fork.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE
  140. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  144. THREAD_SIZE_ORDER);
  145. return page ? page_address(page) : NULL;
  146. }
  147. static inline void free_thread_stack(unsigned long *stack)
  148. {
  149. __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
  150. }
  151. # else
  152. static struct kmem_cache *thread_stack_cache;
  153. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  154. int node)
  155. {
  156. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  157. }
  158. static void free_thread_stack(unsigned long *stack)
  159. {
  160. kmem_cache_free(thread_stack_cache, stack);
  161. }
  162. void thread_stack_cache_init(void)
  163. {
  164. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  165. THREAD_SIZE, 0, NULL);
  166. BUG_ON(thread_stack_cache == NULL);
  167. }
  168. # endif
  169. #endif
  170. /* SLAB cache for signal_struct structures (tsk->signal) */
  171. static struct kmem_cache *signal_cachep;
  172. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  173. struct kmem_cache *sighand_cachep;
  174. /* SLAB cache for files_struct structures (tsk->files) */
  175. struct kmem_cache *files_cachep;
  176. /* SLAB cache for fs_struct structures (tsk->fs) */
  177. struct kmem_cache *fs_cachep;
  178. /* SLAB cache for vm_area_struct structures */
  179. struct kmem_cache *vm_area_cachep;
  180. /* SLAB cache for mm_struct structures (tsk->mm) */
  181. static struct kmem_cache *mm_cachep;
  182. static void account_kernel_stack(unsigned long *stack, int account)
  183. {
  184. /* All stack pages are in the same zone and belong to the same memcg. */
  185. struct page *first_page = virt_to_page(stack);
  186. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  187. THREAD_SIZE / 1024 * account);
  188. memcg_kmem_update_page_stat(
  189. first_page, MEMCG_KERNEL_STACK_KB,
  190. account * (THREAD_SIZE / 1024));
  191. }
  192. void free_task(struct task_struct *tsk)
  193. {
  194. account_kernel_stack(tsk->stack, -1);
  195. arch_release_thread_stack(tsk->stack);
  196. free_thread_stack(tsk->stack);
  197. rt_mutex_debug_task_free(tsk);
  198. ftrace_graph_exit_task(tsk);
  199. put_seccomp_filter(tsk);
  200. arch_release_task_struct(tsk);
  201. free_task_struct(tsk);
  202. }
  203. EXPORT_SYMBOL(free_task);
  204. static inline void free_signal_struct(struct signal_struct *sig)
  205. {
  206. taskstats_tgid_free(sig);
  207. sched_autogroup_exit(sig);
  208. kmem_cache_free(signal_cachep, sig);
  209. }
  210. static inline void put_signal_struct(struct signal_struct *sig)
  211. {
  212. if (atomic_dec_and_test(&sig->sigcnt))
  213. free_signal_struct(sig);
  214. }
  215. void __put_task_struct(struct task_struct *tsk)
  216. {
  217. WARN_ON(!tsk->exit_state);
  218. WARN_ON(atomic_read(&tsk->usage));
  219. WARN_ON(tsk == current);
  220. cgroup_free(tsk);
  221. task_numa_free(tsk);
  222. security_task_free(tsk);
  223. exit_creds(tsk);
  224. delayacct_tsk_free(tsk);
  225. put_signal_struct(tsk->signal);
  226. if (!profile_handoff_task(tsk))
  227. free_task(tsk);
  228. }
  229. EXPORT_SYMBOL_GPL(__put_task_struct);
  230. void __init __weak arch_task_cache_init(void) { }
  231. /*
  232. * set_max_threads
  233. */
  234. static void set_max_threads(unsigned int max_threads_suggested)
  235. {
  236. u64 threads;
  237. /*
  238. * The number of threads shall be limited such that the thread
  239. * structures may only consume a small part of the available memory.
  240. */
  241. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  242. threads = MAX_THREADS;
  243. else
  244. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  245. (u64) THREAD_SIZE * 8UL);
  246. if (threads > max_threads_suggested)
  247. threads = max_threads_suggested;
  248. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  249. }
  250. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  251. /* Initialized by the architecture: */
  252. int arch_task_struct_size __read_mostly;
  253. #endif
  254. void __init fork_init(void)
  255. {
  256. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  257. #ifndef ARCH_MIN_TASKALIGN
  258. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  259. #endif
  260. /* create a slab on which task_structs can be allocated */
  261. task_struct_cachep = kmem_cache_create("task_struct",
  262. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  263. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  264. #endif
  265. /* do the arch specific task caches init */
  266. arch_task_cache_init();
  267. set_max_threads(MAX_THREADS);
  268. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  269. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  270. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  271. init_task.signal->rlim[RLIMIT_NPROC];
  272. }
  273. int __weak arch_dup_task_struct(struct task_struct *dst,
  274. struct task_struct *src)
  275. {
  276. *dst = *src;
  277. return 0;
  278. }
  279. void set_task_stack_end_magic(struct task_struct *tsk)
  280. {
  281. unsigned long *stackend;
  282. stackend = end_of_stack(tsk);
  283. *stackend = STACK_END_MAGIC; /* for overflow detection */
  284. }
  285. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  286. {
  287. struct task_struct *tsk;
  288. unsigned long *stack;
  289. int err;
  290. if (node == NUMA_NO_NODE)
  291. node = tsk_fork_get_node(orig);
  292. tsk = alloc_task_struct_node(node);
  293. if (!tsk)
  294. return NULL;
  295. stack = alloc_thread_stack_node(tsk, node);
  296. if (!stack)
  297. goto free_tsk;
  298. err = arch_dup_task_struct(tsk, orig);
  299. if (err)
  300. goto free_stack;
  301. tsk->stack = stack;
  302. #ifdef CONFIG_SECCOMP
  303. /*
  304. * We must handle setting up seccomp filters once we're under
  305. * the sighand lock in case orig has changed between now and
  306. * then. Until then, filter must be NULL to avoid messing up
  307. * the usage counts on the error path calling free_task.
