smp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. */
  15. #include <linux/sched.h>
  16. #include <linux/err.h>
  17. #include <linux/slab.h>
  18. #include <linux/smp.h>
  19. #include <linux/irq_work.h>
  20. #include <linux/tick.h>
  21. #include <asm/paravirt.h>
  22. #include <asm/desc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/cpu.h>
  25. #include <xen/interface/xen.h>
  26. #include <xen/interface/vcpu.h>
  27. #include <xen/interface/xenpmu.h>
  28. #include <asm/xen/interface.h>
  29. #include <asm/xen/hypercall.h>
  30. #include <xen/xen.h>
  31. #include <xen/page.h>
  32. #include <xen/events.h>
  33. #include <xen/hvc-console.h>
  34. #include "xen-ops.h"
  35. #include "mmu.h"
  36. #include "smp.h"
  37. #include "pmu.h"
  38. cpumask_var_t xen_cpu_initialized_map;
  39. struct xen_common_irq {
  40. int irq;
  41. char *name;
  42. };
  43. static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
  44. static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
  45. static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
  46. static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
  47. static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
  48. static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
  49. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  50. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
  51. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
  52. /*
  53. * Reschedule call back.
  54. */
  55. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  56. {
  57. inc_irq_stat(irq_resched_count);
  58. scheduler_ipi();
  59. return IRQ_HANDLED;
  60. }
  61. static void cpu_bringup(void)
  62. {
  63. int cpu;
  64. cpu_init();
  65. touch_softlockup_watchdog();
  66. preempt_disable();
  67. /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
  68. if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
  69. xen_enable_sysenter();
  70. xen_enable_syscall();
  71. }
  72. cpu = smp_processor_id();
  73. smp_store_cpu_info(cpu);
  74. cpu_data(cpu).x86_max_cores = 1;
  75. set_cpu_sibling_map(cpu);
  76. xen_setup_cpu_clockevents();
  77. notify_cpu_starting(cpu);
  78. set_cpu_online(cpu, true);
  79. cpu_set_state_online(cpu); /* Implies full memory barrier. */
  80. /* We can take interrupts now: we're officially "up". */
  81. local_irq_enable();
  82. }
  83. /*
  84. * Note: cpu parameter is only relevant for PVH. The reason for passing it
  85. * is we can't do smp_processor_id until the percpu segments are loaded, for
  86. * which we need the cpu number! So we pass it in rdi as first parameter.
  87. */
  88. asmlinkage __visible void cpu_bringup_and_idle(int cpu)
  89. {
  90. #ifdef CONFIG_XEN_PVH
  91. if (xen_feature(XENFEAT_auto_translated_physmap) &&
  92. xen_feature(XENFEAT_supervisor_mode_kernel))
  93. xen_pvh_secondary_vcpu_init(cpu);
  94. #endif
  95. cpu_bringup();
  96. cpu_startup_entry(CPUHP_ONLINE);
  97. }
  98. static void xen_smp_intr_free(unsigned int cpu)
  99. {
  100. if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
  101. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
  102. per_cpu(xen_resched_irq, cpu).irq = -1;
  103. kfree(per_cpu(xen_resched_irq, cpu).name);
  104. per_cpu(xen_resched_irq, cpu).name = NULL;
  105. }
  106. if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
  107. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
  108. per_cpu(xen_callfunc_irq, cpu).irq = -1;
  109. kfree(per_cpu(xen_callfunc_irq, cpu).name);
  110. per_cpu(xen_callfunc_irq, cpu).name = NULL;
  111. }
  112. if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
  113. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
  114. per_cpu(xen_debug_irq, cpu).irq = -1;
  115. kfree(per_cpu(xen_debug_irq, cpu).name);
  116. per_cpu(xen_debug_irq, cpu).name = NULL;
  117. }
  118. if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
  119. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
  120. NULL);
  121. per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
  122. kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
  123. per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
  124. }
