tcp_input.c 171 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. int sysctl_tcp_max_reordering __read_mostly = 300;
  81. EXPORT_SYMBOL(sysctl_tcp_reordering);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_early_retrans __read_mostly = 3;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. /* Adapt the MSS value used to make delayed ack decision to the
  115. * real world.
  116. */
  117. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  118. {
  119. struct inet_connection_sock *icsk = inet_csk(sk);
  120. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  121. unsigned int len;
  122. icsk->icsk_ack.last_seg_size = 0;
  123. /* skb->len may jitter because of SACKs, even if peer
  124. * sends good full-sized frames.
  125. */
  126. len = skb_shinfo(skb)->gso_size ? : skb->len;
  127. if (len >= icsk->icsk_ack.rcv_mss) {
  128. icsk->icsk_ack.rcv_mss = len;
  129. } else {
  130. /* Otherwise, we make more careful check taking into account,
  131. * that SACKs block is variable.
  132. *
  133. * "len" is invariant segment length, including TCP header.
  134. */
  135. len += skb->data - skb_transport_header(skb);
  136. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  137. /* If PSH is not set, packet should be
  138. * full sized, provided peer TCP is not badly broken.
  139. * This observation (if it is correct 8)) allows
  140. * to handle super-low mtu links fairly.
  141. */
  142. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  143. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  144. /* Subtract also invariant (if peer is RFC compliant),
  145. * tcp header plus fixed timestamp option length.
  146. * Resulting "len" is MSS free of SACK jitter.
  147. */
  148. len -= tcp_sk(sk)->tcp_header_len;
  149. icsk->icsk_ack.last_seg_size = len;
  150. if (len == lss) {
  151. icsk->icsk_ack.rcv_mss = len;
  152. return;
  153. }
  154. }
  155. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  156. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  158. }
  159. }
  160. static void tcp_incr_quickack(struct sock *sk)
  161. {
  162. struct inet_connection_sock *icsk = inet_csk(sk);
  163. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  164. if (quickacks == 0)
  165. quickacks = 2;
  166. if (quickacks > icsk->icsk_ack.quick)
  167. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  168. }
  169. static void tcp_enter_quickack_mode(struct sock *sk)
  170. {
  171. struct inet_connection_sock *icsk = inet_csk(sk);
  172. tcp_incr_quickack(sk);
  173. icsk->icsk_ack.pingpong = 0;
  174. icsk->icsk_ack.ato = TCP_ATO_MIN;
  175. }
  176. /* Send ACKs quickly, if "quick" count is not exhausted
  177. * and the session is not interactive.
  178. */
  179. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  180. {
  181. const struct inet_connection_sock *icsk = inet_csk(sk);
  182. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  183. }
  184. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  185. {
  186. if (tp->ecn_flags & TCP_ECN_OK)
  187. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  188. }
  189. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  190. {
  191. if (tcp_hdr(skb)->cwr)
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  195. {
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  199. {
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (tcp_ca_needs_ecn((struct sock *)tp))
  211. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  212. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  213. /* Better not delay acks, sender can have a very low cwnd */
  214. tcp_enter_quickack_mode((struct sock *)tp);
  215. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  216. }
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. break;
  219. default:
  220. if (tcp_ca_needs_ecn((struct sock *)tp))
  221. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  222. tp->ecn_flags |= TCP_ECN_SEEN;
  223. break;
  224. }
  225. }
  226. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  227. {
  228. if (tp->ecn_flags & TCP_ECN_OK)
  229. __tcp_ecn_check_ce(tp, skb);
  230. }
  231. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  232. {
  233. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  234. tp->ecn_flags &= ~TCP_ECN_OK;
  235. }
  236. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  237. {
  238. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  239. tp->ecn_flags &= ~TCP_ECN_OK;
  240. }
  241. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  242. {
  243. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  244. return true;
  245. return false;
  246. }
  247. /* Buffer size and advertised window tuning.
  248. *
  249. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  250. */
  251. static void tcp_sndbuf_expand(struct sock *sk)
  252. {
  253. const struct tcp_sock *tp = tcp_sk(sk);
  254. int sndmem, per_mss;
  255. u32 nr_segs;
  256. /* Worst case is non GSO/TSO : each frame consumes one skb
  257. * and skb->head is kmalloced using power of two area of memory
  258. */
  259. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  260. MAX_TCP_HEADER +
  261. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  262. per_mss = roundup_pow_of_two(per_mss) +
  263. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  264. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  265. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  266. /* Fast Recovery (RFC 5681 3.2) :
  267. * Cubic needs 1.7 factor, rounded to 2 to include
  268. * extra cushion (application might react slowly to POLLOUT)
  269. */
  270. sndmem = 2 * nr_segs * per_mss;
  271. if (sk->sk_sndbuf < sndmem)
  272. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  273. }
  274. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  275. *
  276. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  277. * forward and advertised in receiver window (tp->rcv_wnd) and
  278. * "application buffer", required to isolate scheduling/application
  279. * latencies from network.
  280. * window_clamp is maximal advertised window. It can be less than
  281. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  282. * is reserved for "application" buffer. The less window_clamp is
  283. * the smoother our behaviour from viewpoint of network, but the lower
  284. * throughput and the higher sensitivity of the connection to losses. 8)
  285. *
  286. * rcv_ssthresh is more strict window_clamp used at "slow start"
  287. * phase to predict further behaviour of this connection.
  288. * It is used for two goals:
  289. * - to enforce header prediction at sender, even when application
  290. * requires some significant "application buffer". It is check #1.
  291. * - to prevent pruning of receive queue because of misprediction
  292. * of receiver window. Check #2.
  293. *
  294. * The scheme does not work when sender sends good segments opening
  295. * window and then starts to feed us spaghetti. But it should work
  296. * in common situations. Otherwise, we have to rely on queue collapsing.
  297. */
  298. /* Slow part of check#2. */
  299. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  300. {
  301. struct tcp_sock *tp = tcp_sk(sk);
  302. /* Optimize this! */
  303. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  304. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  305. while (tp->rcv_ssthresh <= window) {
  306. if (truesize <= skb->len)
  307. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  308. truesize >>= 1;
  309. window >>= 1;
  310. }
  311. return 0;
  312. }
  313. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. /* Check #1 */
  317. if (tp->rcv_ssthresh < tp->window_clamp &&
  318. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  319. !sk_under_memory_pressure(sk)) {
  320. int incr;
  321. /* Check #2. Increase window, if skb with such overhead
  322. * will fit to rcvbuf in future.
  323. */
  324. if (tcp_win_from_space(skb->truesize) <= skb->len)
  325. incr = 2 * tp->advmss;
  326. else
  327. incr = __tcp_grow_window(sk, skb);
  328. if (incr) {
  329. incr = max_t(int, incr, 2 * skb->len);
  330. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  331. tp->window_clamp);
  332. inet_csk(sk)->icsk_ack.quick |= 1;
  333. }
  334. }
  335. }
  336. /* 3. Tuning rcvbuf, when connection enters established state. */
  337. static void tcp_fixup_rcvbuf(struct sock *sk)
  338. {
  339. u32 mss = tcp_sk(sk)->advmss;
  340. int rcvmem;
  341. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  342. tcp_default_init_rwnd(mss);
  343. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  344. * Allow enough cushion so that sender is not limited by our window
  345. */
  346. if (sysctl_tcp_moderate_rcvbuf)
  347. rcvmem <<= 2;
  348. if (sk->sk_rcvbuf < rcvmem)
  349. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  350. }
  351. /* 4. Try to fixup all. It is made immediately after connection enters
  352. * established state.
  353. */
  354. void tcp_init_buffer_space(struct sock *sk)
  355. {
  356. struct tcp_sock *tp = tcp_sk(sk);
  357. int maxwin;
  358. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  359. tcp_fixup_rcvbuf(sk);
  360. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  361. tcp_sndbuf_expand(sk);
  362. tp->rcvq_space.space = tp->rcv_wnd;
  363. tp->rcvq_space.time = tcp_time_stamp;
  364. tp->rcvq_space.seq = tp->copied_seq;
  365. maxwin = tcp_full_space(sk);
  366. if (tp->window_clamp >= maxwin) {
  367. tp->window_clamp = maxwin;
  368. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  369. tp->window_clamp = max(maxwin -
  370. (maxwin >> sysctl_tcp_app_win),
  371. 4 * tp->advmss);
  372. }
  373. /* Force reservation of one segment. */
  374. if (sysctl_tcp_app_win &&
  375. tp->window_clamp > 2 * tp->advmss &&
  376. tp->window_clamp + tp->advmss > maxwin)
  377. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  378. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  379. tp->snd_cwnd_stamp = tcp_time_stamp;
  380. }
  381. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  382. static void tcp_clamp_window(struct sock *sk)
  383. {
  384. struct tcp_sock *tp = tcp_sk(sk);
  385. struct inet_connection_sock *icsk = inet_csk(sk);
  386. icsk->icsk_ack.quick = 0;
  387. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  388. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  389. !sk_under_memory_pressure(sk) &&
  390. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  391. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  392. sysctl_tcp_rmem[2]);
  393. }
  394. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  395. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  396. }
  397. /* Initialize RCV_MSS value.
  398. * RCV_MSS is an our guess about MSS used by the peer.
  399. * We haven't any direct information about the MSS.
  400. * It's better to underestimate the RCV_MSS rather than overestimate.
  401. * Overestimations make us ACKing less frequently than needed.
  402. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  403. */
  404. void tcp_initialize_rcv_mss(struct sock *sk)
  405. {
  406. const struct tcp_sock *tp = tcp_sk(sk);
  407. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  408. hint = min(hint, tp->rcv_wnd / 2);
  409. hint = min(hint, TCP_MSS_DEFAULT);
  410. hint = max(hint, TCP_MIN_MSS);
  411. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  412. }
  413. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  414. /* Receiver "autotuning" code.
  415. *
  416. * The algorithm for RTT estimation w/o timestamps is based on
  417. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  418. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  419. *
  420. * More detail on this code can be found at
  421. * <http://staff.psc.edu/jheffner/>,
  422. * though this reference is out of date. A new paper
  423. * is pending.
  424. */
  425. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  426. {
  427. u32 new_sample = tp->rcv_rtt_est.rtt;
  428. long m = sample;
  429. if (m == 0)
  430. m = 1;
  431. if (new_sample != 0) {
  432. /* If we sample in larger samples in the non-timestamp
  433. * case, we could grossly overestimate the RTT especially
  434. * with chatty applications or bulk transfer apps which
  435. * are stalled on filesystem I/O.
  436. *
  437. * Also, since we are only going for a minimum in the
  438. * non-timestamp case, we do not smooth things out
  439. * else with timestamps disabled convergence takes too
  440. * long.
  441. */
  442. if (!win_dep) {
  443. m -= (new_sample >> 3);
  444. new_sample += m;
  445. } else {
  446. m <<= 3;
  447. if (m < new_sample)
  448. new_sample = m;
  449. }
  450. } else {
  451. /* No previous measure. */
  452. new_sample = m << 3;
  453. }
  454. if (tp->rcv_rtt_est.rtt != new_sample)
  455. tp->rcv_rtt_est.rtt = new_sample;
  456. }
  457. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  458. {
  459. if (tp->rcv_rtt_est.time == 0)
  460. goto new_measure;
  461. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  462. return;
  463. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  464. new_measure:
  465. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  466. tp->rcv_rtt_est.time = tcp_time_stamp;
  467. }
  468. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  469. const struct sk_buff *skb)
  470. {
  471. struct tcp_sock *tp = tcp_sk(sk);
  472. if (tp->rx_opt.rcv_tsecr &&
  473. (TCP_SKB_CB(skb)->end_seq -
  474. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  475. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  476. }
  477. /*
  478. * This function should be called every time data is copied to user space.
  479. * It calculates the appropriate TCP receive buffer space.
  480. */
  481. void tcp_rcv_space_adjust(struct sock *sk)
  482. {
  483. struct tcp_sock *tp = tcp_sk(sk);
  484. int time;
  485. int copied;
  486. time = tcp_time_stamp - tp->rcvq_space.time;
  487. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  488. return;
  489. /* Number of bytes copied to user in last RTT */
  490. copied = tp->copied_seq - tp->rcvq_space.seq;
  491. if (copied <= tp->rcvq_space.space)
  492. goto new_measure;
  493. /* A bit of theory :
  494. * copied = bytes received in previous RTT, our base window
  495. * To cope with packet losses, we need a 2x factor
  496. * To cope with slow start, and sender growing its cwin by 100 %
  497. * every RTT, we need a 4x factor, because the ACK we are sending
  498. * now is for the next RTT, not the current one :
  499. * <prev RTT . ><current RTT .. ><next RTT .... >
  500. */
  501. if (sysctl_tcp_moderate_rcvbuf &&
  502. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  503. int rcvwin, rcvmem, rcvbuf;
  504. /* minimal window to cope with packet losses, assuming
  505. * steady state. Add some cushion because of small variations.
  506. */
  507. rcvwin = (copied << 1) + 16 * tp->advmss;
  508. /* If rate increased by 25%,
  509. * assume slow start, rcvwin = 3 * copied
  510. * If rate increased by 50%,
  511. * assume sender can use 2x growth, rcvwin = 4 * copied
  512. */
  513. if (copied >=
  514. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  515. if (copied >=
  516. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  517. rcvwin <<= 1;
  518. else
  519. rcvwin += (rcvwin >> 1);
  520. }
  521. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  522. while (tcp_win_from_space(rcvmem) < tp->advmss)
  523. rcvmem += 128;
  524. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  525. if (rcvbuf > sk->sk_rcvbuf) {
  526. sk->sk_rcvbuf = rcvbuf;
  527. /* Make the window clamp follow along. */
  528. tp->window_clamp = rcvwin;
  529. }
  530. }
  531. tp->rcvq_space.space = copied;
  532. new_measure:
  533. tp->rcvq_space.seq = tp->copied_seq;
  534. tp->rcvq_space.time = tcp_time_stamp;
  535. }
  536. /* There is something which you must keep in mind when you analyze the
  537. * behavior of the tp->ato delayed ack timeout interval. When a
  538. * connection starts up, we want to ack as quickly as possible. The
  539. * problem is that "good" TCP's do slow start at the beginning of data
  540. * transmission. The means that until we send the first few ACK's the
  541. * sender will sit on his end and only queue most of his data, because
  542. * he can only send snd_cwnd unacked packets at any given time. For
  543. * each ACK we send, he increments snd_cwnd and transmits more of his
  544. * queue. -DaveM
  545. */
  546. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  547. {
  548. struct tcp_sock *tp = tcp_sk(sk);
  549. struct inet_connection_sock *icsk = inet_csk(sk);
  550. u32 now;
  551. inet_csk_schedule_ack(sk);
  552. tcp_measure_rcv_mss(sk, skb);
  553. tcp_rcv_rtt_measure(tp);
  554. now = tcp_time_stamp;
  555. if (!icsk->icsk_ack.ato) {
  556. /* The _first_ data packet received, initialize
  557. * delayed ACK engine.
  558. */
  559. tcp_incr_quickack(sk);
  560. icsk->icsk_ack.ato = TCP_ATO_MIN;
  561. } else {
  562. int m = now - icsk->icsk_ack.lrcvtime;
  563. if (m <= TCP_ATO_MIN / 2) {
  564. /* The fastest case is the first. */
  565. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  566. } else if (m < icsk->icsk_ack.ato) {
  567. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  568. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  569. icsk->icsk_ack.ato = icsk->icsk_rto;
  570. } else if (m > icsk->icsk_rto) {
  571. /* Too long gap. Apparently sender failed to
  572. * restart window, so that we send ACKs quickly.
  573. */
  574. tcp_incr_quickack(sk);
  575. sk_mem_reclaim(sk);
  576. }
  577. }
  578. icsk->icsk_ack.lrcvtime = now;
  579. tcp_ecn_check_ce(tp, skb);
  580. if (skb->len >= 128)
  581. tcp_grow_window(sk, skb);
  582. }
  583. /* Called to compute a smoothed rtt estimate. The data fed to this
  584. * routine either comes from timestamps, or from segments that were
  585. * known _not_ to have been retransmitted [see Karn/Partridge
  586. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  587. * piece by Van Jacobson.
  588. * NOTE: the next three routines used to be one big routine.
  589. * To save cycles in the RFC 1323 implementation it was better to break
  590. * it up into three procedures. -- erics
  591. */
  592. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  593. {
  594. struct tcp_sock *tp = tcp_sk(sk);
  595. long m = mrtt_us; /* RTT */
  596. u32 srtt = tp->srtt_us;
  597. /* The following amusing code comes from Jacobson's
  598. * article in SIGCOMM '88. Note that rtt and mdev
  599. * are scaled versions of rtt and mean deviation.
  600. * This is designed to be as fast as possible
  601. * m stands for "measurement".
  602. *
  603. * On a 1990 paper the rto value is changed to:
  604. * RTO = rtt + 4 * mdev
  605. *
  606. * Funny. This algorithm seems to be very broken.
  607. * These formulae increase RTO, when it should be decreased, increase
  608. * too slowly, when it should be increased quickly, decrease too quickly
  609. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  610. * does not matter how to _calculate_ it. Seems, it was trap
  611. * that VJ failed to avoid. 8)
  612. */
  613. if (srtt != 0) {
  614. m -= (srtt >> 3); /* m is now error in rtt est */
  615. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  616. if (m < 0) {
  617. m = -m; /* m is now abs(error) */
  618. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  619. /* This is similar to one of Eifel findings.
  620. * Eifel blocks mdev updates when rtt decreases.
  621. * This solution is a bit different: we use finer gain
  622. * for mdev in this case (alpha*beta).
  623. * Like Eifel it also prevents growth of rto,
  624. * but also it limits too fast rto decreases,
  625. * happening in pure Eifel.
  626. */
  627. if (m > 0)
  628. m >>= 3;
  629. } else {
  630. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  631. }
  632. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  633. if (tp->mdev_us > tp->mdev_max_us) {
  634. tp->mdev_max_us = tp->mdev_us;
  635. if (tp->mdev_max_us > tp->rttvar_us)
  636. tp->rttvar_us = tp->mdev_max_us;
  637. }
  638. if (after(tp->snd_una, tp->rtt_seq)) {
  639. if (tp->mdev_max_us < tp->rttvar_us)
  640. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  641. tp->rtt_seq = tp->snd_nxt;
  642. tp->mdev_max_us = tcp_rto_min_us(sk);
  643. }
  644. } else {
  645. /* no previous measure. */
  646. srtt = m << 3; /* take the measured time to be rtt */
  647. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  648. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  649. tp->mdev_max_us = tp->rttvar_us;
  650. tp->rtt_seq = tp->snd_nxt;
  651. }
  652. tp->srtt_us = max(1U, srtt);
  653. }
  654. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  655. * Note: TCP stack does not yet implement pacing.
  656. * FQ packet scheduler can be used to implement cheap but effective
  657. * TCP pacing, to smooth the burst on large writes when packets
  658. * in flight is significantly lower than cwnd (or rwin)
  659. */
  660. static void tcp_update_pacing_rate(struct sock *sk)
  661. {
  662. const struct tcp_sock *tp = tcp_sk(sk);
  663. u64 rate;
  664. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  665. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  666. rate *= max(tp->snd_cwnd, tp->packets_out);
  667. if (likely(tp->srtt_us))
  668. do_div(rate, tp->srtt_us);
  669. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  670. * without any lock. We want to make sure compiler wont store
  671. * intermediate values in this location.
  672. */
  673. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  674. sk->sk_max_pacing_rate);
  675. }
  676. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  677. * routine referred to above.
  678. */
  679. static void tcp_set_rto(struct sock *sk)
  680. {
  681. const struct tcp_sock *tp = tcp_sk(sk);
  682. /* Old crap is replaced with new one. 8)
  683. *
  684. * More seriously:
  685. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  686. * It cannot be less due to utterly erratic ACK generation made
  687. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  688. * to do with delayed acks, because at cwnd>2 true delack timeout
  689. * is invisible. Actually, Linux-2.4 also generates erratic
  690. * ACKs in some circumstances.
  691. */
  692. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  693. /* 2. Fixups made earlier cannot be right.
  694. * If we do not estimate RTO correctly without them,
  695. * all the algo is pure shit and should be replaced
  696. * with correct one. It is exactly, which we pretend to do.
  697. */
  698. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  699. * guarantees that rto is higher.
  700. */
  701. tcp_bound_rto(sk);
  702. }
  703. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  704. {
  705. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  706. if (!cwnd)
  707. cwnd = TCP_INIT_CWND;
  708. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  709. }
  710. /*
  711. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  712. * disables it when reordering is detected
  713. */
  714. void tcp_disable_fack(struct tcp_sock *tp)
  715. {
  716. /* RFC3517 uses different metric in lost marker => reset on change */
  717. if (tcp_is_fack(tp))
  718. tp->lost_skb_hint = NULL;
  719. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  720. }
  721. /* Take a notice that peer is sending D-SACKs */
  722. static void tcp_dsack_seen(struct tcp_sock *tp)
  723. {
  724. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  725. }
  726. static void tcp_update_reordering(struct sock *sk, const int metric,
  727. const int ts)
  728. {
  729. struct tcp_sock *tp = tcp_sk(sk);
  730. if (metric > tp->reordering) {
  731. int mib_idx;
  732. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  733. /* This exciting event is worth to be remembered. 8) */
  734. if (ts)
  735. mib_idx = LINUX_MIB_TCPTSREORDER;
  736. else if (tcp_is_reno(tp))
  737. mib_idx = LINUX_MIB_TCPRENOREORDER;
  738. else if (tcp_is_fack(tp))
  739. mib_idx = LINUX_MIB_TCPFACKREORDER;
  740. else
  741. mib_idx = LINUX_MIB_TCPSACKREORDER;
  742. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  743. #if FASTRETRANS_DEBUG > 1
  744. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  745. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  746. tp->reordering,
  747. tp->fackets_out,
  748. tp->sacked_out,
  749. tp->undo_marker ? tp->undo_retrans : 0);
  750. #endif
  751. tcp_disable_fack(tp);
  752. }
  753. if (metric > 0)
  754. tcp_disable_early_retrans(tp);
  755. }
  756. /* This must be called before lost_out is incremented */
  757. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  758. {
  759. if ((tp->retransmit_skb_hint == NULL) ||
  760. before(TCP_SKB_CB(skb)->seq,
  761. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  762. tp->retransmit_skb_hint = skb;
  763. if (!tp->lost_out ||
  764. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  765. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  766. }
  767. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  768. {
  769. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  770. tcp_verify_retransmit_hint(tp, skb);
  771. tp->lost_out += tcp_skb_pcount(skb);
  772. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  773. }
  774. }
  775. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  776. struct sk_buff *skb)
  777. {
  778. tcp_verify_retransmit_hint(tp, skb);
  779. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  780. tp->lost_out += tcp_skb_pcount(skb);
  781. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  782. }
  783. }
  784. /* This procedure tags the retransmission queue when SACKs arrive.