  308. */
  309. tsk->seccomp.filter = NULL;
  310. #endif
  311. setup_thread_stack(tsk, orig);
  312. clear_user_return_notifier(tsk);
  313. clear_tsk_need_resched(tsk);
  314. set_task_stack_end_magic(tsk);
  315. #ifdef CONFIG_CC_STACKPROTECTOR
  316. tsk->stack_canary = get_random_int();
  317. #endif
  318. /*
  319. * One for us, one for whoever does the "release_task()" (usually
  320. * parent)
  321. */
  322. atomic_set(&tsk->usage, 2);
  323. #ifdef CONFIG_BLK_DEV_IO_TRACE
  324. tsk->btrace_seq = 0;
  325. #endif
  326. tsk->splice_pipe = NULL;
  327. tsk->task_frag.page = NULL;
  328. tsk->wake_q.next = NULL;
  329. account_kernel_stack(stack, 1);
  330. kcov_task_init(tsk);
  331. return tsk;
  332. free_stack:
  333. free_thread_stack(stack);
  334. free_tsk:
  335. free_task_struct(tsk);
  336. return NULL;
  337. }
  338. #ifdef CONFIG_MMU
  339. static __latent_entropy int dup_mmap(struct mm_struct *mm,
  340. struct mm_struct *oldmm)
  341. {
  342. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  343. struct rb_node **rb_link, *rb_parent;
  344. int retval;
  345. unsigned long charge;
  346. uprobe_start_dup_mmap();
  347. if (down_write_killable(&oldmm->mmap_sem)) {
  348. retval = -EINTR;
  349. goto fail_uprobe_end;
  350. }
  351. flush_cache_dup_mm(oldmm);
  352. uprobe_dup_mmap(oldmm, mm);
  353. /*
  354. * Not linked in yet - no deadlock potential:
  355. */
  356. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  357. /* No ordering required: file already has been exposed. */
  358. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  359. mm->total_vm = oldmm->total_vm;
  360. mm->data_vm = oldmm->data_vm;
  361. mm->exec_vm = oldmm->exec_vm;
  362. mm->stack_vm = oldmm->stack_vm;
  363. rb_link = &mm->mm_rb.rb_node;
  364. rb_parent = NULL;
  365. pprev = &mm->mmap;
  366. retval = ksm_fork(mm, oldmm);
  367. if (retval)
  368. goto out;
  369. retval = khugepaged_fork(mm, oldmm);
  370. if (retval)
  371. goto out;
  372. prev = NULL;
  373. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  374. struct file *file;
  375. if (mpnt->vm_flags & VM_DONTCOPY) {
  376. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  377. continue;
  378. }
  379. charge = 0;
  380. if (mpnt->vm_flags & VM_ACCOUNT) {
  381. unsigned long len = vma_pages(mpnt);
  382. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  383. goto fail_nomem;
  384. charge = len;
  385. }
  386. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  387. if (!tmp)
  388. goto fail_nomem;
  389. *tmp = *mpnt;
  390. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  391. retval = vma_dup_policy(mpnt, tmp);
  392. if (retval)
  393. goto fail_nomem_policy;
  394. tmp->vm_mm = mm;
  395. if (anon_vma_fork(tmp, mpnt))
  396. goto fail_nomem_anon_vma_fork;
  397. tmp->vm_flags &=
  398. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  399. tmp->vm_next = tmp->vm_prev = NULL;
  400. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  401. file = tmp->vm_file;
  402. if (file) {
  403. struct inode *inode = file_inode(file);
  404. struct address_space *mapping = file->f_mapping;
  405. get_file(file);
  406. if (tmp->vm_flags & VM_DENYWRITE)
  407. atomic_dec(&inode->i_writecount);
  408. i_mmap_lock_write(mapping);
  409. if (tmp->vm_flags & VM_SHARED)
  410. atomic_inc(&mapping->i_mmap_writable);
  411. flush_dcache_mmap_lock(mapping);
  412. /* insert tmp into the share list, just after mpnt */
  413. vma_interval_tree_insert_after(tmp, mpnt,
  414. &mapping->i_mmap);
  415. flush_dcache_mmap_unlock(mapping);
  416. i_mmap_unlock_write(mapping);
  417. }
  418. /*
  419. * Clear hugetlb-related page reserves for children. This only
  420. * affects MAP_PRIVATE mappings. Faults generated by the child
  421. * are not guaranteed to succeed, even if read-only
  422. */
  423. if (is_vm_hugetlb_page(tmp))
  424. reset_vma_resv_huge_pages(tmp);
  425. /*
  426. * Link in the new vma and copy the page table entries.
  427. */
  428. *pprev = tmp;
  429. pprev = &tmp->vm_next;
  430. tmp->vm_prev = prev;
  431. prev = tmp;
  432. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  433. rb_link = &tmp->vm_rb.rb_right;
  434. rb_parent = &tmp->vm_rb;
  435. mm->map_count++;
  436. retval = copy_page_range(mm, oldmm, mpnt);
  437. if (tmp->vm_ops && tmp->vm_ops->open)
  438. tmp->vm_ops->open(tmp);
  439. if (retval)
  440. goto out;
  441. }
  442. /* a new mm has just been created */
  443. arch_dup_mmap(oldmm, mm);
  444. retval = 0;
  445. out:
  446. up_write(&mm->mmap_sem);
  447. flush_tlb_mm(oldmm);
  448. up_write(&oldmm->mmap_sem);
  449. fail_uprobe_end:
  450. uprobe_end_dup_mmap();
  451. return retval;
  452. fail_nomem_anon_vma_fork:
  453. mpol_put(vma_policy(tmp));
  454. fail_nomem_policy:
  455. kmem_cache_free(vm_area_cachep, tmp);
  456. fail_nomem:
  457. retval = -ENOMEM;
  458. vm_unacct_memory(charge);
  459. goto out;
  460. }
  461. static inline int mm_alloc_pgd(struct mm_struct *mm)
  462. {
  463. mm->pgd = pgd_alloc(mm);
  464. if (unlikely(!mm->pgd))
  465. return -ENOMEM;
  466. return 0;
  467. }
  468. static inline void mm_free_pgd(struct mm_struct *mm)
  469. {
  470. pgd_free(mm, mm->pgd);
  471. }
  472. #else
  473. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  474. {
  475. down_write(&oldmm->mmap_sem);
  476. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  477. up_write(&oldmm->mmap_sem);
  478. return 0;
  479. }
  480. #define mm_alloc_pgd(mm) (0)
  481. #define mm_free_pgd(mm)
  482. #endif /* CONFIG_MMU */
  483. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  484. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  485. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  486. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  487. static int __init coredump_filter_setup(char *s)
  488. {
  489. default_dump_filter =
  490. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  491. MMF_DUMP_FILTER_MASK;
  492. return 1;
  493. }
  494. __setup("coredump_filter=", coredump_filter_setup);
  495. #include <linux/init_task.h>
  496. static void mm_init_aio(struct mm_struct *mm)
  497. {
  498. #ifdef CONFIG_AIO
  499. spin_lock_init(&mm->ioctx_lock);
  500. mm->ioctx_table = NULL;
  501. #endif
  502. }
  503. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  504. {
  505. #ifdef CONFIG_MEMCG
  506. mm->owner = p;
  507. #endif
  508. }
  509. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  510. {
  511. mm->mmap = NULL;
  512. mm->mm_rb = RB_ROOT;
  513. mm->vmacache_seqnum = 0;
  514. atomic_set(&mm->mm_users, 1);
  515. atomic_set(&mm->mm_count, 1);
  516. init_rwsem(&mm->mmap_sem);
  517. INIT_LIST_HEAD(&mm->mmlist);
  518. mm->core_state = NULL;
  519. atomic_long_set(&mm->nr_ptes, 0);
  520. mm_nr_pmds_init(mm);
  521. mm->map_count = 0;
  522. mm->locked_vm = 0;
  523. mm->pinned_vm = 0;
  524. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  525. spin_lock_init(&mm->page_table_lock);
  526. mm_init_cpumask(mm);
  527. mm_init_aio(mm);
  528. mm_init_owner(mm, p);
  529. mmu_notifier_mm_init(mm);
  530. clear_tlb_flush_pending(mm);
  531. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  532. mm->pmd_huge_pte = NULL;
  533. #endif
  534. if (current->mm) {
  535. mm->flags = current->mm->flags & MMF_INIT_MASK;
  536. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  537. } else {
  538. mm->flags = default_dump_filter;
  539. mm->def_flags = 0;
  540. }
  541. if (mm_alloc_pgd(mm))
  542. goto fail_nopgd;
  543. if (init_new_context(p, mm))
  544. goto fail_nocontext;
  545. return mm;
  546. fail_nocontext:
  547. mm_free_pgd(mm);
  548. fail_nopgd:
  549. free_mm(mm);
  550. return NULL;
  551. }
  552. static void check_mm(struct mm_struct *mm)
  553. {
  554. int i;
  555. for (i = 0; i < NR_MM_COUNTERS; i++) {
  556. long x = atomic_long_read(&mm->rss_stat.count[i]);
  557. if (unlikely(x))
  558. printk(KERN_ALERT "BUG: Bad rss-counter state "
  559. "mm:%p idx:%d val:%ld\n", mm, i, x);
  560. }
  561. if (atomic_long_read(&mm->nr_ptes))
  562. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  563. atomic_long_read(&mm->nr_ptes));
  564. if (mm_nr_pmds(mm))
  565. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  566. mm_nr_pmds(mm));
  567. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  568. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  569. #endif
  570. }
  571. /*
  572. * Allocate and initialize an mm_struct.
