mm.h 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/resource.h>
  19. #include <linux/page_ext.h>
  20. #include <linux/err.h>
  21. struct mempolicy;
  22. struct anon_vma;
  23. struct anon_vma_chain;
  24. struct file_ra_state;
  25. struct user_struct;
  26. struct writeback_control;
  27. struct bdi_writeback;
  28. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  29. extern unsigned long max_mapnr;
  30. static inline void set_max_mapnr(unsigned long limit)
  31. {
  32. max_mapnr = limit;
  33. }
  34. #else
  35. static inline void set_max_mapnr(unsigned long limit) { }
  36. #endif
  37. extern unsigned long totalram_pages;
  38. extern void * high_memory;
  39. extern int page_cluster;
  40. #ifdef CONFIG_SYSCTL
  41. extern int sysctl_legacy_va_layout;
  42. #else
  43. #define sysctl_legacy_va_layout 0
  44. #endif
  45. #include <asm/page.h>
  46. #include <asm/pgtable.h>
  47. #include <asm/processor.h>
  48. #ifndef __pa_symbol
  49. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  50. #endif
  51. /*
  52. * To prevent common memory management code establishing
  53. * a zero page mapping on a read fault.
  54. * This macro should be defined within <asm/pgtable.h>.
  55. * s390 does this to prevent multiplexing of hardware bits
  56. * related to the physical page in case of virtualization.
  57. */
  58. #ifndef mm_forbids_zeropage
  59. #define mm_forbids_zeropage(X) (0)
  60. #endif
  61. extern unsigned long sysctl_user_reserve_kbytes;
  62. extern unsigned long sysctl_admin_reserve_kbytes;
  63. extern int sysctl_overcommit_memory;
  64. extern int sysctl_overcommit_ratio;
  65. extern unsigned long sysctl_overcommit_kbytes;
  66. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  67. size_t *, loff_t *);
  68. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  69. size_t *, loff_t *);
  70. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  71. /* to align the pointer to the (next) page boundary */
  72. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  73. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  74. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  75. /*
  76. * Linux kernel virtual memory manager primitives.
  77. * The idea being to have a "virtual" mm in the same way
  78. * we have a virtual fs - giving a cleaner interface to the
  79. * mm details, and allowing different kinds of memory mappings
  80. * (from shared memory to executable loading to arbitrary
  81. * mmap() functions).
  82. */
  83. extern struct kmem_cache *vm_area_cachep;
  84. #ifndef CONFIG_MMU
  85. extern struct rb_root nommu_region_tree;
  86. extern struct rw_semaphore nommu_region_sem;
  87. extern unsigned int kobjsize(const void *objp);
  88. #endif
  89. /*
  90. * vm_flags in vm_area_struct, see mm_types.h.
  91. */
  92. #define VM_NONE 0x00000000
  93. #define VM_READ 0x00000001 /* currently active flags */
  94. #define VM_WRITE 0x00000002
  95. #define VM_EXEC 0x00000004
  96. #define VM_SHARED 0x00000008
  97. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  98. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  99. #define VM_MAYWRITE 0x00000020
  100. #define VM_MAYEXEC 0x00000040
  101. #define VM_MAYSHARE 0x00000080
  102. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  103. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  104. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  105. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  106. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  107. #define VM_LOCKED 0x00002000
  108. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  109. /* Used by sys_madvise() */
  110. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  111. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  112. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  113. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  114. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  115. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  116. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  117. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  118. #define VM_ARCH_2 0x02000000
  119. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  120. #ifdef CONFIG_MEM_SOFT_DIRTY
  121. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  122. #else
  123. # define VM_SOFTDIRTY 0
  124. #endif
  125. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  126. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  127. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  128. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  129. #if defined(CONFIG_X86)
  130. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  131. #elif defined(CONFIG_PPC)
  132. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  133. #elif defined(CONFIG_PARISC)
  134. # define VM_GROWSUP VM_ARCH_1
  135. #elif defined(CONFIG_METAG)
  136. # define VM_GROWSUP VM_ARCH_1
  137. #elif defined(CONFIG_IA64)
  138. # define VM_GROWSUP VM_ARCH_1
  139. #elif !defined(CONFIG_MMU)
  140. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  141. #endif
  142. #if defined(CONFIG_X86)
  143. /* MPX specific bounds table or bounds directory */
  144. # define VM_MPX VM_ARCH_2
  145. #endif
  146. #ifndef VM_GROWSUP
  147. # define VM_GROWSUP VM_NONE
  148. #endif
  149. /* Bits set in the VMA until the stack is in its final location */
  150. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  151. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  152. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  153. #endif
  154. #ifdef CONFIG_STACK_GROWSUP
  155. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  156. #else
  157. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  158. #endif
  159. /*
  160. * Special vmas that are non-mergable, non-mlock()able.