  125. if (xen_hvm_domain())
  126. return;
  127. if (per_cpu(xen_irq_work, cpu).irq >= 0) {
  128. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
  129. per_cpu(xen_irq_work, cpu).irq = -1;
  130. kfree(per_cpu(xen_irq_work, cpu).name);
  131. per_cpu(xen_irq_work, cpu).name = NULL;
  132. }
  133. if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
  134. unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
  135. per_cpu(xen_pmu_irq, cpu).irq = -1;
  136. kfree(per_cpu(xen_pmu_irq, cpu).name);
  137. per_cpu(xen_pmu_irq, cpu).name = NULL;
  138. }
  139. };
  140. static int xen_smp_intr_init(unsigned int cpu)
  141. {
  142. int rc;
  143. char *resched_name, *callfunc_name, *debug_name, *pmu_name;
  144. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  145. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  146. cpu,
  147. xen_reschedule_interrupt,
  148. IRQF_PERCPU|IRQF_NOBALANCING,
  149. resched_name,
  150. NULL);
  151. if (rc < 0)
  152. goto fail;
  153. per_cpu(xen_resched_irq, cpu).irq = rc;
  154. per_cpu(xen_resched_irq, cpu).name = resched_name;
  155. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  156. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  157. cpu,
  158. xen_call_function_interrupt,
  159. IRQF_PERCPU|IRQF_NOBALANCING,
  160. callfunc_name,
  161. NULL);
  162. if (rc < 0)
  163. goto fail;
  164. per_cpu(xen_callfunc_irq, cpu).irq = rc;
  165. per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
  166. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  167. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  168. IRQF_PERCPU | IRQF_NOBALANCING,
  169. debug_name, NULL);
  170. if (rc < 0)
  171. goto fail;
  172. per_cpu(xen_debug_irq, cpu).irq = rc;
  173. per_cpu(xen_debug_irq, cpu).name = debug_name;
  174. callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
  175. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
  176. cpu,
  177. xen_call_function_single_interrupt,
  178. IRQF_PERCPU|IRQF_NOBALANCING,
  179. callfunc_name,
  180. NULL);
  181. if (rc < 0)
  182. goto fail;
  183. per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
  184. per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
  185. /*
  186. * The IRQ worker on PVHVM goes through the native path and uses the
  187. * IPI mechanism.
  188. */
  189. if (xen_hvm_domain())
  190. return 0;
  191. callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
  192. rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
  193. cpu,
  194. xen_irq_work_interrupt,
  195. IRQF_PERCPU|IRQF_NOBALANCING,
  196. callfunc_name,
  197. NULL);
  198. if (rc < 0)
  199. goto fail;
  200. per_cpu(xen_irq_work, cpu).irq = rc;
  201. per_cpu(xen_irq_work, cpu).name = callfunc_name;
  202. if (is_xen_pmu(cpu)) {
  203. pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
  204. rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
  205. xen_pmu_irq_handler,
  206. IRQF_PERCPU|IRQF_NOBALANCING,
  207. pmu_name, NULL);
  208. if (rc < 0)
  209. goto fail;
  210. per_cpu(xen_pmu_irq, cpu).irq = rc;
  211. per_cpu(xen_pmu_irq, cpu).name = pmu_name;
  212. }
  213. return 0;
  214. fail:
  215. xen_smp_intr_free(cpu);
  216. return rc;
  217. }
  218. static void __init xen_fill_possible_map(void)
  219. {
  220. int i, rc;
  221. if (xen_initial_domain())
  222. return;
  223. for (i = 0; i < nr_cpu_ids; i++) {
  224. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  225. if (rc >= 0) {
  226. num_processors++;
  227. set_cpu_possible(i, true);
  228. }
  229. }
  230. }
  231. static void __init xen_filter_cpu_maps(void)
  232. {
  233. int i, rc;
  234. unsigned int subtract = 0;
  235. if (!xen_initial_domain())
  236. return;
  237. num_processors = 0;
  238. disabled_cpus = 0;
  239. for (i = 0; i < nr_cpu_ids; i++) {
  240. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  241. if (rc >= 0) {
  242. num_processors++;
  243. set_cpu_possible(i, true);
  244. } else {
  245. set_cpu_possible(i, false);
  246. set_cpu_present(i, false);
  247. subtract++;
  248. }
  249. }
  250. #ifdef CONFIG_HOTPLUG_CPU
  251. /* This is akin to using 'nr_cpus' on the Linux command line.
