197. spin_unlock(&sbi->extent_lock);
  198. ret = true;
  199. }
  200. out:
  201. stat_inc_total_hit(sbi);
  202. read_unlock(&et->lock);
  203. trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
  204. return ret;
  205. }
  206. /*
  207. * lookup extent at @fofs, if hit, return the extent
  208. * if not, return NULL and
  209. * @prev_ex: extent before fofs
  210. * @next_ex: extent after fofs
  211. * @insert_p: insert point for new extent at fofs
  212. * in order to simpfy the insertion after.
  213. * tree must stay unchanged between lookup and insertion.
  214. */
  215. static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
  216. unsigned int fofs,
  217. struct extent_node **prev_ex,
  218. struct extent_node **next_ex,
  219. struct rb_node ***insert_p,
  220. struct rb_node **insert_parent)
  221. {
  222. struct rb_node **pnode = &et->root.rb_node;
  223. struct rb_node *parent = NULL, *tmp_node;
  224. struct extent_node *en = et->cached_en;
  225. *insert_p = NULL;
  226. *insert_parent = NULL;
  227. *prev_ex = NULL;
  228. *next_ex = NULL;
  229. if (RB_EMPTY_ROOT(&et->root))
  230. return NULL;
  231. if (en) {
  232. struct extent_info *cei = &en->ei;
  233. if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
  234. goto lookup_neighbors;
  235. }
  236. while (*pnode) {
  237. parent = *pnode;
  238. en = rb_entry(*pnode, struct extent_node, rb_node);
  239. if (fofs < en->ei.fofs)
  240. pnode = &(*pnode)->rb_left;
  241. else if (fofs >= en->ei.fofs + en->ei.len)
  242. pnode = &(*pnode)->rb_right;
  243. else
  244. goto lookup_neighbors;
  245. }
  246. *insert_p = pnode;
  247. *insert_parent = parent;
  248. en = rb_entry(parent, struct extent_node, rb_node);
  249. tmp_node = parent;
  250. if (parent && fofs > en->ei.fofs)
  251. tmp_node = rb_next(parent);
  252. *next_ex = tmp_node ?
  253. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  254. tmp_node = parent;
  255. if (parent && fofs < en->ei.fofs)
  256. tmp_node = rb_prev(parent);
  257. *prev_ex = tmp_node ?
  258. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  259. return NULL;
  260. lookup_neighbors:
  261. if (fofs == en->ei.fofs) {
  262. /* lookup prev node for merging backward later */
  263. tmp_node = rb_prev(&en->rb_node);
  264. *prev_ex = tmp_node ?
  265. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  266. }
  267. if (fofs == en->ei.fofs + en->ei.len - 1) {
  268. /* lookup next node for merging frontward later */
  269. tmp_node = rb_next(&en->rb_node);
  270. *next_ex = tmp_node ?