  785. *
  786. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  787. * Packets in queue with these bits set are counted in variables
  788. * sacked_out, retrans_out and lost_out, correspondingly.
  789. *
  790. * Valid combinations are:
  791. * Tag InFlight Description
  792. * 0 1 - orig segment is in flight.
  793. * S 0 - nothing flies, orig reached receiver.
  794. * L 0 - nothing flies, orig lost by net.
  795. * R 2 - both orig and retransmit are in flight.
  796. * L|R 1 - orig is lost, retransmit is in flight.
  797. * S|R 1 - orig reached receiver, retrans is still in flight.
  798. * (L|S|R is logically valid, it could occur when L|R is sacked,
  799. * but it is equivalent to plain S and code short-curcuits it to S.
  800. * L|S is logically invalid, it would mean -1 packet in flight 8))
  801. *
  802. * These 6 states form finite state machine, controlled by the following events:
  803. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  804. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  805. * 3. Loss detection event of two flavors:
  806. * A. Scoreboard estimator decided the packet is lost.
  807. * A'. Reno "three dupacks" marks head of queue lost.
  808. * A''. Its FACK modification, head until snd.fack is lost.
  809. * B. SACK arrives sacking SND.NXT at the moment, when the
  810. * segment was retransmitted.
  811. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  812. *
  813. * It is pleasant to note, that state diagram turns out to be commutative,
  814. * so that we are allowed not to be bothered by order of our actions,
  815. * when multiple events arrive simultaneously. (see the function below).
  816. *
  817. * Reordering detection.
  818. * --------------------
  819. * Reordering metric is maximal distance, which a packet can be displaced
  820. * in packet stream. With SACKs we can estimate it:
  821. *
  822. * 1. SACK fills old hole and the corresponding segment was not
  823. * ever retransmitted -> reordering. Alas, we cannot use it
  824. * when segment was retransmitted.
  825. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  826. * for retransmitted and already SACKed segment -> reordering..
  827. * Both of these heuristics are not used in Loss state, when we cannot
  828. * account for retransmits accurately.
  829. *
  830. * SACK block validation.
  831. * ----------------------
  832. *
  833. * SACK block range validation checks that the received SACK block fits to
  834. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  835. * Note that SND.UNA is not included to the range though being valid because
  836. * it means that the receiver is rather inconsistent with itself reporting
  837. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  838. * perfectly valid, however, in light of RFC2018 which explicitly states
  839. * that "SACK block MUST reflect the newest segment. Even if the newest
  840. * segment is going to be discarded ...", not that it looks very clever
  841. * in case of head skb. Due to potentional receiver driven attacks, we
  842. * choose to avoid immediate execution of a walk in write queue due to
  843. * reneging and defer head skb's loss recovery to standard loss recovery
  844. * procedure that will eventually trigger (nothing forbids us doing this).
  845. *
  846. * Implements also blockage to start_seq wrap-around. Problem lies in the
  847. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  848. * there's no guarantee that it will be before snd_nxt (n). The problem
  849. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  850. * wrap (s_w):
  851. *
  852. * <- outs wnd -> <- wrapzone ->
  853. * u e n u_w e_w s n_w
  854. * | | | | | | |
  855. * |<------------+------+----- TCP seqno space --------------+---------->|
  856. * ...-- <2^31 ->| |<--------...
  857. * ...---- >2^31 ------>| |<--------...
  858. *
  859. * Current code wouldn't be vulnerable but it's better still to discard such
  860. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  861. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  862. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  863. * equal to the ideal case (infinite seqno space without wrap caused issues).
  864. *
  865. * With D-SACK the lower bound is extended to cover sequence space below
  866. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  867. * again, D-SACK block must not to go across snd_una (for the same reason as
  868. * for the normal SACK blocks, explained above). But there all simplicity
  869. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  870. * fully below undo_marker they do not affect behavior in anyway and can
  871. * therefore be safely ignored. In rare cases (which are more or less
  872. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  873. * fragmentation and packet reordering past skb's retransmission. To consider
  874. * them correctly, the acceptable range must be extended even more though
  875. * the exact amount is rather hard to quantify. However, tp->max_window can
  876. * be used as an exaggerated estimate.
  877. */
  878. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  879. u32 start_seq, u32 end_seq)
  880. {
  881. /* Too far in future, or reversed (interpretation is ambiguous) */
  882. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  883. return false;
  884. /* Nasty start_seq wrap-around check (see comments above) */
  885. if (!before(start_seq, tp->snd_nxt))
  886. return false;
  887. /* In outstanding window? ...This is valid exit for D-SACKs too.
  888. * start_seq == snd_una is non-sensical (see comments above)
  889. */
  890. if (after(start_seq, tp->snd_una))
  891. return true;
  892. if (!is_dsack || !tp->undo_marker)
  893. return false;
  894. /* ...Then it's D-SACK, and must reside below snd_una completely */
  895. if (after(end_seq, tp->snd_una))
  896. return false;
  897. if (!before(start_seq, tp->undo_marker))
  898. return true;
  899. /* Too old */
  900. if (!after(end_seq, tp->undo_marker))
  901. return false;
  902. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  903. * start_seq < undo_marker and end_seq >= undo_marker.
  904. */
  905. return !before(start_seq, end_seq - tp->max_window);
  906. }
  907. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  908. * Event "B". Later note: FACK people cheated me again 8), we have to account
  909. * for reordering! Ugly, but should help.
  910. *
  911. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  912. * less than what is now known to be received by the other end (derived from
  913. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  914. * retransmitted skbs to avoid some costly processing per ACKs.
  915. */
  916. static void tcp_mark_lost_retrans(struct sock *sk)
  917. {
  918. const struct inet_connection_sock *icsk = inet_csk(sk);
  919. struct tcp_sock *tp = tcp_sk(sk);
  920. struct sk_buff *skb;
  921. int cnt = 0;
  922. u32 new_low_seq = tp->snd_nxt;
  923. u32 received_upto = tcp_highest_sack_seq(tp);
  924. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  925. !after(received_upto, tp->lost_retrans_low) ||
  926. icsk->icsk_ca_state != TCP_CA_Recovery)
  927. return;
  928. tcp_for_write_queue(skb, sk) {
  929. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  930. if (skb == tcp_send_head(sk))
  931. break;
  932. if (cnt == tp->retrans_out)
  933. break;
  934. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  935. continue;
  936. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  937. continue;
  938. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  939. * constraint here (see above) but figuring out that at
  940. * least tp->reordering SACK blocks reside between ack_seq
  941. * and received_upto is not easy task to do cheaply with
  942. * the available datastructures.
  943. *
  944. * Whether FACK should check here for tp->reordering segs
  945. * in-between one could argue for either way (it would be
  946. * rather simple to implement as we could count fack_count
  947. * during the walk and do tp->fackets_out - fack_count).
  948. */
  949. if (after(received_upto, ack_seq)) {
  950. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  951. tp->retrans_out -= tcp_skb_pcount(skb);
  952. tcp_skb_mark_lost_uncond_verify(tp, skb);
  953. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  954. } else {
  955. if (before(ack_seq, new_low_seq))
  956. new_low_seq = ack_seq;
  957. cnt += tcp_skb_pcount(skb);
  958. }
  959. }
  960. if (tp->retrans_out)
  961. tp->lost_retrans_low = new_low_seq;
  962. }
  963. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  964. struct tcp_sack_block_wire *sp, int num_sacks,
  965. u32 prior_snd_una)
  966. {
  967. struct tcp_sock *tp = tcp_sk(sk);
  968. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  969. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  970. bool dup_sack = false;
  971. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  972. dup_sack = true;
  973. tcp_dsack_seen(tp);
  974. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  975. } else if (num_sacks > 1) {
  976. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  977. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  978. if (!after(end_seq_0, end_seq_1) &&
  979. !before(start_seq_0, start_seq_1)) {
  980. dup_sack = true;
  981. tcp_dsack_seen(tp);
  982. NET_INC_STATS_BH(sock_net(sk),
  983. LINUX_MIB_TCPDSACKOFORECV);
  984. }
  985. }
  986. /* D-SACK for already forgotten data... Do dumb counting. */
  987. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  988. !after(end_seq_0, prior_snd_una) &&
  989. after(end_seq_0, tp->undo_marker))
  990. tp->undo_retrans--;
  991. return dup_sack;
  992. }
  993. struct tcp_sacktag_state {
  994. int reord;
  995. int fack_count;
  996. long rtt_us; /* RTT measured by SACKing never-retransmitted data */
  997. int flag;
  998. };
  999. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1000. * the incoming SACK may not exactly match but we can find smaller MSS
  1001. * aligned portion of it that matches. Therefore we might need to fragment
  1002. * which may fail and creates some hassle (caller must handle error case
  1003. * returns).
  1004. *
  1005. * FIXME: this could be merged to shift decision code
  1006. */
  1007. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1008. u32 start_seq, u32 end_seq)
  1009. {
  1010. int err;
  1011. bool in_sack;
  1012. unsigned int pkt_len;
  1013. unsigned int mss;
  1014. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1015. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1016. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1017. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1018. mss = tcp_skb_mss(skb);
  1019. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1020. if (!in_sack) {
  1021. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1022. if (pkt_len < mss)
  1023. pkt_len = mss;
  1024. } else {
  1025. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1026. if (pkt_len < mss)
  1027. return -EINVAL;
  1028. }
  1029. /* Round if necessary so that SACKs cover only full MSSes
  1030. * and/or the remaining small portion (if present)
  1031. */
  1032. if (pkt_len > mss) {
  1033. unsigned int new_len = (pkt_len / mss) * mss;
  1034. if (!in_sack && new_len < pkt_len) {
  1035. new_len += mss;
  1036. if (new_len >= skb->len)
  1037. return 0;
  1038. }
  1039. pkt_len = new_len;
  1040. }
  1041. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1042. if (err < 0)
  1043. return err;
  1044. }
  1045. return in_sack;
  1046. }
  1047. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1048. static u8 tcp_sacktag_one(struct sock *sk,
  1049. struct tcp_sacktag_state *state, u8 sacked,
  1050. u32 start_seq, u32 end_seq,
  1051. int dup_sack, int pcount,
  1052. const struct skb_mstamp *xmit_time)
  1053. {
  1054. struct tcp_sock *tp = tcp_sk(sk);
  1055. int fack_count = state->fack_count;
  1056. /* Account D-SACK for retransmitted packet. */
  1057. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1058. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1059. after(end_seq, tp->undo_marker))
  1060. tp->undo_retrans--;
  1061. if (sacked & TCPCB_SACKED_ACKED)
  1062. state->reord = min(fack_count, state->reord);
  1063. }
  1064. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1065. if (!after(end_seq, tp->snd_una))
  1066. return sacked;
  1067. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1068. if (sacked & TCPCB_SACKED_RETRANS) {
  1069. /* If the segment is not tagged as lost,
  1070. * we do not clear RETRANS, believing
  1071. * that retransmission is still in flight.
  1072. */
  1073. if (sacked & TCPCB_LOST) {
  1074. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1075. tp->lost_out -= pcount;
  1076. tp->retrans_out -= pcount;
  1077. }
  1078. } else {
  1079. if (!(sacked & TCPCB_RETRANS)) {
  1080. /* New sack for not retransmitted frame,
  1081. * which was in hole. It is reordering.
  1082. */
  1083. if (before(start_seq,
  1084. tcp_highest_sack_seq(tp)))
  1085. state->reord = min(fack_count,
  1086. state->reord);
  1087. if (!after(end_seq, tp->high_seq))
  1088. state->flag |= FLAG_ORIG_SACK_ACKED;
  1089. /* Pick the earliest sequence sacked for RTT */
  1090. if (state->rtt_us < 0) {
  1091. struct skb_mstamp now;
  1092. skb_mstamp_get(&now);
  1093. state->rtt_us = skb_mstamp_us_delta(&now,
  1094. xmit_time);
  1095. }
  1096. }
  1097. if (sacked & TCPCB_LOST) {
  1098. sacked &= ~TCPCB_LOST;
  1099. tp->lost_out -= pcount;
  1100. }
  1101. }
  1102. sacked |= TCPCB_SACKED_ACKED;
  1103. state->flag |= FLAG_DATA_SACKED;
  1104. tp->sacked_out += pcount;
  1105. fack_count += pcount;
  1106. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1107. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1108. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1109. tp->lost_cnt_hint += pcount;
  1110. if (fack_count > tp->fackets_out)
  1111. tp->fackets_out = fack_count;
  1112. }
  1113. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1114. * frames and clear it. undo_retrans is decreased above, L|R frames
  1115. * are accounted above as well.
  1116. */
  1117. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1118. sacked &= ~TCPCB_SACKED_RETRANS;
  1119. tp->retrans_out -= pcount;
  1120. }
  1121. return sacked;
  1122. }
  1123. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1124. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1125. */
  1126. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1127. struct tcp_sacktag_state *state,
  1128. unsigned int pcount, int shifted, int mss,
  1129. bool dup_sack)
  1130. {
  1131. struct tcp_sock *tp = tcp_sk(sk);
  1132. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1133. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1134. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1135. BUG_ON(!pcount);
  1136. /* Adjust counters and hints for the newly sacked sequence
  1137. * range but discard the return value since prev is already
  1138. * marked. We must tag the range first because the seq
  1139. * advancement below implicitly advances
  1140. * tcp_highest_sack_seq() when skb is highest_sack.
  1141. */
  1142. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1143. start_seq, end_seq, dup_sack, pcount,
  1144. &skb->skb_mstamp);
  1145. if (skb == tp->lost_skb_hint)
  1146. tp->lost_cnt_hint += pcount;
  1147. TCP_SKB_CB(prev)->end_seq += shifted;
  1148. TCP_SKB_CB(skb)->seq += shifted;
  1149. tcp_skb_pcount_add(prev, pcount);
  1150. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1151. tcp_skb_pcount_add(skb, -pcount);
  1152. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1153. * in theory this shouldn't be necessary but as long as DSACK
  1154. * code can come after this skb later on it's better to keep
  1155. * setting gso_size to something.
  1156. */
  1157. if (!skb_shinfo(prev)->gso_size) {
  1158. skb_shinfo(prev)->gso_size = mss;
  1159. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1160. }
  1161. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1162. if (tcp_skb_pcount(skb) <= 1) {
  1163. skb_shinfo(skb)->gso_size = 0;
  1164. skb_shinfo(skb)->gso_type = 0;
  1165. }
  1166. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1167. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1168. if (skb->len > 0) {
  1169. BUG_ON(!tcp_skb_pcount(skb));
  1170. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1171. return false;
  1172. }
  1173. /* Whole SKB was eaten :-) */
  1174. if (skb == tp->retransmit_skb_hint)
  1175. tp->retransmit_skb_hint = prev;
  1176. if (skb == tp->lost_skb_hint) {
  1177. tp->lost_skb_hint = prev;
  1178. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1179. }
  1180. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1181. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1182. TCP_SKB_CB(prev)->end_seq++;
  1183. if (skb == tcp_highest_sack(sk))
  1184. tcp_advance_highest_sack(sk, skb);
  1185. tcp_unlink_write_queue(skb, sk);
  1186. sk_wmem_free_skb(sk, skb);
  1187. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1188. return true;
  1189. }
  1190. /* I wish gso_size would have a bit more sane initialization than
  1191. * something-or-zero which complicates things
  1192. */
  1193. static int tcp_skb_seglen(const struct sk_buff *skb)
  1194. {
  1195. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1196. }
  1197. /* Shifting pages past head area doesn't work */
  1198. static int skb_can_shift(const struct sk_buff *skb)
  1199. {
  1200. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1201. }
  1202. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1203. * skb.
  1204. */
  1205. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1206. struct tcp_sacktag_state *state,
  1207. u32 start_seq, u32 end_seq,
  1208. bool dup_sack)
  1209. {
  1210. struct tcp_sock *tp = tcp_sk(sk);
  1211. struct sk_buff *prev;
  1212. int mss;
  1213. int pcount = 0;
  1214. int len;
  1215. int in_sack;
  1216. if (!sk_can_gso(sk))
  1217. goto fallback;
  1218. /* Normally R but no L won't result in plain S */
  1219. if (!dup_sack &&
  1220. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1221. goto fallback;
  1222. if (!skb_can_shift(skb))
  1223. goto fallback;
  1224. /* This frame is about to be dropped (was ACKed). */
  1225. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1226. goto fallback;
  1227. /* Can only happen with delayed DSACK + discard craziness */
  1228. if (unlikely(skb == tcp_write_queue_head(sk)))
  1229. goto fallback;
  1230. prev = tcp_write_queue_prev(sk, skb);
  1231. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1232. goto fallback;
  1233. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1234. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1235. if (in_sack) {
  1236. len = skb->len;
  1237. pcount = tcp_skb_pcount(skb);
  1238. mss = tcp_skb_seglen(skb);
  1239. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1240. * drop this restriction as unnecessary
  1241. */
  1242. if (mss != tcp_skb_seglen(prev))
  1243. goto fallback;
  1244. } else {
  1245. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1246. goto noop;
  1247. /* CHECKME: This is non-MSS split case only?, this will
  1248. * cause skipped skbs due to advancing loop btw, original
  1249. * has that feature too
  1250. */
  1251. if (tcp_skb_pcount(skb) <= 1)
  1252. goto noop;
  1253. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1254. if (!in_sack) {
  1255. /* TODO: head merge to next could be attempted here
  1256. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1257. * though it might not be worth of the additional hassle
  1258. *
  1259. * ...we can probably just fallback to what was done
  1260. * previously. We could try merging non-SACKed ones
  1261. * as well but it probably isn't going to buy off
  1262. * because later SACKs might again split them, and
  1263. * it would make skb timestamp tracking considerably
  1264. * harder problem.
  1265. */
  1266. goto fallback;
  1267. }
  1268. len = end_seq - TCP_SKB_CB(skb)->seq;
  1269. BUG_ON(len < 0);
  1270. BUG_ON(len > skb->len);
  1271. /* MSS boundaries should be honoured or else pcount will
  1272. * severely break even though it makes things bit trickier.
  1273. * Optimize common case to avoid most of the divides
  1274. */
  1275. mss = tcp_skb_mss(skb);
  1276. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1277. * drop this restriction as unnecessary
  1278. */
  1279. if (mss != tcp_skb_seglen(prev))
  1280. goto fallback;
  1281. if (len == mss) {
  1282. pcount = 1;
  1283. } else if (len < mss) {
  1284. goto noop;
  1285. } else {
  1286. pcount = len / mss;
  1287. len = pcount * mss;
  1288. }
  1289. }
  1290. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1291. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1292. goto fallback;
  1293. if (!skb_shift(prev, skb, len))
  1294. goto fallback;
  1295. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1296. goto out;
  1297. /* Hole filled allows collapsing with the next as well, this is very
  1298. * useful when hole on every nth skb pattern happens
  1299. */
  1300. if (prev == tcp_write_queue_tail(sk))
  1301. goto out;
  1302. skb = tcp_write_queue_next(sk, prev);
  1303. if (!skb_can_shift(skb) ||
  1304. (skb == tcp_send_head(sk)) ||
  1305. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1306. (mss != tcp_skb_seglen(skb)))
  1307. goto out;
  1308. len = skb->len;
  1309. if (skb_shift(prev, skb, len)) {
  1310. pcount += tcp_skb_pcount(skb);
  1311. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1312. }
  1313. out:
  1314. state->fack_count += pcount;
  1315. return prev;
  1316. noop:
  1317. return skb;
  1318. fallback:
  1319. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1320. return NULL;
  1321. }
  1322. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1323. struct tcp_sack_block *next_dup,
  1324. struct tcp_sacktag_state *state,
  1325. u32 start_seq, u32 end_seq,
  1326. bool dup_sack_in)
  1327. {
  1328. struct tcp_sock *tp = tcp_sk(sk);
  1329. struct sk_buff *tmp;
  1330. tcp_for_write_queue_from(skb, sk) {
  1331. int in_sack = 0;
  1332. bool dup_sack = dup_sack_in;
  1333. if (skb == tcp_send_head(sk))
  1334. break;
  1335. /* queue is in-order => we can short-circuit the walk early */
  1336. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1337. break;
  1338. if ((next_dup != NULL) &&
  1339. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1340. in_sack = tcp_match_skb_to_sack(sk, skb,
  1341. next_dup->start_seq,
  1342. next_dup->end_seq);
  1343. if (in_sack > 0)
  1344. dup_sack = true;
  1345. }
  1346. /* skb reference here is a bit tricky to get right, since
  1347. * shifting can eat and free both this skb and the next,
  1348. * so not even _safe variant of the loop is enough.
