intel_pm.c 212 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void gen9_init_clock_gating(struct drm_device *dev)
  66. {
  67. }
  68. static void i8xx_disable_fbc(struct drm_device *dev)
  69. {
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. u32 fbc_ctl;
  72. /* Disable compression */
  73. fbc_ctl = I915_READ(FBC_CONTROL);
  74. if ((fbc_ctl & FBC_CTL_EN) == 0)
  75. return;
  76. fbc_ctl &= ~FBC_CTL_EN;
  77. I915_WRITE(FBC_CONTROL, fbc_ctl);
  78. /* Wait for compressing bit to clear */
  79. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  80. DRM_DEBUG_KMS("FBC idle timed out\n");
  81. return;
  82. }
  83. DRM_DEBUG_KMS("disabled FBC\n");
  84. }
  85. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  86. {
  87. struct drm_device *dev = crtc->dev;
  88. struct drm_i915_private *dev_priv = dev->dev_private;
  89. struct drm_framebuffer *fb = crtc->primary->fb;
  90. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  91. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  92. int cfb_pitch;
  93. int i;
  94. u32 fbc_ctl;
  95. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  96. if (fb->pitches[0] < cfb_pitch)
  97. cfb_pitch = fb->pitches[0];
  98. /* FBC_CTL wants 32B or 64B units */
  99. if (IS_GEN2(dev))
  100. cfb_pitch = (cfb_pitch / 32) - 1;
  101. else
  102. cfb_pitch = (cfb_pitch / 64) - 1;
  103. /* Clear old tags */
  104. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  105. I915_WRITE(FBC_TAG + (i * 4), 0);
  106. if (IS_GEN4(dev)) {
  107. u32 fbc_ctl2;
  108. /* Set it up... */
  109. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  110. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  111. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  112. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  113. }
  114. /* enable it... */
  115. fbc_ctl = I915_READ(FBC_CONTROL);
  116. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  117. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  118. if (IS_I945GM(dev))
  119. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  120. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  121. fbc_ctl |= obj->fence_reg;
  122. I915_WRITE(FBC_CONTROL, fbc_ctl);
  123. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  124. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  125. }
  126. static bool i8xx_fbc_enabled(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  130. }
  131. static void g4x_enable_fbc(struct drm_crtc *crtc)
  132. {
  133. struct drm_device *dev = crtc->dev;
  134. struct drm_i915_private *dev_priv = dev->dev_private;
  135. struct drm_framebuffer *fb = crtc->primary->fb;
  136. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  138. u32 dpfc_ctl;
  139. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  140. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  141. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  142. else
  143. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  144. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  145. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  146. /* enable it... */
  147. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  148. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  149. }
  150. static void g4x_disable_fbc(struct drm_device *dev)
  151. {
  152. struct drm_i915_private *dev_priv = dev->dev_private;
  153. u32 dpfc_ctl;
  154. /* Disable compression */
  155. dpfc_ctl = I915_READ(DPFC_CONTROL);
  156. if (dpfc_ctl & DPFC_CTL_EN) {
  157. dpfc_ctl &= ~DPFC_CTL_EN;
  158. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  159. DRM_DEBUG_KMS("disabled FBC\n");
  160. }
  161. }
  162. static bool g4x_fbc_enabled(struct drm_device *dev)
  163. {
  164. struct drm_i915_private *dev_priv = dev->dev_private;
  165. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  166. }
  167. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  168. {
  169. struct drm_i915_private *dev_priv = dev->dev_private;
  170. u32 blt_ecoskpd;
  171. /* Make sure blitter notifies FBC of writes */
  172. /* Blitter is part of Media powerwell on VLV. No impact of
  173. * his param in other platforms for now */
  174. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  175. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  176. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  177. GEN6_BLITTER_LOCK_SHIFT;
  178. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  179. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  180. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  181. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  182. GEN6_BLITTER_LOCK_SHIFT);
  183. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  184. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  185. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  186. }
  187. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  188. {
  189. struct drm_device *dev = crtc->dev;
  190. struct drm_i915_private *dev_priv = dev->dev_private;
  191. struct drm_framebuffer *fb = crtc->primary->fb;
  192. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  194. u32 dpfc_ctl;
  195. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  196. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  197. dev_priv->fbc.threshold++;
  198. switch (dev_priv->fbc.threshold) {
  199. case 4:
  200. case 3:
  201. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  202. break;
  203. case 2:
  204. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  205. break;
  206. case 1:
  207. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  208. break;
  209. }
  210. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  211. if (IS_GEN5(dev))
  212. dpfc_ctl |= obj->fence_reg;
  213. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  214. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  215. /* enable it... */
  216. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  217. if (IS_GEN6(dev)) {
  218. I915_WRITE(SNB_DPFC_CTL_SA,
  219. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  220. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  221. sandybridge_blit_fbc_update(dev);
  222. }
  223. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  224. }
  225. static void ironlake_disable_fbc(struct drm_device *dev)
  226. {
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. u32 dpfc_ctl;
  229. /* Disable compression */
  230. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  231. if (dpfc_ctl & DPFC_CTL_EN) {
  232. dpfc_ctl &= ~DPFC_CTL_EN;
  233. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  234. DRM_DEBUG_KMS("disabled FBC\n");
  235. }
  236. }
  237. static bool ironlake_fbc_enabled(struct drm_device *dev)
  238. {
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  241. }
  242. static void gen7_enable_fbc(struct drm_crtc *crtc)
  243. {
  244. struct drm_device *dev = crtc->dev;
  245. struct drm_i915_private *dev_priv = dev->dev_private;
  246. struct drm_framebuffer *fb = crtc->primary->fb;
  247. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  248. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  249. u32 dpfc_ctl;
  250. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  251. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  252. dev_priv->fbc.threshold++;
  253. switch (dev_priv->fbc.threshold) {
  254. case 4:
  255. case 3:
  256. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  257. break;
  258. case 2:
  259. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  260. break;
  261. case 1:
  262. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  263. break;
  264. }
  265. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  266. if (dev_priv->fbc.false_color)
  267. dpfc_ctl |= FBC_CTL_FALSE_COLOR;
  268. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  269. if (IS_IVYBRIDGE(dev)) {
  270. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  271. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  272. I915_READ(ILK_DISPLAY_CHICKEN1) |
  273. ILK_FBCQ_DIS);
  274. } else {
  275. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  276. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  277. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  278. HSW_FBCQ_DIS);
  279. }
  280. I915_WRITE(SNB_DPFC_CTL_SA,
  281. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  282. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  283. sandybridge_blit_fbc_update(dev);
  284. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  285. }
  286. bool intel_fbc_enabled(struct drm_device *dev)
  287. {
  288. struct drm_i915_private *dev_priv = dev->dev_private;
  289. if (!dev_priv->display.fbc_enabled)
  290. return false;
  291. return dev_priv->display.fbc_enabled(dev);
  292. }
  293. void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
  294. {
  295. struct drm_i915_private *dev_priv = dev->dev_private;
  296. if (!IS_GEN8(dev))
  297. return;
  298. I915_WRITE(MSG_FBC_REND_STATE, value);
  299. }
  300. static void intel_fbc_work_fn(struct work_struct *__work)
  301. {
  302. struct intel_fbc_work *work =
  303. container_of(to_delayed_work(__work),
  304. struct intel_fbc_work, work);
  305. struct drm_device *dev = work->crtc->dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. mutex_lock(&dev->struct_mutex);
  308. if (work == dev_priv->fbc.fbc_work) {
  309. /* Double check that we haven't switched fb without cancelling
  310. * the prior work.
  311. */
  312. if (work->crtc->primary->fb == work->fb) {
  313. dev_priv->display.enable_fbc(work->crtc);
  314. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  315. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  316. dev_priv->fbc.y = work->crtc->y;
  317. }
  318. dev_priv->fbc.fbc_work = NULL;
  319. }
  320. mutex_unlock(&dev->struct_mutex);
  321. kfree(work);
  322. }
  323. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  324. {
  325. if (dev_priv->fbc.fbc_work == NULL)
  326. return;
  327. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  328. /* Synchronisation is provided by struct_mutex and checking of
  329. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  330. * entirely asynchronously.
  331. */
  332. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  333. /* tasklet was killed before being run, clean up */
  334. kfree(dev_priv->fbc.fbc_work);
  335. /* Mark the work as no longer wanted so that if it does
  336. * wake-up (because the work was already running and waiting
  337. * for our mutex), it will discover that is no longer
  338. * necessary to run.
  339. */
  340. dev_priv->fbc.fbc_work = NULL;
  341. }
  342. static void intel_enable_fbc(struct drm_crtc *crtc)
  343. {
  344. struct intel_fbc_work *work;
  345. struct drm_device *dev = crtc->dev;
  346. struct drm_i915_private *dev_priv = dev->dev_private;
  347. if (!dev_priv->display.enable_fbc)
  348. return;
  349. intel_cancel_fbc_work(dev_priv);
  350. work = kzalloc(sizeof(*work), GFP_KERNEL);
  351. if (work == NULL) {
  352. DRM_ERROR("Failed to allocate FBC work structure\n");
  353. dev_priv->display.enable_fbc(crtc);
  354. return;
  355. }
  356. work->crtc = crtc;
  357. work->fb = crtc->primary->fb;
  358. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  359. dev_priv->fbc.fbc_work = work;
  360. /* Delay the actual enabling to let pageflipping cease and the
  361. * display to settle before starting the compression. Note that
  362. * this delay also serves a second purpose: it allows for a
  363. * vblank to pass after disabling the FBC before we attempt
  364. * to modify the control registers.
  365. *
  366. * A more complicated solution would involve tracking vblanks
  367. * following the termination of the page-flipping sequence
  368. * and indeed performing the enable as a co-routine and not
  369. * waiting synchronously upon the vblank.
  370. *
  371. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  372. */
  373. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  374. }
  375. void intel_disable_fbc(struct drm_device *dev)
  376. {
  377. struct drm_i915_private *dev_priv = dev->dev_private;
  378. intel_cancel_fbc_work(dev_priv);
  379. if (!dev_priv->display.disable_fbc)
  380. return;
  381. dev_priv->display.disable_fbc(dev);
  382. dev_priv->fbc.plane = -1;
  383. }
  384. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  385. enum no_fbc_reason reason)
  386. {
  387. if (dev_priv->fbc.no_fbc_reason == reason)
  388. return false;
  389. dev_priv->fbc.no_fbc_reason = reason;
  390. return true;
  391. }
  392. /**
  393. * intel_update_fbc - enable/disable FBC as needed
  394. * @dev: the drm_device
  395. *
  396. * Set up the framebuffer compression hardware at mode set time. We
  397. * enable it if possible:
  398. * - plane A only (on pre-965)
  399. * - no pixel mulitply/line duplication
  400. * - no alpha buffer discard
  401. * - no dual wide
  402. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  403. *
  404. * We can't assume that any compression will take place (worst case),
  405. * so the compressed buffer has to be the same size as the uncompressed
  406. * one. It also must reside (along with the line length buffer) in
  407. * stolen memory.
  408. *
  409. * We need to enable/disable FBC on a global basis.
  410. */
  411. void intel_update_fbc(struct drm_device *dev)
  412. {
  413. struct drm_i915_private *dev_priv = dev->dev_private;
  414. struct drm_crtc *crtc = NULL, *tmp_crtc;
  415. struct intel_crtc *intel_crtc;
  416. struct drm_framebuffer *fb;
  417. struct drm_i915_gem_object *obj;
  418. const struct drm_display_mode *adjusted_mode;
  419. unsigned int max_width, max_height;
  420. if (!HAS_FBC(dev)) {
  421. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  422. return;
  423. }
  424. if (!i915.powersave) {
  425. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  426. DRM_DEBUG_KMS("fbc disabled per module param\n");
  427. return;
  428. }
  429. /*
  430. * If FBC is already on, we just have to verify that we can
  431. * keep it that way...
  432. * Need to disable if:
  433. * - more than one pipe is active
  434. * - changing FBC params (stride, fence, mode)
  435. * - new fb is too large to fit in compressed buffer
  436. * - going to an unsupported config (interlace, pixel multiply, etc.)
  437. */
  438. for_each_crtc(dev, tmp_crtc) {
  439. if (intel_crtc_active(tmp_crtc) &&
  440. to_intel_crtc(tmp_crtc)->primary_enabled) {
  441. if (crtc) {
  442. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  443. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  444. goto out_disable;
  445. }
  446. crtc = tmp_crtc;
  447. }
  448. }
  449. if (!crtc || crtc->primary->fb == NULL) {
  450. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  451. DRM_DEBUG_KMS("no output, disabling\n");
  452. goto out_disable;
  453. }
  454. intel_crtc = to_intel_crtc(crtc);
  455. fb = crtc->primary->fb;
  456. obj = intel_fb_obj(fb);
  457. adjusted_mode = &intel_crtc->config.adjusted_mode;
  458. if (i915.enable_fbc < 0) {
  459. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  460. DRM_DEBUG_KMS("disabled per chip default\n");
  461. goto out_disable;
  462. }
  463. if (!i915.enable_fbc) {
  464. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  465. DRM_DEBUG_KMS("fbc disabled per module param\n");
  466. goto out_disable;
  467. }
  468. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  469. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  470. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  471. DRM_DEBUG_KMS("mode incompatible with compression, "
  472. "disabling\n");
  473. goto out_disable;
  474. }
  475. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  476. max_width = 4096;
  477. max_height = 4096;
  478. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  479. max_width = 4096;
  480. max_height = 2048;
  481. } else {
  482. max_width = 2048;
  483. max_height = 1536;
  484. }
  485. if (intel_crtc->config.pipe_src_w > max_width ||
  486. intel_crtc->config.pipe_src_h > max_height) {
  487. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  488. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  489. goto out_disable;
  490. }
  491. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  492. intel_crtc->plane != PLANE_A) {
  493. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  494. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  495. goto out_disable;
  496. }
  497. /* The use of a CPU fence is mandatory in order to detect writes
  498. * by the CPU to the scanout and trigger updates to the FBC.
  499. */
  500. if (obj->tiling_mode != I915_TILING_X ||
  501. obj->fence_reg == I915_FENCE_REG_NONE) {
  502. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  503. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  504. goto out_disable;
  505. }
  506. if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  507. to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
  508. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  509. DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
  510. goto out_disable;
  511. }
  512. /* If the kernel debugger is active, always disable compression */
  513. if (in_dbg_master())
  514. goto out_disable;
  515. if (i915_gem_stolen_setup_compression(dev, obj->base.size,
  516. drm_format_plane_cpp(fb->pixel_format, 0))) {
  517. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  518. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  519. goto out_disable;
  520. }
  521. /* If the scanout has not changed, don't modify the FBC settings.
  522. * Note that we make the fundamental assumption that the fb->obj
  523. * cannot be unpinned (and have its GTT offset and fence revoked)
  524. * without first being decoupled from the scanout and FBC disabled.
  525. */
  526. if (dev_priv->fbc.plane == intel_crtc->plane &&
  527. dev_priv->fbc.fb_id == fb->base.id &&
  528. dev_priv->fbc.y == crtc->y)
  529. return;
  530. if (intel_fbc_enabled(dev)) {
  531. /* We update FBC along two paths, after changing fb/crtc
  532. * configuration (modeswitching) and after page-flipping
  533. * finishes. For the latter, we know that not only did
  534. * we disable the FBC at the start of the page-flip
  535. * sequence, but also more than one vblank has passed.
  536. *
  537. * For the former case of modeswitching, it is possible
  538. * to switch between two FBC valid configurations
  539. * instantaneously so we do need to disable the FBC
  540. * before we can modify its control registers. We also
  541. * have to wait for the next vblank for that to take
  542. * effect. However, since we delay enabling FBC we can
  543. * assume that a vblank has passed since disabling and
  544. * that we can safely alter the registers in the deferred
  545. * callback.
  546. *
  547. * In the scenario that we go from a valid to invalid
  548. * and then back to valid FBC configuration we have
  549. * no strict enforcement that a vblank occurred since
  550. * disabling the FBC. However, along all current pipe
  551. * disabling paths we do need to wait for a vblank at
  552. * some point. And we wait before enabling FBC anyway.
  553. */
  554. DRM_DEBUG_KMS("disabling active FBC for update\n");
  555. intel_disable_fbc(dev);
  556. }
  557. intel_enable_fbc(crtc);
  558. dev_priv->fbc.no_fbc_reason = FBC_OK;
  559. return;
  560. out_disable:
  561. /* Multiple disables should be harmless */
  562. if (intel_fbc_enabled(dev)) {
  563. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  564. intel_disable_fbc(dev);
  565. }
  566. i915_gem_stolen_cleanup_compression(dev);
  567. }
  568. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  569. {
  570. struct drm_i915_private *dev_priv = dev->dev_private;
  571. u32 tmp;
  572. tmp = I915_READ(CLKCFG);
  573. switch (tmp & CLKCFG_FSB_MASK) {
  574. case CLKCFG_FSB_533:
  575. dev_priv->fsb_freq = 533; /* 133*4 */
  576. break;
  577. case CLKCFG_FSB_800:
  578. dev_priv->fsb_freq = 800; /* 200*4 */
  579. break;
  580. case CLKCFG_FSB_667:
  581. dev_priv->fsb_freq = 667; /* 167*4 */
  582. break;
  583. case CLKCFG_FSB_400:
  584. dev_priv->fsb_freq = 400; /* 100*4 */
  585. break;
  586. }
  587. switch (tmp & CLKCFG_MEM_MASK) {
  588. case CLKCFG_MEM_533:
  589. dev_priv->mem_freq = 533;
  590. break;
  591. case CLKCFG_MEM_667:
  592. dev_priv->mem_freq = 667;
  593. break;
  594. case CLKCFG_MEM_800:
  595. dev_priv->mem_freq = 800;
  596. break;
  597. }
  598. /* detect pineview DDR3 setting */
  599. tmp = I915_READ(CSHRDDR3CTL);
  600. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  601. }
  602. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  603. {
  604. struct drm_i915_private *dev_priv = dev->dev_private;
  605. u16 ddrpll, csipll;
  606. ddrpll = I915_READ16(DDRMPLL1);
  607. csipll = I915_READ16(CSIPLL0);
  608. switch (ddrpll & 0xff) {
  609. case 0xc:
  610. dev_priv->mem_freq = 800;
  611. break;
  612. case 0x10:
  613. dev_priv->mem_freq = 1066;
  614. break;
  615. case 0x14:
  616. dev_priv->mem_freq = 1333;
  617. break;
  618. case 0x18:
  619. dev_priv->mem_freq = 1600;
  620. break;
  621. default:
  622. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  623. ddrpll & 0xff);
  624. dev_priv->mem_freq = 0;
  625. break;
  626. }
  627. dev_priv->ips.r_t = dev_priv->mem_freq;
  628. switch (csipll & 0x3ff) {
  629. case 0x00c:
  630. dev_priv->fsb_freq = 3200;
  631. break;
  632. case 0x00e:
  633. dev_priv->fsb_freq = 3733;
  634. break;
  635. case 0x010:
  636. dev_priv->fsb_freq = 4266;
  637. break;
  638. case 0x012:
  639. dev_priv->fsb_freq = 4800;
  640. break;
  641. case 0x014:
  642. dev_priv->fsb_freq = 5333;
  643. break;
  644. case 0x016:
  645. dev_priv->fsb_freq = 5866;
  646. break;
  647. case 0x018:
  648. dev_priv->fsb_freq = 6400;
  649. break;
  650. default:
  651. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  652. csipll & 0x3ff);
  653. dev_priv->fsb_freq = 0;
  654. break;
  655. }
  656. if (dev_priv->fsb_freq == 3200) {
  657. dev_priv->ips.c_m = 0;
  658. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  659. dev_priv->ips.c_m = 1;
  660. } else {
  661. dev_priv->ips.c_m = 2;
  662. }
  663. }
  664. static const struct cxsr_latency cxsr_latency_table[] = {
  665. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  666. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  667. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  668. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  669. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  670. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  671. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  672. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  673. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  674. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  675. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  676. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  677. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  678. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  679. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  680. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  681. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  682. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  683. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  684. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  685. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  686. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  687. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  688. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  689. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  690. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  691. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  692. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  693. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  694. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  695. };
  696. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  697. int is_ddr3,
  698. int fsb,
  699. int mem)
  700. {
  701. const struct cxsr_latency *latency;
  702. int i;
  703. if (fsb == 0 || mem == 0)
  704. return NULL;
  705. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  706. latency = &cxsr_latency_table[i];
  707. if (is_desktop == latency->is_desktop &&
  708. is_ddr3 == latency->is_ddr3 &&
  709. fsb == latency->fsb_freq && mem == latency->mem_freq)
  710. return latency;
  711. }
  712. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  713. return NULL;
  714. }
  715. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  716. {
  717. struct drm_device *dev = dev_priv->dev;
  718. u32 val;
  719. if (IS_VALLEYVIEW(dev)) {
  720. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  721. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  722. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  723. } else if (IS_PINEVIEW(dev)) {
  724. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  725. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  726. I915_WRITE(DSPFW3, val);
  727. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  728. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  729. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  730. I915_WRITE(FW_BLC_SELF, val);
  731. } else if (IS_I915GM(dev)) {
  732. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  733. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  734. I915_WRITE(INSTPM, val);
  735. } else {
  736. return;
  737. }
  738. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  739. enable ? "enabled" : "disabled");
  740. }
  741. /*
  742. * Latency for FIFO fetches is dependent on several factors:
  743. * - memory configuration (speed, channels)
  744. * - chipset
  745. * - current MCH state
  746. * It can be fairly high in some situations, so here we assume a fairly
  747. * pessimal value. It's a tradeoff between extra memory fetches (if we
  748. * set this value too high, the FIFO will fetch frequently to stay full)
  749. * and power consumption (set it too low to save power and we might see
  750. * FIFO underruns and display "flicker").
  751. *
  752. * A value of 5us seems to be a good balance; safe for very low end
  753. * platforms but not overly aggressive on lower latency configs.
  754. */
  755. static const int pessimal_latency_ns = 5000;
  756. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  757. {
  758. struct drm_i915_private *dev_priv = dev->dev_private;
  759. uint32_t dsparb = I915_READ(DSPARB);
  760. int size;
  761. size = dsparb & 0x7f;
  762. if (plane)
  763. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  764. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  765. plane ? "B" : "A", size);
  766. return size;
  767. }
  768. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  769. {
  770. struct drm_i915_private *dev_priv = dev->dev_private;
  771. uint32_t dsparb = I915_READ(DSPARB);
  772. int size;
  773. size = dsparb & 0x1ff;
  774. if (plane)
  775. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  776. size >>= 1; /* Convert to cachelines */
  777. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  778. plane ? "B" : "A", size);
  779. return size;
  780. }
  781. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  782. {
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. uint32_t dsparb = I915_READ(DSPARB);
  785. int size;
  786. size = dsparb & 0x7f;
  787. size >>= 2; /* Convert to cachelines */
  788. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  789. plane ? "B" : "A",
  790. size);
  791. return size;
  792. }
  793. /* Pineview has different values for various configs */
  794. static const struct intel_watermark_params pineview_display_wm = {
  795. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  796. .max_wm = PINEVIEW_MAX_WM,
  797. .default_wm = PINEVIEW_DFT_WM,
  798. .guard_size = PINEVIEW_GUARD_WM,
  799. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  800. };
  801. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  802. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  803. .max_wm = PINEVIEW_MAX_WM,
  804. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  805. .guard_size = PINEVIEW_GUARD_WM,
  806. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  807. };
  808. static const struct intel_watermark_params pineview_cursor_wm = {
  809. .fifo_size = PINEVIEW_CURSOR_FIFO,
  810. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  811. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  812. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  813. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  814. };
  815. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  816. .fifo_size = PINEVIEW_CURSOR_FIFO,
  817. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  818. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  819. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  820. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  821. };
  822. static const struct intel_watermark_params g4x_wm_info = {
  823. .fifo_size = G4X_FIFO_SIZE,
  824. .max_wm = G4X_MAX_WM,
  825. .default_wm = G4X_MAX_WM,
  826. .guard_size = 2,
  827. .cacheline_size = G4X_FIFO_LINE_SIZE,
  828. };
  829. static const struct intel_watermark_params g4x_cursor_wm_info = {
  830. .fifo_size = I965_CURSOR_FIFO,
  831. .max_wm = I965_CURSOR_MAX_WM,
  832. .default_wm = I965_CURSOR_DFT_WM,
  833. .guard_size = 2,
  834. .cacheline_size = G4X_FIFO_LINE_SIZE,
  835. };
  836. static const struct intel_watermark_params valleyview_wm_info = {
  837. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  838. .max_wm = VALLEYVIEW_MAX_WM,
  839. .default_wm = VALLEYVIEW_MAX_WM,
  840. .guard_size = 2,
  841. .cacheline_size = G4X_FIFO_LINE_SIZE,
  842. };
  843. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  844. .fifo_size = I965_CURSOR_FIFO,
  845. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  846. .default_wm = I965_CURSOR_DFT_WM,
  847. .guard_size = 2,
  848. .cacheline_size = G4X_FIFO_LINE_SIZE,
  849. };
  850. static const struct intel_watermark_params i965_cursor_wm_info = {
  851. .fifo_size = I965_CURSOR_FIFO,
  852. .max_wm = I965_CURSOR_MAX_WM,
  853. .default_wm = I965_CURSOR_DFT_WM,
  854. .guard_size = 2,
  855. .cacheline_size = I915_FIFO_LINE_SIZE,
  856. };
  857. static const struct intel_watermark_params i945_wm_info = {
  858. .fifo_size = I945_FIFO_SIZE,
  859. .max_wm = I915_MAX_WM,
  860. .default_wm = 1,
  861. .guard_size = 2,
  862. .cacheline_size = I915_FIFO_LINE_SIZE,
  863. };
  864. static const struct intel_watermark_params i915_wm_info = {
  865. .fifo_size = I915_FIFO_SIZE,
  866. .max_wm = I915_MAX_WM,
  867. .default_wm = 1,
  868. .guard_size = 2,
  869. .cacheline_size = I915_FIFO_LINE_SIZE,
  870. };
  871. static const struct intel_watermark_params i830_a_wm_info = {
  872. .fifo_size = I855GM_FIFO_SIZE,
  873. .max_wm = I915_MAX_WM,
  874. .default_wm = 1,
  875. .guard_size = 2,
  876. .cacheline_size = I830_FIFO_LINE_SIZE,
  877. };
  878. static const struct intel_watermark_params i830_bc_wm_info = {
  879. .fifo_size = I855GM_FIFO_SIZE,
  880. .max_wm = I915_MAX_WM/2,
  881. .default_wm = 1,
  882. .guard_size = 2,
  883. .cacheline_size = I830_FIFO_LINE_SIZE,
  884. };
  885. static const struct intel_watermark_params i845_wm_info = {
  886. .fifo_size = I830_FIFO_SIZE,
  887. .max_wm = I915_MAX_WM,
  888. .default_wm = 1,
  889. .guard_size = 2,
  890. .cacheline_size = I830_FIFO_LINE_SIZE,
  891. };
  892. /**
  893. * intel_calculate_wm - calculate watermark level
  894. * @clock_in_khz: pixel clock
  895. * @wm: chip FIFO params
  896. * @pixel_size: display pixel size
  897. * @latency_ns: memory latency for the platform
  898. *
  899. * Calculate the watermark level (the level at which the display plane will
  900. * start fetching from memory again). Each chip has a different display
  901. * FIFO size and allocation, so the caller needs to figure that out and pass
  902. * in the correct intel_watermark_params structure.