  161. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  162. */
  163. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  164. /* This mask defines which mm->def_flags a process can inherit its parent */
  165. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  166. /*
  167. * mapping from the currently active vm_flags protection bits (the
  168. * low four bits) to a page protection mask..
  169. */
  170. extern pgprot_t protection_map[16];
  171. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  172. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  173. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  174. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  175. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  176. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  177. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  178. /*
  179. * vm_fault is filled by the the pagefault handler and passed to the vma's
  180. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  181. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  182. *
  183. * pgoff should be used in favour of virtual_address, if possible.
  184. */
  185. struct vm_fault {
  186. unsigned int flags; /* FAULT_FLAG_xxx flags */
  187. pgoff_t pgoff; /* Logical page offset based on vma */
  188. void __user *virtual_address; /* Faulting virtual address */
  189. struct page *cow_page; /* Handler may choose to COW */
  190. struct page *page; /* ->fault handlers should return a
  191. * page here, unless VM_FAULT_NOPAGE
  192. * is set (which is also implied by
  193. * VM_FAULT_ERROR).
  194. */
  195. /* for ->map_pages() only */
  196. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  197. * max_pgoff inclusive */
  198. pte_t *pte; /* pte entry associated with ->pgoff */
  199. };
  200. /*
  201. * These are the virtual MM functions - opening of an area, closing and
  202. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  203. * to the functions called when a no-page or a wp-page exception occurs.
  204. */
  205. struct vm_operations_struct {
  206. void (*open)(struct vm_area_struct * area);
  207. void (*close)(struct vm_area_struct * area);
  208. int (*mremap)(struct vm_area_struct * area);
  209. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  210. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  211. pmd_t *, unsigned int flags);
  212. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  213. /* notification that a previously read-only page is about to become
  214. * writable, if an error is returned it will cause a SIGBUS */
  215. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  216. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  217. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  218. /* called by access_process_vm when get_user_pages() fails, typically
  219. * for use by special VMAs that can switch between memory and hardware
  220. */
  221. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  222. void *buf, int len, int write);
  223. /* Called by the /proc/PID/maps code to ask the vma whether it
  224. * has a special name. Returning non-NULL will also cause this
  225. * vma to be dumped unconditionally. */
  226. const char *(*name)(struct vm_area_struct *vma);
  227. #ifdef CONFIG_NUMA
  228. /*
  229. * set_policy() op must add a reference to any non-NULL @new mempolicy
  230. * to hold the policy upon return. Caller should pass NULL @new to
  231. * remove a policy and fall back to surrounding context--i.e. do not
  232. * install a MPOL_DEFAULT policy, nor the task or system default
  233. * mempolicy.
  234. */
  235. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  236. /*
  237. * get_policy() op must add reference [mpol_get()] to any policy at
  238. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  239. * in mm/mempolicy.c will do this automatically.
  240. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  241. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  242. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  243. * must return NULL--i.e., do not "fallback" to task or system default
  244. * policy.
  245. */
  246. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  247. unsigned long addr);
  248. #endif
  249. /*
  250. * Called by vm_normal_page() for special PTEs to find the
  251. * page for @addr. This is useful if the default behavior
  252. * (using pte_page()) would not find the correct page.
  253. */
  254. struct page *(*find_special_page)(struct vm_area_struct *vma,
  255. unsigned long addr);
  256. };
  257. struct mmu_gather;
  258. struct inode;
  259. #define page_private(page) ((page)->private)
  260. #define set_page_private(page, v) ((page)->private = (v))
  261. /*
  262. * FIXME: take this include out, include page-flags.h in
  263. * files which need it (119 of them)
  264. */
  265. #include <linux/page-flags.h>
  266. #include <linux/huge_mm.h>
  267. /*
  268. * Methods to modify the page usage count.