  573. */
  574. struct mm_struct *mm_alloc(void)
  575. {
  576. struct mm_struct *mm;
  577. mm = allocate_mm();
  578. if (!mm)
  579. return NULL;
  580. memset(mm, 0, sizeof(*mm));
  581. return mm_init(mm, current);
  582. }
  583. /*
  584. * Called when the last reference to the mm
  585. * is dropped: either by a lazy thread or by
  586. * mmput. Free the page directory and the mm.
  587. */
  588. void __mmdrop(struct mm_struct *mm)
  589. {
  590. BUG_ON(mm == &init_mm);
  591. mm_free_pgd(mm);
  592. destroy_context(mm);
  593. mmu_notifier_mm_destroy(mm);
  594. check_mm(mm);
  595. free_mm(mm);
  596. }
  597. EXPORT_SYMBOL_GPL(__mmdrop);
  598. static inline void __mmput(struct mm_struct *mm)
  599. {
  600. VM_BUG_ON(atomic_read(&mm->mm_users));
  601. uprobe_clear_state(mm);
  602. exit_aio(mm);
  603. ksm_exit(mm);
  604. khugepaged_exit(mm); /* must run before exit_mmap */
  605. exit_mmap(mm);
  606. set_mm_exe_file(mm, NULL);
  607. if (!list_empty(&mm->mmlist)) {
  608. spin_lock(&mmlist_lock);
  609. list_del(&mm->mmlist);
  610. spin_unlock(&mmlist_lock);
  611. }
  612. if (mm->binfmt)
  613. module_put(mm->binfmt->module);
  614. mmdrop(mm);
  615. }
  616. /*
  617. * Decrement the use count and release all resources for an mm.
  618. */
  619. void mmput(struct mm_struct *mm)
  620. {
  621. might_sleep();
  622. if (atomic_dec_and_test(&mm->mm_users))
  623. __mmput(mm);
  624. }
  625. EXPORT_SYMBOL_GPL(mmput);
  626. #ifdef CONFIG_MMU
  627. static void mmput_async_fn(struct work_struct *work)
  628. {
  629. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  630. __mmput(mm);
  631. }
  632. void mmput_async(struct mm_struct *mm)
  633. {
  634. if (atomic_dec_and_test(&mm->mm_users)) {
  635. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  636. schedule_work(&mm->async_put_work);
  637. }
  638. }
  639. #endif
  640. /**
  641. * set_mm_exe_file - change a reference to the mm's executable file
  642. *
  643. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  644. *
  645. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  646. * invocations: in mmput() nobody alive left, in execve task is single
  647. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  648. * mm->exe_file, but does so without using set_mm_exe_file() in order
  649. * to do avoid the need for any locks.
  650. */
  651. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  652. {
  653. struct file *old_exe_file;
  654. /*
  655. * It is safe to dereference the exe_file without RCU as
  656. * this function is only called if nobody else can access
  657. * this mm -- see comment above for justification.
  658. */
  659. old_exe_file = rcu_dereference_raw(mm->exe_file);
  660. if (new_exe_file)
  661. get_file(new_exe_file);
  662. rcu_assign_pointer(mm->exe_file, new_exe_file);
  663. if (old_exe_file)
  664. fput(old_exe_file);
  665. }
  666. /**
  667. * get_mm_exe_file - acquire a reference to the mm's executable file
  668. *
  669. * Returns %NULL if mm has no associated executable file.
  670. * User must release file via fput().
  671. */
  672. struct file *get_mm_exe_file(struct mm_struct *mm)
  673. {
  674. struct file *exe_file;
  675. rcu_read_lock();
  676. exe_file = rcu_dereference(mm->exe_file);
  677. if (exe_file && !get_file_rcu(exe_file))
  678. exe_file = NULL;
  679. rcu_read_unlock();
  680. return exe_file;
  681. }
  682. EXPORT_SYMBOL(get_mm_exe_file);
  683. /**
  684. * get_task_exe_file - acquire a reference to the task's executable file
  685. *
  686. * Returns %NULL if task's mm (if any) has no associated executable file or
  687. * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
  688. * User must release file via fput().
  689. */
  690. struct file *get_task_exe_file(struct task_struct *task)
  691. {
  692. struct file *exe_file = NULL;
  693. struct mm_struct *mm;
  694. task_lock(task);
  695. mm = task->mm;
  696. if (mm) {
  697. if (!(task->flags & PF_KTHREAD))
  698. exe_file = get_mm_exe_file(mm);
  699. }
  700. task_unlock(task);
  701. return exe_file;
  702. }
  703. EXPORT_SYMBOL(get_task_exe_file);
  704. /**
  705. * get_task_mm - acquire a reference to the task's mm
  706. *
  707. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  708. * this kernel workthread has transiently adopted a user mm with use_mm,
  709. * to do its AIO) is not set and if so returns a reference to it, after
  710. * bumping up the use count. User must release the mm via mmput()
  711. * after use. Typically used by /proc and ptrace.
  712. */
  713. struct mm_struct *get_task_mm(struct task_struct *task)
  714. {
  715. struct mm_struct *mm;
  716. task_lock(task);
  717. mm = task->mm;
  718. if (mm) {
  719. if (task->flags & PF_KTHREAD)
  720. mm = NULL;
  721. else
  722. atomic_inc(&mm->mm_users);
  723. }
  724. task_unlock(task);
  725. return mm;
  726. }
  727. EXPORT_SYMBOL_GPL(get_task_mm);
  728. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  729. {
  730. struct mm_struct *mm;
  731. int err;
  732. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  733. if (err)
  734. return ERR_PTR(err);
  735. mm = get_task_mm(task);
  736. if (mm && mm != current->mm &&
  737. !ptrace_may_access(task, mode)) {
  738. mmput(mm);
  739. mm = ERR_PTR(-EACCES);
  740. }
  741. mutex_unlock(&task->signal->cred_guard_mutex);
  742. return mm;
  743. }
  744. static void complete_vfork_done(struct task_struct *tsk)
  745. {
  746. struct completion *vfork;
  747. task_lock(tsk);
  748. vfork = tsk->vfork_done;
  749. if (likely(vfork)) {
  750. tsk->vfork_done = NULL;
  751. complete(vfork);
  752. }
  753. task_unlock(tsk);
  754. }
  755. static int wait_for_vfork_done(struct task_struct *child,
  756. struct completion *vfork)
  757. {
  758. int killed;
  759. freezer_do_not_count();
  760. killed = wait_for_completion_killable(vfork);
  761. freezer_count();
  762. if (killed) {
  763. task_lock(child);
  764. child->vfork_done = NULL;
  765. task_unlock(child);
  766. }
  767. put_task_struct(child);
  768. return killed;
  769. }
  770. /* Please note the differences between mmput and mm_release.
  771. * mmput is called whenever we stop holding onto a mm_struct,
  772. * error success whatever.
  773. *
  774. * mm_release is called after a mm_struct has been removed
  775. * from the current process.
  776. *
  777. * This difference is important for error handling, when we
  778. * only half set up a mm_struct for a new process and need to restore
  779. * the old one. Because we mmput the new mm_struct before
  780. * restoring the old one. . .
  781. * Eric Biederman 10 January 1998
  782. */
  783. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  784. {
  785. /* Get rid of any futexes when releasing the mm */
  786. #ifdef CONFIG_FUTEX
  787. if (unlikely(tsk->robust_list)) {
  788. exit_robust_list(tsk);
  789. tsk->robust_list = NULL;
  790. }
  791. #ifdef CONFIG_COMPAT
  792. if (unlikely(tsk->compat_robust_list)) {
  793. compat_exit_robust_list(tsk);
  794. tsk->compat_robust_list = NULL;
  795. }
  796. #endif
  797. if (unlikely(!list_empty(&tsk->pi_state_list)))
  798. exit_pi_state_list(tsk);
  799. #endif
  800. uprobe_free_utask(tsk);
  801. /* Get rid of any cached register state */
  802. deactivate_mm(tsk, mm);
  803. /*
  804. * Signal userspace if we're not exiting with a core dump
  805. * because we want to leave the value intact for debugging
  806. * purposes.