  252. * Which is OK as when we use 'dom0_max_vcpus=X' we can only
  253. * have up to X, while nr_cpu_ids is greater than X. This
  254. * normally is not a problem, except when CPU hotplugging
  255. * is involved and then there might be more than X CPUs
  256. * in the guest - which will not work as there is no
  257. * hypercall to expand the max number of VCPUs an already
  258. * running guest has. So cap it up to X. */
  259. if (subtract)
  260. nr_cpu_ids = nr_cpu_ids - subtract;
  261. #endif
  262. }
  263. static void __init xen_smp_prepare_boot_cpu(void)
  264. {
  265. BUG_ON(smp_processor_id() != 0);
  266. native_smp_prepare_boot_cpu();
  267. if (xen_pv_domain()) {
  268. if (!xen_feature(XENFEAT_writable_page_tables))
  269. /* We've switched to the "real" per-cpu gdt, so make
  270. * sure the old memory can be recycled. */
  271. make_lowmem_page_readwrite(xen_initial_gdt);
  272. #ifdef CONFIG_X86_32
  273. /*
  274. * Xen starts us with XEN_FLAT_RING1_DS, but linux code
  275. * expects __USER_DS
  276. */
  277. loadsegment(ds, __USER_DS);
  278. loadsegment(es, __USER_DS);
  279. #endif
  280. xen_filter_cpu_maps();
  281. xen_setup_vcpu_info_placement();
  282. }
  283. /*
  284. * The alternative logic (which patches the unlock/lock) runs before
  285. * the smp bootup up code is activated. Hence we need to set this up
  286. * the core kernel is being patched. Otherwise we will have only
  287. * modules patched but not core code.
  288. */
  289. xen_init_spinlocks();
  290. }
  291. static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  292. {
  293. unsigned cpu;
  294. unsigned int i;
  295. if (skip_ioapic_setup) {
  296. char *m = (max_cpus == 0) ?
  297. "The nosmp parameter is incompatible with Xen; " \
  298. "use Xen dom0_max_vcpus=1 parameter" :
  299. "The noapic parameter is incompatible with Xen";
  300. xen_raw_printk(m);
  301. panic(m);
  302. }
  303. xen_init_lock_cpu(0);
  304. smp_store_boot_cpu_info();
  305. cpu_data(0).x86_max_cores = 1;
  306. for_each_possible_cpu(i) {
  307. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  308. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  309. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  310. }
  311. set_cpu_sibling_map(0);
  312. xen_pmu_init(0);
  313. if (xen_smp_intr_init(0))
  314. BUG();
  315. if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
  316. panic("could not allocate xen_cpu_initialized_map\n");
  317. cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
  318. /* Restrict the possible_map according to max_cpus. */
  319. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  320. for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
  321. continue;
  322. set_cpu_possible(cpu, false);
  323. }
  324. for_each_possible_cpu(cpu)
  325. set_cpu_present(cpu, true);
  326. }
  327. static int
  328. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  329. {
  330. struct vcpu_guest_context *ctxt;
  331. struct desc_struct *gdt;
  332. unsigned long gdt_mfn;
  333. /* used to tell cpu_init() that it can proceed with initialization */
  334. cpumask_set_cpu(cpu, cpu_callout_mask);
  335. if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
  336. return 0;
  337. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  338. if (ctxt == NULL)
  339. return -ENOMEM;
  340. gdt = get_cpu_gdt_table(cpu);
  341. #ifdef CONFIG_X86_32
  342. /* Note: PVH is not yet supported on x86_32. */
  343. ctxt->user_regs.fs = __KERNEL_PERCPU;
  344. ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
  345. #endif