  903. *
  904. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  905. * on the pixel size. When it reaches the watermark level, it'll start
  906. * fetching FIFO line sized based chunks from memory until the FIFO fills
  907. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  908. * will occur, and a display engine hang could result.
  909. */
  910. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  911. const struct intel_watermark_params *wm,
  912. int fifo_size,
  913. int pixel_size,
  914. unsigned long latency_ns)
  915. {
  916. long entries_required, wm_size;
  917. /*
  918. * Note: we need to make sure we don't overflow for various clock &
  919. * latency values.
  920. * clocks go from a few thousand to several hundred thousand.
  921. * latency is usually a few thousand
  922. */
  923. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  924. 1000;
  925. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  926. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  927. wm_size = fifo_size - (entries_required + wm->guard_size);
  928. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  929. /* Don't promote wm_size to unsigned... */
  930. if (wm_size > (long)wm->max_wm)
  931. wm_size = wm->max_wm;
  932. if (wm_size <= 0)
  933. wm_size = wm->default_wm;
  934. return wm_size;
  935. }
  936. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  937. {
  938. struct drm_crtc *crtc, *enabled = NULL;
  939. for_each_crtc(dev, crtc) {
  940. if (intel_crtc_active(crtc)) {
  941. if (enabled)
  942. return NULL;
  943. enabled = crtc;
  944. }
  945. }
  946. return enabled;
  947. }
  948. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  949. {
  950. struct drm_device *dev = unused_crtc->dev;
  951. struct drm_i915_private *dev_priv = dev->dev_private;
  952. struct drm_crtc *crtc;
  953. const struct cxsr_latency *latency;
  954. u32 reg;
  955. unsigned long wm;
  956. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  957. dev_priv->fsb_freq, dev_priv->mem_freq);
  958. if (!latency) {
  959. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  960. intel_set_memory_cxsr(dev_priv, false);
  961. return;
  962. }
  963. crtc = single_enabled_crtc(dev);
  964. if (crtc) {
  965. const struct drm_display_mode *adjusted_mode;
  966. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  967. int clock;
  968. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  969. clock = adjusted_mode->crtc_clock;
  970. /* Display SR */
  971. wm = intel_calculate_wm(clock, &pineview_display_wm,
  972. pineview_display_wm.fifo_size,
  973. pixel_size, latency->display_sr);
  974. reg = I915_READ(DSPFW1);
  975. reg &= ~DSPFW_SR_MASK;
  976. reg |= wm << DSPFW_SR_SHIFT;
  977. I915_WRITE(DSPFW1, reg);
  978. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  979. /* cursor SR */
  980. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  981. pineview_display_wm.fifo_size,
  982. pixel_size, latency->cursor_sr);
  983. reg = I915_READ(DSPFW3);
  984. reg &= ~DSPFW_CURSOR_SR_MASK;
  985. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  986. I915_WRITE(DSPFW3, reg);
  987. /* Display HPLL off SR */
  988. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  989. pineview_display_hplloff_wm.fifo_size,
  990. pixel_size, latency->display_hpll_disable);
  991. reg = I915_READ(DSPFW3);
  992. reg &= ~DSPFW_HPLL_SR_MASK;
  993. reg |= wm & DSPFW_HPLL_SR_MASK;
  994. I915_WRITE(DSPFW3, reg);
  995. /* cursor HPLL off SR */
  996. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  997. pineview_display_hplloff_wm.fifo_size,
  998. pixel_size, latency->cursor_hpll_disable);
  999. reg = I915_READ(DSPFW3);
  1000. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1001. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1002. I915_WRITE(DSPFW3, reg);
  1003. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1004. intel_set_memory_cxsr(dev_priv, true);
  1005. } else {
  1006. intel_set_memory_cxsr(dev_priv, false);
  1007. }
  1008. }
  1009. static bool g4x_compute_wm0(struct drm_device *dev,
  1010. int plane,
  1011. const struct intel_watermark_params *display,
  1012. int display_latency_ns,
  1013. const struct intel_watermark_params *cursor,
  1014. int cursor_latency_ns,
  1015. int *plane_wm,
  1016. int *cursor_wm)
  1017. {
  1018. struct drm_crtc *crtc;
  1019. const struct drm_display_mode *adjusted_mode;
  1020. int htotal, hdisplay, clock, pixel_size;
  1021. int line_time_us, line_count;
  1022. int entries, tlb_miss;
  1023. crtc = intel_get_crtc_for_plane(dev, plane);
  1024. if (!intel_crtc_active(crtc)) {
  1025. *cursor_wm = cursor->guard_size;
  1026. *plane_wm = display->guard_size;
  1027. return false;
  1028. }
  1029. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1030. clock = adjusted_mode->crtc_clock;
  1031. htotal = adjusted_mode->crtc_htotal;
  1032. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1033. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1034. /* Use the small buffer method to calculate plane watermark */
  1035. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1036. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1037. if (tlb_miss > 0)
  1038. entries += tlb_miss;
  1039. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1040. *plane_wm = entries + display->guard_size;
  1041. if (*plane_wm > (int)display->max_wm)
  1042. *plane_wm = display->max_wm;
  1043. /* Use the large buffer method to calculate cursor watermark */
  1044. line_time_us = max(htotal * 1000 / clock, 1);
  1045. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1046. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  1047. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1048. if (tlb_miss > 0)
  1049. entries += tlb_miss;
  1050. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1051. *cursor_wm = entries + cursor->guard_size;
  1052. if (*cursor_wm > (int)cursor->max_wm)
  1053. *cursor_wm = (int)cursor->max_wm;
  1054. return true;
  1055. }
  1056. /*
  1057. * Check the wm result.
  1058. *
  1059. * If any calculated watermark values is larger than the maximum value that
  1060. * can be programmed into the associated watermark register, that watermark
  1061. * must be disabled.
  1062. */
  1063. static bool g4x_check_srwm(struct drm_device *dev,
  1064. int display_wm, int cursor_wm,
  1065. const struct intel_watermark_params *display,
  1066. const struct intel_watermark_params *cursor)
  1067. {
  1068. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1069. display_wm, cursor_wm);
  1070. if (display_wm > display->max_wm) {
  1071. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1072. display_wm, display->max_wm);
  1073. return false;
  1074. }
  1075. if (cursor_wm > cursor->max_wm) {
  1076. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1077. cursor_wm, cursor->max_wm);
  1078. return false;
  1079. }
  1080. if (!(display_wm || cursor_wm)) {
  1081. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool g4x_compute_srwm(struct drm_device *dev,
  1087. int plane,
  1088. int latency_ns,
  1089. const struct intel_watermark_params *display,
  1090. const struct intel_watermark_params *cursor,
  1091. int *display_wm, int *cursor_wm)
  1092. {
  1093. struct drm_crtc *crtc;
  1094. const struct drm_display_mode *adjusted_mode;
  1095. int hdisplay, htotal, pixel_size, clock;
  1096. unsigned long line_time_us;
  1097. int line_count, line_size;
  1098. int small, large;
  1099. int entries;
  1100. if (!latency_ns) {
  1101. *display_wm = *cursor_wm = 0;
  1102. return false;
  1103. }
  1104. crtc = intel_get_crtc_for_plane(dev, plane);
  1105. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1106. clock = adjusted_mode->crtc_clock;
  1107. htotal = adjusted_mode->crtc_htotal;
  1108. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1109. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1110. line_time_us = max(htotal * 1000 / clock, 1);
  1111. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1112. line_size = hdisplay * pixel_size;
  1113. /* Use the minimum of the small and large buffer method for primary */
  1114. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1115. large = line_count * line_size;
  1116. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1117. *display_wm = entries + display->guard_size;
  1118. /* calculate the self-refresh watermark for display cursor */
  1119. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1120. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1121. *cursor_wm = entries + cursor->guard_size;
  1122. return g4x_check_srwm(dev,
  1123. *display_wm, *cursor_wm,
  1124. display, cursor);
  1125. }
  1126. static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
  1127. int pixel_size,
  1128. int *prec_mult,
  1129. int *drain_latency)
  1130. {
  1131. int entries;
  1132. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1133. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  1134. return false;
  1135. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  1136. return false;
  1137. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  1138. *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
  1139. DRAIN_LATENCY_PRECISION_32;
  1140. *drain_latency = (64 * (*prec_mult) * 4) / entries;
  1141. if (*drain_latency > DRAIN_LATENCY_MASK)
  1142. *drain_latency = DRAIN_LATENCY_MASK;
  1143. return true;
  1144. }
  1145. /*
  1146. * Update drain latency registers of memory arbiter
  1147. *
  1148. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1149. * to be programmed. Each plane has a drain latency multiplier and a drain
  1150. * latency value.
  1151. */
  1152. static void vlv_update_drain_latency(struct drm_crtc *crtc)
  1153. {
  1154. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1155. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1156. int pixel_size;
  1157. int drain_latency;
  1158. enum pipe pipe = intel_crtc->pipe;
  1159. int plane_prec, prec_mult, plane_dl;
  1160. plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
  1161. DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
  1162. (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
  1163. if (!intel_crtc_active(crtc)) {
  1164. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1165. return;
  1166. }
  1167. /* Primary plane Drain Latency */
  1168. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1169. if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1170. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1171. DDL_PLANE_PRECISION_64 :
  1172. DDL_PLANE_PRECISION_32;
  1173. plane_dl |= plane_prec | drain_latency;
  1174. }
  1175. /* Cursor Drain Latency
  1176. * BPP is always 4 for cursor
  1177. */
  1178. pixel_size = 4;
  1179. /* Program cursor DL only if it is enabled */
  1180. if (intel_crtc->cursor_base &&
  1181. vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1182. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1183. DDL_CURSOR_PRECISION_64 :
  1184. DDL_CURSOR_PRECISION_32;
  1185. plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
  1186. }
  1187. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1188. }
  1189. #define single_plane_enabled(mask) is_power_of_2(mask)
  1190. static void valleyview_update_wm(struct drm_crtc *crtc)
  1191. {
  1192. struct drm_device *dev = crtc->dev;
  1193. static const int sr_latency_ns = 12000;
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1196. int plane_sr, cursor_sr;
  1197. int ignore_plane_sr, ignore_cursor_sr;
  1198. unsigned int enabled = 0;
  1199. bool cxsr_enabled;
  1200. vlv_update_drain_latency(crtc);
  1201. if (g4x_compute_wm0(dev, PIPE_A,
  1202. &valleyview_wm_info, pessimal_latency_ns,
  1203. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1204. &planea_wm, &cursora_wm))
  1205. enabled |= 1 << PIPE_A;
  1206. if (g4x_compute_wm0(dev, PIPE_B,
  1207. &valleyview_wm_info, pessimal_latency_ns,
  1208. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1209. &planeb_wm, &cursorb_wm))
  1210. enabled |= 1 << PIPE_B;
  1211. if (single_plane_enabled(enabled) &&
  1212. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1213. sr_latency_ns,
  1214. &valleyview_wm_info,
  1215. &valleyview_cursor_wm_info,
  1216. &plane_sr, &ignore_cursor_sr) &&
  1217. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1218. 2*sr_latency_ns,
  1219. &valleyview_wm_info,
  1220. &valleyview_cursor_wm_info,
  1221. &ignore_plane_sr, &cursor_sr)) {
  1222. cxsr_enabled = true;
  1223. } else {
  1224. cxsr_enabled = false;
  1225. intel_set_memory_cxsr(dev_priv, false);
  1226. plane_sr = cursor_sr = 0;
  1227. }
  1228. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1229. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1230. planea_wm, cursora_wm,
  1231. planeb_wm, cursorb_wm,
  1232. plane_sr, cursor_sr);
  1233. I915_WRITE(DSPFW1,
  1234. (plane_sr << DSPFW_SR_SHIFT) |
  1235. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1236. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1237. (planea_wm << DSPFW_PLANEA_SHIFT));
  1238. I915_WRITE(DSPFW2,
  1239. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1240. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1241. I915_WRITE(DSPFW3,
  1242. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1243. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1244. if (cxsr_enabled)
  1245. intel_set_memory_cxsr(dev_priv, true);
  1246. }
  1247. static void cherryview_update_wm(struct drm_crtc *crtc)
  1248. {
  1249. struct drm_device *dev = crtc->dev;
  1250. static const int sr_latency_ns = 12000;
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. int planea_wm, planeb_wm, planec_wm;
  1253. int cursora_wm, cursorb_wm, cursorc_wm;
  1254. int plane_sr, cursor_sr;
  1255. int ignore_plane_sr, ignore_cursor_sr;
  1256. unsigned int enabled = 0;
  1257. bool cxsr_enabled;
  1258. vlv_update_drain_latency(crtc);
  1259. if (g4x_compute_wm0(dev, PIPE_A,
  1260. &valleyview_wm_info, pessimal_latency_ns,
  1261. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1262. &planea_wm, &cursora_wm))
  1263. enabled |= 1 << PIPE_A;
  1264. if (g4x_compute_wm0(dev, PIPE_B,
  1265. &valleyview_wm_info, pessimal_latency_ns,
  1266. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1267. &planeb_wm, &cursorb_wm))
  1268. enabled |= 1 << PIPE_B;
  1269. if (g4x_compute_wm0(dev, PIPE_C,
  1270. &valleyview_wm_info, pessimal_latency_ns,
  1271. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1272. &planec_wm, &cursorc_wm))
  1273. enabled |= 1 << PIPE_C;
  1274. if (single_plane_enabled(enabled) &&
  1275. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1276. sr_latency_ns,
  1277. &valleyview_wm_info,
  1278. &valleyview_cursor_wm_info,
  1279. &plane_sr, &ignore_cursor_sr) &&
  1280. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1281. 2*sr_latency_ns,
  1282. &valleyview_wm_info,
  1283. &valleyview_cursor_wm_info,
  1284. &ignore_plane_sr, &cursor_sr)) {
  1285. cxsr_enabled = true;
  1286. } else {
  1287. cxsr_enabled = false;
  1288. intel_set_memory_cxsr(dev_priv, false);
  1289. plane_sr = cursor_sr = 0;
  1290. }
  1291. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1292. "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
  1293. "SR: plane=%d, cursor=%d\n",
  1294. planea_wm, cursora_wm,
  1295. planeb_wm, cursorb_wm,
  1296. planec_wm, cursorc_wm,
  1297. plane_sr, cursor_sr);
  1298. I915_WRITE(DSPFW1,
  1299. (plane_sr << DSPFW_SR_SHIFT) |
  1300. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1301. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1302. (planea_wm << DSPFW_PLANEA_SHIFT));
  1303. I915_WRITE(DSPFW2,
  1304. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1305. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1306. I915_WRITE(DSPFW3,
  1307. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1308. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1309. I915_WRITE(DSPFW9_CHV,
  1310. (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
  1311. DSPFW_CURSORC_MASK)) |
  1312. (planec_wm << DSPFW_PLANEC_SHIFT) |
  1313. (cursorc_wm << DSPFW_CURSORC_SHIFT));
  1314. if (cxsr_enabled)
  1315. intel_set_memory_cxsr(dev_priv, true);
  1316. }
  1317. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  1318. struct drm_crtc *crtc,
  1319. uint32_t sprite_width,
  1320. uint32_t sprite_height,
  1321. int pixel_size,
  1322. bool enabled, bool scaled)
  1323. {
  1324. struct drm_device *dev = crtc->dev;
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. int pipe = to_intel_plane(plane)->pipe;
  1327. int sprite = to_intel_plane(plane)->plane;
  1328. int drain_latency;
  1329. int plane_prec;
  1330. int sprite_dl;
  1331. int prec_mult;
  1332. sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
  1333. (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
  1334. if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
  1335. &drain_latency)) {
  1336. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1337. DDL_SPRITE_PRECISION_64(sprite) :
  1338. DDL_SPRITE_PRECISION_32(sprite);
  1339. sprite_dl |= plane_prec |
  1340. (drain_latency << DDL_SPRITE_SHIFT(sprite));
  1341. }
  1342. I915_WRITE(VLV_DDL(pipe), sprite_dl);
  1343. }
  1344. static void g4x_update_wm(struct drm_crtc *crtc)
  1345. {
  1346. struct drm_device *dev = crtc->dev;
  1347. static const int sr_latency_ns = 12000;
  1348. struct drm_i915_private *dev_priv = dev->dev_private;
  1349. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1350. int plane_sr, cursor_sr;
  1351. unsigned int enabled = 0;
  1352. bool cxsr_enabled;
  1353. if (g4x_compute_wm0(dev, PIPE_A,
  1354. &g4x_wm_info, pessimal_latency_ns,
  1355. &g4x_cursor_wm_info, pessimal_latency_ns,
  1356. &planea_wm, &cursora_wm))
  1357. enabled |= 1 << PIPE_A;
  1358. if (g4x_compute_wm0(dev, PIPE_B,
  1359. &g4x_wm_info, pessimal_latency_ns,
  1360. &g4x_cursor_wm_info, pessimal_latency_ns,
  1361. &planeb_wm, &cursorb_wm))
  1362. enabled |= 1 << PIPE_B;
  1363. if (single_plane_enabled(enabled) &&
  1364. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1365. sr_latency_ns,
  1366. &g4x_wm_info,
  1367. &g4x_cursor_wm_info,
  1368. &plane_sr, &cursor_sr)) {
  1369. cxsr_enabled = true;
  1370. } else {
  1371. cxsr_enabled = false;
  1372. intel_set_memory_cxsr(dev_priv, false);
  1373. plane_sr = cursor_sr = 0;
  1374. }
  1375. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1376. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1377. planea_wm, cursora_wm,
  1378. planeb_wm, cursorb_wm,
  1379. plane_sr, cursor_sr);
  1380. I915_WRITE(DSPFW1,
  1381. (plane_sr << DSPFW_SR_SHIFT) |
  1382. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1383. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1384. (planea_wm << DSPFW_PLANEA_SHIFT));
  1385. I915_WRITE(DSPFW2,
  1386. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1387. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1388. /* HPLL off in SR has some issues on G4x... disable it */
  1389. I915_WRITE(DSPFW3,
  1390. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1391. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1392. if (cxsr_enabled)
  1393. intel_set_memory_cxsr(dev_priv, true);
  1394. }
  1395. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1396. {
  1397. struct drm_device *dev = unused_crtc->dev;
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. struct drm_crtc *crtc;
  1400. int srwm = 1;
  1401. int cursor_sr = 16;
  1402. bool cxsr_enabled;
  1403. /* Calc sr entries for one plane configs */
  1404. crtc = single_enabled_crtc(dev);
  1405. if (crtc) {
  1406. /* self-refresh has much higher latency */
  1407. static const int sr_latency_ns = 12000;
  1408. const struct drm_display_mode *adjusted_mode =
  1409. &to_intel_crtc(crtc)->config.adjusted_mode;
  1410. int clock = adjusted_mode->crtc_clock;
  1411. int htotal = adjusted_mode->crtc_htotal;
  1412. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1413. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1414. unsigned long line_time_us;
  1415. int entries;
  1416. line_time_us = max(htotal * 1000 / clock, 1);
  1417. /* Use ns/us then divide to preserve precision */
  1418. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1419. pixel_size * hdisplay;
  1420. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1421. srwm = I965_FIFO_SIZE - entries;
  1422. if (srwm < 0)
  1423. srwm = 1;
  1424. srwm &= 0x1ff;
  1425. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1426. entries, srwm);
  1427. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1428. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1429. entries = DIV_ROUND_UP(entries,
  1430. i965_cursor_wm_info.cacheline_size);
  1431. cursor_sr = i965_cursor_wm_info.fifo_size -
  1432. (entries + i965_cursor_wm_info.guard_size);
  1433. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1434. cursor_sr = i965_cursor_wm_info.max_wm;
  1435. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1436. "cursor %d\n", srwm, cursor_sr);
  1437. cxsr_enabled = true;
  1438. } else {
  1439. cxsr_enabled = false;
  1440. /* Turn off self refresh if both pipes are enabled */
  1441. intel_set_memory_cxsr(dev_priv, false);
  1442. }
  1443. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1444. srwm);
  1445. /* 965 has limitations... */
  1446. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1447. (8 << DSPFW_CURSORB_SHIFT) |
  1448. (8 << DSPFW_PLANEB_SHIFT) |
  1449. (8 << DSPFW_PLANEA_SHIFT));
  1450. I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
  1451. (8 << DSPFW_PLANEC_SHIFT_OLD));
  1452. /* update cursor SR watermark */
  1453. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1454. if (cxsr_enabled)
  1455. intel_set_memory_cxsr(dev_priv, true);
  1456. }
  1457. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1458. {
  1459. struct drm_device *dev = unused_crtc->dev;
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. const struct intel_watermark_params *wm_info;
  1462. uint32_t fwater_lo;
  1463. uint32_t fwater_hi;
  1464. int cwm, srwm = 1;
  1465. int fifo_size;
  1466. int planea_wm, planeb_wm;
  1467. struct drm_crtc *crtc, *enabled = NULL;
  1468. if (IS_I945GM(dev))
  1469. wm_info = &i945_wm_info;
  1470. else if (!IS_GEN2(dev))
  1471. wm_info = &i915_wm_info;
  1472. else
  1473. wm_info = &i830_a_wm_info;
  1474. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1475. crtc = intel_get_crtc_for_plane(dev, 0);
  1476. if (intel_crtc_active(crtc)) {
  1477. const struct drm_display_mode *adjusted_mode;
  1478. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1479. if (IS_GEN2(dev))
  1480. cpp = 4;
  1481. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1482. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1483. wm_info, fifo_size, cpp,
  1484. pessimal_latency_ns);
  1485. enabled = crtc;
  1486. } else {
  1487. planea_wm = fifo_size - wm_info->guard_size;
  1488. if (planea_wm > (long)wm_info->max_wm)
  1489. planea_wm = wm_info->max_wm;
  1490. }
  1491. if (IS_GEN2(dev))
  1492. wm_info = &i830_bc_wm_info;
  1493. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1494. crtc = intel_get_crtc_for_plane(dev, 1);
  1495. if (intel_crtc_active(crtc)) {
  1496. const struct drm_display_mode *adjusted_mode;
  1497. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1498. if (IS_GEN2(dev))
  1499. cpp = 4;
  1500. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1501. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1502. wm_info, fifo_size, cpp,
  1503. pessimal_latency_ns);
  1504. if (enabled == NULL)
  1505. enabled = crtc;
  1506. else
  1507. enabled = NULL;
  1508. } else {
  1509. planeb_wm = fifo_size - wm_info->guard_size;
  1510. if (planeb_wm > (long)wm_info->max_wm)
  1511. planeb_wm = wm_info->max_wm;
  1512. }
  1513. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1514. if (IS_I915GM(dev) && enabled) {
  1515. struct drm_i915_gem_object *obj;
  1516. obj = intel_fb_obj(enabled->primary->fb);
  1517. /* self-refresh seems busted with untiled */
  1518. if (obj->tiling_mode == I915_TILING_NONE)
  1519. enabled = NULL;
  1520. }
  1521. /*
  1522. * Overlay gets an aggressive default since video jitter is bad.
  1523. */
  1524. cwm = 2;
  1525. /* Play safe and disable self-refresh before adjusting watermarks. */
  1526. intel_set_memory_cxsr(dev_priv, false);
  1527. /* Calc sr entries for one plane configs */
  1528. if (HAS_FW_BLC(dev) && enabled) {
  1529. /* self-refresh has much higher latency */
  1530. static const int sr_latency_ns = 6000;
  1531. const struct drm_display_mode *adjusted_mode =
  1532. &to_intel_crtc(enabled)->config.adjusted_mode;
  1533. int clock = adjusted_mode->crtc_clock;
  1534. int htotal = adjusted_mode->crtc_htotal;
  1535. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1536. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1537. unsigned long line_time_us;
  1538. int entries;
  1539. line_time_us = max(htotal * 1000 / clock, 1);
  1540. /* Use ns/us then divide to preserve precision */
  1541. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1542. pixel_size * hdisplay;
  1543. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1544. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1545. srwm = wm_info->fifo_size - entries;
  1546. if (srwm < 0)
  1547. srwm = 1;
  1548. if (IS_I945G(dev) || IS_I945GM(dev))
  1549. I915_WRITE(FW_BLC_SELF,
  1550. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1551. else if (IS_I915GM(dev))
  1552. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1553. }
  1554. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1555. planea_wm, planeb_wm, cwm, srwm);
  1556. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1557. fwater_hi = (cwm & 0x1f);
  1558. /* Set request length to 8 cachelines per fetch */
  1559. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1560. fwater_hi = fwater_hi | (1 << 8);
  1561. I915_WRITE(FW_BLC, fwater_lo);
  1562. I915_WRITE(FW_BLC2, fwater_hi);
  1563. if (enabled)
  1564. intel_set_memory_cxsr(dev_priv, true);
  1565. }
  1566. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1567. {
  1568. struct drm_device *dev = unused_crtc->dev;
  1569. struct drm_i915_private *dev_priv = dev->dev_private;
  1570. struct drm_crtc *crtc;
  1571. const struct drm_display_mode *adjusted_mode;
  1572. uint32_t fwater_lo;
  1573. int planea_wm;
  1574. crtc = single_enabled_crtc(dev);
  1575. if (crtc == NULL)
  1576. return;
  1577. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1578. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1579. &i845_wm_info,
  1580. dev_priv->display.get_fifo_size(dev, 0),
  1581. 4, pessimal_latency_ns);
  1582. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1583. fwater_lo |= (3<<8) | planea_wm;
  1584. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1585. I915_WRITE(FW_BLC, fwater_lo);
  1586. }
  1587. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1588. struct drm_crtc *crtc)
  1589. {
  1590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1591. uint32_t pixel_rate;
  1592. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1593. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1594. * adjust the pixel_rate here. */
  1595. if (intel_crtc->config.pch_pfit.enabled) {
  1596. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1597. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1598. pipe_w = intel_crtc->config.pipe_src_w;
  1599. pipe_h = intel_crtc->config.pipe_src_h;
  1600. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1601. pfit_h = pfit_size & 0xFFFF;
  1602. if (pipe_w < pfit_w)
  1603. pipe_w = pfit_w;
  1604. if (pipe_h < pfit_h)
  1605. pipe_h = pfit_h;
  1606. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1607. pfit_w * pfit_h);
  1608. }
  1609. return pixel_rate;
  1610. }
  1611. /* latency must be in 0.1us units. */
  1612. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1613. uint32_t latency)
  1614. {
  1615. uint64_t ret;
  1616. if (WARN(latency == 0, "Latency value missing\n"))
  1617. return UINT_MAX;
  1618. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1619. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1620. return ret;
  1621. }
  1622. /* latency must be in 0.1us units. */
  1623. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1624. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1625. uint32_t latency)
  1626. {
  1627. uint32_t ret;
  1628. if (WARN(latency == 0, "Latency value missing\n"))
  1629. return UINT_MAX;
  1630. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1631. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1632. ret = DIV_ROUND_UP(ret, 64) + 2;
  1633. return ret;
  1634. }
  1635. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1636. uint8_t bytes_per_pixel)
  1637. {
  1638. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1639. }
  1640. struct ilk_pipe_wm_parameters {
  1641. bool active;
  1642. uint32_t pipe_htotal;
  1643. uint32_t pixel_rate;
  1644. struct intel_plane_wm_parameters pri;
  1645. struct intel_plane_wm_parameters spr;
  1646. struct intel_plane_wm_parameters cur;
  1647. };
  1648. struct ilk_wm_maximums {
  1649. uint16_t pri;
  1650. uint16_t spr;
  1651. uint16_t cur;
  1652. uint16_t fbc;
  1653. };
  1654. /* used in computing the new watermarks state */
  1655. struct intel_wm_config {
  1656. unsigned int num_pipes_active;
  1657. bool sprites_enabled;
  1658. bool sprites_scaled;
  1659. };
  1660. /*
  1661. * For both WM_PIPE and WM_LP.