  269. *
  270. * What counts for a page usage:
  271. * - cache mapping (page->mapping)
  272. * - private data (page->private)
  273. * - page mapped in a task's page tables, each mapping
  274. * is counted separately
  275. *
  276. * Also, many kernel routines increase the page count before a critical
  277. * routine so they can be sure the page doesn't go away from under them.
  278. */
  279. /*
  280. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  281. */
  282. static inline int put_page_testzero(struct page *page)
  283. {
  284. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  285. return atomic_dec_and_test(&page->_count);
  286. }
  287. /*
  288. * Try to grab a ref unless the page has a refcount of zero, return false if
  289. * that is the case.
  290. * This can be called when MMU is off so it must not access
  291. * any of the virtual mappings.
  292. */
  293. static inline int get_page_unless_zero(struct page *page)
  294. {
  295. return atomic_inc_not_zero(&page->_count);
  296. }
  297. extern int page_is_ram(unsigned long pfn);
  298. enum {
  299. REGION_INTERSECTS,
  300. REGION_DISJOINT,
  301. REGION_MIXED,
  302. };
  303. int region_intersects(resource_size_t offset, size_t size, const char *type);
  304. /* Support for virtually mapped pages */
  305. struct page *vmalloc_to_page(const void *addr);
  306. unsigned long vmalloc_to_pfn(const void *addr);
  307. /*
  308. * Determine if an address is within the vmalloc range
  309. *
  310. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  311. * is no special casing required.
  312. */
  313. static inline int is_vmalloc_addr(const void *x)
  314. {
  315. #ifdef CONFIG_MMU
  316. unsigned long addr = (unsigned long)x;
  317. return addr >= VMALLOC_START && addr < VMALLOC_END;
  318. #else
  319. return 0;
  320. #endif
  321. }
  322. #ifdef CONFIG_MMU
  323. extern int is_vmalloc_or_module_addr(const void *x);
  324. #else
  325. static inline int is_vmalloc_or_module_addr(const void *x)
  326. {
  327. return 0;
  328. }
  329. #endif
  330. extern void kvfree(const void *addr);
  331. static inline void compound_lock(struct page *page)
  332. {
  333. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  334. VM_BUG_ON_PAGE(PageSlab(page), page);
  335. bit_spin_lock(PG_compound_lock, &page->flags);
  336. #endif
  337. }
  338. static inline void compound_unlock(struct page *page)
  339. {
  340. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  341. VM_BUG_ON_PAGE(PageSlab(page), page);
  342. bit_spin_unlock(PG_compound_lock, &page->flags);
  343. #endif
  344. }
  345. static inline unsigned long compound_lock_irqsave(struct page *page)
  346. {
  347. unsigned long uninitialized_var(flags);
  348. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  349. local_irq_save(flags);
  350. compound_lock(page);
  351. #endif
  352. return flags;
  353. }
  354. static inline void compound_unlock_irqrestore(struct page *page,
  355. unsigned long flags)
  356. {
  357. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  358. compound_unlock(page);
  359. local_irq_restore(flags);
  360. #endif
  361. }
  362. static inline struct page *compound_head_by_tail(struct page *tail)
  363. {
  364. struct page *head = tail->first_page;
  365. /*
  366. * page->first_page may be a dangling pointer to an old
  367. * compound page, so recheck that it is still a tail
  368. * page before returning.
  369. */
  370. smp_rmb();
  371. if (likely(PageTail(tail)))
  372. return head;
  373. return tail;
  374. }
  375. /*
  376. * Since either compound page could be dismantled asynchronously in THP
  377. * or we access asynchronously arbitrary positioned struct page, there
  378. * would be tail flag race. To handle this race, we should call
  379. * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
  380. */
  381. static inline struct page *compound_head(struct page *page)
  382. {
  383. if (unlikely(PageTail(page)))
  384. return compound_head_by_tail(page);
  385. return page;
  386. }
  387. /*
  388. * If we access compound page synchronously such as access to
  389. * allocated page, there is no need to handle tail flag race, so we can
  390. * check tail flag directly without any synchronization primitive.