  346. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  347. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  348. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  349. ctxt->flags = VGCF_IN_KERNEL;
  350. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  351. ctxt->user_regs.ds = __USER_DS;
  352. ctxt->user_regs.es = __USER_DS;
  353. ctxt->user_regs.ss = __KERNEL_DS;
  354. xen_copy_trap_info(ctxt->trap_ctxt);
  355. ctxt->ldt_ents = 0;
  356. BUG_ON((unsigned long)gdt & ~PAGE_MASK);
  357. gdt_mfn = arbitrary_virt_to_mfn(gdt);
  358. make_lowmem_page_readonly(gdt);
  359. make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
  360. ctxt->gdt_frames[0] = gdt_mfn;
  361. ctxt->gdt_ents = GDT_ENTRIES;
  362. ctxt->kernel_ss = __KERNEL_DS;
  363. ctxt->kernel_sp = idle->thread.sp0;
  364. #ifdef CONFIG_X86_32
  365. ctxt->event_callback_cs = __KERNEL_CS;
  366. ctxt->failsafe_callback_cs = __KERNEL_CS;
  367. #else
  368. ctxt->gs_base_kernel = per_cpu_offset(cpu);
  369. #endif
  370. ctxt->event_callback_eip =
  371. (unsigned long)xen_hypervisor_callback;
  372. ctxt->failsafe_callback_eip =
  373. (unsigned long)xen_failsafe_callback;
  374. ctxt->user_regs.cs = __KERNEL_CS;
  375. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  376. }
  377. #ifdef CONFIG_XEN_PVH
  378. else {
  379. /*
  380. * The vcpu comes on kernel page tables which have the NX pte
  381. * bit set. This means before DS/SS is touched, NX in
  382. * EFER must be set. Hence the following assembly glue code.
  383. */
  384. ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
  385. ctxt->user_regs.rdi = cpu;
  386. ctxt->user_regs.rsi = true; /* entry == true */
  387. }
  388. #endif
  389. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  390. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
  391. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  392. BUG();
  393. kfree(ctxt);
  394. return 0;
  395. }
  396. static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
  397. {
  398. int rc;
  399. common_cpu_up(cpu, idle);
  400. xen_setup_runstate_info(cpu);
  401. xen_setup_timer(cpu);
  402. xen_init_lock_cpu(cpu);
  403. /*
  404. * PV VCPUs are always successfully taken down (see 'while' loop
  405. * in xen_cpu_die()), so -EBUSY is an error.
  406. */
  407. rc = cpu_check_up_prepare(cpu);
  408. if (rc)
  409. return rc;
  410. /* make sure interrupts start blocked */
  411. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  412. rc = cpu_initialize_context(cpu, idle);
  413. if (rc)
  414. return rc;
  415. xen_pmu_init(cpu);
  416. rc = xen_smp_intr_init(cpu);
  417. if (rc)
  418. return rc;
  419. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  420. BUG_ON(rc);
  421. while (cpu_report_state(cpu) != CPU_ONLINE)
  422. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  423. return 0;
  424. }
  425. static void xen_smp_cpus_done(unsigned int max_cpus)
  426. {
  427. }
  428. #ifdef CONFIG_HOTPLUG_CPU
  429. static int xen_cpu_disable(void)
  430. {
  431. unsigned int cpu = smp_processor_id();
  432. if (cpu == 0)
  433. return -EBUSY;
  434. cpu_disable_common();
  435. load_cr3(swapper_pg_dir);
  436. return 0;
  437. }
  438. static void xen_cpu_die(unsigned int cpu)
  439. {
  440. while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
  441. __set_current_state(TASK_UNINTERRUPTIBLE);
  442. schedule_timeout(HZ/10);
  443. }
  444. if (common_cpu_die(cpu) == 0) {
  445. xen_smp_intr_free(cpu);
  446. xen_uninit_lock_cpu(cpu);
  447. xen_teardown_timer(cpu);
  448. xen_pmu_finish(cpu);
  449. }
  450. }