  1662. * mem_value must be in 0.1us units.
  1663. */
  1664. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1665. uint32_t mem_value,
  1666. bool is_lp)
  1667. {
  1668. uint32_t method1, method2;
  1669. if (!params->active || !params->pri.enabled)
  1670. return 0;
  1671. method1 = ilk_wm_method1(params->pixel_rate,
  1672. params->pri.bytes_per_pixel,
  1673. mem_value);
  1674. if (!is_lp)
  1675. return method1;
  1676. method2 = ilk_wm_method2(params->pixel_rate,
  1677. params->pipe_htotal,
  1678. params->pri.horiz_pixels,
  1679. params->pri.bytes_per_pixel,
  1680. mem_value);
  1681. return min(method1, method2);
  1682. }
  1683. /*
  1684. * For both WM_PIPE and WM_LP.
  1685. * mem_value must be in 0.1us units.
  1686. */
  1687. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1688. uint32_t mem_value)
  1689. {
  1690. uint32_t method1, method2;
  1691. if (!params->active || !params->spr.enabled)
  1692. return 0;
  1693. method1 = ilk_wm_method1(params->pixel_rate,
  1694. params->spr.bytes_per_pixel,
  1695. mem_value);
  1696. method2 = ilk_wm_method2(params->pixel_rate,
  1697. params->pipe_htotal,
  1698. params->spr.horiz_pixels,
  1699. params->spr.bytes_per_pixel,
  1700. mem_value);
  1701. return min(method1, method2);
  1702. }
  1703. /*
  1704. * For both WM_PIPE and WM_LP.
  1705. * mem_value must be in 0.1us units.
  1706. */
  1707. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1708. uint32_t mem_value)
  1709. {
  1710. if (!params->active || !params->cur.enabled)
  1711. return 0;
  1712. return ilk_wm_method2(params->pixel_rate,
  1713. params->pipe_htotal,
  1714. params->cur.horiz_pixels,
  1715. params->cur.bytes_per_pixel,
  1716. mem_value);
  1717. }
  1718. /* Only for WM_LP. */
  1719. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1720. uint32_t pri_val)
  1721. {
  1722. if (!params->active || !params->pri.enabled)
  1723. return 0;
  1724. return ilk_wm_fbc(pri_val,
  1725. params->pri.horiz_pixels,
  1726. params->pri.bytes_per_pixel);
  1727. }
  1728. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1729. {
  1730. if (INTEL_INFO(dev)->gen >= 8)
  1731. return 3072;
  1732. else if (INTEL_INFO(dev)->gen >= 7)
  1733. return 768;
  1734. else
  1735. return 512;
  1736. }
  1737. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1738. int level, bool is_sprite)
  1739. {
  1740. if (INTEL_INFO(dev)->gen >= 8)
  1741. /* BDW primary/sprite plane watermarks */
  1742. return level == 0 ? 255 : 2047;
  1743. else if (INTEL_INFO(dev)->gen >= 7)
  1744. /* IVB/HSW primary/sprite plane watermarks */
  1745. return level == 0 ? 127 : 1023;
  1746. else if (!is_sprite)
  1747. /* ILK/SNB primary plane watermarks */
  1748. return level == 0 ? 127 : 511;
  1749. else
  1750. /* ILK/SNB sprite plane watermarks */
  1751. return level == 0 ? 63 : 255;
  1752. }
  1753. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1754. int level)
  1755. {
  1756. if (INTEL_INFO(dev)->gen >= 7)
  1757. return level == 0 ? 63 : 255;
  1758. else
  1759. return level == 0 ? 31 : 63;
  1760. }
  1761. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1762. {
  1763. if (INTEL_INFO(dev)->gen >= 8)
  1764. return 31;
  1765. else
  1766. return 15;
  1767. }
  1768. /* Calculate the maximum primary/sprite plane watermark */
  1769. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1770. int level,
  1771. const struct intel_wm_config *config,
  1772. enum intel_ddb_partitioning ddb_partitioning,
  1773. bool is_sprite)
  1774. {
  1775. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1776. /* if sprites aren't enabled, sprites get nothing */
  1777. if (is_sprite && !config->sprites_enabled)
  1778. return 0;
  1779. /* HSW allows LP1+ watermarks even with multiple pipes */
  1780. if (level == 0 || config->num_pipes_active > 1) {
  1781. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1782. /*
  1783. * For some reason the non self refresh
  1784. * FIFO size is only half of the self
  1785. * refresh FIFO size on ILK/SNB.
  1786. */
  1787. if (INTEL_INFO(dev)->gen <= 6)
  1788. fifo_size /= 2;
  1789. }
  1790. if (config->sprites_enabled) {
  1791. /* level 0 is always calculated with 1:1 split */
  1792. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1793. if (is_sprite)
  1794. fifo_size *= 5;
  1795. fifo_size /= 6;
  1796. } else {
  1797. fifo_size /= 2;
  1798. }
  1799. }
  1800. /* clamp to max that the registers can hold */
  1801. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1802. }
  1803. /* Calculate the maximum cursor plane watermark */
  1804. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1805. int level,
  1806. const struct intel_wm_config *config)
  1807. {
  1808. /* HSW LP1+ watermarks w/ multiple pipes */
  1809. if (level > 0 && config->num_pipes_active > 1)
  1810. return 64;
  1811. /* otherwise just report max that registers can hold */
  1812. return ilk_cursor_wm_reg_max(dev, level);
  1813. }
  1814. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1815. int level,
  1816. const struct intel_wm_config *config,
  1817. enum intel_ddb_partitioning ddb_partitioning,
  1818. struct ilk_wm_maximums *max)
  1819. {
  1820. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1821. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1822. max->cur = ilk_cursor_wm_max(dev, level, config);
  1823. max->fbc = ilk_fbc_wm_reg_max(dev);
  1824. }
  1825. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1826. int level,
  1827. struct ilk_wm_maximums *max)
  1828. {
  1829. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1830. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1831. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1832. max->fbc = ilk_fbc_wm_reg_max(dev);
  1833. }
  1834. static bool ilk_validate_wm_level(int level,
  1835. const struct ilk_wm_maximums *max,
  1836. struct intel_wm_level *result)
  1837. {
  1838. bool ret;
  1839. /* already determined to be invalid? */
  1840. if (!result->enable)
  1841. return false;
  1842. result->enable = result->pri_val <= max->pri &&
  1843. result->spr_val <= max->spr &&
  1844. result->cur_val <= max->cur;
  1845. ret = result->enable;
  1846. /*
  1847. * HACK until we can pre-compute everything,
  1848. * and thus fail gracefully if LP0 watermarks
  1849. * are exceeded...
  1850. */
  1851. if (level == 0 && !result->enable) {
  1852. if (result->pri_val > max->pri)
  1853. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1854. level, result->pri_val, max->pri);
  1855. if (result->spr_val > max->spr)
  1856. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1857. level, result->spr_val, max->spr);
  1858. if (result->cur_val > max->cur)
  1859. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1860. level, result->cur_val, max->cur);
  1861. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1862. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1863. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1864. result->enable = true;
  1865. }
  1866. return ret;
  1867. }
  1868. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1869. int level,
  1870. const struct ilk_pipe_wm_parameters *p,
  1871. struct intel_wm_level *result)
  1872. {
  1873. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1874. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1875. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1876. /* WM1+ latency values stored in 0.5us units */
  1877. if (level > 0) {
  1878. pri_latency *= 5;
  1879. spr_latency *= 5;
  1880. cur_latency *= 5;
  1881. }
  1882. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1883. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1884. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1885. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1886. result->enable = true;
  1887. }
  1888. static uint32_t
  1889. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1890. {
  1891. struct drm_i915_private *dev_priv = dev->dev_private;
  1892. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1893. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1894. u32 linetime, ips_linetime;
  1895. if (!intel_crtc_active(crtc))
  1896. return 0;
  1897. /* The WM are computed with base on how long it takes to fill a single
  1898. * row at the given clock rate, multiplied by 8.
  1899. * */
  1900. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1901. mode->crtc_clock);
  1902. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1903. intel_ddi_get_cdclk_freq(dev_priv));
  1904. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1905. PIPE_WM_LINETIME_TIME(linetime);
  1906. }
  1907. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1908. {
  1909. struct drm_i915_private *dev_priv = dev->dev_private;
  1910. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1911. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1912. wm[0] = (sskpd >> 56) & 0xFF;
  1913. if (wm[0] == 0)
  1914. wm[0] = sskpd & 0xF;
  1915. wm[1] = (sskpd >> 4) & 0xFF;
  1916. wm[2] = (sskpd >> 12) & 0xFF;
  1917. wm[3] = (sskpd >> 20) & 0x1FF;
  1918. wm[4] = (sskpd >> 32) & 0x1FF;
  1919. } else if (INTEL_INFO(dev)->gen >= 6) {
  1920. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1921. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1922. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1923. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1924. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1925. } else if (INTEL_INFO(dev)->gen >= 5) {
  1926. uint32_t mltr = I915_READ(MLTR_ILK);
  1927. /* ILK primary LP0 latency is 700 ns */
  1928. wm[0] = 7;
  1929. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1930. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1931. }
  1932. }
  1933. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1934. {
  1935. /* ILK sprite LP0 latency is 1300 ns */
  1936. if (INTEL_INFO(dev)->gen == 5)
  1937. wm[0] = 13;
  1938. }
  1939. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1940. {
  1941. /* ILK cursor LP0 latency is 1300 ns */
  1942. if (INTEL_INFO(dev)->gen == 5)
  1943. wm[0] = 13;
  1944. /* WaDoubleCursorLP3Latency:ivb */
  1945. if (IS_IVYBRIDGE(dev))
  1946. wm[3] *= 2;
  1947. }
  1948. int ilk_wm_max_level(const struct drm_device *dev)
  1949. {
  1950. /* how many WM levels are we expecting */
  1951. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1952. return 4;
  1953. else if (INTEL_INFO(dev)->gen >= 6)
  1954. return 3;
  1955. else
  1956. return 2;
  1957. }
  1958. static void intel_print_wm_latency(struct drm_device *dev,
  1959. const char *name,
  1960. const uint16_t wm[5])
  1961. {
  1962. int level, max_level = ilk_wm_max_level(dev);
  1963. for (level = 0; level <= max_level; level++) {
  1964. unsigned int latency = wm[level];
  1965. if (latency == 0) {
  1966. DRM_ERROR("%s WM%d latency not provided\n",
  1967. name, level);
  1968. continue;
  1969. }
  1970. /* WM1+ latency values in 0.5us units */
  1971. if (level > 0)
  1972. latency *= 5;
  1973. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1974. name, level, wm[level],
  1975. latency / 10, latency % 10);
  1976. }
  1977. }
  1978. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1979. uint16_t wm[5], uint16_t min)
  1980. {
  1981. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1982. if (wm[0] >= min)
  1983. return false;
  1984. wm[0] = max(wm[0], min);
  1985. for (level = 1; level <= max_level; level++)
  1986. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1987. return true;
  1988. }
  1989. static void snb_wm_latency_quirk(struct drm_device *dev)
  1990. {
  1991. struct drm_i915_private *dev_priv = dev->dev_private;
  1992. bool changed;
  1993. /*
  1994. * The BIOS provided WM memory latency values are often
  1995. * inadequate for high resolution displays. Adjust them.
  1996. */
  1997. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1998. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1999. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2000. if (!changed)
  2001. return;
  2002. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2003. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2004. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2005. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2006. }
  2007. static void ilk_setup_wm_latency(struct drm_device *dev)
  2008. {
  2009. struct drm_i915_private *dev_priv = dev->dev_private;
  2010. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2011. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2012. sizeof(dev_priv->wm.pri_latency));
  2013. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2014. sizeof(dev_priv->wm.pri_latency));
  2015. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2016. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2017. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2018. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2019. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2020. if (IS_GEN6(dev))
  2021. snb_wm_latency_quirk(dev);
  2022. }
  2023. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  2024. struct ilk_pipe_wm_parameters *p)
  2025. {
  2026. struct drm_device *dev = crtc->dev;
  2027. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2028. enum pipe pipe = intel_crtc->pipe;
  2029. struct drm_plane *plane;
  2030. if (!intel_crtc_active(crtc))
  2031. return;
  2032. p->active = true;
  2033. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  2034. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2035. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  2036. p->cur.bytes_per_pixel = 4;
  2037. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2038. p->cur.horiz_pixels = intel_crtc->cursor_width;
  2039. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2040. p->pri.enabled = true;
  2041. p->cur.enabled = true;
  2042. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  2043. struct intel_plane *intel_plane = to_intel_plane(plane);
  2044. if (intel_plane->pipe == pipe) {
  2045. p->spr = intel_plane->wm;
  2046. break;
  2047. }
  2048. }
  2049. }
  2050. static void ilk_compute_wm_config(struct drm_device *dev,
  2051. struct intel_wm_config *config)
  2052. {
  2053. struct intel_crtc *intel_crtc;
  2054. /* Compute the currently _active_ config */
  2055. for_each_intel_crtc(dev, intel_crtc) {
  2056. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  2057. if (!wm->pipe_enabled)
  2058. continue;
  2059. config->sprites_enabled |= wm->sprites_enabled;
  2060. config->sprites_scaled |= wm->sprites_scaled;
  2061. config->num_pipes_active++;
  2062. }
  2063. }
  2064. /* Compute new watermarks for the pipe */
  2065. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2066. const struct ilk_pipe_wm_parameters *params,
  2067. struct intel_pipe_wm *pipe_wm)
  2068. {
  2069. struct drm_device *dev = crtc->dev;
  2070. const struct drm_i915_private *dev_priv = dev->dev_private;
  2071. int level, max_level = ilk_wm_max_level(dev);
  2072. /* LP0 watermark maximums depend on this pipe alone */
  2073. struct intel_wm_config config = {
  2074. .num_pipes_active = 1,
  2075. .sprites_enabled = params->spr.enabled,
  2076. .sprites_scaled = params->spr.scaled,
  2077. };
  2078. struct ilk_wm_maximums max;
  2079. pipe_wm->pipe_enabled = params->active;
  2080. pipe_wm->sprites_enabled = params->spr.enabled;
  2081. pipe_wm->sprites_scaled = params->spr.scaled;
  2082. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2083. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  2084. max_level = 1;
  2085. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2086. if (params->spr.scaled)
  2087. max_level = 0;
  2088. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  2089. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2090. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2091. /* LP0 watermarks always use 1/2 DDB partitioning */
  2092. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2093. /* At least LP0 must be valid */
  2094. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  2095. return false;
  2096. ilk_compute_wm_reg_maximums(dev, 1, &max);
  2097. for (level = 1; level <= max_level; level++) {
  2098. struct intel_wm_level wm = {};
  2099. ilk_compute_wm_level(dev_priv, level, params, &wm);
  2100. /*
  2101. * Disable any watermark level that exceeds the
  2102. * register maximums since such watermarks are
  2103. * always invalid.
  2104. */
  2105. if (!ilk_validate_wm_level(level, &max, &wm))
  2106. break;
  2107. pipe_wm->wm[level] = wm;
  2108. }
  2109. return true;
  2110. }
  2111. /*
  2112. * Merge the watermarks from all active pipes for a specific level.
  2113. */
  2114. static void ilk_merge_wm_level(struct drm_device *dev,
  2115. int level,
  2116. struct intel_wm_level *ret_wm)
  2117. {
  2118. const struct intel_crtc *intel_crtc;
  2119. ret_wm->enable = true;
  2120. for_each_intel_crtc(dev, intel_crtc) {
  2121. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2122. const struct intel_wm_level *wm = &active->wm[level];
  2123. if (!active->pipe_enabled)
  2124. continue;
  2125. /*
  2126. * The watermark values may have been used in the past,
  2127. * so we must maintain them in the registers for some
  2128. * time even if the level is now disabled.
  2129. */
  2130. if (!wm->enable)
  2131. ret_wm->enable = false;
  2132. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2133. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2134. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2135. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2136. }
  2137. }
  2138. /*
  2139. * Merge all low power watermarks for all active pipes.
  2140. */
  2141. static void ilk_wm_merge(struct drm_device *dev,
  2142. const struct intel_wm_config *config,
  2143. const struct ilk_wm_maximums *max,
  2144. struct intel_pipe_wm *merged)
  2145. {
  2146. int level, max_level = ilk_wm_max_level(dev);
  2147. int last_enabled_level = max_level;
  2148. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2149. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2150. config->num_pipes_active > 1)
  2151. return;
  2152. /* ILK: FBC WM must be disabled always */
  2153. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2154. /* merge each WM1+ level */
  2155. for (level = 1; level <= max_level; level++) {
  2156. struct intel_wm_level *wm = &merged->wm[level];
  2157. ilk_merge_wm_level(dev, level, wm);
  2158. if (level > last_enabled_level)
  2159. wm->enable = false;
  2160. else if (!ilk_validate_wm_level(level, max, wm))
  2161. /* make sure all following levels get disabled */
  2162. last_enabled_level = level - 1;
  2163. /*
  2164. * The spec says it is preferred to disable
  2165. * FBC WMs instead of disabling a WM level.
  2166. */
  2167. if (wm->fbc_val > max->fbc) {
  2168. if (wm->enable)
  2169. merged->fbc_wm_enabled = false;
  2170. wm->fbc_val = 0;
  2171. }
  2172. }
  2173. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2174. /*
  2175. * FIXME this is racy. FBC might get enabled later.
  2176. * What we should check here is whether FBC can be
  2177. * enabled sometime later.
  2178. */
  2179. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2180. for (level = 2; level <= max_level; level++) {
  2181. struct intel_wm_level *wm = &merged->wm[level];
  2182. wm->enable = false;
  2183. }
  2184. }
  2185. }
  2186. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2187. {
  2188. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2189. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2190. }
  2191. /* The value we need to program into the WM_LPx latency field */
  2192. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2193. {
  2194. struct drm_i915_private *dev_priv = dev->dev_private;
  2195. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2196. return 2 * level;
  2197. else
  2198. return dev_priv->wm.pri_latency[level];
  2199. }
  2200. static void ilk_compute_wm_results(struct drm_device *dev,
  2201. const struct intel_pipe_wm *merged,
  2202. enum intel_ddb_partitioning partitioning,
  2203. struct ilk_wm_values *results)
  2204. {
  2205. struct intel_crtc *intel_crtc;
  2206. int level, wm_lp;
  2207. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2208. results->partitioning = partitioning;
  2209. /* LP1+ register values */
  2210. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2211. const struct intel_wm_level *r;
  2212. level = ilk_wm_lp_to_level(wm_lp, merged);
  2213. r = &merged->wm[level];
  2214. /*
  2215. * Maintain the watermark values even if the level is
  2216. * disabled. Doing otherwise could cause underruns.
  2217. */
  2218. results->wm_lp[wm_lp - 1] =
  2219. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2220. (r->pri_val << WM1_LP_SR_SHIFT) |
  2221. r->cur_val;
  2222. if (r->enable)
  2223. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2224. if (INTEL_INFO(dev)->gen >= 8)
  2225. results->wm_lp[wm_lp - 1] |=
  2226. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2227. else
  2228. results->wm_lp[wm_lp - 1] |=
  2229. r->fbc_val << WM1_LP_FBC_SHIFT;
  2230. /*
  2231. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2232. * level is disabled. Doing otherwise could cause underruns.
  2233. */
  2234. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2235. WARN_ON(wm_lp != 1);
  2236. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2237. } else
  2238. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2239. }
  2240. /* LP0 register values */
  2241. for_each_intel_crtc(dev, intel_crtc) {
  2242. enum pipe pipe = intel_crtc->pipe;
  2243. const struct intel_wm_level *r =
  2244. &intel_crtc->wm.active.wm[0];
  2245. if (WARN_ON(!r->enable))
  2246. continue;
  2247. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2248. results->wm_pipe[pipe] =
  2249. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2250. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2251. r->cur_val;
  2252. }
  2253. }
  2254. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2255. * case both are at the same level. Prefer r1 in case they're the same. */
  2256. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2257. struct intel_pipe_wm *r1,
  2258. struct intel_pipe_wm *r2)
  2259. {
  2260. int level, max_level = ilk_wm_max_level(dev);
  2261. int level1 = 0, level2 = 0;
  2262. for (level = 1; level <= max_level; level++) {
  2263. if (r1->wm[level].enable)
  2264. level1 = level;
  2265. if (r2->wm[level].enable)
  2266. level2 = level;
  2267. }
  2268. if (level1 == level2) {
  2269. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2270. return r2;
  2271. else
  2272. return r1;
  2273. } else if (level1 > level2) {
  2274. return r1;
  2275. } else {
  2276. return r2;
  2277. }
  2278. }
  2279. /* dirty bits used to track which watermarks need changes */
  2280. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2281. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2282. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2283. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2284. #define WM_DIRTY_FBC (1 << 24)
  2285. #define WM_DIRTY_DDB (1 << 25)
  2286. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2287. const struct ilk_wm_values *old,
  2288. const struct ilk_wm_values *new)
  2289. {
  2290. unsigned int dirty = 0;
  2291. enum pipe pipe;
  2292. int wm_lp;
  2293. for_each_pipe(dev_priv, pipe) {
  2294. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2295. dirty |= WM_DIRTY_LINETIME(pipe);
  2296. /* Must disable LP1+ watermarks too */
  2297. dirty |= WM_DIRTY_LP_ALL;
  2298. }
  2299. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2300. dirty |= WM_DIRTY_PIPE(pipe);
  2301. /* Must disable LP1+ watermarks too */
  2302. dirty |= WM_DIRTY_LP_ALL;
  2303. }
  2304. }
  2305. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2306. dirty |= WM_DIRTY_FBC;
  2307. /* Must disable LP1+ watermarks too */
  2308. dirty |= WM_DIRTY_LP_ALL;
  2309. }
  2310. if (old->partitioning != new->partitioning) {
  2311. dirty |= WM_DIRTY_DDB;
  2312. /* Must disable LP1+ watermarks too */
  2313. dirty |= WM_DIRTY_LP_ALL;
  2314. }
  2315. /* LP1+ watermarks already deemed dirty, no need to continue */
  2316. if (dirty & WM_DIRTY_LP_ALL)
  2317. return dirty;
  2318. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2319. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2320. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2321. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2322. break;
  2323. }
  2324. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2325. for (; wm_lp <= 3; wm_lp++)
  2326. dirty |= WM_DIRTY_LP(wm_lp);
  2327. return dirty;
  2328. }
  2329. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2330. unsigned int dirty)
  2331. {
  2332. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2333. bool changed = false;
  2334. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2335. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2336. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2337. changed = true;
  2338. }
  2339. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2340. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2341. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2342. changed = true;
  2343. }
  2344. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2345. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2346. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2347. changed = true;
  2348. }
  2349. /*
  2350. * Don't touch WM1S_LP_EN here.
  2351. * Doing so could cause underruns.
  2352. */
  2353. return changed;
  2354. }
  2355. /*
  2356. * The spec says we shouldn't write when we don't need, because every write
  2357. * causes WMs to be re-evaluated, expending some power.