  807. */
  808. if (tsk->clear_child_tid) {
  809. if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
  810. atomic_read(&mm->mm_users) > 1) {
  811. /*
  812. * We don't check the error code - if userspace has
  813. * not set up a proper pointer then tough luck.
  814. */
  815. put_user(0, tsk->clear_child_tid);
  816. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  817. 1, NULL, NULL, 0);
  818. }
  819. tsk->clear_child_tid = NULL;
  820. }
  821. /*
  822. * All done, finally we can wake up parent and return this mm to him.
  823. * Also kthread_stop() uses this completion for synchronization.
  824. */
  825. if (tsk->vfork_done)
  826. complete_vfork_done(tsk);
  827. }
  828. /*
  829. * Allocate a new mm structure and copy contents from the
  830. * mm structure of the passed in task structure.
  831. */
  832. static struct mm_struct *dup_mm(struct task_struct *tsk)
  833. {
  834. struct mm_struct *mm, *oldmm = current->mm;
  835. int err;
  836. mm = allocate_mm();
  837. if (!mm)
  838. goto fail_nomem;
  839. memcpy(mm, oldmm, sizeof(*mm));
  840. if (!mm_init(mm, tsk))
  841. goto fail_nomem;
  842. err = dup_mmap(mm, oldmm);
  843. if (err)
  844. goto free_pt;
  845. mm->hiwater_rss = get_mm_rss(mm);
  846. mm->hiwater_vm = mm->total_vm;
  847. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  848. goto free_pt;
  849. return mm;
  850. free_pt:
  851. /* don't put binfmt in mmput, we haven't got module yet */
  852. mm->binfmt = NULL;
  853. mmput(mm);
  854. fail_nomem:
  855. return NULL;
  856. }
  857. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  858. {
  859. struct mm_struct *mm, *oldmm;
  860. int retval;
  861. tsk->min_flt = tsk->maj_flt = 0;
  862. tsk->nvcsw = tsk->nivcsw = 0;
  863. #ifdef CONFIG_DETECT_HUNG_TASK
  864. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  865. #endif
  866. tsk->mm = NULL;
  867. tsk->active_mm = NULL;
  868. /*
  869. * Are we cloning a kernel thread?
  870. *
  871. * We need to steal a active VM for that..
  872. */
  873. oldmm = current->mm;
  874. if (!oldmm)
  875. return 0;
  876. /* initialize the new vmacache entries */
  877. vmacache_flush(tsk);
  878. if (clone_flags & CLONE_VM) {
  879. atomic_inc(&oldmm->mm_users);
  880. mm = oldmm;
  881. goto good_mm;
  882. }
  883. retval = -ENOMEM;
  884. mm = dup_mm(tsk);
  885. if (!mm)
  886. goto fail_nomem;
  887. good_mm:
  888. tsk->mm = mm;
  889. tsk->active_mm = mm;
  890. return 0;
  891. fail_nomem:
  892. return retval;
  893. }
  894. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  895. {
  896. struct fs_struct *fs = current->fs;
  897. if (clone_flags & CLONE_FS) {
  898. /* tsk->fs is already what we want */
  899. spin_lock(&fs->lock);
  900. if (fs->in_exec) {
  901. spin_unlock(&fs->lock);
  902. return -EAGAIN;
  903. }
  904. fs->users++;
  905. spin_unlock(&fs->lock);
  906. return 0;
  907. }
  908. tsk->fs = copy_fs_struct(fs);
  909. if (!tsk->fs)
  910. return -ENOMEM;
  911. return 0;
  912. }
  913. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  914. {
  915. struct files_struct *oldf, *newf;
  916. int error = 0;
  917. /*
  918. * A background process may not have any files ...
  919. */
  920. oldf = current->files;
  921. if (!oldf)
  922. goto out;
  923. if (clone_flags & CLONE_FILES) {
  924. atomic_inc(&oldf->count);
  925. goto out;
  926. }
  927. newf = dup_fd(oldf, &error);
  928. if (!newf)
  929. goto out;
  930. tsk->files = newf;
  931. error = 0;
  932. out:
  933. return error;
  934. }
  935. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  936. {
  937. #ifdef CONFIG_BLOCK
  938. struct io_context *ioc = current->io_context;
  939. struct io_context *new_ioc;
  940. if (!ioc)
  941. return 0;
  942. /*
  943. * Share io context with parent, if CLONE_IO is set
  944. */
  945. if (clone_flags & CLONE_IO) {
  946. ioc_task_link(ioc);
  947. tsk->io_context = ioc;
  948. } else if (ioprio_valid(ioc->ioprio)) {
  949. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  950. if (unlikely(!new_ioc))
  951. return -ENOMEM;
  952. new_ioc->ioprio = ioc->ioprio;
  953. put_io_context(new_ioc);
  954. }
  955. #endif
  956. return 0;
  957. }
  958. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  959. {
  960. struct sighand_struct *sig;
  961. if (clone_flags & CLONE_SIGHAND) {
  962. atomic_inc(&current->sighand->count);
  963. return 0;
  964. }
  965. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  966. rcu_assign_pointer(tsk->sighand, sig);
  967. if (!sig)
  968. return -ENOMEM;
  969. atomic_set(&sig->count, 1);
  970. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  971. return 0;
  972. }
  973. void __cleanup_sighand(struct sighand_struct *sighand)
  974. {
  975. if (atomic_dec_and_test(&sighand->count)) {
  976. signalfd_cleanup(sighand);
  977. /*
  978. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  979. * without an RCU grace period, see __lock_task_sighand().
  980. */
  981. kmem_cache_free(sighand_cachep, sighand);
  982. }
  983. }
  984. /*
  985. * Initialize POSIX timer handling for a thread group.
  986. */
  987. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  988. {
  989. unsigned long cpu_limit;
  990. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  991. if (cpu_limit != RLIM_INFINITY) {
  992. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  993. sig->cputimer.running = true;
  994. }
  995. /* The timer lists. */
  996. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  997. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  998. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  999. }
  1000. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1001. {
  1002. struct signal_struct *sig;
  1003. if (clone_flags & CLONE_THREAD)
  1004. return 0;
  1005. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1006. tsk->signal = sig;
  1007. if (!sig)
  1008. return -ENOMEM;
  1009. sig->nr_threads = 1;
  1010. atomic_set(&sig->live, 1);
  1011. atomic_set(&sig->sigcnt, 1);
  1012. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1013. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1014. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1015. init_waitqueue_head(&sig->wait_chldexit);
  1016. sig->curr_target = tsk;
  1017. init_sigpending(&sig->shared_pending);
  1018. INIT_LIST_HEAD(&sig->posix_timers);
  1019. seqlock_init(&sig->stats_lock);
  1020. prev_cputime_init(&sig->prev_cputime);
  1021. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1022. sig->real_timer.function = it_real_fn;
  1023. task_lock(current->group_leader);
  1024. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1025. task_unlock(current->group_leader);
  1026. posix_cpu_timers_init_group(sig);
  1027. tty_audit_fork(sig);
  1028. sched_autogroup_fork(sig);
  1029. sig->oom_score_adj = current->signal->oom_score_adj;
  1030. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1031. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1032. current->signal->is_child_subreaper;
  1033. mutex_init(&sig->cred_guard_mutex);
  1034. return 0;
  1035. }
  1036. static void copy_seccomp(struct task_struct *p)
  1037. {
  1038. #ifdef CONFIG_SECCOMP
  1039. /*
  1040. * Must be called with sighand->lock held, which is common to
  1041. * all threads in the group. Holding cred_guard_mutex is not
  1042. * needed because this new task is not yet running and cannot
  1043. * be racing exec.