  451. static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
  452. {
  453. play_dead_common();
  454. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  455. cpu_bringup();
  456. /*
  457. * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
  458. * clears certain data that the cpu_idle loop (which called us
  459. * and that we return from) expects. The only way to get that
  460. * data back is to call:
  461. */
  462. tick_nohz_idle_enter();
  463. }
  464. #else /* !CONFIG_HOTPLUG_CPU */
  465. static int xen_cpu_disable(void)
  466. {
  467. return -ENOSYS;
  468. }
  469. static void xen_cpu_die(unsigned int cpu)
  470. {
  471. BUG();
  472. }
  473. static void xen_play_dead(void)
  474. {
  475. BUG();
  476. }
  477. #endif
  478. static void stop_self(void *v)
  479. {
  480. int cpu = smp_processor_id();
  481. /* make sure we're not pinning something down */
  482. load_cr3(swapper_pg_dir);
  483. /* should set up a minimal gdt */
  484. set_cpu_online(cpu, false);
  485. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  486. BUG();
  487. }
  488. static void xen_stop_other_cpus(int wait)
  489. {
  490. smp_call_function(stop_self, NULL, wait);
  491. }
  492. static void xen_smp_send_reschedule(int cpu)
  493. {
  494. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  495. }
  496. static void __xen_send_IPI_mask(const struct cpumask *mask,
  497. int vector)
  498. {
  499. unsigned cpu;
  500. for_each_cpu_and(cpu, mask, cpu_online_mask)
  501. xen_send_IPI_one(cpu, vector);
  502. }
  503. static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
  504. {
  505. int cpu;
  506. __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  507. /* Make sure other vcpus get a chance to run if they need to. */
  508. for_each_cpu(cpu, mask) {
  509. if (xen_vcpu_stolen(cpu)) {
  510. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  511. break;
  512. }
  513. }
  514. }
  515. static void xen_smp_send_call_function_single_ipi(int cpu)
  516. {
  517. __xen_send_IPI_mask(cpumask_of(cpu),
  518. XEN_CALL_FUNCTION_SINGLE_VECTOR);
  519. }
  520. static inline int xen_map_vector(int vector)
  521. {
  522. int xen_vector;
  523. switch (vector) {
  524. case RESCHEDULE_VECTOR:
  525. xen_vector = XEN_RESCHEDULE_VECTOR;
  526. break;
  527. case CALL_FUNCTION_VECTOR:
  528. xen_vector = XEN_CALL_FUNCTION_VECTOR;
  529. break;
  530. case CALL_FUNCTION_SINGLE_VECTOR:
  531. xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
  532. break;
  533. case IRQ_WORK_VECTOR:
  534. xen_vector = XEN_IRQ_WORK_VECTOR;
  535. break;
  536. #ifdef CONFIG_X86_64
  537. case NMI_VECTOR:
  538. case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
  539. xen_vector = XEN_NMI_VECTOR;
  540. break;
  541. #endif
  542. default:
  543. xen_vector = -1;
  544. printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
  545. vector);
  546. }
  547. return xen_vector;
  548. }
  549. void xen_send_IPI_mask(const struct cpumask *mask,
  550. int vector)
  551. {
  552. int xen_vector = xen_map_vector(vector);
  553. if (xen_vector >= 0)
  554. __xen_send_IPI_mask(mask, xen_vector);
  555. }
  556. void xen_send_IPI_all(int vector)
  557. {
  558. int xen_vector = xen_map_vector(vector);
  559. if (xen_vector >= 0)
  560. __xen_send_IPI_mask(cpu_online_mask, xen_vector);
  561. }
  562. void xen_send_IPI_self(int vector)
  563. {
  564. int xen_vector = xen_map_vector(vector);
  565. if (xen_vector >= 0)
  566. xen_send_IPI_one(smp_processor_id(), xen_vector);
  567. }
  568. void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
  569. int vector)
  570. {