  2358. */
  2359. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2360. struct ilk_wm_values *results)
  2361. {
  2362. struct drm_device *dev = dev_priv->dev;
  2363. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2364. unsigned int dirty;
  2365. uint32_t val;
  2366. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2367. if (!dirty)
  2368. return;
  2369. _ilk_disable_lp_wm(dev_priv, dirty);
  2370. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2371. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2372. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2373. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2374. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2375. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2376. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2377. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2378. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2379. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2380. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2381. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2382. if (dirty & WM_DIRTY_DDB) {
  2383. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2384. val = I915_READ(WM_MISC);
  2385. if (results->partitioning == INTEL_DDB_PART_1_2)
  2386. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2387. else
  2388. val |= WM_MISC_DATA_PARTITION_5_6;
  2389. I915_WRITE(WM_MISC, val);
  2390. } else {
  2391. val = I915_READ(DISP_ARB_CTL2);
  2392. if (results->partitioning == INTEL_DDB_PART_1_2)
  2393. val &= ~DISP_DATA_PARTITION_5_6;
  2394. else
  2395. val |= DISP_DATA_PARTITION_5_6;
  2396. I915_WRITE(DISP_ARB_CTL2, val);
  2397. }
  2398. }
  2399. if (dirty & WM_DIRTY_FBC) {
  2400. val = I915_READ(DISP_ARB_CTL);
  2401. if (results->enable_fbc_wm)
  2402. val &= ~DISP_FBC_WM_DIS;
  2403. else
  2404. val |= DISP_FBC_WM_DIS;
  2405. I915_WRITE(DISP_ARB_CTL, val);
  2406. }
  2407. if (dirty & WM_DIRTY_LP(1) &&
  2408. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2409. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2410. if (INTEL_INFO(dev)->gen >= 7) {
  2411. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2412. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2413. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2414. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2415. }
  2416. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2417. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2418. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2419. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2420. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2421. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2422. dev_priv->wm.hw = *results;
  2423. }
  2424. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2425. {
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2428. }
  2429. static void ilk_update_wm(struct drm_crtc *crtc)
  2430. {
  2431. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2432. struct drm_device *dev = crtc->dev;
  2433. struct drm_i915_private *dev_priv = dev->dev_private;
  2434. struct ilk_wm_maximums max;
  2435. struct ilk_pipe_wm_parameters params = {};
  2436. struct ilk_wm_values results = {};
  2437. enum intel_ddb_partitioning partitioning;
  2438. struct intel_pipe_wm pipe_wm = {};
  2439. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2440. struct intel_wm_config config = {};
  2441. ilk_compute_wm_parameters(crtc, &params);
  2442. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2443. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2444. return;
  2445. intel_crtc->wm.active = pipe_wm;
  2446. ilk_compute_wm_config(dev, &config);
  2447. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2448. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2449. /* 5/6 split only in single pipe config on IVB+ */
  2450. if (INTEL_INFO(dev)->gen >= 7 &&
  2451. config.num_pipes_active == 1 && config.sprites_enabled) {
  2452. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2453. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2454. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2455. } else {
  2456. best_lp_wm = &lp_wm_1_2;
  2457. }
  2458. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2459. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2460. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2461. ilk_write_wm_values(dev_priv, &results);
  2462. }
  2463. static void
  2464. ilk_update_sprite_wm(struct drm_plane *plane,
  2465. struct drm_crtc *crtc,
  2466. uint32_t sprite_width, uint32_t sprite_height,
  2467. int pixel_size, bool enabled, bool scaled)
  2468. {
  2469. struct drm_device *dev = plane->dev;
  2470. struct intel_plane *intel_plane = to_intel_plane(plane);
  2471. intel_plane->wm.enabled = enabled;
  2472. intel_plane->wm.scaled = scaled;
  2473. intel_plane->wm.horiz_pixels = sprite_width;
  2474. intel_plane->wm.vert_pixels = sprite_width;
  2475. intel_plane->wm.bytes_per_pixel = pixel_size;
  2476. /*
  2477. * IVB workaround: must disable low power watermarks for at least
  2478. * one frame before enabling scaling. LP watermarks can be re-enabled
  2479. * when scaling is disabled.
  2480. *
  2481. * WaCxSRDisabledForSpriteScaling:ivb
  2482. */
  2483. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2484. intel_wait_for_vblank(dev, intel_plane->pipe);
  2485. ilk_update_wm(crtc);
  2486. }
  2487. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2488. {
  2489. struct drm_device *dev = crtc->dev;
  2490. struct drm_i915_private *dev_priv = dev->dev_private;
  2491. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2492. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2493. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2494. enum pipe pipe = intel_crtc->pipe;
  2495. static const unsigned int wm0_pipe_reg[] = {
  2496. [PIPE_A] = WM0_PIPEA_ILK,
  2497. [PIPE_B] = WM0_PIPEB_ILK,
  2498. [PIPE_C] = WM0_PIPEC_IVB,
  2499. };
  2500. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2501. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2502. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2503. active->pipe_enabled = intel_crtc_active(crtc);
  2504. if (active->pipe_enabled) {
  2505. u32 tmp = hw->wm_pipe[pipe];
  2506. /*
  2507. * For active pipes LP0 watermark is marked as
  2508. * enabled, and LP1+ watermaks as disabled since
  2509. * we can't really reverse compute them in case
  2510. * multiple pipes are active.
  2511. */
  2512. active->wm[0].enable = true;
  2513. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2514. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2515. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2516. active->linetime = hw->wm_linetime[pipe];
  2517. } else {
  2518. int level, max_level = ilk_wm_max_level(dev);
  2519. /*
  2520. * For inactive pipes, all watermark levels
  2521. * should be marked as enabled but zeroed,
  2522. * which is what we'd compute them to.
  2523. */
  2524. for (level = 0; level <= max_level; level++)
  2525. active->wm[level].enable = true;
  2526. }
  2527. }
  2528. void ilk_wm_get_hw_state(struct drm_device *dev)
  2529. {
  2530. struct drm_i915_private *dev_priv = dev->dev_private;
  2531. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2532. struct drm_crtc *crtc;
  2533. for_each_crtc(dev, crtc)
  2534. ilk_pipe_wm_get_hw_state(crtc);
  2535. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2536. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2537. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2538. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2539. if (INTEL_INFO(dev)->gen >= 7) {
  2540. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2541. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2542. }
  2543. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2544. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2545. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2546. else if (IS_IVYBRIDGE(dev))
  2547. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2548. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2549. hw->enable_fbc_wm =
  2550. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2551. }
  2552. /**
  2553. * intel_update_watermarks - update FIFO watermark values based on current modes
  2554. *
  2555. * Calculate watermark values for the various WM regs based on current mode
  2556. * and plane configuration.
  2557. *
  2558. * There are several cases to deal with here:
  2559. * - normal (i.e. non-self-refresh)
  2560. * - self-refresh (SR) mode
  2561. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2562. * - lines are small relative to FIFO size (buffer can hold more than 2
  2563. * lines), so need to account for TLB latency
  2564. *
  2565. * The normal calculation is:
  2566. * watermark = dotclock * bytes per pixel * latency
  2567. * where latency is platform & configuration dependent (we assume pessimal
  2568. * values here).
  2569. *
  2570. * The SR calculation is:
  2571. * watermark = (trunc(latency/line time)+1) * surface width *
  2572. * bytes per pixel
  2573. * where
  2574. * line time = htotal / dotclock
  2575. * surface width = hdisplay for normal plane and 64 for cursor
  2576. * and latency is assumed to be high, as above.
  2577. *
  2578. * The final value programmed to the register should always be rounded up,
  2579. * and include an extra 2 entries to account for clock crossings.
  2580. *
  2581. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2582. * to set the non-SR watermarks to 8.
  2583. */
  2584. void intel_update_watermarks(struct drm_crtc *crtc)
  2585. {
  2586. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2587. if (dev_priv->display.update_wm)
  2588. dev_priv->display.update_wm(crtc);
  2589. }
  2590. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2591. struct drm_crtc *crtc,
  2592. uint32_t sprite_width,
  2593. uint32_t sprite_height,
  2594. int pixel_size,
  2595. bool enabled, bool scaled)
  2596. {
  2597. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2598. if (dev_priv->display.update_sprite_wm)
  2599. dev_priv->display.update_sprite_wm(plane, crtc,
  2600. sprite_width, sprite_height,
  2601. pixel_size, enabled, scaled);
  2602. }
  2603. static struct drm_i915_gem_object *
  2604. intel_alloc_context_page(struct drm_device *dev)
  2605. {
  2606. struct drm_i915_gem_object *ctx;
  2607. int ret;
  2608. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2609. ctx = i915_gem_alloc_object(dev, 4096);
  2610. if (!ctx) {
  2611. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2612. return NULL;
  2613. }
  2614. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2615. if (ret) {
  2616. DRM_ERROR("failed to pin power context: %d\n", ret);
  2617. goto err_unref;
  2618. }
  2619. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2620. if (ret) {
  2621. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2622. goto err_unpin;
  2623. }
  2624. return ctx;
  2625. err_unpin:
  2626. i915_gem_object_ggtt_unpin(ctx);
  2627. err_unref:
  2628. drm_gem_object_unreference(&ctx->base);
  2629. return NULL;
  2630. }
  2631. /**
  2632. * Lock protecting IPS related data structures
  2633. */
  2634. DEFINE_SPINLOCK(mchdev_lock);
  2635. /* Global for IPS driver to get at the current i915 device. Protected by
  2636. * mchdev_lock. */
  2637. static struct drm_i915_private *i915_mch_dev;
  2638. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2639. {
  2640. struct drm_i915_private *dev_priv = dev->dev_private;
  2641. u16 rgvswctl;
  2642. assert_spin_locked(&mchdev_lock);
  2643. rgvswctl = I915_READ16(MEMSWCTL);
  2644. if (rgvswctl & MEMCTL_CMD_STS) {
  2645. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2646. return false; /* still busy with another command */
  2647. }
  2648. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2649. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2650. I915_WRITE16(MEMSWCTL, rgvswctl);
  2651. POSTING_READ16(MEMSWCTL);
  2652. rgvswctl |= MEMCTL_CMD_STS;
  2653. I915_WRITE16(MEMSWCTL, rgvswctl);
  2654. return true;
  2655. }
  2656. static void ironlake_enable_drps(struct drm_device *dev)
  2657. {
  2658. struct drm_i915_private *dev_priv = dev->dev_private;
  2659. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2660. u8 fmax, fmin, fstart, vstart;
  2661. spin_lock_irq(&mchdev_lock);
  2662. /* Enable temp reporting */
  2663. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2664. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2665. /* 100ms RC evaluation intervals */
  2666. I915_WRITE(RCUPEI, 100000);
  2667. I915_WRITE(RCDNEI, 100000);
  2668. /* Set max/min thresholds to 90ms and 80ms respectively */
  2669. I915_WRITE(RCBMAXAVG, 90000);
  2670. I915_WRITE(RCBMINAVG, 80000);
  2671. I915_WRITE(MEMIHYST, 1);
  2672. /* Set up min, max, and cur for interrupt handling */
  2673. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2674. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2675. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2676. MEMMODE_FSTART_SHIFT;
  2677. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2678. PXVFREQ_PX_SHIFT;
  2679. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2680. dev_priv->ips.fstart = fstart;
  2681. dev_priv->ips.max_delay = fstart;
  2682. dev_priv->ips.min_delay = fmin;
  2683. dev_priv->ips.cur_delay = fstart;
  2684. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2685. fmax, fmin, fstart);
  2686. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2687. /*
  2688. * Interrupts will be enabled in ironlake_irq_postinstall
  2689. */
  2690. I915_WRITE(VIDSTART, vstart);
  2691. POSTING_READ(VIDSTART);
  2692. rgvmodectl |= MEMMODE_SWMODE_EN;
  2693. I915_WRITE(MEMMODECTL, rgvmodectl);
  2694. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2695. DRM_ERROR("stuck trying to change perf mode\n");
  2696. mdelay(1);
  2697. ironlake_set_drps(dev, fstart);
  2698. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2699. I915_READ(0x112e0);
  2700. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2701. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2702. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  2703. spin_unlock_irq(&mchdev_lock);
  2704. }
  2705. static void ironlake_disable_drps(struct drm_device *dev)
  2706. {
  2707. struct drm_i915_private *dev_priv = dev->dev_private;
  2708. u16 rgvswctl;
  2709. spin_lock_irq(&mchdev_lock);
  2710. rgvswctl = I915_READ16(MEMSWCTL);
  2711. /* Ack interrupts, disable EFC interrupt */
  2712. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2713. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2714. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2715. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2716. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2717. /* Go back to the starting frequency */
  2718. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2719. mdelay(1);
  2720. rgvswctl |= MEMCTL_CMD_STS;
  2721. I915_WRITE(MEMSWCTL, rgvswctl);
  2722. mdelay(1);
  2723. spin_unlock_irq(&mchdev_lock);
  2724. }
  2725. /* There's a funny hw issue where the hw returns all 0 when reading from
  2726. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2727. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2728. * all limits and the gpu stuck at whatever frequency it is at atm).
  2729. */
  2730. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2731. {
  2732. u32 limits;
  2733. /* Only set the down limit when we've reached the lowest level to avoid
  2734. * getting more interrupts, otherwise leave this clear. This prevents a
  2735. * race in the hw when coming out of rc6: There's a tiny window where
  2736. * the hw runs at the minimal clock before selecting the desired
  2737. * frequency, if the down threshold expires in that window we will not
  2738. * receive a down interrupt. */
  2739. limits = dev_priv->rps.max_freq_softlimit << 24;
  2740. if (val <= dev_priv->rps.min_freq_softlimit)
  2741. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2742. return limits;
  2743. }
  2744. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2745. {
  2746. int new_power;
  2747. if (dev_priv->rps.is_bdw_sw_turbo)
  2748. return;
  2749. new_power = dev_priv->rps.power;
  2750. switch (dev_priv->rps.power) {
  2751. case LOW_POWER:
  2752. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2753. new_power = BETWEEN;
  2754. break;
  2755. case BETWEEN:
  2756. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2757. new_power = LOW_POWER;
  2758. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2759. new_power = HIGH_POWER;
  2760. break;
  2761. case HIGH_POWER:
  2762. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2763. new_power = BETWEEN;
  2764. break;
  2765. }
  2766. /* Max/min bins are special */
  2767. if (val == dev_priv->rps.min_freq_softlimit)
  2768. new_power = LOW_POWER;
  2769. if (val == dev_priv->rps.max_freq_softlimit)
  2770. new_power = HIGH_POWER;
  2771. if (new_power == dev_priv->rps.power)
  2772. return;
  2773. /* Note the units here are not exactly 1us, but 1280ns. */
  2774. switch (new_power) {
  2775. case LOW_POWER:
  2776. /* Upclock if more than 95% busy over 16ms */
  2777. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2778. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2779. /* Downclock if less than 85% busy over 32ms */
  2780. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2781. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2782. I915_WRITE(GEN6_RP_CONTROL,
  2783. GEN6_RP_MEDIA_TURBO |
  2784. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2785. GEN6_RP_MEDIA_IS_GFX |
  2786. GEN6_RP_ENABLE |
  2787. GEN6_RP_UP_BUSY_AVG |
  2788. GEN6_RP_DOWN_IDLE_AVG);
  2789. break;
  2790. case BETWEEN:
  2791. /* Upclock if more than 90% busy over 13ms */
  2792. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2793. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2794. /* Downclock if less than 75% busy over 32ms */
  2795. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2796. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2797. I915_WRITE(GEN6_RP_CONTROL,
  2798. GEN6_RP_MEDIA_TURBO |
  2799. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2800. GEN6_RP_MEDIA_IS_GFX |
  2801. GEN6_RP_ENABLE |
  2802. GEN6_RP_UP_BUSY_AVG |
  2803. GEN6_RP_DOWN_IDLE_AVG);
  2804. break;
  2805. case HIGH_POWER:
  2806. /* Upclock if more than 85% busy over 10ms */
  2807. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2808. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2809. /* Downclock if less than 60% busy over 32ms */
  2810. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2811. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2812. I915_WRITE(GEN6_RP_CONTROL,
  2813. GEN6_RP_MEDIA_TURBO |
  2814. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2815. GEN6_RP_MEDIA_IS_GFX |
  2816. GEN6_RP_ENABLE |
  2817. GEN6_RP_UP_BUSY_AVG |
  2818. GEN6_RP_DOWN_IDLE_AVG);
  2819. break;
  2820. }
  2821. dev_priv->rps.power = new_power;
  2822. dev_priv->rps.last_adj = 0;
  2823. }
  2824. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2825. {
  2826. u32 mask = 0;
  2827. if (val > dev_priv->rps.min_freq_softlimit)
  2828. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2829. if (val < dev_priv->rps.max_freq_softlimit)
  2830. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2831. mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
  2832. mask &= dev_priv->pm_rps_events;
  2833. /* IVB and SNB hard hangs on looping batchbuffer
  2834. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2835. */
  2836. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2837. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2838. if (IS_GEN8(dev_priv->dev))
  2839. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2840. return ~mask;
  2841. }
  2842. /* gen6_set_rps is called to update the frequency request, but should also be
  2843. * called when the range (min_delay and max_delay) is modified so that we can
  2844. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2845. void gen6_set_rps(struct drm_device *dev, u8 val)
  2846. {
  2847. struct drm_i915_private *dev_priv = dev->dev_private;
  2848. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2849. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2850. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2851. /* min/max delay may still have been modified so be sure to
  2852. * write the limits value.
  2853. */
  2854. if (val != dev_priv->rps.cur_freq) {
  2855. gen6_set_rps_thresholds(dev_priv, val);
  2856. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2857. I915_WRITE(GEN6_RPNSWREQ,
  2858. HSW_FREQUENCY(val));
  2859. else
  2860. I915_WRITE(GEN6_RPNSWREQ,
  2861. GEN6_FREQUENCY(val) |
  2862. GEN6_OFFSET(0) |
  2863. GEN6_AGGRESSIVE_TURBO);
  2864. }
  2865. /* Make sure we continue to get interrupts
  2866. * until we hit the minimum or maximum frequencies.
  2867. */
  2868. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2869. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2870. POSTING_READ(GEN6_RPNSWREQ);
  2871. dev_priv->rps.cur_freq = val;
  2872. trace_intel_gpu_freq_change(val * 50);
  2873. }
  2874. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2875. *
  2876. * * If Gfx is Idle, then
  2877. * 1. Mask Turbo interrupts
  2878. * 2. Bring up Gfx clock
  2879. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2880. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2881. * 5. Unmask Turbo interrupts
  2882. */
  2883. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2884. {
  2885. struct drm_device *dev = dev_priv->dev;
  2886. /* Latest VLV doesn't need to force the gfx clock */
  2887. if (dev->pdev->revision >= 0xd) {
  2888. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2889. return;
  2890. }
  2891. /*
  2892. * When we are idle. Drop to min voltage state.
  2893. */
  2894. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2895. return;
  2896. /* Mask turbo interrupt so that they will not come in between */
  2897. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2898. vlv_force_gfx_clock(dev_priv, true);
  2899. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2900. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2901. dev_priv->rps.min_freq_softlimit);
  2902. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2903. & GENFREQSTATUS) == 0, 5))
  2904. DRM_ERROR("timed out waiting for Punit\n");
  2905. vlv_force_gfx_clock(dev_priv, false);
  2906. I915_WRITE(GEN6_PMINTRMSK,
  2907. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2908. }
  2909. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2910. {
  2911. struct drm_device *dev = dev_priv->dev;
  2912. mutex_lock(&dev_priv->rps.hw_lock);
  2913. if (dev_priv->rps.enabled) {
  2914. if (IS_CHERRYVIEW(dev))
  2915. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2916. else if (IS_VALLEYVIEW(dev))
  2917. vlv_set_rps_idle(dev_priv);
  2918. else if (!dev_priv->rps.is_bdw_sw_turbo
  2919. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2920. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2921. }
  2922. dev_priv->rps.last_adj = 0;
  2923. }
  2924. mutex_unlock(&dev_priv->rps.hw_lock);
  2925. }
  2926. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2927. {
  2928. struct drm_device *dev = dev_priv->dev;
  2929. mutex_lock(&dev_priv->rps.hw_lock);
  2930. if (dev_priv->rps.enabled) {
  2931. if (IS_VALLEYVIEW(dev))
  2932. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2933. else if (!dev_priv->rps.is_bdw_sw_turbo
  2934. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2935. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2936. }
  2937. dev_priv->rps.last_adj = 0;
  2938. }
  2939. mutex_unlock(&dev_priv->rps.hw_lock);
  2940. }
  2941. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2942. {
  2943. struct drm_i915_private *dev_priv = dev->dev_private;
  2944. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2945. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2946. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2947. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2948. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2949. dev_priv->rps.cur_freq,
  2950. vlv_gpu_freq(dev_priv, val), val);
  2951. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  2952. "Odd GPU freq value\n"))
  2953. val &= ~1;
  2954. if (val != dev_priv->rps.cur_freq)
  2955. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2956. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2957. dev_priv->rps.cur_freq = val;
  2958. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2959. }
  2960. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2961. {
  2962. struct drm_i915_private *dev_priv = dev->dev_private;
  2963. if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
  2964. if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
  2965. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  2966. dev_priv-> rps.is_bdw_sw_turbo = false;
  2967. } else {
  2968. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2969. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2970. ~dev_priv->pm_rps_events);
  2971. /* Complete PM interrupt masking here doesn't race with the rps work
  2972. * item again unmasking PM interrupts because that is using a different
  2973. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2974. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2975. * gen8_enable_rps will clean up. */
  2976. spin_lock_irq(&dev_priv->irq_lock);
  2977. dev_priv->rps.pm_iir = 0;
  2978. spin_unlock_irq(&dev_priv->irq_lock);
  2979. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2980. }
  2981. }
  2982. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2983. {
  2984. struct drm_i915_private *dev_priv = dev->dev_private;
  2985. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2986. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2987. ~dev_priv->pm_rps_events);
  2988. /* Complete PM interrupt masking here doesn't race with the rps work
  2989. * item again unmasking PM interrupts because that is using a different
  2990. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2991. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2992. spin_lock_irq(&dev_priv->irq_lock);
  2993. dev_priv->rps.pm_iir = 0;
  2994. spin_unlock_irq(&dev_priv->irq_lock);
  2995. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2996. }
  2997. static void gen6_disable_rps(struct drm_device *dev)
  2998. {
  2999. struct drm_i915_private *dev_priv = dev->dev_private;
  3000. I915_WRITE(GEN6_RC_CONTROL, 0);
  3001. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3002. if (IS_BROADWELL(dev))
  3003. gen8_disable_rps_interrupts(dev);
  3004. else
  3005. gen6_disable_rps_interrupts(dev);
  3006. }
  3007. static void cherryview_disable_rps(struct drm_device *dev)
  3008. {
  3009. struct drm_i915_private *dev_priv = dev->dev_private;
  3010. I915_WRITE(GEN6_RC_CONTROL, 0);
  3011. gen8_disable_rps_interrupts(dev);
  3012. }
  3013. static void valleyview_disable_rps(struct drm_device *dev)
  3014. {
  3015. struct drm_i915_private *dev_priv = dev->dev_private;
  3016. /* we're doing forcewake before Disabling RC6,
  3017. * This what the BIOS expects when going into suspend */
  3018. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3019. I915_WRITE(GEN6_RC_CONTROL, 0);
  3020. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3021. gen6_disable_rps_interrupts(dev);
  3022. }
  3023. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3024. {
  3025. if (IS_VALLEYVIEW(dev)) {
  3026. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3027. mode = GEN6_RC_CTL_RC6_ENABLE;
  3028. else
  3029. mode = 0;
  3030. }
  3031. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3032. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3033. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3034. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3035. }
  3036. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3037. {
  3038. /* No RC6 before Ironlake */
  3039. if (INTEL_INFO(dev)->gen < 5)
  3040. return 0;
  3041. /* RC6 is only on Ironlake mobile not on desktop */
  3042. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3043. return 0;
  3044. /* Respect the kernel parameter if it is set */
  3045. if (enable_rc6 >= 0) {
  3046. int mask;
  3047. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  3048. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3049. INTEL_RC6pp_ENABLE;
  3050. else
  3051. mask = INTEL_RC6_ENABLE;
  3052. if ((enable_rc6 & mask) != enable_rc6)
  3053. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3054. enable_rc6 & mask, enable_rc6, mask);
  3055. return enable_rc6 & mask;
  3056. }
  3057. /* Disable RC6 on Ironlake */
  3058. if (INTEL_INFO(dev)->gen == 5)
  3059. return 0;
  3060. if (IS_IVYBRIDGE(dev))
  3061. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3062. return INTEL_RC6_ENABLE;
  3063. }
  3064. int intel_enable_rc6(const struct drm_device *dev)
  3065. {
  3066. return i915.enable_rc6;
  3067. }
  3068. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  3069. {
  3070. struct drm_i915_private *dev_priv = dev->dev_private;
  3071. spin_lock_irq(&dev_priv->irq_lock);
  3072. WARN_ON(dev_priv->rps.pm_iir);
  3073. gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3074. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  3075. spin_unlock_irq(&dev_priv->irq_lock);
  3076. }
  3077. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3078. {
  3079. struct drm_i915_private *dev_priv = dev->dev_private;
  3080. spin_lock_irq(&dev_priv->irq_lock);
  3081. WARN_ON(dev_priv->rps.pm_iir);
  3082. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3083. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  3084. spin_unlock_irq(&dev_priv->irq_lock);
  3085. }
  3086. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  3087. {
  3088. /* All of these values are in units of 50MHz */
  3089. dev_priv->rps.cur_freq = 0;
  3090. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  3091. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3092. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3093. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3094. /* XXX: only BYT has a special efficient freq */
  3095. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3096. /* hw_max = RP0 until we check for overclocking */
  3097. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3098. /* Preserve min/max settings in case of re-init */
  3099. if (dev_priv->rps.max_freq_softlimit == 0)
  3100. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3101. if (dev_priv->rps.min_freq_softlimit == 0)
  3102. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3103. }
  3104. static void bdw_sw_calculate_freq(struct drm_device *dev,
  3105. struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
  3106. {
  3107. struct drm_i915_private *dev_priv = dev->dev_private;
  3108. u64 busy = 0;
  3109. u32 busyness_pct = 0;
  3110. u32 elapsed_time = 0;
  3111. u16 new_freq = 0;
  3112. if (!c || !cur_time || !c0)
  3113. return;
  3114. if (0 == c->last_c0)
  3115. goto out;
  3116. /* Check Evaluation interval */
  3117. elapsed_time = *cur_time - c->last_ts;
  3118. if (elapsed_time < c->eval_interval)
  3119. return;
  3120. mutex_lock(&dev_priv->rps.hw_lock);
  3121. /*
  3122. * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
  3123. * Whole busyness_pct calculation should be
  3124. * busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
  3125. * busyness_pct = (u32)(busy * 100 / elapsed_time);
  3126. * The final formula is to simplify CPU calculation
  3127. */
  3128. busy = (u64)(*c0 - c->last_c0) << 12;
  3129. do_div(busy, elapsed_time);
  3130. busyness_pct = (u32)busy;
  3131. if (c->is_up && busyness_pct >= c->it_threshold_pct)
  3132. new_freq = (u16)dev_priv->rps.cur_freq + 3;
  3133. if (!c->is_up && busyness_pct <= c->it_threshold_pct)
  3134. new_freq = (u16)dev_priv->rps.cur_freq - 1;
  3135. /* Adjust to new frequency busyness and compare with threshold */
  3136. if (0 != new_freq) {
  3137. if (new_freq > dev_priv->rps.max_freq_softlimit)
  3138. new_freq = dev_priv->rps.max_freq_softlimit;
  3139. else if (new_freq < dev_priv->rps.min_freq_softlimit)
  3140. new_freq = dev_priv->rps.min_freq_softlimit;
  3141. gen6_set_rps(dev, new_freq);
  3142. }
  3143. mutex_unlock(&dev_priv->rps.hw_lock);
  3144. out:
  3145. c->last_c0 = *c0;
  3146. c->last_ts = *cur_time;
  3147. }
  3148. static void gen8_set_frequency_RP0(struct work_struct *work)
  3149. {
  3150. struct intel_rps_bdw_turbo *p_bdw_turbo =
  3151. container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
  3152. struct intel_gen6_power_mgmt *p_power_mgmt =
  3153. container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
  3154. struct drm_i915_private *dev_priv =
  3155. container_of(p_power_mgmt, struct drm_i915_private, rps);
  3156. mutex_lock(&dev_priv->rps.hw_lock);
  3157. gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
  3158. mutex_unlock(&dev_priv->rps.hw_lock);
  3159. }
  3160. static void flip_active_timeout_handler(unsigned long var)
  3161. {
  3162. struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
  3163. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3164. atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
  3165. queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
  3166. }
  3167. void bdw_software_turbo(struct drm_device *dev)
  3168. {
  3169. struct drm_i915_private *dev_priv = dev->dev_private;
  3170. u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
  3171. u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
  3172. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
  3173. &current_time, &current_c0);
  3174. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
  3175. &current_time, &current_c0);
  3176. }
  3177. static void gen8_enable_rps(struct drm_device *dev)
  3178. {
  3179. struct drm_i915_private *dev_priv = dev->dev_private;
  3180. struct intel_engine_cs *ring;
  3181. uint32_t rc6_mask = 0, rp_state_cap;
  3182. uint32_t threshold_up_pct, threshold_down_pct;
  3183. uint32_t ei_up, ei_down; /* up and down evaluation interval */
  3184. u32 rp_ctl_flag;
  3185. int unused;
  3186. /* Use software Turbo for BDW */
  3187. dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
  3188. /* 1a: Software RC state - RC0 */
  3189. I915_WRITE(GEN6_RC_STATE, 0);
  3190. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3191. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3192. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3193. /* 2a: Disable RC states. */
  3194. I915_WRITE(GEN6_RC_CONTROL, 0);
  3195. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3196. parse_rp_state_cap(dev_priv, rp_state_cap);
  3197. /* 2b: Program RC6 thresholds.*/
  3198. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3199. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3200. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3201. for_each_ring(ring, dev_priv, unused)
  3202. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3203. I915_WRITE(GEN6_RC_SLEEP, 0);
  3204. if (IS_BROADWELL(dev))
  3205. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3206. else
  3207. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3208. /* 3: Enable RC6 */
  3209. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3210. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3211. intel_print_rc6_info(dev, rc6_mask);
  3212. if (IS_BROADWELL(dev))
  3213. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3214. GEN7_RC_CTL_TO_MODE |
  3215. rc6_mask);
  3216. else
  3217. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3218. GEN6_RC_CTL_EI_MODE(1) |
  3219. rc6_mask);
  3220. /* 4 Program defaults and thresholds for RPS*/
  3221. I915_WRITE(GEN6_RPNSWREQ,
  3222. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3223. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3224. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3225. ei_up = 84480; /* 84.48ms */
  3226. ei_down = 448000;
  3227. threshold_up_pct = 90; /* x percent busy */
  3228. threshold_down_pct = 70;
  3229. if (dev_priv->rps.is_bdw_sw_turbo) {
  3230. dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
  3231. dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
  3232. dev_priv->rps.sw_turbo.up.is_up = true;
  3233. dev_priv->rps.sw_turbo.up.last_ts = 0;
  3234. dev_priv->rps.sw_turbo.up.last_c0 = 0;
  3235. dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
  3236. dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
  3237. dev_priv->rps.sw_turbo.down.is_up = false;
  3238. dev_priv->rps.sw_turbo.down.last_ts = 0;
  3239. dev_priv->rps.sw_turbo.down.last_c0 = 0;
  3240. /* Start the timer to track if flip comes*/
  3241. dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
  3242. init_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3243. dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
  3244. dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
  3245. dev_priv->rps.sw_turbo.flip_timer.expires =
  3246. usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
  3247. add_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3248. INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
  3249. atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
  3250. } else {
  3251. /* NB: Docs say 1s, and 1000000 - which aren't equivalent
  3252. * 1 second timeout*/
  3253. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
  3254. /* Docs recommend 900MHz, and 300 MHz respectively */
  3255. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3256. dev_priv->rps.max_freq_softlimit << 24 |
  3257. dev_priv->rps.min_freq_softlimit << 16);
  3258. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3259. FREQ_1_28_US(ei_up * threshold_up_pct / 100));
  3260. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3261. FREQ_1_28_US(ei_down * threshold_down_pct / 100));
  3262. I915_WRITE(GEN6_RP_UP_EI,
  3263. FREQ_1_28_US(ei_up));
  3264. I915_WRITE(GEN6_RP_DOWN_EI,
  3265. FREQ_1_28_US(ei_down));
  3266. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3267. }
  3268. /* 5: Enable RPS */
  3269. rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
  3270. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3271. GEN6_RP_MEDIA_IS_GFX |
  3272. GEN6_RP_UP_BUSY_AVG |
  3273. GEN6_RP_DOWN_IDLE_AVG;
  3274. if (!dev_priv->rps.is_bdw_sw_turbo)
  3275. rp_ctl_flag |= GEN6_RP_ENABLE;
  3276. I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
  3277. /* 6: Ring frequency + overclocking
  3278. * (our driver does this later */
  3279. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3280. if (!dev_priv->rps.is_bdw_sw_turbo)
  3281. gen8_enable_rps_interrupts(dev);
  3282. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3283. }
  3284. static void gen6_enable_rps(struct drm_device *dev)
  3285. {
  3286. struct drm_i915_private *dev_priv = dev->dev_private;
  3287. struct intel_engine_cs *ring;
  3288. u32 rp_state_cap;
  3289. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3290. u32 gtfifodbg;
  3291. int rc6_mode;
  3292. int i, ret;
  3293. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3294. /* Here begins a magic sequence of register writes to enable
  3295. * auto-downclocking.