  391. */
  392. static inline struct page *compound_head_fast(struct page *page)
  393. {
  394. if (unlikely(PageTail(page)))
  395. return page->first_page;
  396. return page;
  397. }
  398. /*
  399. * The atomic page->_mapcount, starts from -1: so that transitions
  400. * both from it and to it can be tracked, using atomic_inc_and_test
  401. * and atomic_add_negative(-1).
  402. */
  403. static inline void page_mapcount_reset(struct page *page)
  404. {
  405. atomic_set(&(page)->_mapcount, -1);
  406. }
  407. static inline int page_mapcount(struct page *page)
  408. {
  409. VM_BUG_ON_PAGE(PageSlab(page), page);
  410. return atomic_read(&page->_mapcount) + 1;
  411. }
  412. static inline int page_count(struct page *page)
  413. {
  414. return atomic_read(&compound_head(page)->_count);
  415. }
  416. static inline bool __compound_tail_refcounted(struct page *page)
  417. {
  418. return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
  419. }
  420. /*
  421. * This takes a head page as parameter and tells if the
  422. * tail page reference counting can be skipped.
  423. *
  424. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  425. * any given page where they return true here, until all tail pins
  426. * have been released.
  427. */
  428. static inline bool compound_tail_refcounted(struct page *page)
  429. {
  430. VM_BUG_ON_PAGE(!PageHead(page), page);
  431. return __compound_tail_refcounted(page);
  432. }
  433. static inline void get_huge_page_tail(struct page *page)
  434. {
  435. /*
  436. * __split_huge_page_refcount() cannot run from under us.
  437. */
  438. VM_BUG_ON_PAGE(!PageTail(page), page);
  439. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  440. VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
  441. if (compound_tail_refcounted(page->first_page))
  442. atomic_inc(&page->_mapcount);
  443. }
  444. extern bool __get_page_tail(struct page *page);
  445. static inline void get_page(struct page *page)
  446. {
  447. if (unlikely(PageTail(page)))
  448. if (likely(__get_page_tail(page)))
  449. return;
  450. /*
  451. * Getting a normal page or the head of a compound page
  452. * requires to already have an elevated page->_count.
  453. */
  454. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  455. atomic_inc(&page->_count);
  456. }
  457. static inline struct page *virt_to_head_page(const void *x)
  458. {
  459. struct page *page = virt_to_page(x);
  460. /*
  461. * We don't need to worry about synchronization of tail flag
  462. * when we call virt_to_head_page() since it is only called for
  463. * already allocated page and this page won't be freed until
  464. * this virt_to_head_page() is finished. So use _fast variant.
  465. */
  466. return compound_head_fast(page);
  467. }
  468. /*
  469. * Setup the page count before being freed into the page allocator for
  470. * the first time (boot or memory hotplug)
  471. */
  472. static inline void init_page_count(struct page *page)
  473. {
  474. atomic_set(&page->_count, 1);
  475. }
  476. void put_page(struct page *page);
  477. void put_pages_list(struct list_head *pages);
  478. void split_page(struct page *page, unsigned int order);
  479. int split_free_page(struct page *page);
  480. /*
  481. * Compound pages have a destructor function. Provide a
  482. * prototype for that function and accessor functions.
  483. * These are _only_ valid on the head of a PG_compound page.
  484. */
  485. static inline void set_compound_page_dtor(struct page *page,
  486. compound_page_dtor *dtor)
  487. {
  488. page[1].compound_dtor = dtor;
  489. }
  490. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  491. {
  492. return page[1].compound_dtor;
  493. }
  494. static inline int compound_order(struct page *page)
  495. {
  496. if (!PageHead(page))
  497. return 0;
  498. return page[1].compound_order;
  499. }
  500. static inline void set_compound_order(struct page *page, unsigned long order)
  501. {
  502. page[1].compound_order = order;
  503. }
  504. #ifdef CONFIG_MMU
  505. /*
  506. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  507. * servicing faults for write access. In the normal case, do always want
  508. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  509. * that do not have writing enabled, when used by access_process_vm.