  271. rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
  272. }
  273. return en;
  274. }
  275. static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
  276. struct extent_tree *et, struct extent_info *ei,
  277. struct extent_node **den,
  278. struct extent_node *prev_ex,
  279. struct extent_node *next_ex)
  280. {
  281. struct extent_node *en = NULL;
  282. if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
  283. prev_ex->ei.len += ei->len;
  284. ei = &prev_ex->ei;
  285. en = prev_ex;
  286. }
  287. if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
  288. if (en) {
  289. __detach_extent_node(sbi, et, prev_ex);
  290. *den = prev_ex;
  291. }
  292. next_ex->ei.fofs = ei->fofs;
  293. next_ex->ei.blk = ei->blk;
  294. next_ex->ei.len += ei->len;
  295. en = next_ex;
  296. }
  297. if (en) {
  298. __try_update_largest_extent(et, en);
  299. et->cached_en = en;
  300. }
  301. return en;
  302. }
  303. static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
  304. struct extent_tree *et, struct extent_info *ei,
  305. struct rb_node **insert_p,
  306. struct rb_node *insert_parent)
  307. {
  308. struct rb_node **p = &et->root.rb_node;
  309. struct rb_node *parent = NULL;
  310. struct extent_node *en = NULL;
  311. if (insert_p && insert_parent) {
  312. parent = insert_parent;
  313. p = insert_p;
  314. goto do_insert;
  315. }
  316. while (*p) {
  317. parent = *p;
  318. en = rb_entry(parent, struct extent_node, rb_node);
  319. if (ei->fofs < en->ei.fofs)
  320. p = &(*p)->rb_left;
  321. else if (ei->fofs >= en->ei.fofs + en->ei.len)
  322. p = &(*p)->rb_right;
  323. else
  324. f2fs_bug_on(sbi, 1);
  325. }
  326. do_insert:
  327. en = __attach_extent_node(sbi, et, ei, parent, p);
  328. if (!en)
  329. return NULL;
  330. __try_update_largest_extent(et, en);
  331. et->cached_en = en;
  332. return en;
  333. }
  334. static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
  335. pgoff_t fofs, block_t blkaddr, unsigned int len)
  336. {
  337. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  338. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  339. struct extent_node *en = NULL, *en1 = NULL;
  340. struct extent_node *prev_en = NULL, *next_en = NULL;
  341. struct extent_info ei, dei, prev;
  342. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  343. unsigned int end = fofs + len;
  344. unsigned int pos = (unsigned int)fofs;
  345. if (!et)
  346. return false;
  347. trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
  348. write_lock(&et->lock);
  349. if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
  350. write_unlock(&et->lock);
  351. return false;
  352. }
  353. prev = et->largest;
  354. dei.len = 0;
  355. /*
  356. * drop largest extent before lookup, in case it's already
  357. * been shrunk from extent tree
  358. */
  359. __drop_largest_extent(inode, fofs, len);
  360. /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
  361. en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
  362. &insert_p, &insert_parent);
  363. if (!en)
  364. en = next_en;
  365. /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
  366. while (en && en->ei.fofs < end) {
  367. unsigned int org_end;
  368. int parts = 0; /* # of parts current extent split into */
  369. next_en = en1 = NULL;
  370. dei = en->ei;
  371. org_end = dei.fofs + dei.len;
  372. f2fs_bug_on(sbi, pos >= org_end);
  373. if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
  374. en->ei.len = pos - en->ei.fofs;
  375. prev_en = en;
  376. parts = 1;
  377. }
  378. if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
  379. if (parts) {
  380. set_extent_info(&ei, end,
  381. end - dei.fofs + dei.blk,
  382. org_end - end);
  383. en1 = __insert_extent_tree(sbi, et, &ei,
  384. NULL, NULL);
  385. next_en = en1;
  386. } else {
  387. en->ei.fofs = end;
  388. en->ei.blk += end - dei.fofs;
  389. en->ei.len -= end - dei.fofs;
  390. next_en = en;
  391. }
  392. parts++;
  393. }
  394. if (!next_en) {
  395. struct rb_node *node = rb_next(&en->rb_node);
  396. next_en = node ?
  397. rb_entry(node, struct extent_node, rb_node)
  398. : NULL;
  399. }
  400. if (parts)
  401. __try_update_largest_extent(et, en);
  402. else
  403. __detach_extent_node(sbi, et, en);
  404. /*
  405. * if original extent is split into zero or two parts, extent
  406. * tree has been altered by deletion or insertion, therefore
  407. * invalidate pointers regard to tree.