  571. unsigned cpu;
  572. unsigned int this_cpu = smp_processor_id();
  573. int xen_vector = xen_map_vector(vector);
  574. if (!(num_online_cpus() > 1) || (xen_vector < 0))
  575. return;
  576. for_each_cpu_and(cpu, mask, cpu_online_mask) {
  577. if (this_cpu == cpu)
  578. continue;
  579. xen_send_IPI_one(cpu, xen_vector);
  580. }
  581. }
  582. void xen_send_IPI_allbutself(int vector)
  583. {
  584. xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
  585. }
  586. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  587. {
  588. irq_enter();
  589. generic_smp_call_function_interrupt();
  590. inc_irq_stat(irq_call_count);
  591. irq_exit();
  592. return IRQ_HANDLED;
  593. }
  594. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
  595. {
  596. irq_enter();
  597. generic_smp_call_function_single_interrupt();
  598. inc_irq_stat(irq_call_count);
  599. irq_exit();
  600. return IRQ_HANDLED;
  601. }
  602. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
  603. {
  604. irq_enter();
  605. irq_work_run();
  606. inc_irq_stat(apic_irq_work_irqs);
  607. irq_exit();
  608. return IRQ_HANDLED;
  609. }
  610. static const struct smp_ops xen_smp_ops __initconst = {
  611. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  612. .smp_prepare_cpus = xen_smp_prepare_cpus,
  613. .smp_cpus_done = xen_smp_cpus_done,
  614. .cpu_up = xen_cpu_up,
  615. .cpu_die = xen_cpu_die,
  616. .cpu_disable = xen_cpu_disable,
  617. .play_dead = xen_play_dead,
  618. .stop_other_cpus = xen_stop_other_cpus,
  619. .smp_send_reschedule = xen_smp_send_reschedule,
  620. .send_call_func_ipi = xen_smp_send_call_function_ipi,
  621. .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
  622. };
  623. void __init xen_smp_init(void)
  624. {
  625. smp_ops = xen_smp_ops;
  626. xen_fill_possible_map();
  627. }
  628. static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
  629. {
  630. native_smp_prepare_cpus(max_cpus);
  631. WARN_ON(xen_smp_intr_init(0));
  632. xen_init_lock_cpu(0);
  633. }
  634. static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
  635. {
  636. int rc;
  637. /*
  638. * This can happen if CPU was offlined earlier and
  639. * offlining timed out in common_cpu_die().
  640. */
  641. if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
  642. xen_smp_intr_free(cpu);
  643. xen_uninit_lock_cpu(cpu);
  644. }
  645. /*
  646. * xen_smp_intr_init() needs to run before native_cpu_up()
  647. * so that IPI vectors are set up on the booting CPU before
  648. * it is marked online in native_cpu_up().
  649. */
  650. rc = xen_smp_intr_init(cpu);
  651. WARN_ON(rc);
  652. if (!rc)
  653. rc = native_cpu_up(cpu, tidle);
  654. /*
  655. * We must initialize the slowpath CPU kicker _after_ the native
  656. * path has executed. If we initialized it before none of the
  657. * unlocker IPI kicks would reach the booting CPU as the booting
  658. * CPU had not set itself 'online' in cpu_online_mask. That mask
  659. * is checked when IPIs are sent (on HVM at least).
  660. */
  661. xen_init_lock_cpu(cpu);
  662. return rc;
  663. }
  664. void __init xen_hvm_smp_init(void)
  665. {
  666. if (!xen_have_vector_callback)
  667. return;
  668. smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
  669. smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
  670. smp_ops.cpu_up = xen_hvm_cpu_up;
  671. smp_ops.cpu_die = xen_cpu_die;
  672. smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
  673. smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
  674. smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
  675. }