  1044. */
  1045. assert_spin_locked(&current->sighand->siglock);
  1046. /* Ref-count the new filter user, and assign it. */
  1047. get_seccomp_filter(current);
  1048. p->seccomp = current->seccomp;
  1049. /*
  1050. * Explicitly enable no_new_privs here in case it got set
  1051. * between the task_struct being duplicated and holding the
  1052. * sighand lock. The seccomp state and nnp must be in sync.
  1053. */
  1054. if (task_no_new_privs(current))
  1055. task_set_no_new_privs(p);
  1056. /*
  1057. * If the parent gained a seccomp mode after copying thread
  1058. * flags and between before we held the sighand lock, we have
  1059. * to manually enable the seccomp thread flag here.
  1060. */
  1061. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1062. set_tsk_thread_flag(p, TIF_SECCOMP);
  1063. #endif
  1064. }
  1065. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1066. {
  1067. current->clear_child_tid = tidptr;
  1068. return task_pid_vnr(current);
  1069. }
  1070. static void rt_mutex_init_task(struct task_struct *p)
  1071. {
  1072. raw_spin_lock_init(&p->pi_lock);
  1073. #ifdef CONFIG_RT_MUTEXES
  1074. p->pi_waiters = RB_ROOT;
  1075. p->pi_waiters_leftmost = NULL;
  1076. p->pi_blocked_on = NULL;
  1077. #endif
  1078. }
  1079. /*
  1080. * Initialize POSIX timer handling for a single task.
  1081. */
  1082. static void posix_cpu_timers_init(struct task_struct *tsk)
  1083. {
  1084. tsk->cputime_expires.prof_exp = 0;
  1085. tsk->cputime_expires.virt_exp = 0;
  1086. tsk->cputime_expires.sched_exp = 0;
  1087. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1088. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1089. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1090. }
  1091. static inline void
  1092. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1093. {
  1094. task->pids[type].pid = pid;
  1095. }
  1096. /*
  1097. * This creates a new process as a copy of the old one,
  1098. * but does not actually start it yet.
  1099. *
  1100. * It copies the registers, and all the appropriate
  1101. * parts of the process environment (as per the clone
  1102. * flags). The actual kick-off is left to the caller.
  1103. */
  1104. static __latent_entropy struct task_struct *copy_process(
  1105. unsigned long clone_flags,
  1106. unsigned long stack_start,
  1107. unsigned long stack_size,
  1108. int __user *child_tidptr,
  1109. struct pid *pid,
  1110. int trace,
  1111. unsigned long tls,
  1112. int node)
  1113. {
  1114. int retval;
  1115. struct task_struct *p;
  1116. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1117. return ERR_PTR(-EINVAL);
  1118. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1119. return ERR_PTR(-EINVAL);
  1120. /*
  1121. * Thread groups must share signals as well, and detached threads
  1122. * can only be started up within the thread group.
  1123. */
  1124. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1125. return ERR_PTR(-EINVAL);
  1126. /*
  1127. * Shared signal handlers imply shared VM. By way of the above,
  1128. * thread groups also imply shared VM. Blocking this case allows
  1129. * for various simplifications in other code.
  1130. */
  1131. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1132. return ERR_PTR(-EINVAL);
  1133. /*
  1134. * Siblings of global init remain as zombies on exit since they are
  1135. * not reaped by their parent (swapper). To solve this and to avoid
  1136. * multi-rooted process trees, prevent global and container-inits
  1137. * from creating siblings.
  1138. */
  1139. if ((clone_flags & CLONE_PARENT) &&
  1140. current->signal->flags & SIGNAL_UNKILLABLE)
  1141. return ERR_PTR(-EINVAL);
  1142. /*
  1143. * If the new process will be in a different pid or user namespace
  1144. * do not allow it to share a thread group with the forking task.
  1145. */
  1146. if (clone_flags & CLONE_THREAD) {
  1147. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1148. (task_active_pid_ns(current) !=
  1149. current->nsproxy->pid_ns_for_children))
  1150. return ERR_PTR(-EINVAL);
  1151. }
  1152. retval = security_task_create(clone_flags);
  1153. if (retval)
  1154. goto fork_out;
  1155. retval = -ENOMEM;
  1156. p = dup_task_struct(current, node);
  1157. if (!p)
  1158. goto fork_out;
  1159. ftrace_graph_init_task(p);
  1160. rt_mutex_init_task(p);
  1161. #ifdef CONFIG_PROVE_LOCKING
  1162. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1163. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1164. #endif
  1165. retval = -EAGAIN;
  1166. if (atomic_read(&p->real_cred->user->processes) >=
  1167. task_rlimit(p, RLIMIT_NPROC)) {
  1168. if (p->real_cred->user != INIT_USER &&
  1169. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1170. goto bad_fork_free;
  1171. }
  1172. current->flags &= ~PF_NPROC_EXCEEDED;
  1173. retval = copy_creds(p, clone_flags);
  1174. if (retval < 0)
  1175. goto bad_fork_free;
  1176. /*
  1177. * If multiple threads are within copy_process(), then this check
  1178. * triggers too late. This doesn't hurt, the check is only there
  1179. * to stop root fork bombs.
  1180. */
  1181. retval = -EAGAIN;
  1182. if (nr_threads >= max_threads)
  1183. goto bad_fork_cleanup_count;
  1184. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1185. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1186. p->flags |= PF_FORKNOEXEC;
  1187. INIT_LIST_HEAD(&p->children);
  1188. INIT_LIST_HEAD(&p->sibling);
  1189. rcu_copy_process(p);
  1190. p->vfork_done = NULL;
  1191. spin_lock_init(&p->alloc_lock);
  1192. init_sigpending(&p->pending);
  1193. p->utime = p->stime = p->gtime = 0;
  1194. p->utimescaled = p->stimescaled = 0;
  1195. prev_cputime_init(&p->prev_cputime);
  1196. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1197. seqcount_init(&p->vtime_seqcount);
  1198. p->vtime_snap = 0;
  1199. p->vtime_snap_whence = VTIME_INACTIVE;
  1200. #endif
  1201. #if defined(SPLIT_RSS_COUNTING)
  1202. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1203. #endif
  1204. p->default_timer_slack_ns = current->timer_slack_ns;
  1205. task_io_accounting_init(&p->ioac);
  1206. acct_clear_integrals(p);
  1207. posix_cpu_timers_init(p);