  3296. *
  3297. * Perhaps there might be some value in exposing these to
  3298. * userspace...
  3299. */
  3300. I915_WRITE(GEN6_RC_STATE, 0);
  3301. /* Clear the DBG now so we don't confuse earlier errors */
  3302. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3303. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3304. I915_WRITE(GTFIFODBG, gtfifodbg);
  3305. }
  3306. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3307. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3308. parse_rp_state_cap(dev_priv, rp_state_cap);
  3309. /* disable the counters and set deterministic thresholds */
  3310. I915_WRITE(GEN6_RC_CONTROL, 0);
  3311. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3312. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3313. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3314. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3315. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3316. for_each_ring(ring, dev_priv, i)
  3317. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3318. I915_WRITE(GEN6_RC_SLEEP, 0);
  3319. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3320. if (IS_IVYBRIDGE(dev))
  3321. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3322. else
  3323. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3324. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3325. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3326. /* Check if we are enabling RC6 */
  3327. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3328. if (rc6_mode & INTEL_RC6_ENABLE)
  3329. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3330. /* We don't use those on Haswell */
  3331. if (!IS_HASWELL(dev)) {
  3332. if (rc6_mode & INTEL_RC6p_ENABLE)
  3333. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3334. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3335. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3336. }
  3337. intel_print_rc6_info(dev, rc6_mask);
  3338. I915_WRITE(GEN6_RC_CONTROL,
  3339. rc6_mask |
  3340. GEN6_RC_CTL_EI_MODE(1) |
  3341. GEN6_RC_CTL_HW_ENABLE);
  3342. /* Power down if completely idle for over 50ms */
  3343. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3344. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3345. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3346. if (ret)
  3347. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3348. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3349. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3350. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3351. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3352. (pcu_mbox & 0xff) * 50);
  3353. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3354. }
  3355. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3356. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3357. gen6_enable_rps_interrupts(dev);
  3358. rc6vids = 0;
  3359. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3360. if (IS_GEN6(dev) && ret) {
  3361. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3362. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3363. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3364. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3365. rc6vids &= 0xffff00;
  3366. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3367. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3368. if (ret)
  3369. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3370. }
  3371. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3372. }
  3373. static void __gen6_update_ring_freq(struct drm_device *dev)
  3374. {
  3375. struct drm_i915_private *dev_priv = dev->dev_private;
  3376. int min_freq = 15;
  3377. unsigned int gpu_freq;
  3378. unsigned int max_ia_freq, min_ring_freq;
  3379. int scaling_factor = 180;
  3380. struct cpufreq_policy *policy;
  3381. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3382. policy = cpufreq_cpu_get(0);
  3383. if (policy) {
  3384. max_ia_freq = policy->cpuinfo.max_freq;
  3385. cpufreq_cpu_put(policy);
  3386. } else {
  3387. /*
  3388. * Default to measured freq if none found, PCU will ensure we
  3389. * don't go over
  3390. */
  3391. max_ia_freq = tsc_khz;
  3392. }
  3393. /* Convert from kHz to MHz */
  3394. max_ia_freq /= 1000;
  3395. min_ring_freq = I915_READ(DCLK) & 0xf;
  3396. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3397. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3398. /*
  3399. * For each potential GPU frequency, load a ring frequency we'd like
  3400. * to use for memory access. We do this by specifying the IA frequency
  3401. * the PCU should use as a reference to determine the ring frequency.
  3402. */
  3403. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3404. gpu_freq--) {
  3405. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3406. unsigned int ia_freq = 0, ring_freq = 0;
  3407. if (INTEL_INFO(dev)->gen >= 8) {
  3408. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3409. ring_freq = max(min_ring_freq, gpu_freq);
  3410. } else if (IS_HASWELL(dev)) {
  3411. ring_freq = mult_frac(gpu_freq, 5, 4);
  3412. ring_freq = max(min_ring_freq, ring_freq);
  3413. /* leave ia_freq as the default, chosen by cpufreq */
  3414. } else {
  3415. /* On older processors, there is no separate ring
  3416. * clock domain, so in order to boost the bandwidth
  3417. * of the ring, we need to upclock the CPU (ia_freq).
  3418. *
  3419. * For GPU frequencies less than 750MHz,
  3420. * just use the lowest ring freq.
  3421. */
  3422. if (gpu_freq < min_freq)
  3423. ia_freq = 800;
  3424. else
  3425. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3426. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3427. }
  3428. sandybridge_pcode_write(dev_priv,
  3429. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3430. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3431. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3432. gpu_freq);
  3433. }
  3434. }
  3435. void gen6_update_ring_freq(struct drm_device *dev)
  3436. {
  3437. struct drm_i915_private *dev_priv = dev->dev_private;
  3438. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3439. return;
  3440. mutex_lock(&dev_priv->rps.hw_lock);
  3441. __gen6_update_ring_freq(dev);
  3442. mutex_unlock(&dev_priv->rps.hw_lock);
  3443. }
  3444. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3445. {
  3446. u32 val, rp0;
  3447. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3448. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3449. return rp0;
  3450. }
  3451. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3452. {
  3453. u32 val, rpe;
  3454. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3455. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3456. return rpe;
  3457. }
  3458. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3459. {
  3460. u32 val, rp1;
  3461. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3462. rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3463. return rp1;
  3464. }
  3465. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3466. {
  3467. u32 val, rpn;
  3468. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3469. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3470. return rpn;
  3471. }
  3472. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3473. {
  3474. u32 val, rp1;
  3475. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3476. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3477. return rp1;
  3478. }
  3479. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3480. {
  3481. u32 val, rp0;
  3482. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3483. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3484. /* Clamp to max */
  3485. rp0 = min_t(u32, rp0, 0xea);
  3486. return rp0;
  3487. }
  3488. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3489. {
  3490. u32 val, rpe;
  3491. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3492. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3493. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3494. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3495. return rpe;
  3496. }
  3497. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3498. {
  3499. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3500. }
  3501. /* Check that the pctx buffer wasn't move under us. */
  3502. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3503. {
  3504. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3505. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3506. dev_priv->vlv_pctx->stolen->start);
  3507. }
  3508. /* Check that the pcbr address is not empty. */
  3509. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3510. {
  3511. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3512. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3513. }
  3514. static void cherryview_setup_pctx(struct drm_device *dev)
  3515. {
  3516. struct drm_i915_private *dev_priv = dev->dev_private;
  3517. unsigned long pctx_paddr, paddr;
  3518. struct i915_gtt *gtt = &dev_priv->gtt;
  3519. u32 pcbr;
  3520. int pctx_size = 32*1024;
  3521. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3522. pcbr = I915_READ(VLV_PCBR);
  3523. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3524. paddr = (dev_priv->mm.stolen_base +
  3525. (gtt->stolen_size - pctx_size));
  3526. pctx_paddr = (paddr & (~4095));
  3527. I915_WRITE(VLV_PCBR, pctx_paddr);
  3528. }
  3529. }
  3530. static void valleyview_setup_pctx(struct drm_device *dev)
  3531. {
  3532. struct drm_i915_private *dev_priv = dev->dev_private;
  3533. struct drm_i915_gem_object *pctx;
  3534. unsigned long pctx_paddr;
  3535. u32 pcbr;
  3536. int pctx_size = 24*1024;
  3537. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3538. pcbr = I915_READ(VLV_PCBR);
  3539. if (pcbr) {
  3540. /* BIOS set it up already, grab the pre-alloc'd space */
  3541. int pcbr_offset;
  3542. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3543. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3544. pcbr_offset,
  3545. I915_GTT_OFFSET_NONE,
  3546. pctx_size);
  3547. goto out;
  3548. }
  3549. /*
  3550. * From the Gunit register HAS:
  3551. * The Gfx driver is expected to program this register and ensure
  3552. * proper allocation within Gfx stolen memory. For example, this
  3553. * register should be programmed such than the PCBR range does not
  3554. * overlap with other ranges, such as the frame buffer, protected
  3555. * memory, or any other relevant ranges.
  3556. */
  3557. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3558. if (!pctx) {
  3559. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3560. return;
  3561. }
  3562. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3563. I915_WRITE(VLV_PCBR, pctx_paddr);
  3564. out:
  3565. dev_priv->vlv_pctx = pctx;
  3566. }
  3567. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3568. {
  3569. struct drm_i915_private *dev_priv = dev->dev_private;
  3570. if (WARN_ON(!dev_priv->vlv_pctx))
  3571. return;
  3572. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3573. dev_priv->vlv_pctx = NULL;
  3574. }
  3575. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3576. {
  3577. struct drm_i915_private *dev_priv = dev->dev_private;
  3578. u32 val;
  3579. valleyview_setup_pctx(dev);
  3580. mutex_lock(&dev_priv->rps.hw_lock);
  3581. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3582. switch ((val >> 6) & 3) {
  3583. case 0:
  3584. case 1:
  3585. dev_priv->mem_freq = 800;
  3586. break;
  3587. case 2:
  3588. dev_priv->mem_freq = 1066;
  3589. break;
  3590. case 3:
  3591. dev_priv->mem_freq = 1333;
  3592. break;
  3593. }
  3594. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3595. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3596. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3597. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3598. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3599. dev_priv->rps.max_freq);
  3600. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3601. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3602. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3603. dev_priv->rps.efficient_freq);
  3604. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  3605. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  3606. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3607. dev_priv->rps.rp1_freq);
  3608. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3609. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3610. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3611. dev_priv->rps.min_freq);
  3612. /* Preserve min/max settings in case of re-init */
  3613. if (dev_priv->rps.max_freq_softlimit == 0)
  3614. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3615. if (dev_priv->rps.min_freq_softlimit == 0)
  3616. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3617. mutex_unlock(&dev_priv->rps.hw_lock);
  3618. }
  3619. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3620. {
  3621. struct drm_i915_private *dev_priv = dev->dev_private;
  3622. u32 val;
  3623. cherryview_setup_pctx(dev);
  3624. mutex_lock(&dev_priv->rps.hw_lock);
  3625. val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
  3626. switch ((val >> 2) & 0x7) {
  3627. case 0:
  3628. case 1:
  3629. dev_priv->rps.cz_freq = 200;
  3630. dev_priv->mem_freq = 1600;
  3631. break;
  3632. case 2:
  3633. dev_priv->rps.cz_freq = 267;
  3634. dev_priv->mem_freq = 1600;
  3635. break;
  3636. case 3:
  3637. dev_priv->rps.cz_freq = 333;
  3638. dev_priv->mem_freq = 2000;
  3639. break;
  3640. case 4:
  3641. dev_priv->rps.cz_freq = 320;
  3642. dev_priv->mem_freq = 1600;
  3643. break;
  3644. case 5:
  3645. dev_priv->rps.cz_freq = 400;
  3646. dev_priv->mem_freq = 1600;
  3647. break;
  3648. }
  3649. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3650. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3651. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3652. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3653. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3654. dev_priv->rps.max_freq);
  3655. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3656. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3657. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3658. dev_priv->rps.efficient_freq);
  3659. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  3660. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  3661. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3662. dev_priv->rps.rp1_freq);
  3663. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3664. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3665. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3666. dev_priv->rps.min_freq);
  3667. WARN_ONCE((dev_priv->rps.max_freq |
  3668. dev_priv->rps.efficient_freq |
  3669. dev_priv->rps.rp1_freq |
  3670. dev_priv->rps.min_freq) & 1,
  3671. "Odd GPU freq values\n");
  3672. /* Preserve min/max settings in case of re-init */
  3673. if (dev_priv->rps.max_freq_softlimit == 0)
  3674. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3675. if (dev_priv->rps.min_freq_softlimit == 0)
  3676. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3677. mutex_unlock(&dev_priv->rps.hw_lock);
  3678. }
  3679. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3680. {
  3681. valleyview_cleanup_pctx(dev);
  3682. }
  3683. static void cherryview_enable_rps(struct drm_device *dev)
  3684. {
  3685. struct drm_i915_private *dev_priv = dev->dev_private;
  3686. struct intel_engine_cs *ring;
  3687. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3688. int i;
  3689. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3690. gtfifodbg = I915_READ(GTFIFODBG);
  3691. if (gtfifodbg) {
  3692. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3693. gtfifodbg);
  3694. I915_WRITE(GTFIFODBG, gtfifodbg);
  3695. }
  3696. cherryview_check_pctx(dev_priv);
  3697. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3698. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3699. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3700. /* 2a: Program RC6 thresholds.*/
  3701. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3702. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3703. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3704. for_each_ring(ring, dev_priv, i)
  3705. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3706. I915_WRITE(GEN6_RC_SLEEP, 0);
  3707. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3708. /* allows RC6 residency counter to work */
  3709. I915_WRITE(VLV_COUNTER_CONTROL,
  3710. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3711. VLV_MEDIA_RC6_COUNT_EN |
  3712. VLV_RENDER_RC6_COUNT_EN));
  3713. /* For now we assume BIOS is allocating and populating the PCBR */
  3714. pcbr = I915_READ(VLV_PCBR);
  3715. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3716. /* 3: Enable RC6 */
  3717. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3718. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3719. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3720. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3721. /* 4 Program defaults and thresholds for RPS*/
  3722. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3723. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3724. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3725. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3726. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3727. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3728. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3729. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3730. /* 5: Enable RPS */
  3731. I915_WRITE(GEN6_RP_CONTROL,
  3732. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3733. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3734. GEN6_RP_ENABLE |
  3735. GEN6_RP_UP_BUSY_AVG |
  3736. GEN6_RP_DOWN_IDLE_AVG);
  3737. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3738. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3739. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3740. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3741. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3742. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3743. dev_priv->rps.cur_freq);
  3744. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3745. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3746. dev_priv->rps.efficient_freq);
  3747. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3748. gen8_enable_rps_interrupts(dev);
  3749. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3750. }
  3751. static void valleyview_enable_rps(struct drm_device *dev)
  3752. {
  3753. struct drm_i915_private *dev_priv = dev->dev_private;
  3754. struct intel_engine_cs *ring;
  3755. u32 gtfifodbg, val, rc6_mode = 0;
  3756. int i;
  3757. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3758. valleyview_check_pctx(dev_priv);
  3759. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3760. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3761. gtfifodbg);
  3762. I915_WRITE(GTFIFODBG, gtfifodbg);
  3763. }
  3764. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3765. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3766. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3767. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3768. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3769. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3770. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3771. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
  3772. I915_WRITE(GEN6_RP_CONTROL,
  3773. GEN6_RP_MEDIA_TURBO |
  3774. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3775. GEN6_RP_MEDIA_IS_GFX |
  3776. GEN6_RP_ENABLE |
  3777. GEN6_RP_UP_BUSY_AVG |
  3778. GEN6_RP_DOWN_IDLE_CONT);
  3779. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3780. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3781. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3782. for_each_ring(ring, dev_priv, i)
  3783. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3784. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3785. /* allows RC6 residency counter to work */
  3786. I915_WRITE(VLV_COUNTER_CONTROL,
  3787. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  3788. VLV_RENDER_RC0_COUNT_EN |
  3789. VLV_MEDIA_RC6_COUNT_EN |
  3790. VLV_RENDER_RC6_COUNT_EN));
  3791. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3792. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3793. intel_print_rc6_info(dev, rc6_mode);
  3794. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3795. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3796. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3797. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3798. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3799. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3800. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3801. dev_priv->rps.cur_freq);
  3802. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3803. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3804. dev_priv->rps.efficient_freq);
  3805. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3806. gen6_enable_rps_interrupts(dev);
  3807. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3808. }
  3809. void ironlake_teardown_rc6(struct drm_device *dev)
  3810. {
  3811. struct drm_i915_private *dev_priv = dev->dev_private;
  3812. if (dev_priv->ips.renderctx) {
  3813. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3814. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3815. dev_priv->ips.renderctx = NULL;
  3816. }
  3817. if (dev_priv->ips.pwrctx) {
  3818. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3819. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3820. dev_priv->ips.pwrctx = NULL;
  3821. }
  3822. }
  3823. static void ironlake_disable_rc6(struct drm_device *dev)
  3824. {
  3825. struct drm_i915_private *dev_priv = dev->dev_private;
  3826. if (I915_READ(PWRCTXA)) {
  3827. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3828. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3829. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3830. 50);
  3831. I915_WRITE(PWRCTXA, 0);
  3832. POSTING_READ(PWRCTXA);
  3833. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3834. POSTING_READ(RSTDBYCTL);
  3835. }
  3836. }
  3837. static int ironlake_setup_rc6(struct drm_device *dev)
  3838. {
  3839. struct drm_i915_private *dev_priv = dev->dev_private;
  3840. if (dev_priv->ips.renderctx == NULL)
  3841. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3842. if (!dev_priv->ips.renderctx)
  3843. return -ENOMEM;
  3844. if (dev_priv->ips.pwrctx == NULL)
  3845. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3846. if (!dev_priv->ips.pwrctx) {
  3847. ironlake_teardown_rc6(dev);
  3848. return -ENOMEM;
  3849. }
  3850. return 0;
  3851. }
  3852. static void ironlake_enable_rc6(struct drm_device *dev)
  3853. {
  3854. struct drm_i915_private *dev_priv = dev->dev_private;
  3855. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3856. bool was_interruptible;
  3857. int ret;
  3858. /* rc6 disabled by default due to repeated reports of hanging during
  3859. * boot and resume.
  3860. */
  3861. if (!intel_enable_rc6(dev))
  3862. return;
  3863. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3864. ret = ironlake_setup_rc6(dev);
  3865. if (ret)
  3866. return;
  3867. was_interruptible = dev_priv->mm.interruptible;
  3868. dev_priv->mm.interruptible = false;
  3869. /*
  3870. * GPU can automatically power down the render unit if given a page
  3871. * to save state.
  3872. */
  3873. ret = intel_ring_begin(ring, 6);
  3874. if (ret) {
  3875. ironlake_teardown_rc6(dev);
  3876. dev_priv->mm.interruptible = was_interruptible;
  3877. return;
  3878. }
  3879. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3880. intel_ring_emit(ring, MI_SET_CONTEXT);
  3881. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3882. MI_MM_SPACE_GTT |
  3883. MI_SAVE_EXT_STATE_EN |
  3884. MI_RESTORE_EXT_STATE_EN |
  3885. MI_RESTORE_INHIBIT);
  3886. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3887. intel_ring_emit(ring, MI_NOOP);
  3888. intel_ring_emit(ring, MI_FLUSH);
  3889. intel_ring_advance(ring);
  3890. /*
  3891. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3892. * does an implicit flush, combined with MI_FLUSH above, it should be
  3893. * safe to assume that renderctx is valid
  3894. */
  3895. ret = intel_ring_idle(ring);
  3896. dev_priv->mm.interruptible = was_interruptible;
  3897. if (ret) {
  3898. DRM_ERROR("failed to enable ironlake power savings\n");
  3899. ironlake_teardown_rc6(dev);
  3900. return;
  3901. }
  3902. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3903. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3904. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3905. }
  3906. static unsigned long intel_pxfreq(u32 vidfreq)
  3907. {
  3908. unsigned long freq;
  3909. int div = (vidfreq & 0x3f0000) >> 16;
  3910. int post = (vidfreq & 0x3000) >> 12;
  3911. int pre = (vidfreq & 0x7);
  3912. if (!pre)
  3913. return 0;
  3914. freq = ((div * 133333) / ((1<<post) * pre));
  3915. return freq;
  3916. }
  3917. static const struct cparams {
  3918. u16 i;
  3919. u16 t;
  3920. u16 m;
  3921. u16 c;
  3922. } cparams[] = {
  3923. { 1, 1333, 301, 28664 },
  3924. { 1, 1066, 294, 24460 },
  3925. { 1, 800, 294, 25192 },
  3926. { 0, 1333, 276, 27605 },
  3927. { 0, 1066, 276, 27605 },
  3928. { 0, 800, 231, 23784 },
  3929. };
  3930. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3931. {
  3932. u64 total_count, diff, ret;
  3933. u32 count1, count2, count3, m = 0, c = 0;
  3934. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3935. int i;
  3936. assert_spin_locked(&mchdev_lock);
  3937. diff1 = now - dev_priv->ips.last_time1;
  3938. /* Prevent division-by-zero if we are asking too fast.
  3939. * Also, we don't get interesting results if we are polling
  3940. * faster than once in 10ms, so just return the saved value
  3941. * in such cases.