  1349. */
  1350. if (in_sack <= 0) {
  1351. tmp = tcp_shift_skb_data(sk, skb, state,
  1352. start_seq, end_seq, dup_sack);
  1353. if (tmp != NULL) {
  1354. if (tmp != skb) {
  1355. skb = tmp;
  1356. continue;
  1357. }
  1358. in_sack = 0;
  1359. } else {
  1360. in_sack = tcp_match_skb_to_sack(sk, skb,
  1361. start_seq,
  1362. end_seq);
  1363. }
  1364. }
  1365. if (unlikely(in_sack < 0))
  1366. break;
  1367. if (in_sack) {
  1368. TCP_SKB_CB(skb)->sacked =
  1369. tcp_sacktag_one(sk,
  1370. state,
  1371. TCP_SKB_CB(skb)->sacked,
  1372. TCP_SKB_CB(skb)->seq,
  1373. TCP_SKB_CB(skb)->end_seq,
  1374. dup_sack,
  1375. tcp_skb_pcount(skb),
  1376. &skb->skb_mstamp);
  1377. if (!before(TCP_SKB_CB(skb)->seq,
  1378. tcp_highest_sack_seq(tp)))
  1379. tcp_advance_highest_sack(sk, skb);
  1380. }
  1381. state->fack_count += tcp_skb_pcount(skb);
  1382. }
  1383. return skb;
  1384. }
  1385. /* Avoid all extra work that is being done by sacktag while walking in
  1386. * a normal way
  1387. */
  1388. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1389. struct tcp_sacktag_state *state,
  1390. u32 skip_to_seq)
  1391. {
  1392. tcp_for_write_queue_from(skb, sk) {
  1393. if (skb == tcp_send_head(sk))
  1394. break;
  1395. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1396. break;
  1397. state->fack_count += tcp_skb_pcount(skb);
  1398. }
  1399. return skb;
  1400. }
  1401. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1402. struct sock *sk,
  1403. struct tcp_sack_block *next_dup,
  1404. struct tcp_sacktag_state *state,
  1405. u32 skip_to_seq)
  1406. {
  1407. if (next_dup == NULL)
  1408. return skb;
  1409. if (before(next_dup->start_seq, skip_to_seq)) {
  1410. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1411. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1412. next_dup->start_seq, next_dup->end_seq,
  1413. 1);
  1414. }
  1415. return skb;
  1416. }
  1417. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1418. {
  1419. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1420. }
  1421. static int
  1422. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1423. u32 prior_snd_una, long *sack_rtt_us)
  1424. {
  1425. struct tcp_sock *tp = tcp_sk(sk);
  1426. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1427. TCP_SKB_CB(ack_skb)->sacked);
  1428. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1429. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1430. struct tcp_sack_block *cache;
  1431. struct tcp_sacktag_state state;
  1432. struct sk_buff *skb;
  1433. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1434. int used_sacks;
  1435. bool found_dup_sack = false;
  1436. int i, j;
  1437. int first_sack_index;
  1438. state.flag = 0;
  1439. state.reord = tp->packets_out;
  1440. state.rtt_us = -1L;
  1441. if (!tp->sacked_out) {
  1442. if (WARN_ON(tp->fackets_out))
  1443. tp->fackets_out = 0;
  1444. tcp_highest_sack_reset(sk);
  1445. }
  1446. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1447. num_sacks, prior_snd_una);
  1448. if (found_dup_sack)
  1449. state.flag |= FLAG_DSACKING_ACK;
  1450. /* Eliminate too old ACKs, but take into
  1451. * account more or less fresh ones, they can
  1452. * contain valid SACK info.
  1453. */
  1454. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1455. return 0;
  1456. if (!tp->packets_out)
  1457. goto out;
  1458. used_sacks = 0;
  1459. first_sack_index = 0;
  1460. for (i = 0; i < num_sacks; i++) {
  1461. bool dup_sack = !i && found_dup_sack;
  1462. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1463. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1464. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1465. sp[used_sacks].start_seq,
  1466. sp[used_sacks].end_seq)) {
  1467. int mib_idx;
  1468. if (dup_sack) {
  1469. if (!tp->undo_marker)
  1470. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1471. else
  1472. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1473. } else {
  1474. /* Don't count olds caused by ACK reordering */
  1475. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1476. !after(sp[used_sacks].end_seq, tp->snd_una))
  1477. continue;
  1478. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1479. }
  1480. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1481. if (i == 0)
  1482. first_sack_index = -1;
  1483. continue;
  1484. }
  1485. /* Ignore very old stuff early */
  1486. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1487. continue;
  1488. used_sacks++;
  1489. }
  1490. /* order SACK blocks to allow in order walk of the retrans queue */
  1491. for (i = used_sacks - 1; i > 0; i--) {
  1492. for (j = 0; j < i; j++) {
  1493. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1494. swap(sp[j], sp[j + 1]);
  1495. /* Track where the first SACK block goes to */
  1496. if (j == first_sack_index)
  1497. first_sack_index = j + 1;
  1498. }
  1499. }
  1500. }
  1501. skb = tcp_write_queue_head(sk);
  1502. state.fack_count = 0;
  1503. i = 0;
  1504. if (!tp->sacked_out) {
  1505. /* It's already past, so skip checking against it */
  1506. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1507. } else {
  1508. cache = tp->recv_sack_cache;
  1509. /* Skip empty blocks in at head of the cache */
  1510. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1511. !cache->end_seq)
  1512. cache++;
  1513. }
  1514. while (i < used_sacks) {
  1515. u32 start_seq = sp[i].start_seq;
  1516. u32 end_seq = sp[i].end_seq;
  1517. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1518. struct tcp_sack_block *next_dup = NULL;
  1519. if (found_dup_sack && ((i + 1) == first_sack_index))
  1520. next_dup = &sp[i + 1];
  1521. /* Skip too early cached blocks */
  1522. while (tcp_sack_cache_ok(tp, cache) &&
  1523. !before(start_seq, cache->end_seq))
  1524. cache++;
  1525. /* Can skip some work by looking recv_sack_cache? */
  1526. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1527. after(end_seq, cache->start_seq)) {
  1528. /* Head todo? */
  1529. if (before(start_seq, cache->start_seq)) {
  1530. skb = tcp_sacktag_skip(skb, sk, &state,
  1531. start_seq);
  1532. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1533. &state,
  1534. start_seq,
  1535. cache->start_seq,
  1536. dup_sack);
  1537. }
  1538. /* Rest of the block already fully processed? */
  1539. if (!after(end_seq, cache->end_seq))
  1540. goto advance_sp;
  1541. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1542. &state,
  1543. cache->end_seq);
  1544. /* ...tail remains todo... */
  1545. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1546. /* ...but better entrypoint exists! */
  1547. skb = tcp_highest_sack(sk);
  1548. if (skb == NULL)
  1549. break;
  1550. state.fack_count = tp->fackets_out;
  1551. cache++;
  1552. goto walk;
  1553. }
  1554. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1555. /* Check overlap against next cached too (past this one already) */
  1556. cache++;
  1557. continue;
  1558. }
  1559. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1560. skb = tcp_highest_sack(sk);
  1561. if (skb == NULL)
  1562. break;
  1563. state.fack_count = tp->fackets_out;
  1564. }
  1565. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1566. walk:
  1567. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1568. start_seq, end_seq, dup_sack);
  1569. advance_sp:
  1570. i++;
  1571. }
  1572. /* Clear the head of the cache sack blocks so we can skip it next time */
  1573. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1574. tp->recv_sack_cache[i].start_seq = 0;
  1575. tp->recv_sack_cache[i].end_seq = 0;
  1576. }
  1577. for (j = 0; j < used_sacks; j++)
  1578. tp->recv_sack_cache[i++] = sp[j];
  1579. tcp_mark_lost_retrans(sk);
  1580. tcp_verify_left_out(tp);
  1581. if ((state.reord < tp->fackets_out) &&
  1582. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1583. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1584. out:
  1585. #if FASTRETRANS_DEBUG > 0
  1586. WARN_ON((int)tp->sacked_out < 0);
  1587. WARN_ON((int)tp->lost_out < 0);
  1588. WARN_ON((int)tp->retrans_out < 0);
  1589. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1590. #endif
  1591. *sack_rtt_us = state.rtt_us;
  1592. return state.flag;
  1593. }
  1594. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1595. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1596. */
  1597. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1598. {
  1599. u32 holes;
  1600. holes = max(tp->lost_out, 1U);
  1601. holes = min(holes, tp->packets_out);
  1602. if ((tp->sacked_out + holes) > tp->packets_out) {
  1603. tp->sacked_out = tp->packets_out - holes;
  1604. return true;
  1605. }
  1606. return false;
  1607. }
  1608. /* If we receive more dupacks than we expected counting segments
  1609. * in assumption of absent reordering, interpret this as reordering.
  1610. * The only another reason could be bug in receiver TCP.
  1611. */
  1612. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1613. {
  1614. struct tcp_sock *tp = tcp_sk(sk);
  1615. if (tcp_limit_reno_sacked(tp))
  1616. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1617. }
  1618. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1619. static void tcp_add_reno_sack(struct sock *sk)
  1620. {
  1621. struct tcp_sock *tp = tcp_sk(sk);
  1622. tp->sacked_out++;
  1623. tcp_check_reno_reordering(sk, 0);
  1624. tcp_verify_left_out(tp);
  1625. }
  1626. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1627. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1628. {
  1629. struct tcp_sock *tp = tcp_sk(sk);
  1630. if (acked > 0) {
  1631. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1632. if (acked - 1 >= tp->sacked_out)
  1633. tp->sacked_out = 0;
  1634. else
  1635. tp->sacked_out -= acked - 1;
  1636. }
  1637. tcp_check_reno_reordering(sk, acked);
  1638. tcp_verify_left_out(tp);
  1639. }
  1640. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1641. {
  1642. tp->sacked_out = 0;
  1643. }
  1644. void tcp_clear_retrans(struct tcp_sock *tp)
  1645. {
  1646. tp->retrans_out = 0;
  1647. tp->lost_out = 0;
  1648. tp->undo_marker = 0;
  1649. tp->undo_retrans = -1;
  1650. tp->fackets_out = 0;
  1651. tp->sacked_out = 0;
  1652. }
  1653. static inline void tcp_init_undo(struct tcp_sock *tp)
  1654. {
  1655. tp->undo_marker = tp->snd_una;
  1656. /* Retransmission still in flight may cause DSACKs later. */
  1657. tp->undo_retrans = tp->retrans_out ? : -1;
  1658. }
  1659. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1660. * and reset tags completely, otherwise preserve SACKs. If receiver
  1661. * dropped its ofo queue, we will know this due to reneging detection.
  1662. */
  1663. void tcp_enter_loss(struct sock *sk)
  1664. {
  1665. const struct inet_connection_sock *icsk = inet_csk(sk);
  1666. struct tcp_sock *tp = tcp_sk(sk);
  1667. struct sk_buff *skb;
  1668. bool new_recovery = false;
  1669. bool is_reneg; /* is receiver reneging on SACKs? */
  1670. /* Reduce ssthresh if it has not yet been made inside this window. */
  1671. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1672. !after(tp->high_seq, tp->snd_una) ||
  1673. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1674. new_recovery = true;
  1675. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1676. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1677. tcp_ca_event(sk, CA_EVENT_LOSS);
  1678. tcp_init_undo(tp);
  1679. }
  1680. tp->snd_cwnd = 1;
  1681. tp->snd_cwnd_cnt = 0;
  1682. tp->snd_cwnd_stamp = tcp_time_stamp;
  1683. tp->retrans_out = 0;
  1684. tp->lost_out = 0;
  1685. if (tcp_is_reno(tp))
  1686. tcp_reset_reno_sack(tp);
  1687. skb = tcp_write_queue_head(sk);
  1688. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1689. if (is_reneg) {
  1690. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1691. tp->sacked_out = 0;
  1692. tp->fackets_out = 0;
  1693. }
  1694. tcp_clear_all_retrans_hints(tp);
  1695. tcp_for_write_queue(skb, sk) {
  1696. if (skb == tcp_send_head(sk))
  1697. break;
  1698. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1699. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1700. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1701. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1702. tp->lost_out += tcp_skb_pcount(skb);
  1703. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1704. }
  1705. }
  1706. tcp_verify_left_out(tp);
  1707. /* Timeout in disordered state after receiving substantial DUPACKs
  1708. * suggests that the degree of reordering is over-estimated.
  1709. */
  1710. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1711. tp->sacked_out >= sysctl_tcp_reordering)
  1712. tp->reordering = min_t(unsigned int, tp->reordering,
  1713. sysctl_tcp_reordering);
  1714. tcp_set_ca_state(sk, TCP_CA_Loss);
  1715. tp->high_seq = tp->snd_nxt;
  1716. tcp_ecn_queue_cwr(tp);
  1717. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1718. * loss recovery is underway except recurring timeout(s) on
  1719. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1720. */
  1721. tp->frto = sysctl_tcp_frto &&
  1722. (new_recovery || icsk->icsk_retransmits) &&
  1723. !inet_csk(sk)->icsk_mtup.probe_size;
  1724. }
  1725. /* If ACK arrived pointing to a remembered SACK, it means that our
  1726. * remembered SACKs do not reflect real state of receiver i.e.
  1727. * receiver _host_ is heavily congested (or buggy).
  1728. *
  1729. * To avoid big spurious retransmission bursts due to transient SACK
  1730. * scoreboard oddities that look like reneging, we give the receiver a
  1731. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1732. * restore sanity to the SACK scoreboard. If the apparent reneging
  1733. * persists until this RTO then we'll clear the SACK scoreboard.
  1734. */
  1735. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1736. {
  1737. if (flag & FLAG_SACK_RENEGING) {
  1738. struct tcp_sock *tp = tcp_sk(sk);
  1739. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1740. msecs_to_jiffies(10));
  1741. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1742. delay, TCP_RTO_MAX);
  1743. return true;
  1744. }
  1745. return false;
  1746. }
  1747. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1748. {
  1749. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1750. }
  1751. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1752. * counter when SACK is enabled (without SACK, sacked_out is used for
  1753. * that purpose).
  1754. *
  1755. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1756. * segments up to the highest received SACK block so far and holes in
  1757. * between them.
  1758. *
  1759. * With reordering, holes may still be in flight, so RFC3517 recovery
  1760. * uses pure sacked_out (total number of SACKed segments) even though
  1761. * it violates the RFC that uses duplicate ACKs, often these are equal
  1762. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1763. * they differ. Since neither occurs due to loss, TCP should really
  1764. * ignore them.
  1765. */
  1766. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1767. {
  1768. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1769. }
  1770. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1771. {
  1772. struct tcp_sock *tp = tcp_sk(sk);
  1773. unsigned long delay;
  1774. /* Delay early retransmit and entering fast recovery for
  1775. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1776. * available, or RTO is scheduled to fire first.
  1777. */
  1778. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1779. (flag & FLAG_ECE) || !tp->srtt_us)
  1780. return false;
  1781. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1782. msecs_to_jiffies(2));
  1783. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1784. return false;
  1785. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1786. TCP_RTO_MAX);
  1787. return true;
  1788. }
  1789. /* Linux NewReno/SACK/FACK/ECN state machine.
  1790. * --------------------------------------
  1791. *
  1792. * "Open" Normal state, no dubious events, fast path.
  1793. * "Disorder" In all the respects it is "Open",
  1794. * but requires a bit more attention. It is entered when
  1795. * we see some SACKs or dupacks. It is split of "Open"
  1796. * mainly to move some processing from fast path to slow one.
  1797. * "CWR" CWND was reduced due to some Congestion Notification event.
  1798. * It can be ECN, ICMP source quench, local device congestion.
  1799. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1800. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1801. *
  1802. * tcp_fastretrans_alert() is entered:
  1803. * - each incoming ACK, if state is not "Open"
  1804. * - when arrived ACK is unusual, namely:
  1805. * * SACK
  1806. * * Duplicate ACK.
  1807. * * ECN ECE.
  1808. *
  1809. * Counting packets in flight is pretty simple.
  1810. *
  1811. * in_flight = packets_out - left_out + retrans_out
  1812. *
  1813. * packets_out is SND.NXT-SND.UNA counted in packets.
  1814. *
  1815. * retrans_out is number of retransmitted segments.
  1816. *
  1817. * left_out is number of segments left network, but not ACKed yet.
  1818. *
  1819. * left_out = sacked_out + lost_out
  1820. *
  1821. * sacked_out: Packets, which arrived to receiver out of order
  1822. * and hence not ACKed. With SACKs this number is simply
  1823. * amount of SACKed data. Even without SACKs
  1824. * it is easy to give pretty reliable estimate of this number,
  1825. * counting duplicate ACKs.
  1826. *
  1827. * lost_out: Packets lost by network. TCP has no explicit
  1828. * "loss notification" feedback from network (for now).
  1829. * It means that this number can be only _guessed_.
  1830. * Actually, it is the heuristics to predict lossage that
  1831. * distinguishes different algorithms.
  1832. *
  1833. * F.e. after RTO, when all the queue is considered as lost,
  1834. * lost_out = packets_out and in_flight = retrans_out.
  1835. *
  1836. * Essentially, we have now two algorithms counting
  1837. * lost packets.
  1838. *
  1839. * FACK: It is the simplest heuristics. As soon as we decided
  1840. * that something is lost, we decide that _all_ not SACKed
  1841. * packets until the most forward SACK are lost. I.e.
  1842. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1843. * It is absolutely correct estimate, if network does not reorder
  1844. * packets. And it loses any connection to reality when reordering
  1845. * takes place. We use FACK by default until reordering
  1846. * is suspected on the path to this destination.
  1847. *
  1848. * NewReno: when Recovery is entered, we assume that one segment
  1849. * is lost (classic Reno). While we are in Recovery and
  1850. * a partial ACK arrives, we assume that one more packet
  1851. * is lost (NewReno). This heuristics are the same in NewReno
  1852. * and SACK.
  1853. *
  1854. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1855. * deflation etc. CWND is real congestion window, never inflated, changes
  1856. * only according to classic VJ rules.
  1857. *
  1858. * Really tricky (and requiring careful tuning) part of algorithm
  1859. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1860. * The first determines the moment _when_ we should reduce CWND and,
  1861. * hence, slow down forward transmission. In fact, it determines the moment
  1862. * when we decide that hole is caused by loss, rather than by a reorder.
  1863. *
  1864. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1865. * holes, caused by lost packets.
  1866. *
  1867. * And the most logically complicated part of algorithm is undo
  1868. * heuristics. We detect false retransmits due to both too early
  1869. * fast retransmit (reordering) and underestimated RTO, analyzing
  1870. * timestamps and D-SACKs. When we detect that some segments were
  1871. * retransmitted by mistake and CWND reduction was wrong, we undo
  1872. * window reduction and abort recovery phase. This logic is hidden
  1873. * inside several functions named tcp_try_undo_<something>.
  1874. */
  1875. /* This function decides, when we should leave Disordered state
  1876. * and enter Recovery phase, reducing congestion window.
  1877. *
  1878. * Main question: may we further continue forward transmission
  1879. * with the same cwnd?
  1880. */
  1881. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1882. {
  1883. struct tcp_sock *tp = tcp_sk(sk);
  1884. __u32 packets_out;
  1885. /* Trick#1: The loss is proven. */
  1886. if (tp->lost_out)
  1887. return true;
  1888. /* Not-A-Trick#2 : Classic rule... */
  1889. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1890. return true;
  1891. /* Trick#4: It is still not OK... But will it be useful to delay
  1892. * recovery more?
  1893. */
  1894. packets_out = tp->packets_out;
  1895. if (packets_out <= tp->reordering &&
  1896. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1897. !tcp_may_send_now(sk)) {
  1898. /* We have nothing to send. This connection is limited
  1899. * either by receiver window or by application.
  1900. */
  1901. return true;
  1902. }
  1903. /* If a thin stream is detected, retransmit after first
  1904. * received dupack. Employ only if SACK is supported in order
  1905. * to avoid possible corner-case series of spurious retransmissions
  1906. * Use only if there are no unsent data.
  1907. */
  1908. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1909. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1910. tcp_is_sack(tp) && !tcp_send_head(sk))
  1911. return true;
  1912. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1913. * retransmissions due to small network reorderings, we implement
  1914. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1915. * interval if appropriate.
  1916. */
  1917. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1918. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1919. !tcp_may_send_now(sk))
  1920. return !tcp_pause_early_retransmit(sk, flag);
  1921. return false;
  1922. }
  1923. /* Detect loss in event "A" above by marking head of queue up as lost.
  1924. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1925. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1926. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1927. * the maximum SACKed segments to pass before reaching this limit.
  1928. */
  1929. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1930. {
  1931. struct tcp_sock *tp = tcp_sk(sk);
  1932. struct sk_buff *skb;
  1933. int cnt, oldcnt;
  1934. int err;
  1935. unsigned int mss;
  1936. /* Use SACK to deduce losses of new sequences sent during recovery */
  1937. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1938. WARN_ON(packets > tp->packets_out);
  1939. if (tp->lost_skb_hint) {
  1940. skb = tp->lost_skb_hint;
  1941. cnt = tp->lost_cnt_hint;
  1942. /* Head already handled? */
  1943. if (mark_head && skb != tcp_write_queue_head(sk))
  1944. return;
  1945. } else {
  1946. skb = tcp_write_queue_head(sk);
  1947. cnt = 0;
  1948. }
  1949. tcp_for_write_queue_from(skb, sk) {
  1950. if (skb == tcp_send_head(sk))
  1951. break;
  1952. /* TODO: do this better */
  1953. /* this is not the most efficient way to do this... */
  1954. tp->lost_skb_hint = skb;
  1955. tp->lost_cnt_hint = cnt;
  1956. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1957. break;
  1958. oldcnt = cnt;
  1959. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1960. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1961. cnt += tcp_skb_pcount(skb);
  1962. if (cnt > packets) {
  1963. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1964. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1965. (oldcnt >= packets))
  1966. break;
  1967. mss = skb_shinfo(skb)->gso_size;
  1968. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1969. mss, GFP_ATOMIC);
  1970. if (err < 0)
  1971. break;
  1972. cnt = packets;
  1973. }
  1974. tcp_skb_mark_lost(tp, skb);
  1975. if (mark_head)
  1976. break;
  1977. }
  1978. tcp_verify_left_out(tp);
  1979. }
  1980. /* Account newly detected lost packet(s) */
  1981. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1982. {
  1983. struct tcp_sock *tp = tcp_sk(sk);
  1984. if (tcp_is_reno(tp)) {
  1985. tcp_mark_head_lost(sk, 1, 1);
  1986. } else if (tcp_is_fack(tp)) {
  1987. int lost = tp->fackets_out - tp->reordering;
  1988. if (lost <= 0)
  1989. lost = 1;
  1990. tcp_mark_head_lost(sk, lost, 0);
  1991. } else {
  1992. int sacked_upto = tp->sacked_out - tp->reordering;
  1993. if (sacked_upto >= 0)
  1994. tcp_mark_head_lost(sk, sacked_upto, 0);
  1995. else if (fast_rexmit)
  1996. tcp_mark_head_lost(sk, 1, 1);
  1997. }
  1998. }
  1999. /* CWND moderation, preventing bursts due to too big ACKs
  2000. * in dubious situations.
  2001. */
  2002. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2003. {
  2004. tp->snd_cwnd = min(tp->snd_cwnd,
  2005. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2006. tp->snd_cwnd_stamp = tcp_time_stamp;
  2007. }
  2008. /* Nothing was retransmitted or returned timestamp is less
  2009. * than timestamp of the first retransmission.