  1208. p->start_time = ktime_get_ns();
  1209. p->real_start_time = ktime_get_boot_ns();
  1210. p->io_context = NULL;
  1211. p->audit_context = NULL;
  1212. cgroup_fork(p);
  1213. #ifdef CONFIG_NUMA
  1214. p->mempolicy = mpol_dup(p->mempolicy);
  1215. if (IS_ERR(p->mempolicy)) {
  1216. retval = PTR_ERR(p->mempolicy);
  1217. p->mempolicy = NULL;
  1218. goto bad_fork_cleanup_threadgroup_lock;
  1219. }
  1220. #endif
  1221. #ifdef CONFIG_CPUSETS
  1222. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1223. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1224. seqcount_init(&p->mems_allowed_seq);
  1225. #endif
  1226. #ifdef CONFIG_TRACE_IRQFLAGS
  1227. p->irq_events = 0;
  1228. p->hardirqs_enabled = 0;
  1229. p->hardirq_enable_ip = 0;
  1230. p->hardirq_enable_event = 0;
  1231. p->hardirq_disable_ip = _THIS_IP_;
  1232. p->hardirq_disable_event = 0;
  1233. p->softirqs_enabled = 1;
  1234. p->softirq_enable_ip = _THIS_IP_;
  1235. p->softirq_enable_event = 0;
  1236. p->softirq_disable_ip = 0;
  1237. p->softirq_disable_event = 0;
  1238. p->hardirq_context = 0;
  1239. p->softirq_context = 0;
  1240. #endif
  1241. p->pagefault_disabled = 0;
  1242. #ifdef CONFIG_LOCKDEP
  1243. p->lockdep_depth = 0; /* no locks held yet */
  1244. p->curr_chain_key = 0;
  1245. p->lockdep_recursion = 0;
  1246. #endif
  1247. #ifdef CONFIG_DEBUG_MUTEXES
  1248. p->blocked_on = NULL; /* not blocked yet */
  1249. #endif
  1250. #ifdef CONFIG_BCACHE
  1251. p->sequential_io = 0;
  1252. p->sequential_io_avg = 0;
  1253. #endif
  1254. /* Perform scheduler related setup. Assign this task to a CPU. */
  1255. retval = sched_fork(clone_flags, p);
  1256. if (retval)
  1257. goto bad_fork_cleanup_policy;
  1258. retval = perf_event_init_task(p);
  1259. if (retval)
  1260. goto bad_fork_cleanup_policy;
  1261. retval = audit_alloc(p);
  1262. if (retval)
  1263. goto bad_fork_cleanup_perf;
  1264. /* copy all the process information */
  1265. shm_init_task(p);
  1266. retval = copy_semundo(clone_flags, p);
  1267. if (retval)
  1268. goto bad_fork_cleanup_audit;
  1269. retval = copy_files(clone_flags, p);
  1270. if (retval)
  1271. goto bad_fork_cleanup_semundo;
  1272. retval = copy_fs(clone_flags, p);
  1273. if (retval)
  1274. goto bad_fork_cleanup_files;
  1275. retval = copy_sighand(clone_flags, p);
  1276. if (retval)
  1277. goto bad_fork_cleanup_fs;
  1278. retval = copy_signal(clone_flags, p);
  1279. if (retval)
  1280. goto bad_fork_cleanup_sighand;
  1281. retval = copy_mm(clone_flags, p);
  1282. if (retval)
  1283. goto bad_fork_cleanup_signal;
  1284. retval = copy_namespaces(clone_flags, p);
  1285. if (retval)
  1286. goto bad_fork_cleanup_mm;
  1287. retval = copy_io(clone_flags, p);
  1288. if (retval)
  1289. goto bad_fork_cleanup_namespaces;
  1290. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1291. if (retval)
  1292. goto bad_fork_cleanup_io;
  1293. if (pid != &init_struct_pid) {
  1294. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1295. if (IS_ERR(pid)) {
  1296. retval = PTR_ERR(pid);
  1297. goto bad_fork_cleanup_thread;
  1298. }
  1299. }
  1300. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1301. /*
  1302. * Clear TID on mm_release()?
  1303. */
  1304. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1305. #ifdef CONFIG_BLOCK
  1306. p->plug = NULL;
  1307. #endif
  1308. #ifdef CONFIG_FUTEX
  1309. p->robust_list = NULL;
  1310. #ifdef CONFIG_COMPAT
  1311. p->compat_robust_list = NULL;
  1312. #endif
  1313. INIT_LIST_HEAD(&p->pi_state_list);
  1314. p->pi_state_cache = NULL;
  1315. #endif
  1316. /*
  1317. * sigaltstack should be cleared when sharing the same VM
  1318. */
  1319. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1320. sas_ss_reset(p);
  1321. /*
  1322. * Syscall tracing and stepping should be turned off in the
  1323. * child regardless of CLONE_PTRACE.
  1324. */
  1325. user_disable_single_step(p);
  1326. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1327. #ifdef TIF_SYSCALL_EMU
  1328. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1329. #endif
  1330. clear_all_latency_tracing(p);
  1331. /* ok, now we should be set up.. */
  1332. p->pid = pid_nr(pid);
  1333. if (clone_flags & CLONE_THREAD) {
  1334. p->exit_signal = -1;
  1335. p->group_leader = current->group_leader;
  1336. p->tgid = current->tgid;
  1337. } else {
  1338. if (clone_flags & CLONE_PARENT)
  1339. p->exit_signal = current->group_leader->exit_signal;
  1340. else
  1341. p->exit_signal = (clone_flags & CSIGNAL);
  1342. p->group_leader = p;
  1343. p->tgid = p->pid;
  1344. }
  1345. p->nr_dirtied = 0;
  1346. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1347. p->dirty_paused_when = 0;
  1348. p->pdeath_signal = 0;
  1349. INIT_LIST_HEAD(&p->thread_group);
  1350. p->task_works = NULL;
  1351. threadgroup_change_begin(current);
  1352. /*
  1353. * Ensure that the cgroup subsystem policies allow the new process to be
  1354. * forked. It should be noted the the new process's css_set can be changed
  1355. * between here and cgroup_post_fork() if an organisation operation is in
  1356. * progress.
  1357. */
  1358. retval = cgroup_can_fork(p);
  1359. if (retval)
  1360. goto bad_fork_free_pid;
  1361. /*
  1362. * Make it visible to the rest of the system, but dont wake it up yet.
  1363. * Need tasklist lock for parent etc handling!
  1364. */
  1365. write_lock_irq(&tasklist_lock);
  1366. /* CLONE_PARENT re-uses the old parent */
  1367. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1368. p->real_parent = current->real_parent;
  1369. p->parent_exec_id = current->parent_exec_id;
  1370. } else {
  1371. p->real_parent = current;
  1372. p->parent_exec_id = current->self_exec_id;
  1373. }
  1374. spin_lock(&current->sighand->siglock);
  1375. /*
  1376. * Copy seccomp details explicitly here, in case they were changed
  1377. * before holding sighand lock.
  1378. */
  1379. copy_seccomp(p);
  1380. /*
  1381. * Process group and session signals need to be delivered to just the
  1382. * parent before the fork or both the parent and the child after the
  1383. * fork. Restart if a signal comes in before we add the new process to
  1384. * it's process group.