  3942. */
  3943. if (diff1 <= 10)
  3944. return dev_priv->ips.chipset_power;
  3945. count1 = I915_READ(DMIEC);
  3946. count2 = I915_READ(DDREC);
  3947. count3 = I915_READ(CSIEC);
  3948. total_count = count1 + count2 + count3;
  3949. /* FIXME: handle per-counter overflow */
  3950. if (total_count < dev_priv->ips.last_count1) {
  3951. diff = ~0UL - dev_priv->ips.last_count1;
  3952. diff += total_count;
  3953. } else {
  3954. diff = total_count - dev_priv->ips.last_count1;
  3955. }
  3956. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3957. if (cparams[i].i == dev_priv->ips.c_m &&
  3958. cparams[i].t == dev_priv->ips.r_t) {
  3959. m = cparams[i].m;
  3960. c = cparams[i].c;
  3961. break;
  3962. }
  3963. }
  3964. diff = div_u64(diff, diff1);
  3965. ret = ((m * diff) + c);
  3966. ret = div_u64(ret, 10);
  3967. dev_priv->ips.last_count1 = total_count;
  3968. dev_priv->ips.last_time1 = now;
  3969. dev_priv->ips.chipset_power = ret;
  3970. return ret;
  3971. }
  3972. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3973. {
  3974. struct drm_device *dev = dev_priv->dev;
  3975. unsigned long val;
  3976. if (INTEL_INFO(dev)->gen != 5)
  3977. return 0;
  3978. spin_lock_irq(&mchdev_lock);
  3979. val = __i915_chipset_val(dev_priv);
  3980. spin_unlock_irq(&mchdev_lock);
  3981. return val;
  3982. }
  3983. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3984. {
  3985. unsigned long m, x, b;
  3986. u32 tsfs;
  3987. tsfs = I915_READ(TSFS);
  3988. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3989. x = I915_READ8(TR1);
  3990. b = tsfs & TSFS_INTR_MASK;
  3991. return ((m * x) / 127) - b;
  3992. }
  3993. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3994. {
  3995. struct drm_device *dev = dev_priv->dev;
  3996. static const struct v_table {
  3997. u16 vd; /* in .1 mil */
  3998. u16 vm; /* in .1 mil */
  3999. } v_table[] = {
  4000. { 0, 0, },
  4001. { 375, 0, },
  4002. { 500, 0, },
  4003. { 625, 0, },
  4004. { 750, 0, },
  4005. { 875, 0, },
  4006. { 1000, 0, },
  4007. { 1125, 0, },
  4008. { 4125, 3000, },
  4009. { 4125, 3000, },
  4010. { 4125, 3000, },
  4011. { 4125, 3000, },
  4012. { 4125, 3000, },
  4013. { 4125, 3000, },
  4014. { 4125, 3000, },
  4015. { 4125, 3000, },
  4016. { 4125, 3000, },
  4017. { 4125, 3000, },
  4018. { 4125, 3000, },
  4019. { 4125, 3000, },
  4020. { 4125, 3000, },
  4021. { 4125, 3000, },
  4022. { 4125, 3000, },
  4023. { 4125, 3000, },
  4024. { 4125, 3000, },
  4025. { 4125, 3000, },
  4026. { 4125, 3000, },
  4027. { 4125, 3000, },
  4028. { 4125, 3000, },
  4029. { 4125, 3000, },
  4030. { 4125, 3000, },
  4031. { 4125, 3000, },
  4032. { 4250, 3125, },
  4033. { 4375, 3250, },
  4034. { 4500, 3375, },
  4035. { 4625, 3500, },
  4036. { 4750, 3625, },
  4037. { 4875, 3750, },
  4038. { 5000, 3875, },
  4039. { 5125, 4000, },
  4040. { 5250, 4125, },
  4041. { 5375, 4250, },
  4042. { 5500, 4375, },
  4043. { 5625, 4500, },
  4044. { 5750, 4625, },
  4045. { 5875, 4750, },
  4046. { 6000, 4875, },
  4047. { 6125, 5000, },
  4048. { 6250, 5125, },
  4049. { 6375, 5250, },
  4050. { 6500, 5375, },
  4051. { 6625, 5500, },
  4052. { 6750, 5625, },
  4053. { 6875, 5750, },
  4054. { 7000, 5875, },
  4055. { 7125, 6000, },
  4056. { 7250, 6125, },
  4057. { 7375, 6250, },
  4058. { 7500, 6375, },
  4059. { 7625, 6500, },
  4060. { 7750, 6625, },
  4061. { 7875, 6750, },
  4062. { 8000, 6875, },
  4063. { 8125, 7000, },
  4064. { 8250, 7125, },
  4065. { 8375, 7250, },
  4066. { 8500, 7375, },
  4067. { 8625, 7500, },
  4068. { 8750, 7625, },
  4069. { 8875, 7750, },
  4070. { 9000, 7875, },
  4071. { 9125, 8000, },
  4072. { 9250, 8125, },
  4073. { 9375, 8250, },
  4074. { 9500, 8375, },
  4075. { 9625, 8500, },
  4076. { 9750, 8625, },
  4077. { 9875, 8750, },
  4078. { 10000, 8875, },
  4079. { 10125, 9000, },
  4080. { 10250, 9125, },
  4081. { 10375, 9250, },
  4082. { 10500, 9375, },
  4083. { 10625, 9500, },
  4084. { 10750, 9625, },
  4085. { 10875, 9750, },
  4086. { 11000, 9875, },
  4087. { 11125, 10000, },
  4088. { 11250, 10125, },
  4089. { 11375, 10250, },
  4090. { 11500, 10375, },
  4091. { 11625, 10500, },
  4092. { 11750, 10625, },
  4093. { 11875, 10750, },
  4094. { 12000, 10875, },
  4095. { 12125, 11000, },
  4096. { 12250, 11125, },
  4097. { 12375, 11250, },
  4098. { 12500, 11375, },
  4099. { 12625, 11500, },
  4100. { 12750, 11625, },
  4101. { 12875, 11750, },
  4102. { 13000, 11875, },
  4103. { 13125, 12000, },
  4104. { 13250, 12125, },
  4105. { 13375, 12250, },
  4106. { 13500, 12375, },
  4107. { 13625, 12500, },
  4108. { 13750, 12625, },
  4109. { 13875, 12750, },
  4110. { 14000, 12875, },
  4111. { 14125, 13000, },
  4112. { 14250, 13125, },
  4113. { 14375, 13250, },
  4114. { 14500, 13375, },
  4115. { 14625, 13500, },
  4116. { 14750, 13625, },
  4117. { 14875, 13750, },
  4118. { 15000, 13875, },
  4119. { 15125, 14000, },
  4120. { 15250, 14125, },
  4121. { 15375, 14250, },
  4122. { 15500, 14375, },
  4123. { 15625, 14500, },
  4124. { 15750, 14625, },
  4125. { 15875, 14750, },
  4126. { 16000, 14875, },
  4127. { 16125, 15000, },
  4128. };
  4129. if (INTEL_INFO(dev)->is_mobile)
  4130. return v_table[pxvid].vm;
  4131. else
  4132. return v_table[pxvid].vd;
  4133. }
  4134. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4135. {
  4136. u64 now, diff, diffms;
  4137. u32 count;
  4138. assert_spin_locked(&mchdev_lock);
  4139. now = ktime_get_raw_ns();
  4140. diffms = now - dev_priv->ips.last_time2;
  4141. do_div(diffms, NSEC_PER_MSEC);
  4142. /* Don't divide by 0 */
  4143. if (!diffms)
  4144. return;
  4145. count = I915_READ(GFXEC);
  4146. if (count < dev_priv->ips.last_count2) {
  4147. diff = ~0UL - dev_priv->ips.last_count2;
  4148. diff += count;
  4149. } else {
  4150. diff = count - dev_priv->ips.last_count2;
  4151. }
  4152. dev_priv->ips.last_count2 = count;
  4153. dev_priv->ips.last_time2 = now;
  4154. /* More magic constants... */
  4155. diff = diff * 1181;
  4156. diff = div_u64(diff, diffms * 10);
  4157. dev_priv->ips.gfx_power = diff;
  4158. }
  4159. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4160. {
  4161. struct drm_device *dev = dev_priv->dev;
  4162. if (INTEL_INFO(dev)->gen != 5)
  4163. return;
  4164. spin_lock_irq(&mchdev_lock);
  4165. __i915_update_gfx_val(dev_priv);
  4166. spin_unlock_irq(&mchdev_lock);
  4167. }
  4168. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4169. {
  4170. unsigned long t, corr, state1, corr2, state2;
  4171. u32 pxvid, ext_v;
  4172. assert_spin_locked(&mchdev_lock);
  4173. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4174. pxvid = (pxvid >> 24) & 0x7f;
  4175. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4176. state1 = ext_v;
  4177. t = i915_mch_val(dev_priv);
  4178. /* Revel in the empirically derived constants */
  4179. /* Correction factor in 1/100000 units */
  4180. if (t > 80)
  4181. corr = ((t * 2349) + 135940);
  4182. else if (t >= 50)
  4183. corr = ((t * 964) + 29317);
  4184. else /* < 50 */
  4185. corr = ((t * 301) + 1004);
  4186. corr = corr * ((150142 * state1) / 10000 - 78642);
  4187. corr /= 100000;
  4188. corr2 = (corr * dev_priv->ips.corr);
  4189. state2 = (corr2 * state1) / 10000;
  4190. state2 /= 100; /* convert to mW */
  4191. __i915_update_gfx_val(dev_priv);
  4192. return dev_priv->ips.gfx_power + state2;
  4193. }
  4194. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4195. {
  4196. struct drm_device *dev = dev_priv->dev;
  4197. unsigned long val;
  4198. if (INTEL_INFO(dev)->gen != 5)
  4199. return 0;
  4200. spin_lock_irq(&mchdev_lock);
  4201. val = __i915_gfx_val(dev_priv);
  4202. spin_unlock_irq(&mchdev_lock);
  4203. return val;
  4204. }
  4205. /**
  4206. * i915_read_mch_val - return value for IPS use
  4207. *
  4208. * Calculate and return a value for the IPS driver to use when deciding whether
  4209. * we have thermal and power headroom to increase CPU or GPU power budget.
  4210. */
  4211. unsigned long i915_read_mch_val(void)
  4212. {
  4213. struct drm_i915_private *dev_priv;
  4214. unsigned long chipset_val, graphics_val, ret = 0;
  4215. spin_lock_irq(&mchdev_lock);
  4216. if (!i915_mch_dev)
  4217. goto out_unlock;
  4218. dev_priv = i915_mch_dev;
  4219. chipset_val = __i915_chipset_val(dev_priv);
  4220. graphics_val = __i915_gfx_val(dev_priv);
  4221. ret = chipset_val + graphics_val;
  4222. out_unlock:
  4223. spin_unlock_irq(&mchdev_lock);
  4224. return ret;
  4225. }
  4226. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4227. /**
  4228. * i915_gpu_raise - raise GPU frequency limit
  4229. *
  4230. * Raise the limit; IPS indicates we have thermal headroom.
  4231. */
  4232. bool i915_gpu_raise(void)
  4233. {
  4234. struct drm_i915_private *dev_priv;
  4235. bool ret = true;
  4236. spin_lock_irq(&mchdev_lock);
  4237. if (!i915_mch_dev) {
  4238. ret = false;
  4239. goto out_unlock;
  4240. }
  4241. dev_priv = i915_mch_dev;
  4242. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4243. dev_priv->ips.max_delay--;
  4244. out_unlock:
  4245. spin_unlock_irq(&mchdev_lock);
  4246. return ret;
  4247. }
  4248. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4249. /**
  4250. * i915_gpu_lower - lower GPU frequency limit
  4251. *
  4252. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4253. * frequency maximum.
  4254. */
  4255. bool i915_gpu_lower(void)
  4256. {
  4257. struct drm_i915_private *dev_priv;
  4258. bool ret = true;
  4259. spin_lock_irq(&mchdev_lock);
  4260. if (!i915_mch_dev) {
  4261. ret = false;
  4262. goto out_unlock;
  4263. }
  4264. dev_priv = i915_mch_dev;
  4265. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4266. dev_priv->ips.max_delay++;
  4267. out_unlock:
  4268. spin_unlock_irq(&mchdev_lock);
  4269. return ret;
  4270. }
  4271. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4272. /**
  4273. * i915_gpu_busy - indicate GPU business to IPS
  4274. *
  4275. * Tell the IPS driver whether or not the GPU is busy.
  4276. */
  4277. bool i915_gpu_busy(void)
  4278. {
  4279. struct drm_i915_private *dev_priv;
  4280. struct intel_engine_cs *ring;
  4281. bool ret = false;
  4282. int i;
  4283. spin_lock_irq(&mchdev_lock);
  4284. if (!i915_mch_dev)
  4285. goto out_unlock;
  4286. dev_priv = i915_mch_dev;
  4287. for_each_ring(ring, dev_priv, i)
  4288. ret |= !list_empty(&ring->request_list);
  4289. out_unlock:
  4290. spin_unlock_irq(&mchdev_lock);
  4291. return ret;
  4292. }
  4293. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4294. /**
  4295. * i915_gpu_turbo_disable - disable graphics turbo
  4296. *
  4297. * Disable graphics turbo by resetting the max frequency and setting the
  4298. * current frequency to the default.
  4299. */
  4300. bool i915_gpu_turbo_disable(void)
  4301. {
  4302. struct drm_i915_private *dev_priv;
  4303. bool ret = true;
  4304. spin_lock_irq(&mchdev_lock);
  4305. if (!i915_mch_dev) {
  4306. ret = false;
  4307. goto out_unlock;
  4308. }
  4309. dev_priv = i915_mch_dev;
  4310. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4311. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4312. ret = false;
  4313. out_unlock:
  4314. spin_unlock_irq(&mchdev_lock);
  4315. return ret;
  4316. }
  4317. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4318. /**
  4319. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4320. * IPS got loaded first.
  4321. *
  4322. * This awkward dance is so that neither module has to depend on the
  4323. * other in order for IPS to do the appropriate communication of
  4324. * GPU turbo limits to i915.
  4325. */
  4326. static void
  4327. ips_ping_for_i915_load(void)
  4328. {
  4329. void (*link)(void);
  4330. link = symbol_get(ips_link_to_i915_driver);
  4331. if (link) {
  4332. link();
  4333. symbol_put(ips_link_to_i915_driver);
  4334. }
  4335. }
  4336. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4337. {
  4338. /* We only register the i915 ips part with intel-ips once everything is
  4339. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4340. spin_lock_irq(&mchdev_lock);
  4341. i915_mch_dev = dev_priv;
  4342. spin_unlock_irq(&mchdev_lock);
  4343. ips_ping_for_i915_load();
  4344. }
  4345. void intel_gpu_ips_teardown(void)
  4346. {
  4347. spin_lock_irq(&mchdev_lock);
  4348. i915_mch_dev = NULL;
  4349. spin_unlock_irq(&mchdev_lock);
  4350. }
  4351. static void intel_init_emon(struct drm_device *dev)
  4352. {
  4353. struct drm_i915_private *dev_priv = dev->dev_private;
  4354. u32 lcfuse;
  4355. u8 pxw[16];
  4356. int i;
  4357. /* Disable to program */
  4358. I915_WRITE(ECR, 0);
  4359. POSTING_READ(ECR);
  4360. /* Program energy weights for various events */
  4361. I915_WRITE(SDEW, 0x15040d00);
  4362. I915_WRITE(CSIEW0, 0x007f0000);
  4363. I915_WRITE(CSIEW1, 0x1e220004);
  4364. I915_WRITE(CSIEW2, 0x04000004);
  4365. for (i = 0; i < 5; i++)
  4366. I915_WRITE(PEW + (i * 4), 0);
  4367. for (i = 0; i < 3; i++)
  4368. I915_WRITE(DEW + (i * 4), 0);
  4369. /* Program P-state weights to account for frequency power adjustment */
  4370. for (i = 0; i < 16; i++) {
  4371. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4372. unsigned long freq = intel_pxfreq(pxvidfreq);
  4373. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4374. PXVFREQ_PX_SHIFT;
  4375. unsigned long val;
  4376. val = vid * vid;
  4377. val *= (freq / 1000);
  4378. val *= 255;
  4379. val /= (127*127*900);
  4380. if (val > 0xff)
  4381. DRM_ERROR("bad pxval: %ld\n", val);
  4382. pxw[i] = val;
  4383. }
  4384. /* Render standby states get 0 weight */
  4385. pxw[14] = 0;
  4386. pxw[15] = 0;
  4387. for (i = 0; i < 4; i++) {
  4388. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4389. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4390. I915_WRITE(PXW + (i * 4), val);
  4391. }
  4392. /* Adjust magic regs to magic values (more experimental results) */
  4393. I915_WRITE(OGW0, 0);
  4394. I915_WRITE(OGW1, 0);
  4395. I915_WRITE(EG0, 0x00007f00);
  4396. I915_WRITE(EG1, 0x0000000e);
  4397. I915_WRITE(EG2, 0x000e0000);
  4398. I915_WRITE(EG3, 0x68000300);
  4399. I915_WRITE(EG4, 0x42000000);
  4400. I915_WRITE(EG5, 0x00140031);
  4401. I915_WRITE(EG6, 0);
  4402. I915_WRITE(EG7, 0);
  4403. for (i = 0; i < 8; i++)
  4404. I915_WRITE(PXWL + (i * 4), 0);
  4405. /* Enable PMON + select events */
  4406. I915_WRITE(ECR, 0x80000019);
  4407. lcfuse = I915_READ(LCFUSE02);
  4408. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4409. }
  4410. void intel_init_gt_powersave(struct drm_device *dev)
  4411. {
  4412. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4413. if (IS_CHERRYVIEW(dev))
  4414. cherryview_init_gt_powersave(dev);
  4415. else if (IS_VALLEYVIEW(dev))
  4416. valleyview_init_gt_powersave(dev);
  4417. }
  4418. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4419. {
  4420. if (IS_CHERRYVIEW(dev))
  4421. return;
  4422. else if (IS_VALLEYVIEW(dev))
  4423. valleyview_cleanup_gt_powersave(dev);
  4424. }
  4425. /**
  4426. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4427. * @dev: drm device
  4428. *
  4429. * We don't want to disable RC6 or other features here, we just want
  4430. * to make sure any work we've queued has finished and won't bother
  4431. * us while we're suspended.
  4432. */
  4433. void intel_suspend_gt_powersave(struct drm_device *dev)
  4434. {
  4435. struct drm_i915_private *dev_priv = dev->dev_private;
  4436. /* Interrupts should be disabled already to avoid re-arming. */
  4437. WARN_ON(intel_irqs_enabled(dev_priv));
  4438. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4439. cancel_work_sync(&dev_priv->rps.work);
  4440. /* Force GPU to min freq during suspend */
  4441. gen6_rps_idle(dev_priv);
  4442. }
  4443. void intel_disable_gt_powersave(struct drm_device *dev)
  4444. {
  4445. struct drm_i915_private *dev_priv = dev->dev_private;
  4446. /* Interrupts should be disabled already to avoid re-arming. */
  4447. WARN_ON(intel_irqs_enabled(dev_priv));
  4448. if (IS_IRONLAKE_M(dev)) {
  4449. ironlake_disable_drps(dev);
  4450. ironlake_disable_rc6(dev);
  4451. } else if (INTEL_INFO(dev)->gen >= 6) {
  4452. intel_suspend_gt_powersave(dev);
  4453. mutex_lock(&dev_priv->rps.hw_lock);
  4454. if (IS_CHERRYVIEW(dev))
  4455. cherryview_disable_rps(dev);
  4456. else if (IS_VALLEYVIEW(dev))
  4457. valleyview_disable_rps(dev);
  4458. else
  4459. gen6_disable_rps(dev);
  4460. dev_priv->rps.enabled = false;
  4461. mutex_unlock(&dev_priv->rps.hw_lock);
  4462. }
  4463. }
  4464. static void intel_gen6_powersave_work(struct work_struct *work)
  4465. {
  4466. struct drm_i915_private *dev_priv =
  4467. container_of(work, struct drm_i915_private,
  4468. rps.delayed_resume_work.work);
  4469. struct drm_device *dev = dev_priv->dev;
  4470. dev_priv->rps.is_bdw_sw_turbo = false;
  4471. mutex_lock(&dev_priv->rps.hw_lock);
  4472. if (IS_CHERRYVIEW(dev)) {
  4473. cherryview_enable_rps(dev);
  4474. } else if (IS_VALLEYVIEW(dev)) {
  4475. valleyview_enable_rps(dev);
  4476. } else if (IS_BROADWELL(dev)) {
  4477. gen8_enable_rps(dev);
  4478. __gen6_update_ring_freq(dev);
  4479. } else {
  4480. gen6_enable_rps(dev);
  4481. __gen6_update_ring_freq(dev);
  4482. }
  4483. dev_priv->rps.enabled = true;
  4484. mutex_unlock(&dev_priv->rps.hw_lock);
  4485. intel_runtime_pm_put(dev_priv);
  4486. }
  4487. void intel_enable_gt_powersave(struct drm_device *dev)
  4488. {
  4489. struct drm_i915_private *dev_priv = dev->dev_private;
  4490. if (IS_IRONLAKE_M(dev)) {
  4491. mutex_lock(&dev->struct_mutex);
  4492. ironlake_enable_drps(dev);
  4493. ironlake_enable_rc6(dev);
  4494. intel_init_emon(dev);
  4495. mutex_unlock(&dev->struct_mutex);
  4496. } else if (INTEL_INFO(dev)->gen >= 6) {
  4497. /*
  4498. * PCU communication is slow and this doesn't need to be
  4499. * done at any specific time, so do this out of our fast path
  4500. * to make resume and init faster.
  4501. *
  4502. * We depend on the HW RC6 power context save/restore
  4503. * mechanism when entering D3 through runtime PM suspend. So
  4504. * disable RPM until RPS/RC6 is properly setup. We can only
  4505. * get here via the driver load/system resume/runtime resume
  4506. * paths, so the _noresume version is enough (and in case of
  4507. * runtime resume it's necessary).
  4508. */
  4509. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4510. round_jiffies_up_relative(HZ)))
  4511. intel_runtime_pm_get_noresume(dev_priv);
  4512. }
  4513. }
  4514. void intel_reset_gt_powersave(struct drm_device *dev)
  4515. {
  4516. struct drm_i915_private *dev_priv = dev->dev_private;
  4517. dev_priv->rps.enabled = false;
  4518. intel_enable_gt_powersave(dev);
  4519. }
  4520. static void ibx_init_clock_gating(struct drm_device *dev)
  4521. {
  4522. struct drm_i915_private *dev_priv = dev->dev_private;
  4523. /*
  4524. * On Ibex Peak and Cougar Point, we need to disable clock
  4525. * gating for the panel power sequencer or it will fail to
  4526. * start up when no ports are active.
  4527. */
  4528. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4529. }
  4530. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4531. {
  4532. struct drm_i915_private *dev_priv = dev->dev_private;
  4533. int pipe;
  4534. for_each_pipe(dev_priv, pipe) {
  4535. I915_WRITE(DSPCNTR(pipe),
  4536. I915_READ(DSPCNTR(pipe)) |
  4537. DISPPLANE_TRICKLE_FEED_DISABLE);
  4538. intel_flush_primary_plane(dev_priv, pipe);
  4539. }
  4540. }
  4541. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4542. {
  4543. struct drm_i915_private *dev_priv = dev->dev_private;
  4544. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4545. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4546. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4547. /*
  4548. * Don't touch WM1S_LP_EN here.
  4549. * Doing so could cause underruns.
  4550. */
  4551. }
  4552. static void ironlake_init_clock_gating(struct drm_device *dev)
  4553. {
  4554. struct drm_i915_private *dev_priv = dev->dev_private;
  4555. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4556. /*
  4557. * Required for FBC
  4558. * WaFbcDisableDpfcClockGating:ilk
  4559. */
  4560. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4561. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4562. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4563. I915_WRITE(PCH_3DCGDIS0,
  4564. MARIUNIT_CLOCK_GATE_DISABLE |
  4565. SVSMUNIT_CLOCK_GATE_DISABLE);
  4566. I915_WRITE(PCH_3DCGDIS1,
  4567. VFMUNIT_CLOCK_GATE_DISABLE);
  4568. /*
  4569. * According to the spec the following bits should be set in
  4570. * order to enable memory self-refresh
  4571. * The bit 22/21 of 0x42004
  4572. * The bit 5 of 0x42020
  4573. * The bit 15 of 0x45000
  4574. */
  4575. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4576. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4577. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4578. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4579. I915_WRITE(DISP_ARB_CTL,
  4580. (I915_READ(DISP_ARB_CTL) |
  4581. DISP_FBC_WM_DIS));
  4582. ilk_init_lp_watermarks(dev);
  4583. /*
  4584. * Based on the document from hardware guys the following bits
  4585. * should be set unconditionally in order to enable FBC.
  4586. * The bit 22 of 0x42000
  4587. * The bit 22 of 0x42004
  4588. * The bit 7,8,9 of 0x42020.
  4589. */
  4590. if (IS_IRONLAKE_M(dev)) {
  4591. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4592. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4593. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4594. ILK_FBCQ_DIS);
  4595. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4596. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4597. ILK_DPARB_GATE);
  4598. }
  4599. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4600. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4601. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4602. ILK_ELPIN_409_SELECT);
  4603. I915_WRITE(_3D_CHICKEN2,
  4604. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4605. _3D_CHICKEN2_WM_READ_PIPELINED);
  4606. /* WaDisableRenderCachePipelinedFlush:ilk */
  4607. I915_WRITE(CACHE_MODE_0,
  4608. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4609. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4610. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4611. g4x_disable_trickle_feed(dev);
  4612. ibx_init_clock_gating(dev);
  4613. }
  4614. static void cpt_init_clock_gating(struct drm_device *dev)
  4615. {
  4616. struct drm_i915_private *dev_priv = dev->dev_private;
  4617. int pipe;
  4618. uint32_t val;
  4619. /*
  4620. * On Ibex Peak and Cougar Point, we need to disable clock
  4621. * gating for the panel power sequencer or it will fail to
  4622. * start up when no ports are active.
  4623. */
  4624. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4625. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4626. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4627. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4628. DPLS_EDP_PPS_FIX_DIS);
  4629. /* The below fixes the weird display corruption, a few pixels shifted
  4630. * downward, on (only) LVDS of some HP laptops with IVY.
  4631. */
  4632. for_each_pipe(dev_priv, pipe) {
  4633. val = I915_READ(TRANS_CHICKEN2(pipe));
  4634. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4635. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4636. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4637. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4638. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4639. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4640. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4641. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4642. }
  4643. /* WADP0ClockGatingDisable */
  4644. for_each_pipe(dev_priv, pipe) {
  4645. I915_WRITE(TRANS_CHICKEN1(pipe),
  4646. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4647. }
  4648. }
  4649. static void gen6_check_mch_setup(struct drm_device *dev)
  4650. {
  4651. struct drm_i915_private *dev_priv = dev->dev_private;
  4652. uint32_t tmp;
  4653. tmp = I915_READ(MCH_SSKPD);
  4654. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4655. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4656. tmp);
  4657. }
  4658. static void gen6_init_clock_gating(struct drm_device *dev)
  4659. {
  4660. struct drm_i915_private *dev_priv = dev->dev_private;
  4661. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4662. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4663. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4664. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4665. ILK_ELPIN_409_SELECT);
  4666. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4667. I915_WRITE(_3D_CHICKEN,
  4668. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4669. /* WaSetupGtModeTdRowDispatch:snb */
  4670. if (IS_SNB_GT1(dev))
  4671. I915_WRITE(GEN6_GT_MODE,
  4672. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4673. /* WaDisable_RenderCache_OperationalFlush:snb */
  4674. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4675. /*
  4676. * BSpec recoomends 8x4 when MSAA is used,
  4677. * however in practice 16x4 seems fastest.