  2010. */
  2011. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2012. {
  2013. return !tp->retrans_stamp ||
  2014. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2015. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2016. }
  2017. /* Undo procedures. */
  2018. /* We can clear retrans_stamp when there are no retransmissions in the
  2019. * window. It would seem that it is trivially available for us in
  2020. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2021. * what will happen if errors occur when sending retransmission for the
  2022. * second time. ...It could the that such segment has only
  2023. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2024. * the head skb is enough except for some reneging corner cases that
  2025. * are not worth the effort.
  2026. *
  2027. * Main reason for all this complexity is the fact that connection dying
  2028. * time now depends on the validity of the retrans_stamp, in particular,
  2029. * that successive retransmissions of a segment must not advance
  2030. * retrans_stamp under any conditions.
  2031. */
  2032. static bool tcp_any_retrans_done(const struct sock *sk)
  2033. {
  2034. const struct tcp_sock *tp = tcp_sk(sk);
  2035. struct sk_buff *skb;
  2036. if (tp->retrans_out)
  2037. return true;
  2038. skb = tcp_write_queue_head(sk);
  2039. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2040. return true;
  2041. return false;
  2042. }
  2043. #if FASTRETRANS_DEBUG > 1
  2044. static void DBGUNDO(struct sock *sk, const char *msg)
  2045. {
  2046. struct tcp_sock *tp = tcp_sk(sk);
  2047. struct inet_sock *inet = inet_sk(sk);
  2048. if (sk->sk_family == AF_INET) {
  2049. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2050. msg,
  2051. &inet->inet_daddr, ntohs(inet->inet_dport),
  2052. tp->snd_cwnd, tcp_left_out(tp),
  2053. tp->snd_ssthresh, tp->prior_ssthresh,
  2054. tp->packets_out);
  2055. }
  2056. #if IS_ENABLED(CONFIG_IPV6)
  2057. else if (sk->sk_family == AF_INET6) {
  2058. struct ipv6_pinfo *np = inet6_sk(sk);
  2059. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2060. msg,
  2061. &np->daddr, ntohs(inet->inet_dport),
  2062. tp->snd_cwnd, tcp_left_out(tp),
  2063. tp->snd_ssthresh, tp->prior_ssthresh,
  2064. tp->packets_out);
  2065. }
  2066. #endif
  2067. }
  2068. #else
  2069. #define DBGUNDO(x...) do { } while (0)
  2070. #endif
  2071. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2072. {
  2073. struct tcp_sock *tp = tcp_sk(sk);
  2074. if (unmark_loss) {
  2075. struct sk_buff *skb;
  2076. tcp_for_write_queue(skb, sk) {
  2077. if (skb == tcp_send_head(sk))
  2078. break;
  2079. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2080. }
  2081. tp->lost_out = 0;
  2082. tcp_clear_all_retrans_hints(tp);
  2083. }
  2084. if (tp->prior_ssthresh) {
  2085. const struct inet_connection_sock *icsk = inet_csk(sk);
  2086. if (icsk->icsk_ca_ops->undo_cwnd)
  2087. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2088. else
  2089. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2090. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2091. tp->snd_ssthresh = tp->prior_ssthresh;
  2092. tcp_ecn_withdraw_cwr(tp);
  2093. }
  2094. } else {
  2095. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2096. }
  2097. tp->snd_cwnd_stamp = tcp_time_stamp;
  2098. tp->undo_marker = 0;
  2099. }
  2100. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2101. {
  2102. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2103. }
  2104. /* People celebrate: "We love our President!" */
  2105. static bool tcp_try_undo_recovery(struct sock *sk)
  2106. {
  2107. struct tcp_sock *tp = tcp_sk(sk);
  2108. if (tcp_may_undo(tp)) {
  2109. int mib_idx;
  2110. /* Happy end! We did not retransmit anything
  2111. * or our original transmission succeeded.
  2112. */
  2113. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2114. tcp_undo_cwnd_reduction(sk, false);
  2115. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2116. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2117. else
  2118. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2119. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2120. }
  2121. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2122. /* Hold old state until something *above* high_seq
  2123. * is ACKed. For Reno it is MUST to prevent false
  2124. * fast retransmits (RFC2582). SACK TCP is safe. */
  2125. tcp_moderate_cwnd(tp);
  2126. if (!tcp_any_retrans_done(sk))
  2127. tp->retrans_stamp = 0;
  2128. return true;
  2129. }
  2130. tcp_set_ca_state(sk, TCP_CA_Open);
  2131. return false;
  2132. }
  2133. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2134. static bool tcp_try_undo_dsack(struct sock *sk)
  2135. {
  2136. struct tcp_sock *tp = tcp_sk(sk);
  2137. if (tp->undo_marker && !tp->undo_retrans) {
  2138. DBGUNDO(sk, "D-SACK");
  2139. tcp_undo_cwnd_reduction(sk, false);
  2140. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2141. return true;
  2142. }
  2143. return false;
  2144. }
  2145. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2146. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2147. {
  2148. struct tcp_sock *tp = tcp_sk(sk);
  2149. if (frto_undo || tcp_may_undo(tp)) {
  2150. tcp_undo_cwnd_reduction(sk, true);
  2151. DBGUNDO(sk, "partial loss");
  2152. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2153. if (frto_undo)
  2154. NET_INC_STATS_BH(sock_net(sk),
  2155. LINUX_MIB_TCPSPURIOUSRTOS);
  2156. inet_csk(sk)->icsk_retransmits = 0;
  2157. if (frto_undo || tcp_is_sack(tp))
  2158. tcp_set_ca_state(sk, TCP_CA_Open);
  2159. return true;
  2160. }
  2161. return false;
  2162. }
  2163. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2164. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2165. * It computes the number of packets to send (sndcnt) based on packets newly
  2166. * delivered:
  2167. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2168. * cwnd reductions across a full RTT.
  2169. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2170. * losses and/or application stalls), do not perform any further cwnd
  2171. * reductions, but instead slow start up to ssthresh.
  2172. */
  2173. static void tcp_init_cwnd_reduction(struct sock *sk)
  2174. {
  2175. struct tcp_sock *tp = tcp_sk(sk);
  2176. tp->high_seq = tp->snd_nxt;
  2177. tp->tlp_high_seq = 0;
  2178. tp->snd_cwnd_cnt = 0;
  2179. tp->prior_cwnd = tp->snd_cwnd;
  2180. tp->prr_delivered = 0;
  2181. tp->prr_out = 0;
  2182. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2183. tcp_ecn_queue_cwr(tp);
  2184. }
  2185. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2186. int fast_rexmit)
  2187. {
  2188. struct tcp_sock *tp = tcp_sk(sk);
  2189. int sndcnt = 0;
  2190. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2191. int newly_acked_sacked = prior_unsacked -
  2192. (tp->packets_out - tp->sacked_out);
  2193. tp->prr_delivered += newly_acked_sacked;
  2194. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2195. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2196. tp->prior_cwnd - 1;
  2197. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2198. } else {
  2199. sndcnt = min_t(int, delta,
  2200. max_t(int, tp->prr_delivered - tp->prr_out,
  2201. newly_acked_sacked) + 1);
  2202. }
  2203. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2204. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2205. }
  2206. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2207. {
  2208. struct tcp_sock *tp = tcp_sk(sk);
  2209. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2210. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2211. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2212. tp->snd_cwnd = tp->snd_ssthresh;
  2213. tp->snd_cwnd_stamp = tcp_time_stamp;
  2214. }
  2215. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2216. }
  2217. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2218. void tcp_enter_cwr(struct sock *sk)
  2219. {
  2220. struct tcp_sock *tp = tcp_sk(sk);
  2221. tp->prior_ssthresh = 0;
  2222. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2223. tp->undo_marker = 0;
  2224. tcp_init_cwnd_reduction(sk);
  2225. tcp_set_ca_state(sk, TCP_CA_CWR);
  2226. }
  2227. }
  2228. static void tcp_try_keep_open(struct sock *sk)
  2229. {
  2230. struct tcp_sock *tp = tcp_sk(sk);
  2231. int state = TCP_CA_Open;
  2232. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2233. state = TCP_CA_Disorder;
  2234. if (inet_csk(sk)->icsk_ca_state != state) {
  2235. tcp_set_ca_state(sk, state);
  2236. tp->high_seq = tp->snd_nxt;
  2237. }
  2238. }
  2239. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2240. {
  2241. struct tcp_sock *tp = tcp_sk(sk);
  2242. tcp_verify_left_out(tp);
  2243. if (!tcp_any_retrans_done(sk))
  2244. tp->retrans_stamp = 0;
  2245. if (flag & FLAG_ECE)
  2246. tcp_enter_cwr(sk);
  2247. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2248. tcp_try_keep_open(sk);
  2249. } else {
  2250. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2251. }
  2252. }
  2253. static void tcp_mtup_probe_failed(struct sock *sk)
  2254. {
  2255. struct inet_connection_sock *icsk = inet_csk(sk);
  2256. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2257. icsk->icsk_mtup.probe_size = 0;
  2258. }
  2259. static void tcp_mtup_probe_success(struct sock *sk)
  2260. {
  2261. struct tcp_sock *tp = tcp_sk(sk);
  2262. struct inet_connection_sock *icsk = inet_csk(sk);
  2263. /* FIXME: breaks with very large cwnd */
  2264. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2265. tp->snd_cwnd = tp->snd_cwnd *
  2266. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2267. icsk->icsk_mtup.probe_size;
  2268. tp->snd_cwnd_cnt = 0;
  2269. tp->snd_cwnd_stamp = tcp_time_stamp;
  2270. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2271. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2272. icsk->icsk_mtup.probe_size = 0;
  2273. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2274. }
  2275. /* Do a simple retransmit without using the backoff mechanisms in
  2276. * tcp_timer. This is used for path mtu discovery.
  2277. * The socket is already locked here.
  2278. */
  2279. void tcp_simple_retransmit(struct sock *sk)
  2280. {
  2281. const struct inet_connection_sock *icsk = inet_csk(sk);
  2282. struct tcp_sock *tp = tcp_sk(sk);
  2283. struct sk_buff *skb;
  2284. unsigned int mss = tcp_current_mss(sk);
  2285. u32 prior_lost = tp->lost_out;
  2286. tcp_for_write_queue(skb, sk) {
  2287. if (skb == tcp_send_head(sk))
  2288. break;
  2289. if (tcp_skb_seglen(skb) > mss &&
  2290. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2291. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2292. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2293. tp->retrans_out -= tcp_skb_pcount(skb);
  2294. }
  2295. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2296. }
  2297. }
  2298. tcp_clear_retrans_hints_partial(tp);
  2299. if (prior_lost == tp->lost_out)
  2300. return;
  2301. if (tcp_is_reno(tp))
  2302. tcp_limit_reno_sacked(tp);
  2303. tcp_verify_left_out(tp);
  2304. /* Don't muck with the congestion window here.
  2305. * Reason is that we do not increase amount of _data_
  2306. * in network, but units changed and effective
  2307. * cwnd/ssthresh really reduced now.
  2308. */
  2309. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2310. tp->high_seq = tp->snd_nxt;
  2311. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2312. tp->prior_ssthresh = 0;
  2313. tp->undo_marker = 0;
  2314. tcp_set_ca_state(sk, TCP_CA_Loss);
  2315. }
  2316. tcp_xmit_retransmit_queue(sk);
  2317. }
  2318. EXPORT_SYMBOL(tcp_simple_retransmit);
  2319. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2320. {
  2321. struct tcp_sock *tp = tcp_sk(sk);
  2322. int mib_idx;
  2323. if (tcp_is_reno(tp))
  2324. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2325. else
  2326. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2327. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2328. tp->prior_ssthresh = 0;
  2329. tcp_init_undo(tp);
  2330. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2331. if (!ece_ack)
  2332. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2333. tcp_init_cwnd_reduction(sk);
  2334. }
  2335. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2336. }
  2337. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2338. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2339. */
  2340. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2341. {
  2342. struct tcp_sock *tp = tcp_sk(sk);
  2343. bool recovered = !before(tp->snd_una, tp->high_seq);
  2344. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2345. /* Step 3.b. A timeout is spurious if not all data are
  2346. * lost, i.e., never-retransmitted data are (s)acked.
  2347. */
  2348. if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
  2349. return;
  2350. if (after(tp->snd_nxt, tp->high_seq) &&
  2351. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2352. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2353. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2354. tp->high_seq = tp->snd_nxt;
  2355. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2356. TCP_NAGLE_OFF);
  2357. if (after(tp->snd_nxt, tp->high_seq))
  2358. return; /* Step 2.b */
  2359. tp->frto = 0;
  2360. }
  2361. }
  2362. if (recovered) {
  2363. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2364. tcp_try_undo_recovery(sk);
  2365. return;
  2366. }
  2367. if (tcp_is_reno(tp)) {
  2368. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2369. * delivered. Lower inflight to clock out (re)tranmissions.
  2370. */
  2371. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2372. tcp_add_reno_sack(sk);
  2373. else if (flag & FLAG_SND_UNA_ADVANCED)
  2374. tcp_reset_reno_sack(tp);
  2375. }
  2376. if (tcp_try_undo_loss(sk, false))
  2377. return;
  2378. tcp_xmit_retransmit_queue(sk);
  2379. }
  2380. /* Undo during fast recovery after partial ACK. */
  2381. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2382. const int prior_unsacked)
  2383. {
  2384. struct tcp_sock *tp = tcp_sk(sk);
  2385. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2386. /* Plain luck! Hole if filled with delayed
  2387. * packet, rather than with a retransmit.
  2388. */
  2389. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2390. /* We are getting evidence that the reordering degree is higher
  2391. * than we realized. If there are no retransmits out then we
  2392. * can undo. Otherwise we clock out new packets but do not
  2393. * mark more packets lost or retransmit more.
  2394. */
  2395. if (tp->retrans_out) {
  2396. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2397. return true;
  2398. }
  2399. if (!tcp_any_retrans_done(sk))
  2400. tp->retrans_stamp = 0;
  2401. DBGUNDO(sk, "partial recovery");
  2402. tcp_undo_cwnd_reduction(sk, true);
  2403. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2404. tcp_try_keep_open(sk);
  2405. return true;
  2406. }
  2407. return false;
  2408. }
  2409. /* Process an event, which can update packets-in-flight not trivially.
  2410. * Main goal of this function is to calculate new estimate for left_out,
  2411. * taking into account both packets sitting in receiver's buffer and
  2412. * packets lost by network.
  2413. *
  2414. * Besides that it does CWND reduction, when packet loss is detected
  2415. * and changes state of machine.
  2416. *
  2417. * It does _not_ decide what to send, it is made in function
  2418. * tcp_xmit_retransmit_queue().
  2419. */
  2420. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2421. const int prior_unsacked,
  2422. bool is_dupack, int flag)
  2423. {
  2424. struct inet_connection_sock *icsk = inet_csk(sk);
  2425. struct tcp_sock *tp = tcp_sk(sk);
  2426. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2427. (tcp_fackets_out(tp) > tp->reordering));
  2428. int fast_rexmit = 0;
  2429. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2430. tp->sacked_out = 0;
  2431. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2432. tp->fackets_out = 0;
  2433. /* Now state machine starts.
  2434. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2435. if (flag & FLAG_ECE)
  2436. tp->prior_ssthresh = 0;
  2437. /* B. In all the states check for reneging SACKs. */
  2438. if (tcp_check_sack_reneging(sk, flag))
  2439. return;
  2440. /* C. Check consistency of the current state. */
  2441. tcp_verify_left_out(tp);
  2442. /* D. Check state exit conditions. State can be terminated
  2443. * when high_seq is ACKed. */
  2444. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2445. WARN_ON(tp->retrans_out != 0);
  2446. tp->retrans_stamp = 0;
  2447. } else if (!before(tp->snd_una, tp->high_seq)) {
  2448. switch (icsk->icsk_ca_state) {
  2449. case TCP_CA_CWR:
  2450. /* CWR is to be held something *above* high_seq
  2451. * is ACKed for CWR bit to reach receiver. */
  2452. if (tp->snd_una != tp->high_seq) {
  2453. tcp_end_cwnd_reduction(sk);
  2454. tcp_set_ca_state(sk, TCP_CA_Open);
  2455. }
  2456. break;
  2457. case TCP_CA_Recovery:
  2458. if (tcp_is_reno(tp))
  2459. tcp_reset_reno_sack(tp);
  2460. if (tcp_try_undo_recovery(sk))
  2461. return;
  2462. tcp_end_cwnd_reduction(sk);
  2463. break;
  2464. }
  2465. }
  2466. /* E. Process state. */
  2467. switch (icsk->icsk_ca_state) {
  2468. case TCP_CA_Recovery:
  2469. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2470. if (tcp_is_reno(tp) && is_dupack)
  2471. tcp_add_reno_sack(sk);
  2472. } else {
  2473. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2474. return;
  2475. /* Partial ACK arrived. Force fast retransmit. */
  2476. do_lost = tcp_is_reno(tp) ||
  2477. tcp_fackets_out(tp) > tp->reordering;
  2478. }
  2479. if (tcp_try_undo_dsack(sk)) {
  2480. tcp_try_keep_open(sk);
  2481. return;
  2482. }
  2483. break;
  2484. case TCP_CA_Loss:
  2485. tcp_process_loss(sk, flag, is_dupack);
  2486. if (icsk->icsk_ca_state != TCP_CA_Open)
  2487. return;
  2488. /* Fall through to processing in Open state. */
  2489. default:
  2490. if (tcp_is_reno(tp)) {
  2491. if (flag & FLAG_SND_UNA_ADVANCED)
  2492. tcp_reset_reno_sack(tp);
  2493. if (is_dupack)
  2494. tcp_add_reno_sack(sk);
  2495. }
  2496. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2497. tcp_try_undo_dsack(sk);
  2498. if (!tcp_time_to_recover(sk, flag)) {
  2499. tcp_try_to_open(sk, flag, prior_unsacked);
  2500. return;
  2501. }
  2502. /* MTU probe failure: don't reduce cwnd */
  2503. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2504. icsk->icsk_mtup.probe_size &&
  2505. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2506. tcp_mtup_probe_failed(sk);
  2507. /* Restores the reduction we did in tcp_mtup_probe() */
  2508. tp->snd_cwnd++;
  2509. tcp_simple_retransmit(sk);
  2510. return;
  2511. }
  2512. /* Otherwise enter Recovery state */
  2513. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2514. fast_rexmit = 1;
  2515. }
  2516. if (do_lost)
  2517. tcp_update_scoreboard(sk, fast_rexmit);
  2518. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2519. tcp_xmit_retransmit_queue(sk);
  2520. }
  2521. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2522. long seq_rtt_us, long sack_rtt_us)
  2523. {
  2524. const struct tcp_sock *tp = tcp_sk(sk);
  2525. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2526. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2527. * Karn's algorithm forbids taking RTT if some retransmitted data
  2528. * is acked (RFC6298).
  2529. */
  2530. if (flag & FLAG_RETRANS_DATA_ACKED)
  2531. seq_rtt_us = -1L;
  2532. if (seq_rtt_us < 0)
  2533. seq_rtt_us = sack_rtt_us;
  2534. /* RTTM Rule: A TSecr value received in a segment is used to
  2535. * update the averaged RTT measurement only if the segment
  2536. * acknowledges some new data, i.e., only if it advances the
  2537. * left edge of the send window.
  2538. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2539. */
  2540. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2541. flag & FLAG_ACKED)
  2542. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2543. if (seq_rtt_us < 0)
  2544. return false;
  2545. tcp_rtt_estimator(sk, seq_rtt_us);
  2546. tcp_set_rto(sk);
  2547. /* RFC6298: only reset backoff on valid RTT measurement. */
  2548. inet_csk(sk)->icsk_backoff = 0;
  2549. return true;
  2550. }
  2551. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2552. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2553. {
  2554. struct tcp_sock *tp = tcp_sk(sk);
  2555. long seq_rtt_us = -1L;
  2556. if (synack_stamp && !tp->total_retrans)
  2557. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2558. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2559. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2560. */
  2561. if (!tp->srtt_us)
  2562. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2563. }
  2564. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2565. {
  2566. const struct inet_connection_sock *icsk = inet_csk(sk);
  2567. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2568. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2569. }
  2570. /* Restart timer after forward progress on connection.
  2571. * RFC2988 recommends to restart timer to now+rto.
  2572. */
  2573. void tcp_rearm_rto(struct sock *sk)
  2574. {
  2575. const struct inet_connection_sock *icsk = inet_csk(sk);
  2576. struct tcp_sock *tp = tcp_sk(sk);
  2577. /* If the retrans timer is currently being used by Fast Open
  2578. * for SYN-ACK retrans purpose, stay put.
  2579. */
  2580. if (tp->fastopen_rsk)
  2581. return;
  2582. if (!tp->packets_out) {
  2583. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2584. } else {
  2585. u32 rto = inet_csk(sk)->icsk_rto;
  2586. /* Offset the time elapsed after installing regular RTO */
  2587. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2588. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2589. struct sk_buff *skb = tcp_write_queue_head(sk);
  2590. const u32 rto_time_stamp =
  2591. tcp_skb_timestamp(skb) + rto;
  2592. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2593. /* delta may not be positive if the socket is locked
  2594. * when the retrans timer fires and is rescheduled.
  2595. */
  2596. if (delta > 0)
  2597. rto = delta;
  2598. }
  2599. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2600. TCP_RTO_MAX);
  2601. }
  2602. }
  2603. /* This function is called when the delayed ER timer fires. TCP enters
  2604. * fast recovery and performs fast-retransmit.
  2605. */
  2606. void tcp_resume_early_retransmit(struct sock *sk)
  2607. {
  2608. struct tcp_sock *tp = tcp_sk(sk);
  2609. tcp_rearm_rto(sk);
  2610. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2611. if (!tp->do_early_retrans)
  2612. return;
  2613. tcp_enter_recovery(sk, false);
  2614. tcp_update_scoreboard(sk, 1);
  2615. tcp_xmit_retransmit_queue(sk);
  2616. }
  2617. /* If we get here, the whole TSO packet has not been acked. */
  2618. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2619. {
  2620. struct tcp_sock *tp = tcp_sk(sk);
  2621. u32 packets_acked;
  2622. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2623. packets_acked = tcp_skb_pcount(skb);
  2624. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2625. return 0;
  2626. packets_acked -= tcp_skb_pcount(skb);
  2627. if (packets_acked) {
  2628. BUG_ON(tcp_skb_pcount(skb) == 0);
  2629. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2630. }
  2631. return packets_acked;
  2632. }
  2633. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2634. u32 prior_snd_una)
  2635. {
  2636. const struct skb_shared_info *shinfo;
  2637. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2638. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2639. return;
  2640. shinfo = skb_shinfo(skb);
  2641. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2642. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2643. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2644. }
  2645. /* Remove acknowledged frames from the retransmission queue. If our packet
  2646. * is before the ack sequence we can discard it as it's confirmed to have
  2647. * arrived at the other end.