  408. */
  409. if (parts != 1) {
  410. insert_p = NULL;
  411. insert_parent = NULL;
  412. }
  413. /* update in global extent list */
  414. spin_lock(&sbi->extent_lock);
  415. if (!parts && !list_empty(&en->list))
  416. list_del(&en->list);
  417. if (en1)
  418. list_add_tail(&en1->list, &sbi->extent_list);
  419. spin_unlock(&sbi->extent_lock);
  420. /* release extent node */
  421. if (!parts)
  422. kmem_cache_free(extent_node_slab, en);
  423. en = next_en;
  424. }
  425. /* 3. update extent in extent cache */
  426. if (blkaddr) {
  427. struct extent_node *den = NULL;
  428. set_extent_info(&ei, fofs, blkaddr, len);
  429. en1 = __try_merge_extent_node(sbi, et, &ei, &den,
  430. prev_en, next_en);
  431. if (!en1)
  432. en1 = __insert_extent_tree(sbi, et, &ei,
  433. insert_p, insert_parent);
  434. /* give up extent_cache, if split and small updates happen */
  435. if (dei.len >= 1 &&
  436. prev.len < F2FS_MIN_EXTENT_LEN &&
  437. et->largest.len < F2FS_MIN_EXTENT_LEN) {
  438. et->largest.len = 0;
  439. set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
  440. }
  441. spin_lock(&sbi->extent_lock);
  442. if (en1) {
  443. if (list_empty(&en1->list))
  444. list_add_tail(&en1->list, &sbi->extent_list);
  445. else
  446. list_move_tail(&en1->list, &sbi->extent_list);
  447. }
  448. if (den && !list_empty(&den->list))
  449. list_del(&den->list);
  450. spin_unlock(&sbi->extent_lock);
  451. if (den)
  452. kmem_cache_free(extent_node_slab, den);
  453. }
  454. if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
  455. __free_extent_tree(sbi, et, true);
  456. write_unlock(&et->lock);
  457. return !__is_extent_same(&prev, &et->largest);
  458. }
  459. unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
  460. {
  461. struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
  462. struct extent_tree *et, *next;
  463. struct extent_node *en, *tmp;
  464. unsigned long ino = F2FS_ROOT_INO(sbi);
  465. unsigned int found;
  466. unsigned int node_cnt = 0, tree_cnt = 0;
  467. int remained;
  468. bool do_free = false;
  469. if (!test_opt(sbi, EXTENT_CACHE))
  470. return 0;
  471. if (!atomic_read(&sbi->total_zombie_tree))
  472. goto free_node;
  473. if (!down_write_trylock(&sbi->extent_tree_lock))
  474. goto out;
  475. /* 1. remove unreferenced extent tree */
  476. list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
  477. if (atomic_read(&et->node_cnt)) {
  478. write_lock(&et->lock);
  479. node_cnt += __free_extent_tree(sbi, et, true);
  480. write_unlock(&et->lock);
  481. }
  482. list_del_init(&et->list);
  483. radix_tree_delete(&sbi->extent_tree_root, et->ino);
  484. kmem_cache_free(extent_tree_slab, et);
  485. atomic_dec(&sbi->total_ext_tree);
  486. atomic_dec(&sbi->total_zombie_tree);
  487. tree_cnt++;
  488. if (node_cnt + tree_cnt >= nr_shrink)
  489. goto unlock_out;
  490. }
  491. up_write(&sbi->extent_tree_lock);
  492. free_node:
  493. /* 2. remove LRU extent entries */
  494. if (!down_write_trylock(&sbi->extent_tree_lock))
  495. goto out;
  496. remained = nr_shrink - (node_cnt + tree_cnt);
  497. spin_lock(&sbi->extent_lock);
  498. list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
  499. if (!remained--)
  500. break;
  501. list_del_init(&en->list);
  502. do_free = true;
  503. }
  504. spin_unlock(&sbi->extent_lock);
  505. if (do_free == false)
  506. goto unlock_out;
  507. /*
  508. * reset ino for searching victims from beginning of global extent tree.