  1385. * A fatal signal pending means that current will exit, so the new
  1386. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1387. */
  1388. recalc_sigpending();
  1389. if (signal_pending(current)) {
  1390. spin_unlock(&current->sighand->siglock);
  1391. write_unlock_irq(&tasklist_lock);
  1392. retval = -ERESTARTNOINTR;
  1393. goto bad_fork_cancel_cgroup;
  1394. }
  1395. if (likely(p->pid)) {
  1396. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1397. init_task_pid(p, PIDTYPE_PID, pid);
  1398. if (thread_group_leader(p)) {
  1399. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1400. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1401. if (is_child_reaper(pid)) {
  1402. ns_of_pid(pid)->child_reaper = p;
  1403. p->signal->flags |= SIGNAL_UNKILLABLE;
  1404. }
  1405. p->signal->leader_pid = pid;
  1406. p->signal->tty = tty_kref_get(current->signal->tty);
  1407. list_add_tail(&p->sibling, &p->real_parent->children);
  1408. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1409. attach_pid(p, PIDTYPE_PGID);
  1410. attach_pid(p, PIDTYPE_SID);
  1411. __this_cpu_inc(process_counts);
  1412. } else {
  1413. current->signal->nr_threads++;
  1414. atomic_inc(&current->signal->live);
  1415. atomic_inc(&current->signal->sigcnt);
  1416. list_add_tail_rcu(&p->thread_group,
  1417. &p->group_leader->thread_group);
  1418. list_add_tail_rcu(&p->thread_node,
  1419. &p->signal->thread_head);
  1420. }
  1421. attach_pid(p, PIDTYPE_PID);
  1422. nr_threads++;
  1423. }
  1424. total_forks++;
  1425. spin_unlock(&current->sighand->siglock);
  1426. syscall_tracepoint_update(p);
  1427. write_unlock_irq(&tasklist_lock);
  1428. proc_fork_connector(p);
  1429. cgroup_post_fork(p);
  1430. threadgroup_change_end(current);
  1431. perf_event_fork(p);
  1432. trace_task_newtask(p, clone_flags);
  1433. uprobe_copy_process(p, clone_flags);
  1434. return p;
  1435. bad_fork_cancel_cgroup:
  1436. cgroup_cancel_fork(p);
  1437. bad_fork_free_pid:
  1438. threadgroup_change_end(current);
  1439. if (pid != &init_struct_pid)
  1440. free_pid(pid);
  1441. bad_fork_cleanup_thread:
  1442. exit_thread(p);
  1443. bad_fork_cleanup_io:
  1444. if (p->io_context)
  1445. exit_io_context(p);
  1446. bad_fork_cleanup_namespaces:
  1447. exit_task_namespaces(p);
  1448. bad_fork_cleanup_mm:
  1449. if (p->mm)
  1450. mmput(p->mm);
  1451. bad_fork_cleanup_signal:
  1452. if (!(clone_flags & CLONE_THREAD))
  1453. free_signal_struct(p->signal);
  1454. bad_fork_cleanup_sighand:
  1455. __cleanup_sighand(p->sighand);
  1456. bad_fork_cleanup_fs:
  1457. exit_fs(p); /* blocking */
  1458. bad_fork_cleanup_files:
  1459. exit_files(p); /* blocking */
  1460. bad_fork_cleanup_semundo:
  1461. exit_sem(p);
  1462. bad_fork_cleanup_audit:
  1463. audit_free(p);
  1464. bad_fork_cleanup_perf:
  1465. perf_event_free_task(p);
  1466. bad_fork_cleanup_policy:
  1467. #ifdef CONFIG_NUMA
  1468. mpol_put(p->mempolicy);
  1469. bad_fork_cleanup_threadgroup_lock:
  1470. #endif
  1471. delayacct_tsk_free(p);
  1472. bad_fork_cleanup_count:
  1473. atomic_dec(&p->cred->user->processes);
  1474. exit_creds(p);
  1475. bad_fork_free:
  1476. free_task(p);
  1477. fork_out:
  1478. return ERR_PTR(retval);
  1479. }
  1480. static inline void init_idle_pids(struct pid_link *links)
  1481. {
  1482. enum pid_type type;
  1483. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1484. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1485. links[type].pid = &init_struct_pid;
  1486. }
  1487. }
  1488. struct task_struct *fork_idle(int cpu)
  1489. {
  1490. struct task_struct *task;
  1491. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1492. cpu_to_node(cpu));
  1493. if (!IS_ERR(task)) {
  1494. init_idle_pids(task->pids);
  1495. init_idle(task, cpu);
  1496. }
  1497. return task;
  1498. }
  1499. /*
  1500. * Ok, this is the main fork-routine.
  1501. *
  1502. * It copies the process, and if successful kick-starts
  1503. * it and waits for it to finish using the VM if required.
  1504. */
  1505. long _do_fork(unsigned long clone_flags,
  1506. unsigned long stack_start,
  1507. unsigned long stack_size,
  1508. int __user *parent_tidptr,
  1509. int __user *child_tidptr,
  1510. unsigned long tls)
  1511. {
  1512. struct task_struct *p;
  1513. int trace = 0;
  1514. long nr;
  1515. /*
  1516. * Determine whether and which event to report to ptracer. When
  1517. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1518. * requested, no event is reported; otherwise, report if the event
  1519. * for the type of forking is enabled.
  1520. */
  1521. if (!(clone_flags & CLONE_UNTRACED)) {
  1522. if (clone_flags & CLONE_VFORK)
  1523. trace = PTRACE_EVENT_VFORK;
  1524. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1525. trace = PTRACE_EVENT_CLONE;
  1526. else
  1527. trace = PTRACE_EVENT_FORK;
  1528. if (likely(!ptrace_event_enabled(current, trace)))
  1529. trace = 0;
  1530. }
  1531. p = copy_process(clone_flags, stack_start, stack_size,
  1532. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1533. add_latent_entropy();
  1534. /*
  1535. * Do this prior waking up the new thread - the thread pointer
  1536. * might get invalid after that point, if the thread exits quickly.
  1537. */
  1538. if (!IS_ERR(p)) {
  1539. struct completion vfork;
  1540. struct pid *pid;
  1541. trace_sched_process_fork(current, p);
  1542. pid = get_task_pid(p, PIDTYPE_PID);
  1543. nr = pid_vnr(pid);
  1544. if (clone_flags & CLONE_PARENT_SETTID)
  1545. put_user(nr, parent_tidptr);
  1546. if (clone_flags & CLONE_VFORK) {
  1547. p->vfork_done = &vfork;
  1548. init_completion(&vfork);
  1549. get_task_struct(p);
  1550. }
  1551. wake_up_new_task(p);
  1552. /* forking complete and child started to run, tell ptracer */
  1553. if (unlikely(trace))
  1554. ptrace_event_pid(trace, pid);
  1555. if (clone_flags & CLONE_VFORK) {
  1556. if (!wait_for_vfork_done(p, &vfork))
  1557. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1558. }
  1559. put_pid(pid);
  1560. } else {
  1561. nr = PTR_ERR(p);
  1562. }
  1563. return nr;
  1564. }
  1565. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1566. /* For compatibility with architectures that call do_fork directly rather than
  1567. * using the syscall entry points below. */
  1568. long do_fork(unsigned long clone_flags,
  1569. unsigned long stack_start,
  1570. unsigned long stack_size,
  1571. int __user *parent_tidptr,
  1572. int __user *child_tidptr)
  1573. {
  1574. return _do_fork(clone_flags, stack_start, stack_size,
  1575. parent_tidptr, child_tidptr, 0);
  1576. }
  1577. #endif
  1578. /*
  1579. * Create a kernel thread.
  1580. */
  1581. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1582. {
  1583. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1584. (unsigned long)arg, NULL, NULL, 0);
  1585. }
  1586. #ifdef __ARCH_WANT_SYS_FORK
  1587. SYSCALL_DEFINE0(fork)
  1588. {
  1589. #ifdef CONFIG_MMU
  1590. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1591. #else
  1592. /* can not support in nommu mode */
  1593. return -EINVAL;
  1594. #endif
  1595. }
  1596. #endif
  1597. #ifdef __ARCH_WANT_SYS_VFORK
  1598. SYSCALL_DEFINE0(vfork)
  1599. {
  1600. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1601. 0, NULL, NULL, 0);
  1602. }
  1603. #endif
  1604. #ifdef __ARCH_WANT_SYS_CLONE
  1605. #ifdef CONFIG_CLONE_BACKWARDS
  1606. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1607. int __user *, parent_tidptr,
  1608. unsigned long, tls,
  1609. int __user *, child_tidptr)
  1610. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1611. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1612. int __user *, parent_tidptr,
  1613. int __user *, child_tidptr,
  1614. unsigned long, tls)
  1615. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1616. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1617. int, stack_size,
  1618. int __user *, parent_tidptr,
  1619. int __user *, child_tidptr,
  1620. unsigned long, tls)
  1621. #else
  1622. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1623. int __user *, parent_tidptr,
  1624. int __user *, child_tidptr,
  1625. unsigned long, tls)
  1626. #endif
  1627. {
  1628. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1629. }
  1630. #endif
  1631. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1632. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1633. #endif
  1634. static void sighand_ctor(void *data)
  1635. {
  1636. struct sighand_struct *sighand = data;
  1637. spin_lock_init(&sighand->siglock);
  1638. init_waitqueue_head(&sighand->signalfd_wqh);
  1639. }
  1640. void __init proc_caches_init(void)
  1641. {
  1642. sighand_cachep = kmem_cache_create("sighand_cache",
  1643. sizeof(struct sighand_struct), 0,
  1644. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1645. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1646. signal_cachep = kmem_cache_create("signal_cache",
  1647. sizeof(struct signal_struct), 0,
  1648. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1649. NULL);
  1650. files_cachep = kmem_cache_create("files_cache",
  1651. sizeof(struct files_struct), 0,
  1652. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1653. NULL);
  1654. fs_cachep = kmem_cache_create("fs_cache",
  1655. sizeof(struct fs_struct), 0,
  1656. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1657. NULL);
  1658. /*
  1659. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1660. * whole struct cpumask for the OFFSTACK case. We could change
  1661. * this to *only* allocate as much of it as required by the
  1662. * maximum number of CPU's we can ever have. The cpumask_allocation
  1663. * is at the end of the structure, exactly for that reason.