  510. */
  511. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  512. {
  513. if (likely(vma->vm_flags & VM_WRITE))
  514. pte = pte_mkwrite(pte);
  515. return pte;
  516. }
  517. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  518. struct page *page, pte_t *pte, bool write, bool anon);
  519. #endif
  520. /*
  521. * Multiple processes may "see" the same page. E.g. for untouched
  522. * mappings of /dev/null, all processes see the same page full of
  523. * zeroes, and text pages of executables and shared libraries have
  524. * only one copy in memory, at most, normally.
  525. *
  526. * For the non-reserved pages, page_count(page) denotes a reference count.
  527. * page_count() == 0 means the page is free. page->lru is then used for
  528. * freelist management in the buddy allocator.
  529. * page_count() > 0 means the page has been allocated.
  530. *
  531. * Pages are allocated by the slab allocator in order to provide memory
  532. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  533. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  534. * unless a particular usage is carefully commented. (the responsibility of
  535. * freeing the kmalloc memory is the caller's, of course).
  536. *
  537. * A page may be used by anyone else who does a __get_free_page().
  538. * In this case, page_count still tracks the references, and should only
  539. * be used through the normal accessor functions. The top bits of page->flags
  540. * and page->virtual store page management information, but all other fields
  541. * are unused and could be used privately, carefully. The management of this
  542. * page is the responsibility of the one who allocated it, and those who have
  543. * subsequently been given references to it.
  544. *
  545. * The other pages (we may call them "pagecache pages") are completely
  546. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  547. * The following discussion applies only to them.
  548. *
  549. * A pagecache page contains an opaque `private' member, which belongs to the
  550. * page's address_space. Usually, this is the address of a circular list of
  551. * the page's disk buffers. PG_private must be set to tell the VM to call
  552. * into the filesystem to release these pages.
  553. *
  554. * A page may belong to an inode's memory mapping. In this case, page->mapping
  555. * is the pointer to the inode, and page->index is the file offset of the page,
  556. * in units of PAGE_CACHE_SIZE.
  557. *
  558. * If pagecache pages are not associated with an inode, they are said to be
  559. * anonymous pages. These may become associated with the swapcache, and in that
  560. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  561. *
  562. * In either case (swapcache or inode backed), the pagecache itself holds one
  563. * reference to the page. Setting PG_private should also increment the
  564. * refcount. The each user mapping also has a reference to the page.
  565. *
  566. * The pagecache pages are stored in a per-mapping radix tree, which is
  567. * rooted at mapping->page_tree, and indexed by offset.
  568. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  569. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  570. *
  571. * All pagecache pages may be subject to I/O:
  572. * - inode pages may need to be read from disk,
  573. * - inode pages which have been modified and are MAP_SHARED may need
  574. * to be written back to the inode on disk,
  575. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  576. * modified may need to be swapped out to swap space and (later) to be read
  577. * back into memory.
  578. */
  579. /*
  580. * The zone field is never updated after free_area_init_core()
  581. * sets it, so none of the operations on it need to be atomic.
  582. */
  583. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  584. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  585. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  586. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  587. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  588. /*
  589. * Define the bit shifts to access each section. For non-existent
  590. * sections we define the shift as 0; that plus a 0 mask ensures
  591. * the compiler will optimise away reference to them.
  592. */
  593. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  594. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  595. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  596. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  597. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  598. #ifdef NODE_NOT_IN_PAGE_FLAGS
  599. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  600. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  601. SECTIONS_PGOFF : ZONES_PGOFF)
  602. #else
  603. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  604. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  605. NODES_PGOFF : ZONES_PGOFF)
  606. #endif
  607. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  608. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  609. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  610. #endif
  611. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  612. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  613. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  614. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  615. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  616. static inline enum zone_type page_zonenum(const struct page *page)
  617. {
  618. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  619. }
  620. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  621. #define SECTION_IN_PAGE_FLAGS
  622. #endif
  623. /*
  624. * The identification function is mainly used by the buddy allocator for
  625. * determining if two pages could be buddies. We are not really identifying
  626. * the zone since we could be using the section number id if we do not have
  627. * node id available in page flags.