  4678. *
  4679. * Note that PS/WM thread counts depend on the WIZ hashing
  4680. * disable bit, which we don't touch here, but it's good
  4681. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4682. */
  4683. I915_WRITE(GEN6_GT_MODE,
  4684. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4685. ilk_init_lp_watermarks(dev);
  4686. I915_WRITE(CACHE_MODE_0,
  4687. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4688. I915_WRITE(GEN6_UCGCTL1,
  4689. I915_READ(GEN6_UCGCTL1) |
  4690. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4691. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4692. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4693. * gating disable must be set. Failure to set it results in
  4694. * flickering pixels due to Z write ordering failures after
  4695. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4696. * Sanctuary and Tropics, and apparently anything else with
  4697. * alpha test or pixel discard.
  4698. *
  4699. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4700. * but we didn't debug actual testcases to find it out.
  4701. *
  4702. * WaDisableRCCUnitClockGating:snb
  4703. * WaDisableRCPBUnitClockGating:snb
  4704. */
  4705. I915_WRITE(GEN6_UCGCTL2,
  4706. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4707. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4708. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4709. I915_WRITE(_3D_CHICKEN3,
  4710. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4711. /*
  4712. * Bspec says:
  4713. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4714. * 3DSTATE_SF number of SF output attributes is more than 16."
  4715. */
  4716. I915_WRITE(_3D_CHICKEN3,
  4717. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4718. /*
  4719. * According to the spec the following bits should be
  4720. * set in order to enable memory self-refresh and fbc:
  4721. * The bit21 and bit22 of 0x42000
  4722. * The bit21 and bit22 of 0x42004
  4723. * The bit5 and bit7 of 0x42020
  4724. * The bit14 of 0x70180
  4725. * The bit14 of 0x71180
  4726. *
  4727. * WaFbcAsynchFlipDisableFbcQueue:snb
  4728. */
  4729. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4730. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4731. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4732. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4733. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4734. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4735. I915_WRITE(ILK_DSPCLK_GATE_D,
  4736. I915_READ(ILK_DSPCLK_GATE_D) |
  4737. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4738. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4739. g4x_disable_trickle_feed(dev);
  4740. cpt_init_clock_gating(dev);
  4741. gen6_check_mch_setup(dev);
  4742. }
  4743. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4744. {
  4745. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4746. /*
  4747. * WaVSThreadDispatchOverride:ivb,vlv
  4748. *
  4749. * This actually overrides the dispatch
  4750. * mode for all thread types.
  4751. */
  4752. reg &= ~GEN7_FF_SCHED_MASK;
  4753. reg |= GEN7_FF_TS_SCHED_HW;
  4754. reg |= GEN7_FF_VS_SCHED_HW;
  4755. reg |= GEN7_FF_DS_SCHED_HW;
  4756. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4757. }
  4758. static void lpt_init_clock_gating(struct drm_device *dev)
  4759. {
  4760. struct drm_i915_private *dev_priv = dev->dev_private;
  4761. /*
  4762. * TODO: this bit should only be enabled when really needed, then
  4763. * disabled when not needed anymore in order to save power.
  4764. */
  4765. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4766. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4767. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4768. PCH_LP_PARTITION_LEVEL_DISABLE);
  4769. /* WADPOClockGatingDisable:hsw */
  4770. I915_WRITE(_TRANSA_CHICKEN1,
  4771. I915_READ(_TRANSA_CHICKEN1) |
  4772. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4773. }
  4774. static void lpt_suspend_hw(struct drm_device *dev)
  4775. {
  4776. struct drm_i915_private *dev_priv = dev->dev_private;
  4777. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4778. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4779. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4780. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4781. }
  4782. }
  4783. static void broadwell_init_clock_gating(struct drm_device *dev)
  4784. {
  4785. struct drm_i915_private *dev_priv = dev->dev_private;
  4786. enum pipe pipe;
  4787. I915_WRITE(WM3_LP_ILK, 0);
  4788. I915_WRITE(WM2_LP_ILK, 0);
  4789. I915_WRITE(WM1_LP_ILK, 0);
  4790. /* FIXME(BDW): Check all the w/a, some might only apply to
  4791. * pre-production hw. */
  4792. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4793. I915_WRITE(_3D_CHICKEN3,
  4794. _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
  4795. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4796. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4797. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4798. I915_WRITE(CHICKEN_PAR1_1,
  4799. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4800. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4801. for_each_pipe(dev_priv, pipe) {
  4802. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4803. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4804. BDW_DPRS_MASK_VBLANK_SRD);
  4805. }
  4806. /* WaVSRefCountFullforceMissDisable:bdw */
  4807. /* WaDSRefCountFullforceMissDisable:bdw */
  4808. I915_WRITE(GEN7_FF_THREAD_MODE,
  4809. I915_READ(GEN7_FF_THREAD_MODE) &
  4810. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4811. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4812. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4813. /* WaDisableSDEUnitClockGating:bdw */
  4814. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4815. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4816. lpt_init_clock_gating(dev);
  4817. }
  4818. static void haswell_init_clock_gating(struct drm_device *dev)
  4819. {
  4820. struct drm_i915_private *dev_priv = dev->dev_private;
  4821. ilk_init_lp_watermarks(dev);
  4822. /* L3 caching of data atomics doesn't work -- disable it. */
  4823. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4824. I915_WRITE(HSW_ROW_CHICKEN3,
  4825. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4826. /* This is required by WaCatErrorRejectionIssue:hsw */
  4827. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4828. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4829. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4830. /* WaVSRefCountFullforceMissDisable:hsw */
  4831. I915_WRITE(GEN7_FF_THREAD_MODE,
  4832. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4833. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4834. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4835. /* enable HiZ Raw Stall Optimization */
  4836. I915_WRITE(CACHE_MODE_0_GEN7,
  4837. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4838. /* WaDisable4x2SubspanOptimization:hsw */
  4839. I915_WRITE(CACHE_MODE_1,
  4840. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4841. /*
  4842. * BSpec recommends 8x4 when MSAA is used,
  4843. * however in practice 16x4 seems fastest.
  4844. *
  4845. * Note that PS/WM thread counts depend on the WIZ hashing
  4846. * disable bit, which we don't touch here, but it's good
  4847. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4848. */
  4849. I915_WRITE(GEN7_GT_MODE,
  4850. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4851. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4852. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4853. /* WaRsPkgCStateDisplayPMReq:hsw */
  4854. I915_WRITE(CHICKEN_PAR1_1,
  4855. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4856. lpt_init_clock_gating(dev);
  4857. }
  4858. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4859. {
  4860. struct drm_i915_private *dev_priv = dev->dev_private;
  4861. uint32_t snpcr;
  4862. ilk_init_lp_watermarks(dev);
  4863. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4864. /* WaDisableEarlyCull:ivb */
  4865. I915_WRITE(_3D_CHICKEN3,
  4866. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4867. /* WaDisableBackToBackFlipFix:ivb */
  4868. I915_WRITE(IVB_CHICKEN3,
  4869. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4870. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4871. /* WaDisablePSDDualDispatchEnable:ivb */
  4872. if (IS_IVB_GT1(dev))
  4873. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4874. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4875. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4876. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4877. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4878. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4879. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4880. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4881. I915_WRITE(GEN7_L3CNTLREG1,
  4882. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4883. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4884. GEN7_WA_L3_CHICKEN_MODE);
  4885. if (IS_IVB_GT1(dev))
  4886. I915_WRITE(GEN7_ROW_CHICKEN2,
  4887. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4888. else {
  4889. /* must write both registers */
  4890. I915_WRITE(GEN7_ROW_CHICKEN2,
  4891. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4892. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4893. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4894. }
  4895. /* WaForceL3Serialization:ivb */
  4896. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4897. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4898. /*
  4899. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4900. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4901. */
  4902. I915_WRITE(GEN6_UCGCTL2,
  4903. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4904. /* This is required by WaCatErrorRejectionIssue:ivb */
  4905. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4906. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4907. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4908. g4x_disable_trickle_feed(dev);
  4909. gen7_setup_fixed_func_scheduler(dev_priv);
  4910. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4911. /* enable HiZ Raw Stall Optimization */
  4912. I915_WRITE(CACHE_MODE_0_GEN7,
  4913. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4914. }
  4915. /* WaDisable4x2SubspanOptimization:ivb */
  4916. I915_WRITE(CACHE_MODE_1,
  4917. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4918. /*
  4919. * BSpec recommends 8x4 when MSAA is used,
  4920. * however in practice 16x4 seems fastest.
  4921. *
  4922. * Note that PS/WM thread counts depend on the WIZ hashing
  4923. * disable bit, which we don't touch here, but it's good
  4924. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4925. */
  4926. I915_WRITE(GEN7_GT_MODE,
  4927. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4928. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4929. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4930. snpcr |= GEN6_MBC_SNPCR_MED;
  4931. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4932. if (!HAS_PCH_NOP(dev))
  4933. cpt_init_clock_gating(dev);
  4934. gen6_check_mch_setup(dev);
  4935. }
  4936. static void valleyview_init_clock_gating(struct drm_device *dev)
  4937. {
  4938. struct drm_i915_private *dev_priv = dev->dev_private;
  4939. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4940. /* WaDisableEarlyCull:vlv */
  4941. I915_WRITE(_3D_CHICKEN3,
  4942. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4943. /* WaDisableBackToBackFlipFix:vlv */
  4944. I915_WRITE(IVB_CHICKEN3,
  4945. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4946. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4947. /* WaPsdDispatchEnable:vlv */
  4948. /* WaDisablePSDDualDispatchEnable:vlv */
  4949. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4950. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4951. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4952. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4953. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4954. /* WaForceL3Serialization:vlv */
  4955. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4956. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4957. /* WaDisableDopClockGating:vlv */
  4958. I915_WRITE(GEN7_ROW_CHICKEN2,
  4959. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4960. /* This is required by WaCatErrorRejectionIssue:vlv */
  4961. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4962. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4963. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4964. gen7_setup_fixed_func_scheduler(dev_priv);
  4965. /*
  4966. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4967. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4968. */
  4969. I915_WRITE(GEN6_UCGCTL2,
  4970. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4971. /* WaDisableL3Bank2xClockGate:vlv
  4972. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4973. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4974. I915_WRITE(GEN7_UCGCTL4,
  4975. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4976. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4977. /*
  4978. * BSpec says this must be set, even though
  4979. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4980. */
  4981. I915_WRITE(CACHE_MODE_1,
  4982. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4983. /*
  4984. * WaIncreaseL3CreditsForVLVB0:vlv
  4985. * This is the hardware default actually.
  4986. */
  4987. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4988. /*
  4989. * WaDisableVLVClockGating_VBIIssue:vlv
  4990. * Disable clock gating on th GCFG unit to prevent a delay
  4991. * in the reporting of vblank events.
  4992. */
  4993. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4994. }
  4995. static void cherryview_init_clock_gating(struct drm_device *dev)
  4996. {
  4997. struct drm_i915_private *dev_priv = dev->dev_private;
  4998. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4999. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5000. /* WaVSRefCountFullforceMissDisable:chv */
  5001. /* WaDSRefCountFullforceMissDisable:chv */
  5002. I915_WRITE(GEN7_FF_THREAD_MODE,
  5003. I915_READ(GEN7_FF_THREAD_MODE) &
  5004. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5005. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5006. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5007. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5008. /* WaDisableCSUnitClockGating:chv */
  5009. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5010. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5011. /* WaDisableSDEUnitClockGating:chv */
  5012. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5013. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5014. /* WaDisableGunitClockGating:chv (pre-production hw) */
  5015. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  5016. GINT_DIS);
  5017. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  5018. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5019. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  5020. /* WaDisableDopClockGating:chv (pre-production hw) */
  5021. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5022. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  5023. }
  5024. static void g4x_init_clock_gating(struct drm_device *dev)
  5025. {
  5026. struct drm_i915_private *dev_priv = dev->dev_private;
  5027. uint32_t dspclk_gate;
  5028. I915_WRITE(RENCLK_GATE_D1, 0);
  5029. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5030. GS_UNIT_CLOCK_GATE_DISABLE |
  5031. CL_UNIT_CLOCK_GATE_DISABLE);
  5032. I915_WRITE(RAMCLK_GATE_D, 0);
  5033. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5034. OVRUNIT_CLOCK_GATE_DISABLE |
  5035. OVCUNIT_CLOCK_GATE_DISABLE;
  5036. if (IS_GM45(dev))
  5037. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5038. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5039. /* WaDisableRenderCachePipelinedFlush */
  5040. I915_WRITE(CACHE_MODE_0,
  5041. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5042. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5043. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5044. g4x_disable_trickle_feed(dev);
  5045. }
  5046. static void crestline_init_clock_gating(struct drm_device *dev)
  5047. {
  5048. struct drm_i915_private *dev_priv = dev->dev_private;
  5049. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5050. I915_WRITE(RENCLK_GATE_D2, 0);
  5051. I915_WRITE(DSPCLK_GATE_D, 0);
  5052. I915_WRITE(RAMCLK_GATE_D, 0);
  5053. I915_WRITE16(DEUC, 0);
  5054. I915_WRITE(MI_ARB_STATE,
  5055. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5056. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5057. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5058. }
  5059. static void broadwater_init_clock_gating(struct drm_device *dev)
  5060. {
  5061. struct drm_i915_private *dev_priv = dev->dev_private;
  5062. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5063. I965_RCC_CLOCK_GATE_DISABLE |
  5064. I965_RCPB_CLOCK_GATE_DISABLE |
  5065. I965_ISC_CLOCK_GATE_DISABLE |
  5066. I965_FBC_CLOCK_GATE_DISABLE);
  5067. I915_WRITE(RENCLK_GATE_D2, 0);
  5068. I915_WRITE(MI_ARB_STATE,
  5069. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5070. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5071. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5072. }
  5073. static void gen3_init_clock_gating(struct drm_device *dev)
  5074. {
  5075. struct drm_i915_private *dev_priv = dev->dev_private;
  5076. u32 dstate = I915_READ(D_STATE);
  5077. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5078. DSTATE_DOT_CLOCK_GATING;
  5079. I915_WRITE(D_STATE, dstate);
  5080. if (IS_PINEVIEW(dev))
  5081. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5082. /* IIR "flip pending" means done if this bit is set */
  5083. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5084. /* interrupts should cause a wake up from C3 */
  5085. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5086. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5087. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5088. I915_WRITE(MI_ARB_STATE,
  5089. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5090. }
  5091. static void i85x_init_clock_gating(struct drm_device *dev)
  5092. {
  5093. struct drm_i915_private *dev_priv = dev->dev_private;
  5094. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5095. /* interrupts should cause a wake up from C3 */
  5096. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5097. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5098. I915_WRITE(MEM_MODE,
  5099. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5100. }
  5101. static void i830_init_clock_gating(struct drm_device *dev)
  5102. {
  5103. struct drm_i915_private *dev_priv = dev->dev_private;
  5104. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5105. I915_WRITE(MEM_MODE,
  5106. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5107. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5108. }
  5109. void intel_init_clock_gating(struct drm_device *dev)
  5110. {
  5111. struct drm_i915_private *dev_priv = dev->dev_private;
  5112. dev_priv->display.init_clock_gating(dev);
  5113. }
  5114. void intel_suspend_hw(struct drm_device *dev)
  5115. {
  5116. if (HAS_PCH_LPT(dev))
  5117. lpt_suspend_hw(dev);
  5118. }
  5119. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  5120. for (i = 0; \
  5121. i < (power_domains)->power_well_count && \
  5122. ((power_well) = &(power_domains)->power_wells[i]); \
  5123. i++) \
  5124. if ((power_well)->domains & (domain_mask))
  5125. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  5126. for (i = (power_domains)->power_well_count - 1; \
  5127. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  5128. i--) \
  5129. if ((power_well)->domains & (domain_mask))
  5130. /**
  5131. * We should only use the power well if we explicitly asked the hardware to
  5132. * enable it, so check if it's enabled and also check if we've requested it to
  5133. * be enabled.
  5134. */
  5135. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  5136. struct i915_power_well *power_well)
  5137. {
  5138. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  5139. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  5140. }
  5141. bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
  5142. enum intel_display_power_domain domain)
  5143. {
  5144. struct i915_power_domains *power_domains;
  5145. struct i915_power_well *power_well;
  5146. bool is_enabled;
  5147. int i;
  5148. if (dev_priv->pm.suspended)
  5149. return false;
  5150. power_domains = &dev_priv->power_domains;
  5151. is_enabled = true;
  5152. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5153. if (power_well->always_on)
  5154. continue;
  5155. if (!power_well->hw_enabled) {
  5156. is_enabled = false;
  5157. break;
  5158. }
  5159. }
  5160. return is_enabled;
  5161. }
  5162. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  5163. enum intel_display_power_domain domain)
  5164. {
  5165. struct i915_power_domains *power_domains;
  5166. bool ret;
  5167. power_domains = &dev_priv->power_domains;
  5168. mutex_lock(&power_domains->lock);
  5169. ret = intel_display_power_enabled_unlocked(dev_priv, domain);
  5170. mutex_unlock(&power_domains->lock);
  5171. return ret;
  5172. }
  5173. /*
  5174. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  5175. * when not needed anymore. We have 4 registers that can request the power well
  5176. * to be enabled, and it will only be disabled if none of the registers is
  5177. * requesting it to be enabled.
  5178. */
  5179. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  5180. {
  5181. struct drm_device *dev = dev_priv->dev;
  5182. /*
  5183. * After we re-enable the power well, if we touch VGA register 0x3d5
  5184. * we'll get unclaimed register interrupts. This stops after we write
  5185. * anything to the VGA MSR register. The vgacon module uses this
  5186. * register all the time, so if we unbind our driver and, as a
  5187. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  5188. * console_unlock(). So make here we touch the VGA MSR register, making
  5189. * sure vgacon can keep working normally without triggering interrupts
  5190. * and error messages.
  5191. */
  5192. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5193. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  5194. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5195. if (IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9))
  5196. gen8_irq_power_well_post_enable(dev_priv);
  5197. }
  5198. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  5199. struct i915_power_well *power_well, bool enable)
  5200. {
  5201. bool is_enabled, enable_requested;
  5202. uint32_t tmp;
  5203. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  5204. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  5205. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  5206. if (enable) {
  5207. if (!enable_requested)
  5208. I915_WRITE(HSW_PWR_WELL_DRIVER,
  5209. HSW_PWR_WELL_ENABLE_REQUEST);
  5210. if (!is_enabled) {
  5211. DRM_DEBUG_KMS("Enabling power well\n");
  5212. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  5213. HSW_PWR_WELL_STATE_ENABLED), 20))
  5214. DRM_ERROR("Timeout enabling power well\n");
  5215. }
  5216. hsw_power_well_post_enable(dev_priv);
  5217. } else {
  5218. if (enable_requested) {
  5219. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  5220. POSTING_READ(HSW_PWR_WELL_DRIVER);
  5221. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  5222. }
  5223. }
  5224. }
  5225. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5226. struct i915_power_well *power_well)
  5227. {
  5228. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  5229. /*
  5230. * We're taking over the BIOS, so clear any requests made by it since
  5231. * the driver is in charge now.
  5232. */
  5233. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5234. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5235. }
  5236. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  5237. struct i915_power_well *power_well)
  5238. {
  5239. hsw_set_power_well(dev_priv, power_well, true);
  5240. }
  5241. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  5242. struct i915_power_well *power_well)
  5243. {
  5244. hsw_set_power_well(dev_priv, power_well, false);
  5245. }
  5246. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  5247. struct i915_power_well *power_well)
  5248. {
  5249. }
  5250. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  5251. struct i915_power_well *power_well)
  5252. {
  5253. return true;
  5254. }
  5255. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5256. struct i915_power_well *power_well, bool enable)
  5257. {
  5258. enum punit_power_well power_well_id = power_well->data;
  5259. u32 mask;
  5260. u32 state;
  5261. u32 ctrl;
  5262. mask = PUNIT_PWRGT_MASK(power_well_id);
  5263. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  5264. PUNIT_PWRGT_PWR_GATE(power_well_id);
  5265. mutex_lock(&dev_priv->rps.hw_lock);
  5266. #define COND \
  5267. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  5268. if (COND)
  5269. goto out;
  5270. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  5271. ctrl &= ~mask;
  5272. ctrl |= state;
  5273. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  5274. if (wait_for(COND, 100))
  5275. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5276. state,
  5277. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5278. #undef COND
  5279. out:
  5280. mutex_unlock(&dev_priv->rps.hw_lock);
  5281. }
  5282. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5283. struct i915_power_well *power_well)
  5284. {
  5285. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5286. }
  5287. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5288. struct i915_power_well *power_well)
  5289. {
  5290. vlv_set_power_well(dev_priv, power_well, true);
  5291. }
  5292. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5293. struct i915_power_well *power_well)
  5294. {
  5295. vlv_set_power_well(dev_priv, power_well, false);
  5296. }
  5297. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5298. struct i915_power_well *power_well)
  5299. {
  5300. int power_well_id = power_well->data;
  5301. bool enabled = false;
  5302. u32 mask;
  5303. u32 state;
  5304. u32 ctrl;
  5305. mask = PUNIT_PWRGT_MASK(power_well_id);
  5306. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5307. mutex_lock(&dev_priv->rps.hw_lock);
  5308. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5309. /*
  5310. * We only ever set the power-on and power-gate states, anything
  5311. * else is unexpected.
  5312. */
  5313. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5314. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5315. if (state == ctrl)
  5316. enabled = true;
  5317. /*
  5318. * A transient state at this point would mean some unexpected party
  5319. * is poking at the power controls too.
  5320. */
  5321. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5322. WARN_ON(ctrl != state);
  5323. mutex_unlock(&dev_priv->rps.hw_lock);
  5324. return enabled;
  5325. }
  5326. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5327. struct i915_power_well *power_well)
  5328. {
  5329. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5330. vlv_set_power_well(dev_priv, power_well, true);
  5331. spin_lock_irq(&dev_priv->irq_lock);
  5332. valleyview_enable_display_irqs(dev_priv);
  5333. spin_unlock_irq(&dev_priv->irq_lock);
  5334. /*
  5335. * During driver initialization/resume we can avoid restoring the
  5336. * part of the HW/SW state that will be inited anyway explicitly.
  5337. */
  5338. if (dev_priv->power_domains.initializing)
  5339. return;
  5340. intel_hpd_init(dev_priv->dev);
  5341. i915_redisable_vga_power_on(dev_priv->dev);
  5342. }
  5343. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5344. struct i915_power_well *power_well)
  5345. {
  5346. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5347. spin_lock_irq(&dev_priv->irq_lock);
  5348. valleyview_disable_display_irqs(dev_priv);
  5349. spin_unlock_irq(&dev_priv->irq_lock);
  5350. vlv_set_power_well(dev_priv, power_well, false);
  5351. vlv_power_sequencer_reset(dev_priv);
  5352. }
  5353. static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5354. struct i915_power_well *power_well)
  5355. {
  5356. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5357. /*
  5358. * Enable the CRI clock source so we can get at the
  5359. * display and the reference clock for VGA
  5360. * hotplug / manual detection.
  5361. */
  5362. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5363. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5364. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5365. vlv_set_power_well(dev_priv, power_well, true);
  5366. /*
  5367. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5368. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5369. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5370. * b. The other bits such as sfr settings / modesel may all
  5371. * be set to 0.
  5372. *
  5373. * This should only be done on init and resume from S3 with
  5374. * both PLLs disabled, or we risk losing DPIO and PLL
  5375. * synchronization.
  5376. */
  5377. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5378. }
  5379. static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5380. struct i915_power_well *power_well)
  5381. {
  5382. enum pipe pipe;
  5383. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5384. for_each_pipe(dev_priv, pipe)
  5385. assert_pll_disabled(dev_priv, pipe);
  5386. /* Assert common reset */
  5387. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
  5388. vlv_set_power_well(dev_priv, power_well, false);
  5389. }
  5390. static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5391. struct i915_power_well *power_well)
  5392. {
  5393. enum dpio_phy phy;
  5394. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5395. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5396. /*
  5397. * Enable the CRI clock source so we can get at the
  5398. * display and the reference clock for VGA
  5399. * hotplug / manual detection.
  5400. */
  5401. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5402. phy = DPIO_PHY0;
  5403. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5404. DPLL_REFA_CLK_ENABLE_VLV);
  5405. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5406. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5407. } else {
  5408. phy = DPIO_PHY1;
  5409. I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
  5410. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5411. }
  5412. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5413. vlv_set_power_well(dev_priv, power_well, true);
  5414. /* Poll for phypwrgood signal */
  5415. if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
  5416. DRM_ERROR("Display PHY %d is not power up\n", phy);
  5417. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
  5418. PHY_COM_LANE_RESET_DEASSERT(phy));
  5419. }
  5420. static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5421. struct i915_power_well *power_well)
  5422. {
  5423. enum dpio_phy phy;
  5424. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5425. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5426. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5427. phy = DPIO_PHY0;
  5428. assert_pll_disabled(dev_priv, PIPE_A);
  5429. assert_pll_disabled(dev_priv, PIPE_B);
  5430. } else {
  5431. phy = DPIO_PHY1;
  5432. assert_pll_disabled(dev_priv, PIPE_C);
  5433. }
  5434. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
  5435. ~PHY_COM_LANE_RESET_DEASSERT(phy));
  5436. vlv_set_power_well(dev_priv, power_well, false);
  5437. }
  5438. static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
  5439. struct i915_power_well *power_well)
  5440. {
  5441. enum pipe pipe = power_well->data;
  5442. bool enabled;
  5443. u32 state, ctrl;
  5444. mutex_lock(&dev_priv->rps.hw_lock);
  5445. state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
  5446. /*
  5447. * We only ever set the power-on and power-gate states, anything
  5448. * else is unexpected.
  5449. */
  5450. WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
  5451. enabled = state == DP_SSS_PWR_ON(pipe);
  5452. /*
  5453. * A transient state at this point would mean some unexpected party
  5454. * is poking at the power controls too.