  2648. */
  2649. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2650. u32 prior_snd_una, long sack_rtt_us)
  2651. {
  2652. const struct inet_connection_sock *icsk = inet_csk(sk);
  2653. struct skb_mstamp first_ackt, last_ackt, now;
  2654. struct tcp_sock *tp = tcp_sk(sk);
  2655. u32 prior_sacked = tp->sacked_out;
  2656. u32 reord = tp->packets_out;
  2657. bool fully_acked = true;
  2658. long ca_seq_rtt_us = -1L;
  2659. long seq_rtt_us = -1L;
  2660. struct sk_buff *skb;
  2661. u32 pkts_acked = 0;
  2662. bool rtt_update;
  2663. int flag = 0;
  2664. first_ackt.v64 = 0;
  2665. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2666. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2667. u8 sacked = scb->sacked;
  2668. u32 acked_pcount;
  2669. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2670. /* Determine how many packets and what bytes were acked, tso and else */
  2671. if (after(scb->end_seq, tp->snd_una)) {
  2672. if (tcp_skb_pcount(skb) == 1 ||
  2673. !after(tp->snd_una, scb->seq))
  2674. break;
  2675. acked_pcount = tcp_tso_acked(sk, skb);
  2676. if (!acked_pcount)
  2677. break;
  2678. fully_acked = false;
  2679. } else {
  2680. /* Speedup tcp_unlink_write_queue() and next loop */
  2681. prefetchw(skb->next);
  2682. acked_pcount = tcp_skb_pcount(skb);
  2683. }
  2684. if (unlikely(sacked & TCPCB_RETRANS)) {
  2685. if (sacked & TCPCB_SACKED_RETRANS)
  2686. tp->retrans_out -= acked_pcount;
  2687. flag |= FLAG_RETRANS_DATA_ACKED;
  2688. } else {
  2689. last_ackt = skb->skb_mstamp;
  2690. WARN_ON_ONCE(last_ackt.v64 == 0);
  2691. if (!first_ackt.v64)
  2692. first_ackt = last_ackt;
  2693. if (!(sacked & TCPCB_SACKED_ACKED))
  2694. reord = min(pkts_acked, reord);
  2695. if (!after(scb->end_seq, tp->high_seq))
  2696. flag |= FLAG_ORIG_SACK_ACKED;
  2697. }
  2698. if (sacked & TCPCB_SACKED_ACKED)
  2699. tp->sacked_out -= acked_pcount;
  2700. if (sacked & TCPCB_LOST)
  2701. tp->lost_out -= acked_pcount;
  2702. tp->packets_out -= acked_pcount;
  2703. pkts_acked += acked_pcount;
  2704. /* Initial outgoing SYN's get put onto the write_queue
  2705. * just like anything else we transmit. It is not
  2706. * true data, and if we misinform our callers that
  2707. * this ACK acks real data, we will erroneously exit
  2708. * connection startup slow start one packet too
  2709. * quickly. This is severely frowned upon behavior.
  2710. */
  2711. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2712. flag |= FLAG_DATA_ACKED;
  2713. } else {
  2714. flag |= FLAG_SYN_ACKED;
  2715. tp->retrans_stamp = 0;
  2716. }
  2717. if (!fully_acked)
  2718. break;
  2719. tcp_unlink_write_queue(skb, sk);
  2720. sk_wmem_free_skb(sk, skb);
  2721. if (unlikely(skb == tp->retransmit_skb_hint))
  2722. tp->retransmit_skb_hint = NULL;
  2723. if (unlikely(skb == tp->lost_skb_hint))
  2724. tp->lost_skb_hint = NULL;
  2725. }
  2726. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2727. tp->snd_up = tp->snd_una;
  2728. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2729. flag |= FLAG_SACK_RENEGING;
  2730. skb_mstamp_get(&now);
  2731. if (likely(first_ackt.v64)) {
  2732. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2733. ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2734. }
  2735. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2736. if (flag & FLAG_ACKED) {
  2737. const struct tcp_congestion_ops *ca_ops
  2738. = inet_csk(sk)->icsk_ca_ops;
  2739. tcp_rearm_rto(sk);
  2740. if (unlikely(icsk->icsk_mtup.probe_size &&
  2741. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2742. tcp_mtup_probe_success(sk);
  2743. }
  2744. if (tcp_is_reno(tp)) {
  2745. tcp_remove_reno_sacks(sk, pkts_acked);
  2746. } else {
  2747. int delta;
  2748. /* Non-retransmitted hole got filled? That's reordering */
  2749. if (reord < prior_fackets)
  2750. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2751. delta = tcp_is_fack(tp) ? pkts_acked :
  2752. prior_sacked - tp->sacked_out;
  2753. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2754. }
  2755. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2756. if (ca_ops->pkts_acked)
  2757. ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
  2758. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2759. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2760. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2761. * after when the head was last (re)transmitted. Otherwise the
  2762. * timeout may continue to extend in loss recovery.
  2763. */
  2764. tcp_rearm_rto(sk);
  2765. }
  2766. #if FASTRETRANS_DEBUG > 0
  2767. WARN_ON((int)tp->sacked_out < 0);
  2768. WARN_ON((int)tp->lost_out < 0);
  2769. WARN_ON((int)tp->retrans_out < 0);
  2770. if (!tp->packets_out && tcp_is_sack(tp)) {
  2771. icsk = inet_csk(sk);
  2772. if (tp->lost_out) {
  2773. pr_debug("Leak l=%u %d\n",
  2774. tp->lost_out, icsk->icsk_ca_state);
  2775. tp->lost_out = 0;
  2776. }
  2777. if (tp->sacked_out) {
  2778. pr_debug("Leak s=%u %d\n",
  2779. tp->sacked_out, icsk->icsk_ca_state);
  2780. tp->sacked_out = 0;
  2781. }
  2782. if (tp->retrans_out) {
  2783. pr_debug("Leak r=%u %d\n",
  2784. tp->retrans_out, icsk->icsk_ca_state);
  2785. tp->retrans_out = 0;
  2786. }
  2787. }
  2788. #endif
  2789. return flag;
  2790. }
  2791. static void tcp_ack_probe(struct sock *sk)
  2792. {
  2793. const struct tcp_sock *tp = tcp_sk(sk);
  2794. struct inet_connection_sock *icsk = inet_csk(sk);
  2795. /* Was it a usable window open? */
  2796. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2797. icsk->icsk_backoff = 0;
  2798. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2799. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2800. * This function is not for random using!
  2801. */
  2802. } else {
  2803. unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
  2804. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2805. when, TCP_RTO_MAX);
  2806. }
  2807. }
  2808. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2809. {
  2810. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2811. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2812. }
  2813. /* Decide wheather to run the increase function of congestion control. */
  2814. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2815. {
  2816. if (tcp_in_cwnd_reduction(sk))
  2817. return false;
  2818. /* If reordering is high then always grow cwnd whenever data is
  2819. * delivered regardless of its ordering. Otherwise stay conservative
  2820. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2821. * new SACK or ECE mark may first advance cwnd here and later reduce
  2822. * cwnd in tcp_fastretrans_alert() based on more states.
  2823. */
  2824. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2825. return flag & FLAG_FORWARD_PROGRESS;
  2826. return flag & FLAG_DATA_ACKED;
  2827. }
  2828. /* Check that window update is acceptable.
  2829. * The function assumes that snd_una<=ack<=snd_next.
  2830. */
  2831. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2832. const u32 ack, const u32 ack_seq,
  2833. const u32 nwin)
  2834. {
  2835. return after(ack, tp->snd_una) ||
  2836. after(ack_seq, tp->snd_wl1) ||
  2837. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2838. }
  2839. /* Update our send window.
  2840. *
  2841. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2842. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2843. */
  2844. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2845. u32 ack_seq)
  2846. {
  2847. struct tcp_sock *tp = tcp_sk(sk);
  2848. int flag = 0;
  2849. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2850. if (likely(!tcp_hdr(skb)->syn))
  2851. nwin <<= tp->rx_opt.snd_wscale;
  2852. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2853. flag |= FLAG_WIN_UPDATE;
  2854. tcp_update_wl(tp, ack_seq);
  2855. if (tp->snd_wnd != nwin) {
  2856. tp->snd_wnd = nwin;
  2857. /* Note, it is the only place, where
  2858. * fast path is recovered for sending TCP.
  2859. */
  2860. tp->pred_flags = 0;
  2861. tcp_fast_path_check(sk);
  2862. if (nwin > tp->max_window) {
  2863. tp->max_window = nwin;
  2864. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2865. }
  2866. }
  2867. }
  2868. tp->snd_una = ack;
  2869. return flag;
  2870. }
  2871. /* RFC 5961 7 [ACK Throttling] */
  2872. static void tcp_send_challenge_ack(struct sock *sk)
  2873. {
  2874. /* unprotected vars, we dont care of overwrites */
  2875. static u32 challenge_timestamp;
  2876. static unsigned int challenge_count;
  2877. u32 now = jiffies / HZ;
  2878. if (now != challenge_timestamp) {
  2879. challenge_timestamp = now;
  2880. challenge_count = 0;
  2881. }
  2882. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2883. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2884. tcp_send_ack(sk);
  2885. }
  2886. }
  2887. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2888. {
  2889. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2890. tp->rx_opt.ts_recent_stamp = get_seconds();
  2891. }
  2892. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2893. {
  2894. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2895. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2896. * extra check below makes sure this can only happen
  2897. * for pure ACK frames. -DaveM
  2898. *
  2899. * Not only, also it occurs for expired timestamps.
  2900. */
  2901. if (tcp_paws_check(&tp->rx_opt, 0))
  2902. tcp_store_ts_recent(tp);
  2903. }
  2904. }
  2905. /* This routine deals with acks during a TLP episode.
  2906. * We mark the end of a TLP episode on receiving TLP dupack or when
  2907. * ack is after tlp_high_seq.
  2908. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2909. */
  2910. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2911. {
  2912. struct tcp_sock *tp = tcp_sk(sk);
  2913. if (before(ack, tp->tlp_high_seq))
  2914. return;
  2915. if (flag & FLAG_DSACKING_ACK) {
  2916. /* This DSACK means original and TLP probe arrived; no loss */
  2917. tp->tlp_high_seq = 0;
  2918. } else if (after(ack, tp->tlp_high_seq)) {
  2919. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2920. * tlp_high_seq in tcp_init_cwnd_reduction()
  2921. */
  2922. tcp_init_cwnd_reduction(sk);
  2923. tcp_set_ca_state(sk, TCP_CA_CWR);
  2924. tcp_end_cwnd_reduction(sk);
  2925. tcp_try_keep_open(sk);
  2926. NET_INC_STATS_BH(sock_net(sk),
  2927. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2928. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2929. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2930. /* Pure dupack: original and TLP probe arrived; no loss */
  2931. tp->tlp_high_seq = 0;
  2932. }
  2933. }
  2934. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  2935. {
  2936. const struct inet_connection_sock *icsk = inet_csk(sk);
  2937. if (icsk->icsk_ca_ops->in_ack_event)
  2938. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  2939. }
  2940. /* This routine deals with incoming acks, but not outgoing ones. */
  2941. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2942. {
  2943. struct inet_connection_sock *icsk = inet_csk(sk);
  2944. struct tcp_sock *tp = tcp_sk(sk);
  2945. u32 prior_snd_una = tp->snd_una;
  2946. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2947. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2948. bool is_dupack = false;
  2949. u32 prior_fackets;
  2950. int prior_packets = tp->packets_out;
  2951. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  2952. int acked = 0; /* Number of packets newly acked */
  2953. long sack_rtt_us = -1L;
  2954. /* We very likely will need to access write queue head. */
  2955. prefetchw(sk->sk_write_queue.next);
  2956. /* If the ack is older than previous acks
  2957. * then we can probably ignore it.
  2958. */
  2959. if (before(ack, prior_snd_una)) {
  2960. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2961. if (before(ack, prior_snd_una - tp->max_window)) {
  2962. tcp_send_challenge_ack(sk);
  2963. return -1;
  2964. }
  2965. goto old_ack;
  2966. }
  2967. /* If the ack includes data we haven't sent yet, discard
  2968. * this segment (RFC793 Section 3.9).
  2969. */
  2970. if (after(ack, tp->snd_nxt))
  2971. goto invalid_ack;
  2972. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2973. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2974. tcp_rearm_rto(sk);
  2975. if (after(ack, prior_snd_una)) {
  2976. flag |= FLAG_SND_UNA_ADVANCED;
  2977. icsk->icsk_retransmits = 0;
  2978. }
  2979. prior_fackets = tp->fackets_out;
  2980. /* ts_recent update must be made after we are sure that the packet
  2981. * is in window.
  2982. */
  2983. if (flag & FLAG_UPDATE_TS_RECENT)
  2984. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2985. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2986. /* Window is constant, pure forward advance.
  2987. * No more checks are required.
  2988. * Note, we use the fact that SND.UNA>=SND.WL2.
  2989. */
  2990. tcp_update_wl(tp, ack_seq);
  2991. tp->snd_una = ack;
  2992. flag |= FLAG_WIN_UPDATE;
  2993. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  2994. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2995. } else {
  2996. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  2997. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2998. flag |= FLAG_DATA;
  2999. else
  3000. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3001. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3002. if (TCP_SKB_CB(skb)->sacked)
  3003. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3004. &sack_rtt_us);
  3005. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3006. flag |= FLAG_ECE;
  3007. ack_ev_flags |= CA_ACK_ECE;
  3008. }
  3009. if (flag & FLAG_WIN_UPDATE)
  3010. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3011. tcp_in_ack_event(sk, ack_ev_flags);
  3012. }
  3013. /* We passed data and got it acked, remove any soft error
  3014. * log. Something worked...
  3015. */
  3016. sk->sk_err_soft = 0;
  3017. icsk->icsk_probes_out = 0;
  3018. tp->rcv_tstamp = tcp_time_stamp;
  3019. if (!prior_packets)
  3020. goto no_queue;
  3021. /* See if we can take anything off of the retransmit queue. */
  3022. acked = tp->packets_out;
  3023. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3024. sack_rtt_us);
  3025. acked -= tp->packets_out;
  3026. /* Advance cwnd if state allows */
  3027. if (tcp_may_raise_cwnd(sk, flag))
  3028. tcp_cong_avoid(sk, ack, acked);
  3029. if (tcp_ack_is_dubious(sk, flag)) {
  3030. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3031. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3032. is_dupack, flag);
  3033. }
  3034. if (tp->tlp_high_seq)
  3035. tcp_process_tlp_ack(sk, ack, flag);
  3036. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3037. struct dst_entry *dst = __sk_dst_get(sk);
  3038. if (dst)
  3039. dst_confirm(dst);
  3040. }
  3041. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3042. tcp_schedule_loss_probe(sk);
  3043. tcp_update_pacing_rate(sk);
  3044. return 1;
  3045. no_queue:
  3046. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3047. if (flag & FLAG_DSACKING_ACK)
  3048. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3049. is_dupack, flag);
  3050. /* If this ack opens up a zero window, clear backoff. It was
  3051. * being used to time the probes, and is probably far higher than
  3052. * it needs to be for normal retransmission.
  3053. */
  3054. if (tcp_send_head(sk))
  3055. tcp_ack_probe(sk);
  3056. if (tp->tlp_high_seq)
  3057. tcp_process_tlp_ack(sk, ack, flag);
  3058. return 1;
  3059. invalid_ack:
  3060. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3061. return -1;
  3062. old_ack:
  3063. /* If data was SACKed, tag it and see if we should send more data.
  3064. * If data was DSACKed, see if we can undo a cwnd reduction.
  3065. */
  3066. if (TCP_SKB_CB(skb)->sacked) {
  3067. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3068. &sack_rtt_us);
  3069. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3070. is_dupack, flag);
  3071. }
  3072. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3073. return 0;
  3074. }
  3075. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3076. * But, this can also be called on packets in the established flow when
  3077. * the fast version below fails.
  3078. */
  3079. void tcp_parse_options(const struct sk_buff *skb,
  3080. struct tcp_options_received *opt_rx, int estab,
  3081. struct tcp_fastopen_cookie *foc)
  3082. {
  3083. const unsigned char *ptr;
  3084. const struct tcphdr *th = tcp_hdr(skb);
  3085. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3086. ptr = (const unsigned char *)(th + 1);
  3087. opt_rx->saw_tstamp = 0;
  3088. while (length > 0) {
  3089. int opcode = *ptr++;
  3090. int opsize;
  3091. switch (opcode) {
  3092. case TCPOPT_EOL:
  3093. return;
  3094. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3095. length--;
  3096. continue;
  3097. default:
  3098. opsize = *ptr++;
  3099. if (opsize < 2) /* "silly options" */
  3100. return;
  3101. if (opsize > length)
  3102. return; /* don't parse partial options */
  3103. switch (opcode) {
  3104. case TCPOPT_MSS:
  3105. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3106. u16 in_mss = get_unaligned_be16(ptr);
  3107. if (in_mss) {
  3108. if (opt_rx->user_mss &&
  3109. opt_rx->user_mss < in_mss)
  3110. in_mss = opt_rx->user_mss;
  3111. opt_rx->mss_clamp = in_mss;
  3112. }
  3113. }
  3114. break;
  3115. case TCPOPT_WINDOW:
  3116. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3117. !estab && sysctl_tcp_window_scaling) {
  3118. __u8 snd_wscale = *(__u8 *)ptr;
  3119. opt_rx->wscale_ok = 1;
  3120. if (snd_wscale > 14) {
  3121. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3122. __func__,
  3123. snd_wscale);
  3124. snd_wscale = 14;
  3125. }
  3126. opt_rx->snd_wscale = snd_wscale;
  3127. }
  3128. break;
  3129. case TCPOPT_TIMESTAMP:
  3130. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3131. ((estab && opt_rx->tstamp_ok) ||
  3132. (!estab && sysctl_tcp_timestamps))) {
  3133. opt_rx->saw_tstamp = 1;
  3134. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3135. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3136. }
  3137. break;
  3138. case TCPOPT_SACK_PERM:
  3139. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3140. !estab && sysctl_tcp_sack) {
  3141. opt_rx->sack_ok = TCP_SACK_SEEN;
  3142. tcp_sack_reset(opt_rx);
  3143. }
  3144. break;
  3145. case TCPOPT_SACK:
  3146. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3147. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3148. opt_rx->sack_ok) {
  3149. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3150. }
  3151. break;
  3152. #ifdef CONFIG_TCP_MD5SIG
  3153. case TCPOPT_MD5SIG:
  3154. /*
  3155. * The MD5 Hash has already been
  3156. * checked (see tcp_v{4,6}_do_rcv()).
  3157. */
  3158. break;
  3159. #endif
  3160. case TCPOPT_EXP:
  3161. /* Fast Open option shares code 254 using a
  3162. * 16 bits magic number. It's valid only in
  3163. * SYN or SYN-ACK with an even size.
  3164. */
  3165. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3166. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3167. foc == NULL || !th->syn || (opsize & 1))
  3168. break;
  3169. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3170. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3171. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3172. memcpy(foc->val, ptr + 2, foc->len);
  3173. else if (foc->len != 0)
  3174. foc->len = -1;
  3175. break;
  3176. }
  3177. ptr += opsize-2;
  3178. length -= opsize;
  3179. }
  3180. }
  3181. }
  3182. EXPORT_SYMBOL(tcp_parse_options);
  3183. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3184. {
  3185. const __be32 *ptr = (const __be32 *)(th + 1);
  3186. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3187. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3188. tp->rx_opt.saw_tstamp = 1;
  3189. ++ptr;
  3190. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3191. ++ptr;
  3192. if (*ptr)
  3193. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3194. else
  3195. tp->rx_opt.rcv_tsecr = 0;
  3196. return true;
  3197. }
  3198. return false;
  3199. }
  3200. /* Fast parse options. This hopes to only see timestamps.
  3201. * If it is wrong it falls back on tcp_parse_options().
  3202. */
  3203. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3204. const struct tcphdr *th, struct tcp_sock *tp)
  3205. {
  3206. /* In the spirit of fast parsing, compare doff directly to constant
  3207. * values. Because equality is used, short doff can be ignored here.
  3208. */
  3209. if (th->doff == (sizeof(*th) / 4)) {
  3210. tp->rx_opt.saw_tstamp = 0;
  3211. return false;
  3212. } else if (tp->rx_opt.tstamp_ok &&
  3213. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3214. if (tcp_parse_aligned_timestamp(tp, th))
  3215. return true;
  3216. }
  3217. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3218. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3219. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3220. return true;
  3221. }
  3222. #ifdef CONFIG_TCP_MD5SIG
  3223. /*
  3224. * Parse MD5 Signature option
  3225. */
  3226. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3227. {
  3228. int length = (th->doff << 2) - sizeof(*th);
  3229. const u8 *ptr = (const u8 *)(th + 1);
  3230. /* If the TCP option is too short, we can short cut */
  3231. if (length < TCPOLEN_MD5SIG)
  3232. return NULL;
  3233. while (length > 0) {
  3234. int opcode = *ptr++;
  3235. int opsize;
  3236. switch (opcode) {
  3237. case TCPOPT_EOL:
  3238. return NULL;
  3239. case TCPOPT_NOP:
  3240. length--;
  3241. continue;
  3242. default:
  3243. opsize = *ptr++;
  3244. if (opsize < 2 || opsize > length)
  3245. return NULL;
  3246. if (opcode == TCPOPT_MD5SIG)
  3247. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3248. }
  3249. ptr += opsize - 2;
  3250. length -= opsize;
  3251. }
  3252. return NULL;
  3253. }
  3254. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3255. #endif
  3256. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3257. *
  3258. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3259. * it can pass through stack. So, the following predicate verifies that
  3260. * this segment is not used for anything but congestion avoidance or
  3261. * fast retransmit. Moreover, we even are able to eliminate most of such
  3262. * second order effects, if we apply some small "replay" window (~RTO)
  3263. * to timestamp space.