  1664. */
  1665. mm_cachep = kmem_cache_create("mm_struct",
  1666. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1667. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1668. NULL);
  1669. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1670. mmap_init();
  1671. nsproxy_cache_init();
  1672. }
  1673. /*
  1674. * Check constraints on flags passed to the unshare system call.
  1675. */
  1676. static int check_unshare_flags(unsigned long unshare_flags)
  1677. {
  1678. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1679. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1680. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1681. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1682. return -EINVAL;
  1683. /*
  1684. * Not implemented, but pretend it works if there is nothing
  1685. * to unshare. Note that unsharing the address space or the
  1686. * signal handlers also need to unshare the signal queues (aka
  1687. * CLONE_THREAD).
  1688. */
  1689. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1690. if (!thread_group_empty(current))
  1691. return -EINVAL;
  1692. }
  1693. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1694. if (atomic_read(&current->sighand->count) > 1)
  1695. return -EINVAL;
  1696. }
  1697. if (unshare_flags & CLONE_VM) {
  1698. if (!current_is_single_threaded())
  1699. return -EINVAL;
  1700. }
  1701. return 0;
  1702. }
  1703. /*
  1704. * Unshare the filesystem structure if it is being shared
  1705. */
  1706. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1707. {
  1708. struct fs_struct *fs = current->fs;
  1709. if (!(unshare_flags & CLONE_FS) || !fs)
  1710. return 0;
  1711. /* don't need lock here; in the worst case we'll do useless copy */
  1712. if (fs->users == 1)
  1713. return 0;
  1714. *new_fsp = copy_fs_struct(fs);
  1715. if (!*new_fsp)
  1716. return -ENOMEM;
  1717. return 0;
  1718. }
  1719. /*
  1720. * Unshare file descriptor table if it is being shared
  1721. */
  1722. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1723. {
  1724. struct files_struct *fd = current->files;
  1725. int error = 0;
  1726. if ((unshare_flags & CLONE_FILES) &&
  1727. (fd && atomic_read(&fd->count) > 1)) {
  1728. *new_fdp = dup_fd(fd, &error);
  1729. if (!*new_fdp)
  1730. return error;
  1731. }
  1732. return 0;
  1733. }
  1734. /*
  1735. * unshare allows a process to 'unshare' part of the process
  1736. * context which was originally shared using clone. copy_*
  1737. * functions used by do_fork() cannot be used here directly
  1738. * because they modify an inactive task_struct that is being
  1739. * constructed. Here we are modifying the current, active,
  1740. * task_struct.
  1741. */
  1742. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1743. {
  1744. struct fs_struct *fs, *new_fs = NULL;
  1745. struct files_struct *fd, *new_fd = NULL;
  1746. struct cred *new_cred = NULL;
  1747. struct nsproxy *new_nsproxy = NULL;
  1748. int do_sysvsem = 0;
  1749. int err;
  1750. /*
  1751. * If unsharing a user namespace must also unshare the thread group
  1752. * and unshare the filesystem root and working directories.
  1753. */
  1754. if (unshare_flags & CLONE_NEWUSER)
  1755. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1756. /*
  1757. * If unsharing vm, must also unshare signal handlers.
  1758. */
  1759. if (unshare_flags & CLONE_VM)
  1760. unshare_flags |= CLONE_SIGHAND;
  1761. /*
  1762. * If unsharing a signal handlers, must also unshare the signal queues.
  1763. */
  1764. if (unshare_flags & CLONE_SIGHAND)
  1765. unshare_flags |= CLONE_THREAD;
  1766. /*
  1767. * If unsharing namespace, must also unshare filesystem information.
  1768. */
  1769. if (unshare_flags & CLONE_NEWNS)
  1770. unshare_flags |= CLONE_FS;
  1771. err = check_unshare_flags(unshare_flags);
  1772. if (err)
  1773. goto bad_unshare_out;
  1774. /*
  1775. * CLONE_NEWIPC must also detach from the undolist: after switching
  1776. * to a new ipc namespace, the semaphore arrays from the old
  1777. * namespace are unreachable.
  1778. */
  1779. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1780. do_sysvsem = 1;
  1781. err = unshare_fs(unshare_flags, &new_fs);
  1782. if (err)
  1783. goto bad_unshare_out;
  1784. err = unshare_fd(unshare_flags, &new_fd);
  1785. if (err)
  1786. goto bad_unshare_cleanup_fs;
  1787. err = unshare_userns(unshare_flags, &new_cred);
  1788. if (err)
  1789. goto bad_unshare_cleanup_fd;
  1790. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1791. new_cred, new_fs);
  1792. if (err)
  1793. goto bad_unshare_cleanup_cred;
  1794. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1795. if (do_sysvsem) {
  1796. /*
  1797. * CLONE_SYSVSEM is equivalent to sys_exit().
  1798. */
  1799. exit_sem(current);
  1800. }
  1801. if (unshare_flags & CLONE_NEWIPC) {
  1802. /* Orphan segments in old ns (see sem above). */
  1803. exit_shm(current);
  1804. shm_init_task(current);
  1805. }
  1806. if (new_nsproxy)
  1807. switch_task_namespaces(current, new_nsproxy);
  1808. task_lock(current);
  1809. if (new_fs) {
  1810. fs = current->fs;
  1811. spin_lock(&fs->lock);
  1812. current->fs = new_fs;
  1813. if (--fs->users)
  1814. new_fs = NULL;
  1815. else
  1816. new_fs = fs;
  1817. spin_unlock(&fs->lock);
  1818. }
  1819. if (new_fd) {
  1820. fd = current->files;
  1821. current->files = new_fd;
  1822. new_fd = fd;
  1823. }
  1824. task_unlock(current);
  1825. if (new_cred) {
  1826. /* Install the new user namespace */
  1827. commit_creds(new_cred);
  1828. new_cred = NULL;
  1829. }
  1830. }
  1831. bad_unshare_cleanup_cred:
  1832. if (new_cred)
  1833. put_cred(new_cred);
  1834. bad_unshare_cleanup_fd:
  1835. if (new_fd)
  1836. put_files_struct(new_fd);
  1837. bad_unshare_cleanup_fs:
  1838. if (new_fs)
  1839. free_fs_struct(new_fs);
  1840. bad_unshare_out:
  1841. return err;
  1842. }
  1843. /*
  1844. * Helper to unshare the files of the current task.
  1845. * We don't want to expose copy_files internals to
  1846. * the exec layer of the kernel.
  1847. */
  1848. int unshare_files(struct files_struct **displaced)
  1849. {
  1850. struct task_struct *task = current;
  1851. struct files_struct *copy = NULL;
  1852. int error;
  1853. error = unshare_fd(CLONE_FILES, &copy);
  1854. if (error || !copy) {
  1855. *displaced = NULL;
  1856. return error;
  1857. }
  1858. *displaced = task->files;
  1859. task_lock(task);
  1860. task->files = copy;
  1861. task_unlock(task);
  1862. return 0;
  1863. }
  1864. int sysctl_max_threads(struct ctl_table *table, int write,
  1865. void __user *buffer, size_t *lenp, loff_t *ppos)
  1866. {
  1867. struct ctl_table t;
  1868. int ret;
  1869. int threads = max_threads;
  1870. int min = MIN_THREADS;
  1871. int max = MAX_THREADS;
  1872. t = *table;
  1873. t.data = &threads;
  1874. t.extra1 = &min;
  1875. t.extra2 = &max;
  1876. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1877. if (ret || !write)
  1878. return ret;
  1879. set_max_threads(threads);
  1880. return 0;
  1881. }