  509. */
  510. ino = F2FS_ROOT_INO(sbi);
  511. while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
  512. (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
  513. unsigned i;
  514. ino = treevec[found - 1]->ino + 1;
  515. for (i = 0; i < found; i++) {
  516. struct extent_tree *et = treevec[i];
  517. if (!atomic_read(&et->node_cnt))
  518. continue;
  519. if (write_trylock(&et->lock)) {
  520. node_cnt += __free_extent_tree(sbi, et, false);
  521. write_unlock(&et->lock);
  522. }
  523. if (node_cnt + tree_cnt >= nr_shrink)
  524. goto unlock_out;
  525. }
  526. }
  527. unlock_out:
  528. up_write(&sbi->extent_tree_lock);
  529. out:
  530. trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
  531. return node_cnt + tree_cnt;
  532. }
  533. unsigned int f2fs_destroy_extent_node(struct inode *inode)
  534. {
  535. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  536. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  537. unsigned int node_cnt = 0;
  538. if (!et || !atomic_read(&et->node_cnt))
  539. return 0;
  540. write_lock(&et->lock);
  541. node_cnt = __free_extent_tree(sbi, et, true);
  542. write_unlock(&et->lock);
  543. return node_cnt;
  544. }
  545. void f2fs_destroy_extent_tree(struct inode *inode)
  546. {
  547. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  548. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  549. unsigned int node_cnt = 0;
  550. if (!et)
  551. return;
  552. if (inode->i_nlink && !is_bad_inode(inode) &&
  553. atomic_read(&et->node_cnt)) {
  554. down_write(&sbi->extent_tree_lock);
  555. list_add_tail(&et->list, &sbi->zombie_list);
  556. atomic_inc(&sbi->total_zombie_tree);
  557. up_write(&sbi->extent_tree_lock);
  558. return;
  559. }
  560. /* free all extent info belong to this extent tree */
  561. node_cnt = f2fs_destroy_extent_node(inode);
  562. /* delete extent tree entry in radix tree */
  563. down_write(&sbi->extent_tree_lock);
  564. f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
  565. radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
  566. kmem_cache_free(extent_tree_slab, et);
  567. atomic_dec(&sbi->total_ext_tree);
  568. up_write(&sbi->extent_tree_lock);
  569. F2FS_I(inode)->extent_tree = NULL;
  570. trace_f2fs_destroy_extent_tree(inode, node_cnt);
  571. }
  572. bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
  573. struct extent_info *ei)
  574. {
  575. if (!f2fs_may_extent_tree(inode))
  576. return false;
  577. return f2fs_lookup_extent_tree(inode, pgofs, ei);
  578. }
  579. void f2fs_update_extent_cache(struct dnode_of_data *dn)
  580. {
  581. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  582. pgoff_t fofs;
  583. if (!f2fs_may_extent_tree(dn->inode))
  584. return;
  585. f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
  586. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  587. dn->ofs_in_node;
  588. if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
  589. sync_inode_page(dn);
  590. }
  591. void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
  592. pgoff_t fofs, block_t blkaddr, unsigned int len)
  593. {
  594. if (!f2fs_may_extent_tree(dn->inode))
  595. return;
  596. if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
  597. sync_inode_page(dn);
  598. }
  599. void init_extent_cache_info(struct f2fs_sb_info *sbi)
  600. {
  601. INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
  602. init_rwsem(&sbi->extent_tree_lock);
  603. INIT_LIST_HEAD(&sbi->extent_list);
  604. spin_lock_init(&sbi->extent_lock);
  605. atomic_set(&sbi->total_ext_tree, 0);
  606. INIT_LIST_HEAD(&sbi->zombie_list);
  607. atomic_set(&sbi->total_zombie_tree, 0);
  608. atomic_set(&sbi->total_ext_node, 0);
  609. }
  610. int __init create_extent_cache(void)
  611. {
  612. extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
  613. sizeof(struct extent_tree));
  614. if (!extent_tree_slab)
  615. return -ENOMEM;
  616. extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
  617. sizeof(struct extent_node));
  618. if (!extent_node_slab) {
  619. kmem_cache_destroy(extent_tree_slab);
  620. return -ENOMEM;
  621. }
  622. return 0;
  623. }
  624. void destroy_extent_cache(void)
  625. {
  626. kmem_cache_destroy(extent_node_slab);
  627. kmem_cache_destroy(extent_tree_slab);
  628. }