  3264. *
  3265. * All these measures still do not guarantee that we reject wrapped ACKs
  3266. * on networks with high bandwidth, when sequence space is recycled fastly,
  3267. * but it guarantees that such events will be very rare and do not affect
  3268. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3269. * buggy extension.
  3270. *
  3271. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3272. * states that events when retransmit arrives after original data are rare.
  3273. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3274. * the biggest problem on large power networks even with minor reordering.
  3275. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3276. * up to bandwidth of 18Gigabit/sec. 8) ]
  3277. */
  3278. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3279. {
  3280. const struct tcp_sock *tp = tcp_sk(sk);
  3281. const struct tcphdr *th = tcp_hdr(skb);
  3282. u32 seq = TCP_SKB_CB(skb)->seq;
  3283. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3284. return (/* 1. Pure ACK with correct sequence number. */
  3285. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3286. /* 2. ... and duplicate ACK. */
  3287. ack == tp->snd_una &&
  3288. /* 3. ... and does not update window. */
  3289. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3290. /* 4. ... and sits in replay window. */
  3291. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3292. }
  3293. static inline bool tcp_paws_discard(const struct sock *sk,
  3294. const struct sk_buff *skb)
  3295. {
  3296. const struct tcp_sock *tp = tcp_sk(sk);
  3297. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3298. !tcp_disordered_ack(sk, skb);
  3299. }
  3300. /* Check segment sequence number for validity.
  3301. *
  3302. * Segment controls are considered valid, if the segment
  3303. * fits to the window after truncation to the window. Acceptability
  3304. * of data (and SYN, FIN, of course) is checked separately.
  3305. * See tcp_data_queue(), for example.
  3306. *
  3307. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3308. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3309. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3310. * (borrowed from freebsd)
  3311. */
  3312. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3313. {
  3314. return !before(end_seq, tp->rcv_wup) &&
  3315. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3316. }
  3317. /* When we get a reset we do this. */
  3318. void tcp_reset(struct sock *sk)
  3319. {
  3320. /* We want the right error as BSD sees it (and indeed as we do). */
  3321. switch (sk->sk_state) {
  3322. case TCP_SYN_SENT:
  3323. sk->sk_err = ECONNREFUSED;
  3324. break;
  3325. case TCP_CLOSE_WAIT:
  3326. sk->sk_err = EPIPE;
  3327. break;
  3328. case TCP_CLOSE:
  3329. return;
  3330. default:
  3331. sk->sk_err = ECONNRESET;
  3332. }
  3333. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3334. smp_wmb();
  3335. if (!sock_flag(sk, SOCK_DEAD))
  3336. sk->sk_error_report(sk);
  3337. tcp_done(sk);
  3338. }
  3339. /*
  3340. * Process the FIN bit. This now behaves as it is supposed to work
  3341. * and the FIN takes effect when it is validly part of sequence
  3342. * space. Not before when we get holes.
  3343. *
  3344. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3345. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3346. * TIME-WAIT)
  3347. *
  3348. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3349. * close and we go into CLOSING (and later onto TIME-WAIT)
  3350. *
  3351. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3352. */
  3353. static void tcp_fin(struct sock *sk)
  3354. {
  3355. struct tcp_sock *tp = tcp_sk(sk);
  3356. const struct dst_entry *dst;
  3357. inet_csk_schedule_ack(sk);
  3358. sk->sk_shutdown |= RCV_SHUTDOWN;
  3359. sock_set_flag(sk, SOCK_DONE);
  3360. switch (sk->sk_state) {
  3361. case TCP_SYN_RECV:
  3362. case TCP_ESTABLISHED:
  3363. /* Move to CLOSE_WAIT */
  3364. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3365. dst = __sk_dst_get(sk);
  3366. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3367. inet_csk(sk)->icsk_ack.pingpong = 1;
  3368. break;
  3369. case TCP_CLOSE_WAIT:
  3370. case TCP_CLOSING:
  3371. /* Received a retransmission of the FIN, do
  3372. * nothing.
  3373. */
  3374. break;
  3375. case TCP_LAST_ACK:
  3376. /* RFC793: Remain in the LAST-ACK state. */
  3377. break;
  3378. case TCP_FIN_WAIT1:
  3379. /* This case occurs when a simultaneous close
  3380. * happens, we must ack the received FIN and
  3381. * enter the CLOSING state.
  3382. */
  3383. tcp_send_ack(sk);
  3384. tcp_set_state(sk, TCP_CLOSING);
  3385. break;
  3386. case TCP_FIN_WAIT2:
  3387. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3388. tcp_send_ack(sk);
  3389. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3390. break;
  3391. default:
  3392. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3393. * cases we should never reach this piece of code.
  3394. */
  3395. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3396. __func__, sk->sk_state);
  3397. break;
  3398. }
  3399. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3400. * Probably, we should reset in this case. For now drop them.
  3401. */
  3402. __skb_queue_purge(&tp->out_of_order_queue);
  3403. if (tcp_is_sack(tp))
  3404. tcp_sack_reset(&tp->rx_opt);
  3405. sk_mem_reclaim(sk);
  3406. if (!sock_flag(sk, SOCK_DEAD)) {
  3407. sk->sk_state_change(sk);
  3408. /* Do not send POLL_HUP for half duplex close. */
  3409. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3410. sk->sk_state == TCP_CLOSE)
  3411. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3412. else
  3413. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3414. }
  3415. }
  3416. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3417. u32 end_seq)
  3418. {
  3419. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3420. if (before(seq, sp->start_seq))
  3421. sp->start_seq = seq;
  3422. if (after(end_seq, sp->end_seq))
  3423. sp->end_seq = end_seq;
  3424. return true;
  3425. }
  3426. return false;
  3427. }
  3428. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3429. {
  3430. struct tcp_sock *tp = tcp_sk(sk);
  3431. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3432. int mib_idx;
  3433. if (before(seq, tp->rcv_nxt))
  3434. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3435. else
  3436. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3437. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3438. tp->rx_opt.dsack = 1;
  3439. tp->duplicate_sack[0].start_seq = seq;
  3440. tp->duplicate_sack[0].end_seq = end_seq;
  3441. }
  3442. }
  3443. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3444. {
  3445. struct tcp_sock *tp = tcp_sk(sk);
  3446. if (!tp->rx_opt.dsack)
  3447. tcp_dsack_set(sk, seq, end_seq);
  3448. else
  3449. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3450. }
  3451. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3452. {
  3453. struct tcp_sock *tp = tcp_sk(sk);
  3454. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3455. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3456. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3457. tcp_enter_quickack_mode(sk);
  3458. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3459. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3460. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3461. end_seq = tp->rcv_nxt;
  3462. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3463. }
  3464. }
  3465. tcp_send_ack(sk);
  3466. }
  3467. /* These routines update the SACK block as out-of-order packets arrive or
  3468. * in-order packets close up the sequence space.
  3469. */
  3470. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3471. {
  3472. int this_sack;
  3473. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3474. struct tcp_sack_block *swalk = sp + 1;
  3475. /* See if the recent change to the first SACK eats into
  3476. * or hits the sequence space of other SACK blocks, if so coalesce.
  3477. */
  3478. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3479. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3480. int i;
  3481. /* Zap SWALK, by moving every further SACK up by one slot.
  3482. * Decrease num_sacks.
  3483. */
  3484. tp->rx_opt.num_sacks--;
  3485. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3486. sp[i] = sp[i + 1];
  3487. continue;
  3488. }
  3489. this_sack++, swalk++;
  3490. }
  3491. }
  3492. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3493. {
  3494. struct tcp_sock *tp = tcp_sk(sk);
  3495. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3496. int cur_sacks = tp->rx_opt.num_sacks;
  3497. int this_sack;
  3498. if (!cur_sacks)
  3499. goto new_sack;
  3500. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3501. if (tcp_sack_extend(sp, seq, end_seq)) {
  3502. /* Rotate this_sack to the first one. */
  3503. for (; this_sack > 0; this_sack--, sp--)
  3504. swap(*sp, *(sp - 1));
  3505. if (cur_sacks > 1)
  3506. tcp_sack_maybe_coalesce(tp);
  3507. return;
  3508. }
  3509. }
  3510. /* Could not find an adjacent existing SACK, build a new one,
  3511. * put it at the front, and shift everyone else down. We
  3512. * always know there is at least one SACK present already here.
  3513. *
  3514. * If the sack array is full, forget about the last one.
  3515. */
  3516. if (this_sack >= TCP_NUM_SACKS) {
  3517. this_sack--;
  3518. tp->rx_opt.num_sacks--;
  3519. sp--;
  3520. }
  3521. for (; this_sack > 0; this_sack--, sp--)
  3522. *sp = *(sp - 1);
  3523. new_sack:
  3524. /* Build the new head SACK, and we're done. */
  3525. sp->start_seq = seq;
  3526. sp->end_seq = end_seq;
  3527. tp->rx_opt.num_sacks++;
  3528. }
  3529. /* RCV.NXT advances, some SACKs should be eaten. */
  3530. static void tcp_sack_remove(struct tcp_sock *tp)
  3531. {
  3532. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3533. int num_sacks = tp->rx_opt.num_sacks;
  3534. int this_sack;
  3535. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3536. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3537. tp->rx_opt.num_sacks = 0;
  3538. return;
  3539. }
  3540. for (this_sack = 0; this_sack < num_sacks;) {
  3541. /* Check if the start of the sack is covered by RCV.NXT. */
  3542. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3543. int i;
  3544. /* RCV.NXT must cover all the block! */
  3545. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3546. /* Zap this SACK, by moving forward any other SACKS. */
  3547. for (i = this_sack+1; i < num_sacks; i++)
  3548. tp->selective_acks[i-1] = tp->selective_acks[i];
  3549. num_sacks--;
  3550. continue;
  3551. }
  3552. this_sack++;
  3553. sp++;
  3554. }
  3555. tp->rx_opt.num_sacks = num_sacks;
  3556. }
  3557. /**
  3558. * tcp_try_coalesce - try to merge skb to prior one
  3559. * @sk: socket
  3560. * @to: prior buffer
  3561. * @from: buffer to add in queue
  3562. * @fragstolen: pointer to boolean
  3563. *
  3564. * Before queueing skb @from after @to, try to merge them
  3565. * to reduce overall memory use and queue lengths, if cost is small.
  3566. * Packets in ofo or receive queues can stay a long time.
  3567. * Better try to coalesce them right now to avoid future collapses.
  3568. * Returns true if caller should free @from instead of queueing it
  3569. */
  3570. static bool tcp_try_coalesce(struct sock *sk,
  3571. struct sk_buff *to,
  3572. struct sk_buff *from,
  3573. bool *fragstolen)
  3574. {
  3575. int delta;
  3576. *fragstolen = false;
  3577. /* Its possible this segment overlaps with prior segment in queue */
  3578. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3579. return false;
  3580. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3581. return false;
  3582. atomic_add(delta, &sk->sk_rmem_alloc);
  3583. sk_mem_charge(sk, delta);
  3584. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3585. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3586. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3587. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3588. return true;
  3589. }
  3590. /* This one checks to see if we can put data from the
  3591. * out_of_order queue into the receive_queue.
  3592. */
  3593. static void tcp_ofo_queue(struct sock *sk)
  3594. {
  3595. struct tcp_sock *tp = tcp_sk(sk);
  3596. __u32 dsack_high = tp->rcv_nxt;
  3597. struct sk_buff *skb, *tail;
  3598. bool fragstolen, eaten;
  3599. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3600. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3601. break;
  3602. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3603. __u32 dsack = dsack_high;
  3604. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3605. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3606. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3607. }
  3608. __skb_unlink(skb, &tp->out_of_order_queue);
  3609. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3610. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3611. __kfree_skb(skb);
  3612. continue;
  3613. }
  3614. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3615. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3616. TCP_SKB_CB(skb)->end_seq);
  3617. tail = skb_peek_tail(&sk->sk_receive_queue);
  3618. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3619. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3620. if (!eaten)
  3621. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3622. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3623. tcp_fin(sk);
  3624. if (eaten)
  3625. kfree_skb_partial(skb, fragstolen);
  3626. }
  3627. }
  3628. static bool tcp_prune_ofo_queue(struct sock *sk);
  3629. static int tcp_prune_queue(struct sock *sk);
  3630. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3631. unsigned int size)
  3632. {
  3633. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3634. !sk_rmem_schedule(sk, skb, size)) {
  3635. if (tcp_prune_queue(sk) < 0)
  3636. return -1;
  3637. if (!sk_rmem_schedule(sk, skb, size)) {
  3638. if (!tcp_prune_ofo_queue(sk))
  3639. return -1;
  3640. if (!sk_rmem_schedule(sk, skb, size))
  3641. return -1;
  3642. }
  3643. }
  3644. return 0;
  3645. }
  3646. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3647. {
  3648. struct tcp_sock *tp = tcp_sk(sk);
  3649. struct sk_buff *skb1;
  3650. u32 seq, end_seq;
  3651. tcp_ecn_check_ce(tp, skb);
  3652. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3653. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3654. __kfree_skb(skb);
  3655. return;
  3656. }
  3657. /* Disable header prediction. */
  3658. tp->pred_flags = 0;
  3659. inet_csk_schedule_ack(sk);
  3660. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3661. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3662. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3663. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3664. if (!skb1) {
  3665. /* Initial out of order segment, build 1 SACK. */
  3666. if (tcp_is_sack(tp)) {
  3667. tp->rx_opt.num_sacks = 1;
  3668. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3669. tp->selective_acks[0].end_seq =
  3670. TCP_SKB_CB(skb)->end_seq;
  3671. }
  3672. __skb_queue_head(&tp->out_of_order_queue, skb);
  3673. goto end;
  3674. }
  3675. seq = TCP_SKB_CB(skb)->seq;
  3676. end_seq = TCP_SKB_CB(skb)->end_seq;
  3677. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3678. bool fragstolen;
  3679. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3680. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3681. } else {
  3682. tcp_grow_window(sk, skb);
  3683. kfree_skb_partial(skb, fragstolen);
  3684. skb = NULL;
  3685. }
  3686. if (!tp->rx_opt.num_sacks ||
  3687. tp->selective_acks[0].end_seq != seq)
  3688. goto add_sack;
  3689. /* Common case: data arrive in order after hole. */
  3690. tp->selective_acks[0].end_seq = end_seq;
  3691. goto end;
  3692. }
  3693. /* Find place to insert this segment. */
  3694. while (1) {
  3695. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3696. break;
  3697. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3698. skb1 = NULL;
  3699. break;
  3700. }
  3701. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3702. }
  3703. /* Do skb overlap to previous one? */
  3704. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3705. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3706. /* All the bits are present. Drop. */
  3707. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3708. __kfree_skb(skb);
  3709. skb = NULL;
  3710. tcp_dsack_set(sk, seq, end_seq);
  3711. goto add_sack;
  3712. }
  3713. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3714. /* Partial overlap. */
  3715. tcp_dsack_set(sk, seq,
  3716. TCP_SKB_CB(skb1)->end_seq);
  3717. } else {
  3718. if (skb_queue_is_first(&tp->out_of_order_queue,
  3719. skb1))
  3720. skb1 = NULL;
  3721. else
  3722. skb1 = skb_queue_prev(
  3723. &tp->out_of_order_queue,
  3724. skb1);
  3725. }
  3726. }
  3727. if (!skb1)
  3728. __skb_queue_head(&tp->out_of_order_queue, skb);
  3729. else
  3730. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3731. /* And clean segments covered by new one as whole. */
  3732. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3733. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3734. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3735. break;
  3736. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3737. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3738. end_seq);
  3739. break;
  3740. }
  3741. __skb_unlink(skb1, &tp->out_of_order_queue);
  3742. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3743. TCP_SKB_CB(skb1)->end_seq);
  3744. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3745. __kfree_skb(skb1);
  3746. }
  3747. add_sack:
  3748. if (tcp_is_sack(tp))
  3749. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3750. end:
  3751. if (skb) {
  3752. tcp_grow_window(sk, skb);
  3753. skb_set_owner_r(skb, sk);
  3754. }
  3755. }
  3756. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3757. bool *fragstolen)
  3758. {
  3759. int eaten;
  3760. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3761. __skb_pull(skb, hdrlen);
  3762. eaten = (tail &&
  3763. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3764. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3765. if (!eaten) {
  3766. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3767. skb_set_owner_r(skb, sk);
  3768. }
  3769. return eaten;
  3770. }
  3771. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3772. {
  3773. struct sk_buff *skb;
  3774. bool fragstolen;
  3775. if (size == 0)
  3776. return 0;
  3777. skb = alloc_skb(size, sk->sk_allocation);
  3778. if (!skb)
  3779. goto err;
  3780. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3781. goto err_free;
  3782. if (memcpy_from_msg(skb_put(skb, size), msg, size))
  3783. goto err_free;
  3784. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3785. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3786. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3787. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3788. WARN_ON_ONCE(fragstolen); /* should not happen */
  3789. __kfree_skb(skb);
  3790. }
  3791. return size;
  3792. err_free:
  3793. kfree_skb(skb);
  3794. err:
  3795. return -ENOMEM;
  3796. }
  3797. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3798. {
  3799. struct tcp_sock *tp = tcp_sk(sk);
  3800. int eaten = -1;
  3801. bool fragstolen = false;
  3802. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3803. goto drop;
  3804. skb_dst_drop(skb);
  3805. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3806. tcp_ecn_accept_cwr(tp, skb);
  3807. tp->rx_opt.dsack = 0;
  3808. /* Queue data for delivery to the user.
  3809. * Packets in sequence go to the receive queue.
  3810. * Out of sequence packets to the out_of_order_queue.
  3811. */
  3812. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3813. if (tcp_receive_window(tp) == 0)
  3814. goto out_of_window;
  3815. /* Ok. In sequence. In window. */
  3816. if (tp->ucopy.task == current &&
  3817. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3818. sock_owned_by_user(sk) && !tp->urg_data) {
  3819. int chunk = min_t(unsigned int, skb->len,
  3820. tp->ucopy.len);
  3821. __set_current_state(TASK_RUNNING);
  3822. local_bh_enable();
  3823. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  3824. tp->ucopy.len -= chunk;
  3825. tp->copied_seq += chunk;
  3826. eaten = (chunk == skb->len);
  3827. tcp_rcv_space_adjust(sk);
  3828. }
  3829. local_bh_disable();
  3830. }
  3831. if (eaten <= 0) {
  3832. queue_and_out:
  3833. if (eaten < 0 &&
  3834. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3835. goto drop;
  3836. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3837. }
  3838. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3839. if (skb->len)
  3840. tcp_event_data_recv(sk, skb);
  3841. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3842. tcp_fin(sk);
  3843. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3844. tcp_ofo_queue(sk);
  3845. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3846. * gap in queue is filled.
  3847. */
  3848. if (skb_queue_empty(&tp->out_of_order_queue))
  3849. inet_csk(sk)->icsk_ack.pingpong = 0;
  3850. }
  3851. if (tp->rx_opt.num_sacks)
  3852. tcp_sack_remove(tp);
  3853. tcp_fast_path_check(sk);
  3854. if (eaten > 0)
  3855. kfree_skb_partial(skb, fragstolen);
  3856. if (!sock_flag(sk, SOCK_DEAD))
  3857. sk->sk_data_ready(sk);
  3858. return;
  3859. }
  3860. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3861. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3862. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3863. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3864. out_of_window:
  3865. tcp_enter_quickack_mode(sk);
  3866. inet_csk_schedule_ack(sk);
  3867. drop:
  3868. __kfree_skb(skb);
  3869. return;
  3870. }
  3871. /* Out of window. F.e. zero window probe. */
  3872. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3873. goto out_of_window;
  3874. tcp_enter_quickack_mode(sk);
  3875. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3876. /* Partial packet, seq < rcv_next < end_seq */
  3877. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3878. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3879. TCP_SKB_CB(skb)->end_seq);
  3880. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3881. /* If window is closed, drop tail of packet. But after
  3882. * remembering D-SACK for its head made in previous line.
  3883. */
  3884. if (!tcp_receive_window(tp))
  3885. goto out_of_window;
  3886. goto queue_and_out;
  3887. }
  3888. tcp_data_queue_ofo(sk, skb);
  3889. }
  3890. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3891. struct sk_buff_head *list)
  3892. {
  3893. struct sk_buff *next = NULL;
  3894. if (!skb_queue_is_last(list, skb))
  3895. next = skb_queue_next(list, skb);
  3896. __skb_unlink(skb, list);
  3897. __kfree_skb(skb);
  3898. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3899. return next;
  3900. }
  3901. /* Collapse contiguous sequence of skbs head..tail with
  3902. * sequence numbers start..end.
  3903. *
  3904. * If tail is NULL, this means until the end of the list.
  3905. *
  3906. * Segments with FIN/SYN are not collapsed (only because this
  3907. * simplifies code)
  3908. */
  3909. static void
  3910. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3911. struct sk_buff *head, struct sk_buff *tail,
  3912. u32 start, u32 end)
  3913. {
  3914. struct sk_buff *skb, *n;
  3915. bool end_of_skbs;
  3916. /* First, check that queue is collapsible and find
  3917. * the point where collapsing can be useful. */
  3918. skb = head;
  3919. restart:
  3920. end_of_skbs = true;
  3921. skb_queue_walk_from_safe(list, skb, n) {
  3922. if (skb == tail)
  3923. break;
  3924. /* No new bits? It is possible on ofo queue. */
  3925. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3926. skb = tcp_collapse_one(sk, skb, list);
  3927. if (!skb)
  3928. break;
  3929. goto restart;
  3930. }
  3931. /* The first skb to collapse is:
  3932. * - not SYN/FIN and
  3933. * - bloated or contains data before "start" or
  3934. * overlaps to the next one.