  5455. */
  5456. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
  5457. WARN_ON(ctrl << 16 != state);
  5458. mutex_unlock(&dev_priv->rps.hw_lock);
  5459. return enabled;
  5460. }
  5461. static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
  5462. struct i915_power_well *power_well,
  5463. bool enable)
  5464. {
  5465. enum pipe pipe = power_well->data;
  5466. u32 state;
  5467. u32 ctrl;
  5468. state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
  5469. mutex_lock(&dev_priv->rps.hw_lock);
  5470. #define COND \
  5471. ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
  5472. if (COND)
  5473. goto out;
  5474. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5475. ctrl &= ~DP_SSC_MASK(pipe);
  5476. ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
  5477. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
  5478. if (wait_for(COND, 100))
  5479. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5480. state,
  5481. vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
  5482. #undef COND
  5483. out:
  5484. mutex_unlock(&dev_priv->rps.hw_lock);
  5485. }
  5486. static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5487. struct i915_power_well *power_well)
  5488. {
  5489. chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
  5490. }
  5491. static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
  5492. struct i915_power_well *power_well)
  5493. {
  5494. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5495. power_well->data != PIPE_B &&
  5496. power_well->data != PIPE_C);
  5497. chv_set_pipe_power_well(dev_priv, power_well, true);
  5498. }
  5499. static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
  5500. struct i915_power_well *power_well)
  5501. {
  5502. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5503. power_well->data != PIPE_B &&
  5504. power_well->data != PIPE_C);
  5505. chv_set_pipe_power_well(dev_priv, power_well, false);
  5506. }
  5507. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5508. struct i915_power_well *power_well)
  5509. {
  5510. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5511. if (power_well->always_on || !i915.disable_power_well) {
  5512. if (!enabled)
  5513. goto mismatch;
  5514. return;
  5515. }
  5516. if (enabled != (power_well->count > 0))
  5517. goto mismatch;
  5518. return;
  5519. mismatch:
  5520. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5521. power_well->name, power_well->always_on, enabled,
  5522. power_well->count, i915.disable_power_well);
  5523. }
  5524. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5525. enum intel_display_power_domain domain)
  5526. {
  5527. struct i915_power_domains *power_domains;
  5528. struct i915_power_well *power_well;
  5529. int i;
  5530. intel_runtime_pm_get(dev_priv);
  5531. power_domains = &dev_priv->power_domains;
  5532. mutex_lock(&power_domains->lock);
  5533. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5534. if (!power_well->count++) {
  5535. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5536. power_well->ops->enable(dev_priv, power_well);
  5537. power_well->hw_enabled = true;
  5538. }
  5539. check_power_well_state(dev_priv, power_well);
  5540. }
  5541. power_domains->domain_use_count[domain]++;
  5542. mutex_unlock(&power_domains->lock);
  5543. }
  5544. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5545. enum intel_display_power_domain domain)
  5546. {
  5547. struct i915_power_domains *power_domains;
  5548. struct i915_power_well *power_well;
  5549. int i;
  5550. power_domains = &dev_priv->power_domains;
  5551. mutex_lock(&power_domains->lock);
  5552. WARN_ON(!power_domains->domain_use_count[domain]);
  5553. power_domains->domain_use_count[domain]--;
  5554. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5555. WARN_ON(!power_well->count);
  5556. if (!--power_well->count && i915.disable_power_well) {
  5557. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5558. power_well->hw_enabled = false;
  5559. power_well->ops->disable(dev_priv, power_well);
  5560. }
  5561. check_power_well_state(dev_priv, power_well);
  5562. }
  5563. mutex_unlock(&power_domains->lock);
  5564. intel_runtime_pm_put(dev_priv);
  5565. }
  5566. static struct i915_power_domains *hsw_pwr;
  5567. /* Display audio driver power well request */
  5568. int i915_request_power_well(void)
  5569. {
  5570. struct drm_i915_private *dev_priv;
  5571. if (!hsw_pwr)
  5572. return -ENODEV;
  5573. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5574. power_domains);
  5575. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5576. return 0;
  5577. }
  5578. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5579. /* Display audio driver power well release */
  5580. int i915_release_power_well(void)
  5581. {
  5582. struct drm_i915_private *dev_priv;
  5583. if (!hsw_pwr)
  5584. return -ENODEV;
  5585. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5586. power_domains);
  5587. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5588. return 0;
  5589. }
  5590. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5591. /*
  5592. * Private interface for the audio driver to get CDCLK in kHz.
  5593. *
  5594. * Caller must request power well using i915_request_power_well() prior to
  5595. * making the call.
  5596. */
  5597. int i915_get_cdclk_freq(void)
  5598. {
  5599. struct drm_i915_private *dev_priv;
  5600. if (!hsw_pwr)
  5601. return -ENODEV;
  5602. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5603. power_domains);
  5604. return intel_ddi_get_cdclk_freq(dev_priv);
  5605. }
  5606. EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
  5607. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5608. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5609. BIT(POWER_DOMAIN_PIPE_A) | \
  5610. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5611. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5612. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5613. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5614. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5615. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5616. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5617. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5618. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5619. BIT(POWER_DOMAIN_PORT_CRT) | \
  5620. BIT(POWER_DOMAIN_PLLS) | \
  5621. BIT(POWER_DOMAIN_INIT))
  5622. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5623. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5624. BIT(POWER_DOMAIN_INIT))
  5625. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5626. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5627. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5628. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5629. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5630. BIT(POWER_DOMAIN_INIT))
  5631. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5632. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5633. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5634. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5635. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5636. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5637. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5638. BIT(POWER_DOMAIN_PORT_CRT) | \
  5639. BIT(POWER_DOMAIN_INIT))
  5640. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5641. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5642. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5643. BIT(POWER_DOMAIN_INIT))
  5644. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5645. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5646. BIT(POWER_DOMAIN_INIT))
  5647. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5648. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5649. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5650. BIT(POWER_DOMAIN_INIT))
  5651. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5652. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5653. BIT(POWER_DOMAIN_INIT))
  5654. #define CHV_PIPE_A_POWER_DOMAINS ( \
  5655. BIT(POWER_DOMAIN_PIPE_A) | \
  5656. BIT(POWER_DOMAIN_INIT))
  5657. #define CHV_PIPE_B_POWER_DOMAINS ( \
  5658. BIT(POWER_DOMAIN_PIPE_B) | \
  5659. BIT(POWER_DOMAIN_INIT))
  5660. #define CHV_PIPE_C_POWER_DOMAINS ( \
  5661. BIT(POWER_DOMAIN_PIPE_C) | \
  5662. BIT(POWER_DOMAIN_INIT))
  5663. #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5664. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5665. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5666. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5667. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5668. BIT(POWER_DOMAIN_INIT))
  5669. #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
  5670. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5671. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5672. BIT(POWER_DOMAIN_INIT))
  5673. #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
  5674. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5675. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5676. BIT(POWER_DOMAIN_INIT))
  5677. #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
  5678. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5679. BIT(POWER_DOMAIN_INIT))
  5680. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5681. .sync_hw = i9xx_always_on_power_well_noop,
  5682. .enable = i9xx_always_on_power_well_noop,
  5683. .disable = i9xx_always_on_power_well_noop,
  5684. .is_enabled = i9xx_always_on_power_well_enabled,
  5685. };
  5686. static const struct i915_power_well_ops chv_pipe_power_well_ops = {
  5687. .sync_hw = chv_pipe_power_well_sync_hw,
  5688. .enable = chv_pipe_power_well_enable,
  5689. .disable = chv_pipe_power_well_disable,
  5690. .is_enabled = chv_pipe_power_well_enabled,
  5691. };
  5692. static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
  5693. .sync_hw = vlv_power_well_sync_hw,
  5694. .enable = chv_dpio_cmn_power_well_enable,
  5695. .disable = chv_dpio_cmn_power_well_disable,
  5696. .is_enabled = vlv_power_well_enabled,
  5697. };
  5698. static struct i915_power_well i9xx_always_on_power_well[] = {
  5699. {
  5700. .name = "always-on",
  5701. .always_on = 1,
  5702. .domains = POWER_DOMAIN_MASK,
  5703. .ops = &i9xx_always_on_power_well_ops,
  5704. },
  5705. };
  5706. static const struct i915_power_well_ops hsw_power_well_ops = {
  5707. .sync_hw = hsw_power_well_sync_hw,
  5708. .enable = hsw_power_well_enable,
  5709. .disable = hsw_power_well_disable,
  5710. .is_enabled = hsw_power_well_enabled,
  5711. };
  5712. static struct i915_power_well hsw_power_wells[] = {
  5713. {
  5714. .name = "always-on",
  5715. .always_on = 1,
  5716. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5717. .ops = &i9xx_always_on_power_well_ops,
  5718. },
  5719. {
  5720. .name = "display",
  5721. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5722. .ops = &hsw_power_well_ops,
  5723. },
  5724. };
  5725. static struct i915_power_well bdw_power_wells[] = {
  5726. {
  5727. .name = "always-on",
  5728. .always_on = 1,
  5729. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5730. .ops = &i9xx_always_on_power_well_ops,
  5731. },
  5732. {
  5733. .name = "display",
  5734. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5735. .ops = &hsw_power_well_ops,
  5736. },
  5737. };
  5738. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5739. .sync_hw = vlv_power_well_sync_hw,
  5740. .enable = vlv_display_power_well_enable,
  5741. .disable = vlv_display_power_well_disable,
  5742. .is_enabled = vlv_power_well_enabled,
  5743. };
  5744. static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
  5745. .sync_hw = vlv_power_well_sync_hw,
  5746. .enable = vlv_dpio_cmn_power_well_enable,
  5747. .disable = vlv_dpio_cmn_power_well_disable,
  5748. .is_enabled = vlv_power_well_enabled,
  5749. };
  5750. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5751. .sync_hw = vlv_power_well_sync_hw,
  5752. .enable = vlv_power_well_enable,
  5753. .disable = vlv_power_well_disable,
  5754. .is_enabled = vlv_power_well_enabled,
  5755. };
  5756. static struct i915_power_well vlv_power_wells[] = {
  5757. {
  5758. .name = "always-on",
  5759. .always_on = 1,
  5760. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5761. .ops = &i9xx_always_on_power_well_ops,
  5762. },
  5763. {
  5764. .name = "display",
  5765. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5766. .data = PUNIT_POWER_WELL_DISP2D,
  5767. .ops = &vlv_display_power_well_ops,
  5768. },
  5769. {
  5770. .name = "dpio-tx-b-01",
  5771. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5772. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5773. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5774. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5775. .ops = &vlv_dpio_power_well_ops,
  5776. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5777. },
  5778. {
  5779. .name = "dpio-tx-b-23",
  5780. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5781. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5782. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5783. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5784. .ops = &vlv_dpio_power_well_ops,
  5785. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5786. },
  5787. {
  5788. .name = "dpio-tx-c-01",
  5789. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5790. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5791. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5792. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5793. .ops = &vlv_dpio_power_well_ops,
  5794. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5795. },
  5796. {
  5797. .name = "dpio-tx-c-23",
  5798. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5799. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5800. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5801. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5802. .ops = &vlv_dpio_power_well_ops,
  5803. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5804. },
  5805. {
  5806. .name = "dpio-common",
  5807. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5808. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5809. .ops = &vlv_dpio_cmn_power_well_ops,
  5810. },
  5811. };
  5812. static struct i915_power_well chv_power_wells[] = {
  5813. {
  5814. .name = "always-on",
  5815. .always_on = 1,
  5816. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5817. .ops = &i9xx_always_on_power_well_ops,
  5818. },
  5819. #if 0
  5820. {
  5821. .name = "display",
  5822. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5823. .data = PUNIT_POWER_WELL_DISP2D,
  5824. .ops = &vlv_display_power_well_ops,
  5825. },
  5826. {
  5827. .name = "pipe-a",
  5828. .domains = CHV_PIPE_A_POWER_DOMAINS,
  5829. .data = PIPE_A,
  5830. .ops = &chv_pipe_power_well_ops,
  5831. },
  5832. {
  5833. .name = "pipe-b",
  5834. .domains = CHV_PIPE_B_POWER_DOMAINS,
  5835. .data = PIPE_B,
  5836. .ops = &chv_pipe_power_well_ops,
  5837. },
  5838. {
  5839. .name = "pipe-c",
  5840. .domains = CHV_PIPE_C_POWER_DOMAINS,
  5841. .data = PIPE_C,
  5842. .ops = &chv_pipe_power_well_ops,
  5843. },
  5844. #endif
  5845. {
  5846. .name = "dpio-common-bc",
  5847. /*
  5848. * XXX: cmnreset for one PHY seems to disturb the other.
  5849. * As a workaround keep both powered on at the same
  5850. * time for now.
  5851. */
  5852. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5853. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5854. .ops = &chv_dpio_cmn_power_well_ops,
  5855. },
  5856. {
  5857. .name = "dpio-common-d",
  5858. /*
  5859. * XXX: cmnreset for one PHY seems to disturb the other.
  5860. * As a workaround keep both powered on at the same
  5861. * time for now.
  5862. */
  5863. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5864. .data = PUNIT_POWER_WELL_DPIO_CMN_D,
  5865. .ops = &chv_dpio_cmn_power_well_ops,
  5866. },
  5867. #if 0
  5868. {
  5869. .name = "dpio-tx-b-01",
  5870. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5871. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5872. .ops = &vlv_dpio_power_well_ops,
  5873. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5874. },
  5875. {
  5876. .name = "dpio-tx-b-23",
  5877. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5878. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5879. .ops = &vlv_dpio_power_well_ops,
  5880. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5881. },
  5882. {
  5883. .name = "dpio-tx-c-01",
  5884. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5885. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5886. .ops = &vlv_dpio_power_well_ops,
  5887. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5888. },
  5889. {
  5890. .name = "dpio-tx-c-23",
  5891. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5892. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5893. .ops = &vlv_dpio_power_well_ops,
  5894. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5895. },
  5896. {
  5897. .name = "dpio-tx-d-01",
  5898. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5899. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5900. .ops = &vlv_dpio_power_well_ops,
  5901. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
  5902. },
  5903. {
  5904. .name = "dpio-tx-d-23",
  5905. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5906. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5907. .ops = &vlv_dpio_power_well_ops,
  5908. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
  5909. },
  5910. #endif
  5911. };
  5912. static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
  5913. enum punit_power_well power_well_id)
  5914. {
  5915. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5916. struct i915_power_well *power_well;
  5917. int i;
  5918. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5919. if (power_well->data == power_well_id)
  5920. return power_well;
  5921. }
  5922. return NULL;
  5923. }
  5924. #define set_power_wells(power_domains, __power_wells) ({ \
  5925. (power_domains)->power_wells = (__power_wells); \
  5926. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5927. })
  5928. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5929. {
  5930. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5931. mutex_init(&power_domains->lock);
  5932. /*
  5933. * The enabling order will be from lower to higher indexed wells,
  5934. * the disabling order is reversed.
  5935. */
  5936. if (IS_HASWELL(dev_priv->dev)) {
  5937. set_power_wells(power_domains, hsw_power_wells);
  5938. hsw_pwr = power_domains;
  5939. } else if (IS_BROADWELL(dev_priv->dev)) {
  5940. set_power_wells(power_domains, bdw_power_wells);
  5941. hsw_pwr = power_domains;
  5942. } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  5943. set_power_wells(power_domains, chv_power_wells);
  5944. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5945. set_power_wells(power_domains, vlv_power_wells);
  5946. } else {
  5947. set_power_wells(power_domains, i9xx_always_on_power_well);
  5948. }
  5949. return 0;
  5950. }
  5951. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5952. {
  5953. hsw_pwr = NULL;
  5954. }
  5955. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5956. {
  5957. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5958. struct i915_power_well *power_well;
  5959. int i;
  5960. mutex_lock(&power_domains->lock);
  5961. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5962. power_well->ops->sync_hw(dev_priv, power_well);
  5963. power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
  5964. power_well);
  5965. }
  5966. mutex_unlock(&power_domains->lock);
  5967. }
  5968. static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
  5969. {
  5970. struct i915_power_well *cmn =
  5971. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
  5972. struct i915_power_well *disp2d =
  5973. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
  5974. /* nothing to do if common lane is already off */
  5975. if (!cmn->ops->is_enabled(dev_priv, cmn))
  5976. return;
  5977. /* If the display might be already active skip this */
  5978. if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
  5979. I915_READ(DPIO_CTL) & DPIO_CMNRST)
  5980. return;
  5981. DRM_DEBUG_KMS("toggling display PHY side reset\n");
  5982. /* cmnlane needs DPLL registers */
  5983. disp2d->ops->enable(dev_priv, disp2d);
  5984. /*
  5985. * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
  5986. * Need to assert and de-assert PHY SB reset by gating the
  5987. * common lane power, then un-gating it.
  5988. * Simply ungating isn't enough to reset the PHY enough to get
  5989. * ports and lanes running.
  5990. */
  5991. cmn->ops->disable(dev_priv, cmn);
  5992. }
  5993. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5994. {
  5995. struct drm_device *dev = dev_priv->dev;
  5996. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5997. power_domains->initializing = true;
  5998. if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  5999. mutex_lock(&power_domains->lock);
  6000. vlv_cmnlane_wa(dev_priv);
  6001. mutex_unlock(&power_domains->lock);
  6002. }
  6003. /* For now, we need the power well to be always enabled. */
  6004. intel_display_set_init_power(dev_priv, true);
  6005. intel_power_domains_resume(dev_priv);
  6006. power_domains->initializing = false;
  6007. }
  6008. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  6009. {
  6010. intel_runtime_pm_get(dev_priv);
  6011. }
  6012. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  6013. {
  6014. intel_runtime_pm_put(dev_priv);
  6015. }
  6016. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  6017. {
  6018. struct drm_device *dev = dev_priv->dev;
  6019. struct device *device = &dev->pdev->dev;
  6020. if (!HAS_RUNTIME_PM(dev))
  6021. return;
  6022. pm_runtime_get_sync(device);
  6023. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  6024. }
  6025. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  6026. {
  6027. struct drm_device *dev = dev_priv->dev;
  6028. struct device *device = &dev->pdev->dev;
  6029. if (!HAS_RUNTIME_PM(dev))
  6030. return;
  6031. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  6032. pm_runtime_get_noresume(device);
  6033. }
  6034. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  6035. {
  6036. struct drm_device *dev = dev_priv->dev;
  6037. struct device *device = &dev->pdev->dev;
  6038. if (!HAS_RUNTIME_PM(dev))
  6039. return;
  6040. pm_runtime_mark_last_busy(device);
  6041. pm_runtime_put_autosuspend(device);
  6042. }
  6043. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  6044. {
  6045. struct drm_device *dev = dev_priv->dev;
  6046. struct device *device = &dev->pdev->dev;
  6047. if (!HAS_RUNTIME_PM(dev))
  6048. return;
  6049. pm_runtime_set_active(device);
  6050. /*
  6051. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6052. * requirement.
  6053. */
  6054. if (!intel_enable_rc6(dev)) {
  6055. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6056. return;
  6057. }
  6058. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  6059. pm_runtime_mark_last_busy(device);
  6060. pm_runtime_use_autosuspend(device);
  6061. pm_runtime_put_autosuspend(device);
  6062. }
  6063. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  6064. {
  6065. struct drm_device *dev = dev_priv->dev;
  6066. struct device *device = &dev->pdev->dev;
  6067. if (!HAS_RUNTIME_PM(dev))
  6068. return;
  6069. if (!intel_enable_rc6(dev))
  6070. return;
  6071. /* Make sure we're not suspended first. */
  6072. pm_runtime_get_sync(device);
  6073. pm_runtime_disable(device);
  6074. }
  6075. /* Set up chip specific power management-related functions */
  6076. void intel_init_pm(struct drm_device *dev)
  6077. {
  6078. struct drm_i915_private *dev_priv = dev->dev_private;
  6079. if (HAS_FBC(dev)) {
  6080. if (INTEL_INFO(dev)->gen >= 7) {
  6081. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6082. dev_priv->display.enable_fbc = gen7_enable_fbc;
  6083. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6084. } else if (INTEL_INFO(dev)->gen >= 5) {
  6085. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6086. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  6087. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6088. } else if (IS_GM45(dev)) {
  6089. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  6090. dev_priv->display.enable_fbc = g4x_enable_fbc;
  6091. dev_priv->display.disable_fbc = g4x_disable_fbc;
  6092. } else {
  6093. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  6094. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  6095. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  6096. /* This value was pulled out of someone's hat */
  6097. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  6098. }
  6099. }
  6100. /* For cxsr */
  6101. if (IS_PINEVIEW(dev))
  6102. i915_pineview_get_mem_freq(dev);
  6103. else if (IS_GEN5(dev))
  6104. i915_ironlake_get_mem_freq(dev);
  6105. /* For FIFO watermark updates */
  6106. if (HAS_PCH_SPLIT(dev)) {
  6107. ilk_setup_wm_latency(dev);
  6108. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  6109. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  6110. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  6111. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  6112. dev_priv->display.update_wm = ilk_update_wm;
  6113. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  6114. } else {
  6115. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6116. "Disable CxSR\n");
  6117. }
  6118. if (IS_GEN5(dev))
  6119. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  6120. else if (IS_GEN6(dev))
  6121. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  6122. else if (IS_IVYBRIDGE(dev))
  6123. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  6124. else if (IS_HASWELL(dev))
  6125. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  6126. else if (INTEL_INFO(dev)->gen == 8)
  6127. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  6128. else if (INTEL_INFO(dev)->gen == 9)
  6129. dev_priv->display.init_clock_gating = gen9_init_clock_gating;
  6130. } else if (IS_CHERRYVIEW(dev)) {
  6131. dev_priv->display.update_wm = cherryview_update_wm;
  6132. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6133. dev_priv->display.init_clock_gating =
  6134. cherryview_init_clock_gating;
  6135. } else if (IS_VALLEYVIEW(dev)) {
  6136. dev_priv->display.update_wm = valleyview_update_wm;
  6137. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6138. dev_priv->display.init_clock_gating =
  6139. valleyview_init_clock_gating;
  6140. } else if (IS_PINEVIEW(dev)) {
  6141. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  6142. dev_priv->is_ddr3,
  6143. dev_priv->fsb_freq,
  6144. dev_priv->mem_freq)) {
  6145. DRM_INFO("failed to find known CxSR latency "
  6146. "(found ddr%s fsb freq %d, mem freq %d), "
  6147. "disabling CxSR\n",
  6148. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  6149. dev_priv->fsb_freq, dev_priv->mem_freq);
  6150. /* Disable CxSR and never update its watermark again */
  6151. intel_set_memory_cxsr(dev_priv, false);
  6152. dev_priv->display.update_wm = NULL;
  6153. } else
  6154. dev_priv->display.update_wm = pineview_update_wm;
  6155. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6156. } else if (IS_G4X(dev)) {
  6157. dev_priv->display.update_wm = g4x_update_wm;
  6158. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  6159. } else if (IS_GEN4(dev)) {
  6160. dev_priv->display.update_wm = i965_update_wm;
  6161. if (IS_CRESTLINE(dev))
  6162. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  6163. else if (IS_BROADWATER(dev))
  6164. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  6165. } else if (IS_GEN3(dev)) {
  6166. dev_priv->display.update_wm = i9xx_update_wm;
  6167. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6168. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6169. } else if (IS_GEN2(dev)) {
  6170. if (INTEL_INFO(dev)->num_pipes == 1) {
  6171. dev_priv->display.update_wm = i845_update_wm;
  6172. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6173. } else {
  6174. dev_priv->display.update_wm = i9xx_update_wm;
  6175. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6176. }
  6177. if (IS_I85X(dev) || IS_I865G(dev))
  6178. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  6179. else
  6180. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  6181. } else {
  6182. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  6183. }
  6184. }
  6185. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  6186. {
  6187. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6188. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6189. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6190. return -EAGAIN;
  6191. }
  6192. I915_WRITE(GEN6_PCODE_DATA, *val);
  6193. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6194. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6195. 500)) {
  6196. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6197. return -ETIMEDOUT;
  6198. }
  6199. *val = I915_READ(GEN6_PCODE_DATA);
  6200. I915_WRITE(GEN6_PCODE_DATA, 0);
  6201. return 0;
  6202. }
  6203. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  6204. {
  6205. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6206. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6207. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6208. return -EAGAIN;
  6209. }
  6210. I915_WRITE(GEN6_PCODE_DATA, val);
  6211. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6212. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6213. 500)) {
  6214. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6215. return -ETIMEDOUT;
  6216. }
  6217. I915_WRITE(GEN6_PCODE_DATA, 0);
  6218. return 0;
  6219. }
  6220. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6221. {
  6222. int div;
  6223. /* 4 x czclk */
  6224. switch (dev_priv->mem_freq) {
  6225. case 800:
  6226. div = 10;
  6227. break;
  6228. case 1066:
  6229. div = 12;
  6230. break;
  6231. case 1333:
  6232. div = 16;
  6233. break;
  6234. default:
  6235. return -1;
  6236. }
  6237. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  6238. }
  6239. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6240. {
  6241. int mul;
  6242. /* 4 x czclk */
  6243. switch (dev_priv->mem_freq) {
  6244. case 800:
  6245. mul = 10;
  6246. break;
  6247. case 1066:
  6248. mul = 12;
  6249. break;
  6250. case 1333:
  6251. mul = 16;
  6252. break;
  6253. default:
  6254. return -1;
  6255. }
  6256. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  6257. }
  6258. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6259. {
  6260. int div, freq;
  6261. switch (dev_priv->rps.cz_freq) {
  6262. case 200:
  6263. div = 5;
  6264. break;
  6265. case 267:
  6266. div = 6;
  6267. break;
  6268. case 320:
  6269. case 333:
  6270. case 400:
  6271. div = 8;
  6272. break;
  6273. default:
  6274. return -1;
  6275. }
  6276. freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
  6277. return freq;
  6278. }
  6279. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6280. {
  6281. int mul, opcode;
  6282. switch (dev_priv->rps.cz_freq) {
  6283. case 200:
  6284. mul = 5;
  6285. break;
  6286. case 267:
  6287. mul = 6;
  6288. break;
  6289. case 320:
  6290. case 333:
  6291. case 400:
  6292. mul = 8;
  6293. break;
  6294. default:
  6295. return -1;
  6296. }
  6297. /* CHV needs even values */
  6298. opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
  6299. return opcode;
  6300. }
  6301. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6302. {
  6303. int ret = -1;
  6304. if (IS_CHERRYVIEW(dev_priv->dev))
  6305. ret = chv_gpu_freq(dev_priv, val);
  6306. else if (IS_VALLEYVIEW(dev_priv->dev))
  6307. ret = byt_gpu_freq(dev_priv, val);
  6308. return ret;
  6309. }
  6310. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6311. {
  6312. int ret = -1;
  6313. if (IS_CHERRYVIEW(dev_priv->dev))
  6314. ret = chv_freq_opcode(dev_priv, val);
  6315. else if (IS_VALLEYVIEW(dev_priv->dev))
  6316. ret = byt_freq_opcode(dev_priv, val);
  6317. return ret;
  6318. }
  6319. void intel_pm_setup(struct drm_device *dev)
  6320. {
  6321. struct drm_i915_private *dev_priv = dev->dev_private;
  6322. mutex_init(&dev_priv->rps.hw_lock);
  6323. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6324. intel_gen6_powersave_work);
  6325. dev_priv->pm.suspended = false;
  6326. dev_priv->pm._irqs_disabled = false;
  6327. }