  3935. */
  3936. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  3937. (tcp_win_from_space(skb->truesize) > skb->len ||
  3938. before(TCP_SKB_CB(skb)->seq, start))) {
  3939. end_of_skbs = false;
  3940. break;
  3941. }
  3942. if (!skb_queue_is_last(list, skb)) {
  3943. struct sk_buff *next = skb_queue_next(list, skb);
  3944. if (next != tail &&
  3945. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3946. end_of_skbs = false;
  3947. break;
  3948. }
  3949. }
  3950. /* Decided to skip this, advance start seq. */
  3951. start = TCP_SKB_CB(skb)->end_seq;
  3952. }
  3953. if (end_of_skbs ||
  3954. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  3955. return;
  3956. while (before(start, end)) {
  3957. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  3958. struct sk_buff *nskb;
  3959. nskb = alloc_skb(copy, GFP_ATOMIC);
  3960. if (!nskb)
  3961. return;
  3962. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3963. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3964. __skb_queue_before(list, skb, nskb);
  3965. skb_set_owner_r(nskb, sk);
  3966. /* Copy data, releasing collapsed skbs. */
  3967. while (copy > 0) {
  3968. int offset = start - TCP_SKB_CB(skb)->seq;
  3969. int size = TCP_SKB_CB(skb)->end_seq - start;
  3970. BUG_ON(offset < 0);
  3971. if (size > 0) {
  3972. size = min(copy, size);
  3973. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3974. BUG();
  3975. TCP_SKB_CB(nskb)->end_seq += size;
  3976. copy -= size;
  3977. start += size;
  3978. }
  3979. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3980. skb = tcp_collapse_one(sk, skb, list);
  3981. if (!skb ||
  3982. skb == tail ||
  3983. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  3984. return;
  3985. }
  3986. }
  3987. }
  3988. }
  3989. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3990. * and tcp_collapse() them until all the queue is collapsed.
  3991. */
  3992. static void tcp_collapse_ofo_queue(struct sock *sk)
  3993. {
  3994. struct tcp_sock *tp = tcp_sk(sk);
  3995. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3996. struct sk_buff *head;
  3997. u32 start, end;
  3998. if (skb == NULL)
  3999. return;
  4000. start = TCP_SKB_CB(skb)->seq;
  4001. end = TCP_SKB_CB(skb)->end_seq;
  4002. head = skb;
  4003. for (;;) {
  4004. struct sk_buff *next = NULL;
  4005. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4006. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4007. skb = next;
  4008. /* Segment is terminated when we see gap or when
  4009. * we are at the end of all the queue. */
  4010. if (!skb ||
  4011. after(TCP_SKB_CB(skb)->seq, end) ||
  4012. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4013. tcp_collapse(sk, &tp->out_of_order_queue,
  4014. head, skb, start, end);
  4015. head = skb;
  4016. if (!skb)
  4017. break;
  4018. /* Start new segment */
  4019. start = TCP_SKB_CB(skb)->seq;
  4020. end = TCP_SKB_CB(skb)->end_seq;
  4021. } else {
  4022. if (before(TCP_SKB_CB(skb)->seq, start))
  4023. start = TCP_SKB_CB(skb)->seq;
  4024. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4025. end = TCP_SKB_CB(skb)->end_seq;
  4026. }
  4027. }
  4028. }
  4029. /*
  4030. * Purge the out-of-order queue.
  4031. * Return true if queue was pruned.
  4032. */
  4033. static bool tcp_prune_ofo_queue(struct sock *sk)
  4034. {
  4035. struct tcp_sock *tp = tcp_sk(sk);
  4036. bool res = false;
  4037. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4038. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4039. __skb_queue_purge(&tp->out_of_order_queue);
  4040. /* Reset SACK state. A conforming SACK implementation will
  4041. * do the same at a timeout based retransmit. When a connection
  4042. * is in a sad state like this, we care only about integrity
  4043. * of the connection not performance.
  4044. */
  4045. if (tp->rx_opt.sack_ok)
  4046. tcp_sack_reset(&tp->rx_opt);
  4047. sk_mem_reclaim(sk);
  4048. res = true;
  4049. }
  4050. return res;
  4051. }
  4052. /* Reduce allocated memory if we can, trying to get
  4053. * the socket within its memory limits again.
  4054. *
  4055. * Return less than zero if we should start dropping frames
  4056. * until the socket owning process reads some of the data
  4057. * to stabilize the situation.
  4058. */
  4059. static int tcp_prune_queue(struct sock *sk)
  4060. {
  4061. struct tcp_sock *tp = tcp_sk(sk);
  4062. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4063. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4064. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4065. tcp_clamp_window(sk);
  4066. else if (sk_under_memory_pressure(sk))
  4067. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4068. tcp_collapse_ofo_queue(sk);
  4069. if (!skb_queue_empty(&sk->sk_receive_queue))
  4070. tcp_collapse(sk, &sk->sk_receive_queue,
  4071. skb_peek(&sk->sk_receive_queue),
  4072. NULL,
  4073. tp->copied_seq, tp->rcv_nxt);
  4074. sk_mem_reclaim(sk);
  4075. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4076. return 0;
  4077. /* Collapsing did not help, destructive actions follow.
  4078. * This must not ever occur. */
  4079. tcp_prune_ofo_queue(sk);
  4080. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4081. return 0;
  4082. /* If we are really being abused, tell the caller to silently
  4083. * drop receive data on the floor. It will get retransmitted
  4084. * and hopefully then we'll have sufficient space.
  4085. */
  4086. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4087. /* Massive buffer overcommit. */
  4088. tp->pred_flags = 0;
  4089. return -1;
  4090. }
  4091. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4092. {
  4093. const struct tcp_sock *tp = tcp_sk(sk);
  4094. /* If the user specified a specific send buffer setting, do
  4095. * not modify it.
  4096. */
  4097. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4098. return false;
  4099. /* If we are under global TCP memory pressure, do not expand. */
  4100. if (sk_under_memory_pressure(sk))
  4101. return false;
  4102. /* If we are under soft global TCP memory pressure, do not expand. */
  4103. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4104. return false;
  4105. /* If we filled the congestion window, do not expand. */
  4106. if (tp->packets_out >= tp->snd_cwnd)
  4107. return false;
  4108. return true;
  4109. }
  4110. /* When incoming ACK allowed to free some skb from write_queue,
  4111. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4112. * on the exit from tcp input handler.
  4113. *
  4114. * PROBLEM: sndbuf expansion does not work well with largesend.
  4115. */
  4116. static void tcp_new_space(struct sock *sk)
  4117. {
  4118. struct tcp_sock *tp = tcp_sk(sk);
  4119. if (tcp_should_expand_sndbuf(sk)) {
  4120. tcp_sndbuf_expand(sk);
  4121. tp->snd_cwnd_stamp = tcp_time_stamp;
  4122. }
  4123. sk->sk_write_space(sk);
  4124. }
  4125. static void tcp_check_space(struct sock *sk)
  4126. {
  4127. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4128. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4129. if (sk->sk_socket &&
  4130. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4131. tcp_new_space(sk);
  4132. }
  4133. }
  4134. static inline void tcp_data_snd_check(struct sock *sk)
  4135. {
  4136. tcp_push_pending_frames(sk);
  4137. tcp_check_space(sk);
  4138. }
  4139. /*
  4140. * Check if sending an ack is needed.
  4141. */
  4142. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4143. {
  4144. struct tcp_sock *tp = tcp_sk(sk);
  4145. /* More than one full frame received... */
  4146. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4147. /* ... and right edge of window advances far enough.
  4148. * (tcp_recvmsg() will send ACK otherwise). Or...
  4149. */
  4150. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4151. /* We ACK each frame or... */
  4152. tcp_in_quickack_mode(sk) ||
  4153. /* We have out of order data. */
  4154. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4155. /* Then ack it now */
  4156. tcp_send_ack(sk);
  4157. } else {
  4158. /* Else, send delayed ack. */
  4159. tcp_send_delayed_ack(sk);
  4160. }
  4161. }
  4162. static inline void tcp_ack_snd_check(struct sock *sk)
  4163. {
  4164. if (!inet_csk_ack_scheduled(sk)) {
  4165. /* We sent a data segment already. */
  4166. return;
  4167. }
  4168. __tcp_ack_snd_check(sk, 1);
  4169. }
  4170. /*
  4171. * This routine is only called when we have urgent data
  4172. * signaled. Its the 'slow' part of tcp_urg. It could be
  4173. * moved inline now as tcp_urg is only called from one
  4174. * place. We handle URGent data wrong. We have to - as
  4175. * BSD still doesn't use the correction from RFC961.
  4176. * For 1003.1g we should support a new option TCP_STDURG to permit
  4177. * either form (or just set the sysctl tcp_stdurg).
  4178. */
  4179. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4180. {
  4181. struct tcp_sock *tp = tcp_sk(sk);
  4182. u32 ptr = ntohs(th->urg_ptr);
  4183. if (ptr && !sysctl_tcp_stdurg)
  4184. ptr--;
  4185. ptr += ntohl(th->seq);
  4186. /* Ignore urgent data that we've already seen and read. */
  4187. if (after(tp->copied_seq, ptr))
  4188. return;
  4189. /* Do not replay urg ptr.
  4190. *
  4191. * NOTE: interesting situation not covered by specs.
  4192. * Misbehaving sender may send urg ptr, pointing to segment,
  4193. * which we already have in ofo queue. We are not able to fetch
  4194. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4195. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4196. * situations. But it is worth to think about possibility of some
  4197. * DoSes using some hypothetical application level deadlock.
  4198. */
  4199. if (before(ptr, tp->rcv_nxt))
  4200. return;
  4201. /* Do we already have a newer (or duplicate) urgent pointer? */
  4202. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4203. return;
  4204. /* Tell the world about our new urgent pointer. */
  4205. sk_send_sigurg(sk);
  4206. /* We may be adding urgent data when the last byte read was
  4207. * urgent. To do this requires some care. We cannot just ignore
  4208. * tp->copied_seq since we would read the last urgent byte again
  4209. * as data, nor can we alter copied_seq until this data arrives
  4210. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4211. *
  4212. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4213. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4214. * and expect that both A and B disappear from stream. This is _wrong_.
  4215. * Though this happens in BSD with high probability, this is occasional.
  4216. * Any application relying on this is buggy. Note also, that fix "works"
  4217. * only in this artificial test. Insert some normal data between A and B and we will
  4218. * decline of BSD again. Verdict: it is better to remove to trap
  4219. * buggy users.
  4220. */
  4221. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4222. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4223. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4224. tp->copied_seq++;
  4225. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4226. __skb_unlink(skb, &sk->sk_receive_queue);
  4227. __kfree_skb(skb);
  4228. }
  4229. }
  4230. tp->urg_data = TCP_URG_NOTYET;
  4231. tp->urg_seq = ptr;
  4232. /* Disable header prediction. */
  4233. tp->pred_flags = 0;
  4234. }
  4235. /* This is the 'fast' part of urgent handling. */
  4236. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4237. {
  4238. struct tcp_sock *tp = tcp_sk(sk);
  4239. /* Check if we get a new urgent pointer - normally not. */
  4240. if (th->urg)
  4241. tcp_check_urg(sk, th);
  4242. /* Do we wait for any urgent data? - normally not... */
  4243. if (tp->urg_data == TCP_URG_NOTYET) {
  4244. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4245. th->syn;
  4246. /* Is the urgent pointer pointing into this packet? */
  4247. if (ptr < skb->len) {
  4248. u8 tmp;
  4249. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4250. BUG();
  4251. tp->urg_data = TCP_URG_VALID | tmp;
  4252. if (!sock_flag(sk, SOCK_DEAD))
  4253. sk->sk_data_ready(sk);
  4254. }
  4255. }
  4256. }
  4257. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4258. {
  4259. struct tcp_sock *tp = tcp_sk(sk);
  4260. int chunk = skb->len - hlen;
  4261. int err;
  4262. local_bh_enable();
  4263. if (skb_csum_unnecessary(skb))
  4264. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4265. else
  4266. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4267. if (!err) {
  4268. tp->ucopy.len -= chunk;
  4269. tp->copied_seq += chunk;
  4270. tcp_rcv_space_adjust(sk);
  4271. }
  4272. local_bh_disable();
  4273. return err;
  4274. }
  4275. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4276. struct sk_buff *skb)
  4277. {
  4278. __sum16 result;
  4279. if (sock_owned_by_user(sk)) {
  4280. local_bh_enable();
  4281. result = __tcp_checksum_complete(skb);
  4282. local_bh_disable();
  4283. } else {
  4284. result = __tcp_checksum_complete(skb);
  4285. }
  4286. return result;
  4287. }
  4288. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4289. struct sk_buff *skb)
  4290. {
  4291. return !skb_csum_unnecessary(skb) &&
  4292. __tcp_checksum_complete_user(sk, skb);
  4293. }
  4294. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4295. * play significant role here.
  4296. */
  4297. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4298. const struct tcphdr *th, int syn_inerr)
  4299. {
  4300. struct tcp_sock *tp = tcp_sk(sk);
  4301. /* RFC1323: H1. Apply PAWS check first. */
  4302. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4303. tcp_paws_discard(sk, skb)) {
  4304. if (!th->rst) {
  4305. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4306. tcp_send_dupack(sk, skb);
  4307. goto discard;
  4308. }
  4309. /* Reset is accepted even if it did not pass PAWS. */
  4310. }
  4311. /* Step 1: check sequence number */
  4312. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4313. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4314. * (RST) segments are validated by checking their SEQ-fields."
  4315. * And page 69: "If an incoming segment is not acceptable,
  4316. * an acknowledgment should be sent in reply (unless the RST
  4317. * bit is set, if so drop the segment and return)".
  4318. */
  4319. if (!th->rst) {
  4320. if (th->syn)
  4321. goto syn_challenge;
  4322. tcp_send_dupack(sk, skb);
  4323. }
  4324. goto discard;
  4325. }
  4326. /* Step 2: check RST bit */
  4327. if (th->rst) {
  4328. /* RFC 5961 3.2 :
  4329. * If sequence number exactly matches RCV.NXT, then
  4330. * RESET the connection
  4331. * else
  4332. * Send a challenge ACK
  4333. */
  4334. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4335. tcp_reset(sk);
  4336. else
  4337. tcp_send_challenge_ack(sk);
  4338. goto discard;
  4339. }
  4340. /* step 3: check security and precedence [ignored] */
  4341. /* step 4: Check for a SYN
  4342. * RFC 5961 4.2 : Send a challenge ack
  4343. */
  4344. if (th->syn) {
  4345. syn_challenge:
  4346. if (syn_inerr)
  4347. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4348. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4349. tcp_send_challenge_ack(sk);
  4350. goto discard;
  4351. }
  4352. return true;
  4353. discard:
  4354. __kfree_skb(skb);
  4355. return false;
  4356. }
  4357. /*
  4358. * TCP receive function for the ESTABLISHED state.
  4359. *
  4360. * It is split into a fast path and a slow path. The fast path is
  4361. * disabled when:
  4362. * - A zero window was announced from us - zero window probing
  4363. * is only handled properly in the slow path.
  4364. * - Out of order segments arrived.
  4365. * - Urgent data is expected.
  4366. * - There is no buffer space left
  4367. * - Unexpected TCP flags/window values/header lengths are received
  4368. * (detected by checking the TCP header against pred_flags)
  4369. * - Data is sent in both directions. Fast path only supports pure senders
  4370. * or pure receivers (this means either the sequence number or the ack
  4371. * value must stay constant)
  4372. * - Unexpected TCP option.
  4373. *
  4374. * When these conditions are not satisfied it drops into a standard
  4375. * receive procedure patterned after RFC793 to handle all cases.
  4376. * The first three cases are guaranteed by proper pred_flags setting,
  4377. * the rest is checked inline. Fast processing is turned on in
  4378. * tcp_data_queue when everything is OK.
  4379. */
  4380. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4381. const struct tcphdr *th, unsigned int len)
  4382. {
  4383. struct tcp_sock *tp = tcp_sk(sk);
  4384. if (unlikely(sk->sk_rx_dst == NULL))
  4385. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4386. /*
  4387. * Header prediction.
  4388. * The code loosely follows the one in the famous
  4389. * "30 instruction TCP receive" Van Jacobson mail.
  4390. *
  4391. * Van's trick is to deposit buffers into socket queue
  4392. * on a device interrupt, to call tcp_recv function
  4393. * on the receive process context and checksum and copy
  4394. * the buffer to user space. smart...
  4395. *
  4396. * Our current scheme is not silly either but we take the
  4397. * extra cost of the net_bh soft interrupt processing...
  4398. * We do checksum and copy also but from device to kernel.
  4399. */
  4400. tp->rx_opt.saw_tstamp = 0;
  4401. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4402. * if header_prediction is to be made
  4403. * 'S' will always be tp->tcp_header_len >> 2
  4404. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4405. * turn it off (when there are holes in the receive
  4406. * space for instance)
  4407. * PSH flag is ignored.
  4408. */
  4409. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4410. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4411. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4412. int tcp_header_len = tp->tcp_header_len;
  4413. /* Timestamp header prediction: tcp_header_len
  4414. * is automatically equal to th->doff*4 due to pred_flags
  4415. * match.
  4416. */
  4417. /* Check timestamp */
  4418. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4419. /* No? Slow path! */
  4420. if (!tcp_parse_aligned_timestamp(tp, th))
  4421. goto slow_path;
  4422. /* If PAWS failed, check it more carefully in slow path */
  4423. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4424. goto slow_path;
  4425. /* DO NOT update ts_recent here, if checksum fails
  4426. * and timestamp was corrupted part, it will result
  4427. * in a hung connection since we will drop all
  4428. * future packets due to the PAWS test.
  4429. */
  4430. }
  4431. if (len <= tcp_header_len) {
  4432. /* Bulk data transfer: sender */
  4433. if (len == tcp_header_len) {
  4434. /* Predicted packet is in window by definition.
  4435. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4436. * Hence, check seq<=rcv_wup reduces to:
  4437. */
  4438. if (tcp_header_len ==
  4439. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4440. tp->rcv_nxt == tp->rcv_wup)
  4441. tcp_store_ts_recent(tp);
  4442. /* We know that such packets are checksummed
  4443. * on entry.
  4444. */
  4445. tcp_ack(sk, skb, 0);
  4446. __kfree_skb(skb);
  4447. tcp_data_snd_check(sk);
  4448. return;
  4449. } else { /* Header too small */
  4450. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4451. goto discard;
  4452. }
  4453. } else {
  4454. int eaten = 0;
  4455. bool fragstolen = false;
  4456. if (tp->ucopy.task == current &&
  4457. tp->copied_seq == tp->rcv_nxt &&
  4458. len - tcp_header_len <= tp->ucopy.len &&
  4459. sock_owned_by_user(sk)) {
  4460. __set_current_state(TASK_RUNNING);
  4461. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4462. /* Predicted packet is in window by definition.
  4463. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4464. * Hence, check seq<=rcv_wup reduces to:
  4465. */
  4466. if (tcp_header_len ==
  4467. (sizeof(struct tcphdr) +
  4468. TCPOLEN_TSTAMP_ALIGNED) &&
  4469. tp->rcv_nxt == tp->rcv_wup)
  4470. tcp_store_ts_recent(tp);
  4471. tcp_rcv_rtt_measure_ts(sk, skb);
  4472. __skb_pull(skb, tcp_header_len);
  4473. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4474. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4475. eaten = 1;
  4476. }
  4477. }
  4478. if (!eaten) {
  4479. if (tcp_checksum_complete_user(sk, skb))
  4480. goto csum_error;
  4481. if ((int)skb->truesize > sk->sk_forward_alloc)
  4482. goto step5;
  4483. /* Predicted packet is in window by definition.
  4484. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4485. * Hence, check seq<=rcv_wup reduces to:
  4486. */
  4487. if (tcp_header_len ==
  4488. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4489. tp->rcv_nxt == tp->rcv_wup)
  4490. tcp_store_ts_recent(tp);
  4491. tcp_rcv_rtt_measure_ts(sk, skb);
  4492. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4493. /* Bulk data transfer: receiver */
  4494. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4495. &fragstolen);
  4496. }
  4497. tcp_event_data_recv(sk, skb);
  4498. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4499. /* Well, only one small jumplet in fast path... */
  4500. tcp_ack(sk, skb, FLAG_DATA);
  4501. tcp_data_snd_check(sk);
  4502. if (!inet_csk_ack_scheduled(sk))
  4503. goto no_ack;
  4504. }
  4505. __tcp_ack_snd_check(sk, 0);
  4506. no_ack:
  4507. if (eaten)
  4508. kfree_skb_partial(skb, fragstolen);
  4509. sk->sk_data_ready(sk);
  4510. return;
  4511. }
  4512. }
  4513. slow_path:
  4514. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4515. goto csum_error;
  4516. if (!th->ack && !th->rst && !th->syn)
  4517. goto discard;
  4518. /*
  4519. * Standard slow path.
  4520. */
  4521. if (!tcp_validate_incoming(sk, skb, th, 1))
  4522. return;
  4523. step5:
  4524. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4525. goto discard;
  4526. tcp_rcv_rtt_measure_ts(sk, skb);
  4527. /* Process urgent data. */
  4528. tcp_urg(sk, skb, th);
  4529. /* step 7: process the segment text */
  4530. tcp_data_queue(sk, skb);
  4531. tcp_data_snd_check(sk);
  4532. tcp_ack_snd_check(sk);
  4533. return;
  4534. csum_error:
  4535. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4536. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4537. discard:
  4538. __kfree_skb(skb);
  4539. }
  4540. EXPORT_SYMBOL(tcp_rcv_established);
  4541. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4542. {
  4543. struct tcp_sock *tp = tcp_sk(sk);
  4544. struct inet_connection_sock *icsk = inet_csk(sk);
  4545. tcp_set_state(sk, TCP_ESTABLISHED);
  4546. if (skb != NULL) {
  4547. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4548. security_inet_conn_established(sk, skb);
  4549. }
  4550. /* Make sure socket is routed, for correct metrics. */
  4551. icsk->icsk_af_ops->rebuild_header(sk);
  4552. tcp_init_metrics(sk);
  4553. tcp_init_congestion_control(sk);
  4554. /* Prevent spurious tcp_cwnd_restart() on first data
  4555. * packet.
  4556. */
  4557. tp->lsndtime = tcp_time_stamp;
  4558. tcp_init_buffer_space(sk);
  4559. if (sock_flag(sk, SOCK_KEEPOPEN))
  4560. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4561. if (!tp->rx_opt.snd_wscale)
  4562. __tcp_fast_path_on(tp, tp->snd_wnd);
  4563. else
  4564. tp->pred_flags = 0;
  4565. if (!sock_flag(sk, SOCK_DEAD)) {
  4566. sk->sk_state_change(sk);
  4567. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4568. }
  4569. }
  4570. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4571. struct tcp_fastopen_cookie *cookie)
  4572. {
  4573. struct tcp_sock *tp = tcp_sk(sk);
  4574. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4575. u16 mss = tp->rx_opt.mss_clamp;
  4576. bool syn_drop;
  4577. if (mss == tp->rx_opt.user_mss) {
  4578. struct tcp_options_received opt;
  4579. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4580. tcp_clear_options(&opt);
  4581. opt.user_mss = opt.mss_clamp = 0;
  4582. tcp_parse_options(synack, &opt, 0, NULL);
  4583. mss = opt.mss_clamp;
  4584. }
  4585. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4586. cookie->len = -1;
  4587. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4588. * the remote receives only the retransmitted (regular) SYNs: either
  4589. * the original SYN-data or the corresponding SYN-ACK is lost.
  4590. */
  4591. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4592. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4593. if (data) { /* Retransmit unacked data in SYN */
  4594. tcp_for_write_queue_from(data, sk) {
  4595. if (data == tcp_send_head(sk) ||
  4596. __tcp_retransmit_skb(sk, data))
  4597. break;
  4598. }
  4599. tcp_rearm_rto(sk);
  4600. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4601. return true;
  4602. }
  4603. tp->syn_data_acked = tp->syn_data;
  4604. if (tp->syn_data_acked)
  4605. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4606. return false;
  4607. }
  4608. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4609. const struct tcphdr *th, unsigned int len)
  4610. {
  4611. struct inet_connection_sock *icsk = inet_csk(sk);
  4612. struct tcp_sock *tp = tcp_sk(sk);
  4613. struct tcp_fastopen_cookie foc = { .len = -1 };
  4614. int saved_clamp = tp->rx_opt.mss_clamp;
  4615. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4616. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4617. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4618. if (th->ack) {
  4619. /* rfc793:
  4620. * "If the state is SYN-SENT then
  4621. * first check the ACK bit
  4622. * If the ACK bit is set
  4623. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4624. * a reset (unless the RST bit is set, if so drop
  4625. * the segment and return)"
  4626. */
  4627. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4628. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4629. goto reset_and_undo;
  4630. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4631. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4632. tcp_time_stamp)) {
  4633. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4634. goto reset_and_undo;
  4635. }
  4636. /* Now ACK is acceptable.
  4637. *
  4638. * "If the RST bit is set
  4639. * If the ACK was acceptable then signal the user "error:
  4640. * connection reset", drop the segment, enter CLOSED state,
  4641. * delete TCB, and return."
  4642. */
  4643. if (th->rst) {
  4644. tcp_reset(sk);
  4645. goto discard;
  4646. }
  4647. /* rfc793:
  4648. * "fifth, if neither of the SYN or RST bits is set then
  4649. * drop the segment and return."
  4650. *
  4651. * See note below!
  4652. * --ANK(990513)
  4653. */
  4654. if (!th->syn)
  4655. goto discard_and_undo;
  4656. /* rfc793:
  4657. * "If the SYN bit is on ...
  4658. * are acceptable then ...
  4659. * (our SYN has been ACKed), change the connection
  4660. * state to ESTABLISHED..."
  4661. */
  4662. tcp_ecn_rcv_synack(tp, th);
  4663. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4664. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4665. /* Ok.. it's good. Set up sequence numbers and
  4666. * move to established.
  4667. */
  4668. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4669. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4670. /* RFC1323: The window in SYN & SYN/ACK segments is
  4671. * never scaled.
  4672. */
  4673. tp->snd_wnd = ntohs(th->window);
  4674. if (!tp->rx_opt.wscale_ok) {
  4675. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4676. tp->window_clamp = min(tp->window_clamp, 65535U);
  4677. }
  4678. if (tp->rx_opt.saw_tstamp) {
  4679. tp->rx_opt.tstamp_ok = 1;
  4680. tp->tcp_header_len =
  4681. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4682. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4683. tcp_store_ts_recent(tp);
  4684. } else {
  4685. tp->tcp_header_len = sizeof(struct tcphdr);
  4686. }
  4687. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4688. tcp_enable_fack(tp);
  4689. tcp_mtup_init(sk);
  4690. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4691. tcp_initialize_rcv_mss(sk);
  4692. /* Remember, tcp_poll() does not lock socket!
  4693. * Change state from SYN-SENT only after copied_seq
  4694. * is initialized. */
  4695. tp->copied_seq = tp->rcv_nxt;
  4696. smp_mb();
  4697. tcp_finish_connect(sk, skb);
  4698. if ((tp->syn_fastopen || tp->syn_data) &&
  4699. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4700. return -1;
  4701. if (sk->sk_write_pending ||
  4702. icsk->icsk_accept_queue.rskq_defer_accept ||
  4703. icsk->icsk_ack.pingpong) {
  4704. /* Save one ACK. Data will be ready after
  4705. * several ticks, if write_pending is set.
  4706. *
  4707. * It may be deleted, but with this feature tcpdumps
  4708. * look so _wonderfully_ clever, that I was not able
  4709. * to stand against the temptation 8) --ANK
  4710. */
  4711. inet_csk_schedule_ack(sk);
  4712. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4713. tcp_enter_quickack_mode(sk);
  4714. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4715. TCP_DELACK_MAX, TCP_RTO_MAX);
  4716. discard:
  4717. __kfree_skb(skb);
  4718. return 0;
  4719. } else {
  4720. tcp_send_ack(sk);
  4721. }
  4722. return -1;
  4723. }
  4724. /* No ACK in the segment */
  4725. if (th->rst) {
  4726. /* rfc793:
  4727. * "If the RST bit is set
  4728. *
  4729. * Otherwise (no ACK) drop the segment and return."
  4730. */
  4731. goto discard_and_undo;
  4732. }
  4733. /* PAWS check. */
  4734. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4735. tcp_paws_reject(&tp->rx_opt, 0))
  4736. goto discard_and_undo;
  4737. if (th->syn) {
  4738. /* We see SYN without ACK. It is attempt of
  4739. * simultaneous connect with crossed SYNs.
  4740. * Particularly, it can be connect to self.
  4741. */
  4742. tcp_set_state(sk, TCP_SYN_RECV);
  4743. if (tp->rx_opt.saw_tstamp) {
  4744. tp->rx_opt.tstamp_ok = 1;
  4745. tcp_store_ts_recent(tp);
  4746. tp->tcp_header_len =
  4747. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4748. } else {
  4749. tp->tcp_header_len = sizeof(struct tcphdr);
  4750. }
  4751. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4752. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4753. /* RFC1323: The window in SYN & SYN/ACK segments is
  4754. * never scaled.
  4755. */
  4756. tp->snd_wnd = ntohs(th->window);
  4757. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4758. tp->max_window = tp->snd_wnd;
  4759. tcp_ecn_rcv_syn(tp, th);
  4760. tcp_mtup_init(sk);
  4761. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4762. tcp_initialize_rcv_mss(sk);
  4763. tcp_send_synack(sk);
  4764. #if 0
  4765. /* Note, we could accept data and URG from this segment.
  4766. * There are no obstacles to make this (except that we must
  4767. * either change tcp_recvmsg() to prevent it from returning data
  4768. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4769. *
  4770. * However, if we ignore data in ACKless segments sometimes,
  4771. * we have no reasons to accept it sometimes.
  4772. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4773. * is not flawless. So, discard packet for sanity.
  4774. * Uncomment this return to process the data.
  4775. */
  4776. return -1;
  4777. #else
  4778. goto discard;
  4779. #endif
  4780. }
  4781. /* "fifth, if neither of the SYN or RST bits is set then
  4782. * drop the segment and return."
  4783. */
  4784. discard_and_undo:
  4785. tcp_clear_options(&tp->rx_opt);
  4786. tp->rx_opt.mss_clamp = saved_clamp;
  4787. goto discard;
  4788. reset_and_undo:
  4789. tcp_clear_options(&tp->rx_opt);
  4790. tp->rx_opt.mss_clamp = saved_clamp;
  4791. return 1;
  4792. }
  4793. /*
  4794. * This function implements the receiving procedure of RFC 793 for
  4795. * all states except ESTABLISHED and TIME_WAIT.
  4796. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4797. * address independent.
  4798. */
  4799. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4800. const struct tcphdr *th, unsigned int len)
  4801. {
  4802. struct tcp_sock *tp = tcp_sk(sk);
  4803. struct inet_connection_sock *icsk = inet_csk(sk);
  4804. struct request_sock *req;
  4805. int queued = 0;
  4806. bool acceptable;
  4807. u32 synack_stamp;
  4808. tp->rx_opt.saw_tstamp = 0;
  4809. switch (sk->sk_state) {
  4810. case TCP_CLOSE:
  4811. goto discard;
  4812. case TCP_LISTEN:
  4813. if (th->ack)
  4814. return 1;
  4815. if (th->rst)
  4816. goto discard;
  4817. if (th->syn) {
  4818. if (th->fin)
  4819. goto discard;
  4820. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4821. return 1;
  4822. /* Now we have several options: In theory there is
  4823. * nothing else in the frame. KA9Q has an option to
  4824. * send data with the syn, BSD accepts data with the
  4825. * syn up to the [to be] advertised window and
  4826. * Solaris 2.1 gives you a protocol error. For now
  4827. * we just ignore it, that fits the spec precisely
  4828. * and avoids incompatibilities. It would be nice in
  4829. * future to drop through and process the data.
  4830. *
  4831. * Now that TTCP is starting to be used we ought to
  4832. * queue this data.
  4833. * But, this leaves one open to an easy denial of
  4834. * service attack, and SYN cookies can't defend
  4835. * against this problem. So, we drop the data
  4836. * in the interest of security over speed unless
  4837. * it's still in use.
  4838. */
  4839. kfree_skb(skb);
  4840. return 0;
  4841. }
  4842. goto discard;
  4843. case TCP_SYN_SENT:
  4844. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4845. if (queued >= 0)
  4846. return queued;
  4847. /* Do step6 onward by hand. */
  4848. tcp_urg(sk, skb, th);
  4849. __kfree_skb(skb);
  4850. tcp_data_snd_check(sk);
  4851. return 0;
  4852. }
  4853. req = tp->fastopen_rsk;
  4854. if (req != NULL) {
  4855. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4856. sk->sk_state != TCP_FIN_WAIT1);
  4857. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4858. goto discard;
  4859. }
  4860. if (!th->ack && !th->rst && !th->syn)
  4861. goto discard;
  4862. if (!tcp_validate_incoming(sk, skb, th, 0))
  4863. return 0;
  4864. /* step 5: check the ACK field */
  4865. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4866. FLAG_UPDATE_TS_RECENT) > 0;
  4867. switch (sk->sk_state) {
  4868. case TCP_SYN_RECV:
  4869. if (!acceptable)
  4870. return 1;
  4871. /* Once we leave TCP_SYN_RECV, we no longer need req
  4872. * so release it.
  4873. */
  4874. if (req) {
  4875. synack_stamp = tcp_rsk(req)->snt_synack;
  4876. tp->total_retrans = req->num_retrans;
  4877. reqsk_fastopen_remove(sk, req, false);
  4878. } else {
  4879. synack_stamp = tp->lsndtime;
  4880. /* Make sure socket is routed, for correct metrics. */
  4881. icsk->icsk_af_ops->rebuild_header(sk);
  4882. tcp_init_congestion_control(sk);
  4883. tcp_mtup_init(sk);
  4884. tp->copied_seq = tp->rcv_nxt;
  4885. tcp_init_buffer_space(sk);
  4886. }
  4887. smp_mb();
  4888. tcp_set_state(sk, TCP_ESTABLISHED);
  4889. sk->sk_state_change(sk);
  4890. /* Note, that this wakeup is only for marginal crossed SYN case.
  4891. * Passively open sockets are not waked up, because
  4892. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4893. */
  4894. if (sk->sk_socket)
  4895. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4896. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4897. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4898. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4899. tcp_synack_rtt_meas(sk, synack_stamp);
  4900. if (tp->rx_opt.tstamp_ok)
  4901. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4902. if (req) {
  4903. /* Re-arm the timer because data may have been sent out.
  4904. * This is similar to the regular data transmission case
  4905. * when new data has just been ack'ed.
  4906. *
  4907. * (TFO) - we could try to be more aggressive and
  4908. * retransmitting any data sooner based on when they
  4909. * are sent out.
  4910. */
  4911. tcp_rearm_rto(sk);
  4912. } else
  4913. tcp_init_metrics(sk);
  4914. tcp_update_pacing_rate(sk);
  4915. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  4916. tp->lsndtime = tcp_time_stamp;
  4917. tcp_initialize_rcv_mss(sk);
  4918. tcp_fast_path_on(tp);
  4919. break;
  4920. case TCP_FIN_WAIT1: {
  4921. struct dst_entry *dst;
  4922. int tmo;
  4923. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4924. * Fast Open socket and this is the first acceptable
  4925. * ACK we have received, this would have acknowledged
  4926. * our SYNACK so stop the SYNACK timer.
  4927. */
  4928. if (req != NULL) {
  4929. /* Return RST if ack_seq is invalid.
  4930. * Note that RFC793 only says to generate a
  4931. * DUPACK for it but for TCP Fast Open it seems
  4932. * better to treat this case like TCP_SYN_RECV
  4933. * above.
  4934. */
  4935. if (!acceptable)
  4936. return 1;
  4937. /* We no longer need the request sock. */
  4938. reqsk_fastopen_remove(sk, req, false);
  4939. tcp_rearm_rto(sk);
  4940. }
  4941. if (tp->snd_una != tp->write_seq)
  4942. break;
  4943. tcp_set_state(sk, TCP_FIN_WAIT2);
  4944. sk->sk_shutdown |= SEND_SHUTDOWN;
  4945. dst = __sk_dst_get(sk);
  4946. if (dst)
  4947. dst_confirm(dst);
  4948. if (!sock_flag(sk, SOCK_DEAD)) {
  4949. /* Wake up lingering close() */
  4950. sk->sk_state_change(sk);
  4951. break;
  4952. }
  4953. if (tp->linger2 < 0 ||
  4954. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4955. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4956. tcp_done(sk);
  4957. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4958. return 1;
  4959. }
  4960. tmo = tcp_fin_time(sk);
  4961. if (tmo > TCP_TIMEWAIT_LEN) {
  4962. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4963. } else if (th->fin || sock_owned_by_user(sk)) {
  4964. /* Bad case. We could lose such FIN otherwise.
  4965. * It is not a big problem, but it looks confusing
  4966. * and not so rare event. We still can lose it now,
  4967. * if it spins in bh_lock_sock(), but it is really
  4968. * marginal case.
  4969. */
  4970. inet_csk_reset_keepalive_timer(sk, tmo);
  4971. } else {
  4972. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4973. goto discard;
  4974. }
  4975. break;
  4976. }
  4977. case TCP_CLOSING:
  4978. if (tp->snd_una == tp->write_seq) {
  4979. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4980. goto discard;
  4981. }
  4982. break;
  4983. case TCP_LAST_ACK:
  4984. if (tp->snd_una == tp->write_seq) {
  4985. tcp_update_metrics(sk);
  4986. tcp_done(sk);
  4987. goto discard;
  4988. }
  4989. break;
  4990. }
  4991. /* step 6: check the URG bit */
  4992. tcp_urg(sk, skb, th);
  4993. /* step 7: process the segment text */
  4994. switch (sk->sk_state) {
  4995. case TCP_CLOSE_WAIT:
  4996. case TCP_CLOSING:
  4997. case TCP_LAST_ACK:
  4998. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4999. break;
  5000. case TCP_FIN_WAIT1:
  5001. case TCP_FIN_WAIT2:
  5002. /* RFC 793 says to queue data in these states,
  5003. * RFC 1122 says we MUST send a reset.
  5004. * BSD 4.4 also does reset.
  5005. */
  5006. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5007. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5008. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5009. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5010. tcp_reset(sk);
  5011. return 1;
  5012. }
  5013. }
  5014. /* Fall through */
  5015. case TCP_ESTABLISHED:
  5016. tcp_data_queue(sk, skb);
  5017. queued = 1;
  5018. break;
  5019. }
  5020. /* tcp_data could move socket to TIME-WAIT */
  5021. if (sk->sk_state != TCP_CLOSE) {
  5022. tcp_data_snd_check(sk);
  5023. tcp_ack_snd_check(sk);
  5024. }
  5025. if (!queued) {
  5026. discard:
  5027. __kfree_skb(skb);
  5028. }
  5029. return 0;
  5030. }
  5031. EXPORT_SYMBOL(tcp_rcv_state_process);
  5032. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5033. {
  5034. struct inet_request_sock *ireq = inet_rsk(req);
  5035. if (family == AF_INET)
  5036. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5037. &ireq->ir_rmt_addr, port);
  5038. #if IS_ENABLED(CONFIG_IPV6)
  5039. else if (family == AF_INET6)
  5040. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5041. &ireq->ir_v6_rmt_addr, port);
  5042. #endif
  5043. }
  5044. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5045. *
  5046. * If we receive a SYN packet with these bits set, it means a
  5047. * network is playing bad games with TOS bits. In order to
  5048. * avoid possible false congestion notifications, we disable
  5049. * TCP ECN negotiation.
  5050. *
  5051. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5052. * congestion control; it requires setting ECT on all packets,
  5053. * including SYN. We inverse the test in this case: If our
  5054. * local socket wants ECN, but peer only set ece/cwr (but not
  5055. * ECT in IP header) its probably a non-DCTCP aware sender.
  5056. */
  5057. static void tcp_ecn_create_request(struct request_sock *req,
  5058. const struct sk_buff *skb,
  5059. const struct sock *listen_sk,
  5060. const struct dst_entry *dst)
  5061. {
  5062. const struct tcphdr *th = tcp_hdr(skb);
  5063. const struct net *net = sock_net(listen_sk);
  5064. bool th_ecn = th->ece && th->cwr;
  5065. bool ect, need_ecn, ecn_ok;
  5066. if (!th_ecn)
  5067. return;
  5068. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5069. need_ecn = tcp_ca_needs_ecn(listen_sk);
  5070. ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
  5071. if (!ect && !need_ecn && ecn_ok)
  5072. inet_rsk(req)->ecn_ok = 1;
  5073. else if (ect && need_ecn)
  5074. inet_rsk(req)->ecn_ok = 1;
  5075. }
  5076. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5077. const struct tcp_request_sock_ops *af_ops,
  5078. struct sock *sk, struct sk_buff *skb)
  5079. {
  5080. struct tcp_options_received tmp_opt;
  5081. struct request_sock *req;
  5082. struct tcp_sock *tp = tcp_sk(sk);
  5083. struct dst_entry *dst = NULL;
  5084. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5085. bool want_cookie = false, fastopen;
  5086. struct flowi fl;
  5087. struct tcp_fastopen_cookie foc = { .len = -1 };
  5088. int err;
  5089. /* TW buckets are converted to open requests without
  5090. * limitations, they conserve resources and peer is
  5091. * evidently real one.
  5092. */
  5093. if ((sysctl_tcp_syncookies == 2 ||
  5094. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5095. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5096. if (!want_cookie)
  5097. goto drop;
  5098. }
  5099. /* Accept backlog is full. If we have already queued enough
  5100. * of warm entries in syn queue, drop request. It is better than
  5101. * clogging syn queue with openreqs with exponentially increasing
  5102. * timeout.
  5103. */
  5104. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5105. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5106. goto drop;
  5107. }
  5108. req = inet_reqsk_alloc(rsk_ops);
  5109. if (!req)
  5110. goto drop;
  5111. tcp_rsk(req)->af_specific = af_ops;
  5112. tcp_clear_options(&tmp_opt);
  5113. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5114. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5115. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5116. if (want_cookie && !tmp_opt.saw_tstamp)
  5117. tcp_clear_options(&tmp_opt);
  5118. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5119. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5120. af_ops->init_req(req, sk, skb);
  5121. if (security_inet_conn_request(sk, skb, req))
  5122. goto drop_and_free;
  5123. if (!want_cookie && !isn) {
  5124. /* VJ's idea. We save last timestamp seen
  5125. * from the destination in peer table, when entering
  5126. * state TIME-WAIT, and check against it before
  5127. * accepting new connection request.
  5128. *
  5129. * If "isn" is not zero, this request hit alive
  5130. * timewait bucket, so that all the necessary checks
  5131. * are made in the function processing timewait state.
  5132. */
  5133. if (tcp_death_row.sysctl_tw_recycle) {
  5134. bool strict;
  5135. dst = af_ops->route_req(sk, &fl, req, &strict);
  5136. if (dst && strict &&
  5137. !tcp_peer_is_proven(req, dst, true,
  5138. tmp_opt.saw_tstamp)) {
  5139. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5140. goto drop_and_release;
  5141. }
  5142. }
  5143. /* Kill the following clause, if you dislike this way. */
  5144. else if (!sysctl_tcp_syncookies &&
  5145. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5146. (sysctl_max_syn_backlog >> 2)) &&
  5147. !tcp_peer_is_proven(req, dst, false,
  5148. tmp_opt.saw_tstamp)) {
  5149. /* Without syncookies last quarter of
  5150. * backlog is filled with destinations,
  5151. * proven to be alive.
  5152. * It means that we continue to communicate
  5153. * to destinations, already remembered
  5154. * to the moment of synflood.
  5155. */
  5156. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5157. rsk_ops->family);
  5158. goto drop_and_release;
  5159. }
  5160. isn = af_ops->init_seq(skb);
  5161. }
  5162. if (!dst) {
  5163. dst = af_ops->route_req(sk, &fl, req, NULL);
  5164. if (!dst)
  5165. goto drop_and_free;
  5166. }
  5167. tcp_ecn_create_request(req, skb, sk, dst);
  5168. if (want_cookie) {
  5169. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5170. req->cookie_ts = tmp_opt.tstamp_ok;
  5171. if (!tmp_opt.tstamp_ok)
  5172. inet_rsk(req)->ecn_ok = 0;
  5173. }
  5174. tcp_rsk(req)->snt_isn = isn;
  5175. tcp_openreq_init_rwin(req, sk, dst);
  5176. fastopen = !want_cookie &&
  5177. tcp_try_fastopen(sk, skb, req, &foc, dst);
  5178. err = af_ops->send_synack(sk, dst, &fl, req,
  5179. skb_get_queue_mapping(skb), &foc);
  5180. if (!fastopen) {
  5181. if (err || want_cookie)
  5182. goto drop_and_free;
  5183. tcp_rsk(req)->listener = NULL;
  5184. af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5185. }
  5186. return 0;
  5187. drop_and_release:
  5188. dst_release(dst);
  5189. drop_and_free:
  5190. reqsk_free(req);
  5191. drop:
  5192. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5193. return 0;
  5194. }
  5195. EXPORT_SYMBOL(tcp_conn_request);