  628. * We only guarantee that it will return the same value for two combinable
  629. * pages in a zone.
  630. */
  631. static inline int page_zone_id(struct page *page)
  632. {
  633. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  634. }
  635. static inline int zone_to_nid(struct zone *zone)
  636. {
  637. #ifdef CONFIG_NUMA
  638. return zone->node;
  639. #else
  640. return 0;
  641. #endif
  642. }
  643. #ifdef NODE_NOT_IN_PAGE_FLAGS
  644. extern int page_to_nid(const struct page *page);
  645. #else
  646. static inline int page_to_nid(const struct page *page)
  647. {
  648. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  649. }
  650. #endif
  651. #ifdef CONFIG_NUMA_BALANCING
  652. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  653. {
  654. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  655. }
  656. static inline int cpupid_to_pid(int cpupid)
  657. {
  658. return cpupid & LAST__PID_MASK;
  659. }
  660. static inline int cpupid_to_cpu(int cpupid)
  661. {
  662. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  663. }
  664. static inline int cpupid_to_nid(int cpupid)
  665. {
  666. return cpu_to_node(cpupid_to_cpu(cpupid));
  667. }
  668. static inline bool cpupid_pid_unset(int cpupid)
  669. {
  670. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  671. }
  672. static inline bool cpupid_cpu_unset(int cpupid)
  673. {
  674. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  675. }
  676. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  677. {
  678. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  679. }
  680. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  681. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  682. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  683. {
  684. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  685. }
  686. static inline int page_cpupid_last(struct page *page)
  687. {
  688. return page->_last_cpupid;
  689. }
  690. static inline void page_cpupid_reset_last(struct page *page)
  691. {
  692. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  693. }
  694. #else
  695. static inline int page_cpupid_last(struct page *page)
  696. {
  697. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  698. }
  699. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  700. static inline void page_cpupid_reset_last(struct page *page)
  701. {
  702. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  703. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  704. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  705. }
  706. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  707. #else /* !CONFIG_NUMA_BALANCING */
  708. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  709. {
  710. return page_to_nid(page); /* XXX */
  711. }
  712. static inline int page_cpupid_last(struct page *page)
  713. {
  714. return page_to_nid(page); /* XXX */
  715. }
  716. static inline int cpupid_to_nid(int cpupid)
  717. {
  718. return -1;
  719. }
  720. static inline int cpupid_to_pid(int cpupid)
  721. {
  722. return -1;
  723. }
  724. static inline int cpupid_to_cpu(int cpupid)
  725. {
  726. return -1;
  727. }
  728. static inline int cpu_pid_to_cpupid(int nid, int pid)
  729. {
  730. return -1;
  731. }
  732. static inline bool cpupid_pid_unset(int cpupid)
  733. {
  734. return 1;
  735. }
  736. static inline void page_cpupid_reset_last(struct page *page)
  737. {
  738. }
  739. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  740. {
  741. return false;
  742. }
  743. #endif /* CONFIG_NUMA_BALANCING */
  744. static inline struct zone *page_zone(const struct page *page)
  745. {
  746. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  747. }
  748. #ifdef SECTION_IN_PAGE_FLAGS
  749. static inline void set_page_section(struct page *page, unsigned long section)
  750. {
  751. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  752. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  753. }
  754. static inline unsigned long page_to_section(const struct page *page)
  755. {
  756. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  757. }
  758. #endif
  759. static inline void set_page_zone(struct page *page, enum zone_type zone)
  760. {
  761. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  762. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  763. }
  764. static inline void set_page_node(struct page *page, unsigned long node)
  765. {
  766. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  767. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  768. }
  769. static inline void set_page_links(struct page *page, enum zone_type zone,
  770. unsigned long node, unsigned long pfn)
  771. {
  772. set_page_zone(page, zone);
  773. set_page_node(page, node);
  774. #ifdef SECTION_IN_PAGE_FLAGS
  775. set_page_section(page, pfn_to_section_nr(pfn));
  776. #endif
  777. }
  778. /*
  779. * Some inline functions in vmstat.h depend on page_zone()
  780. */
  781. #include <linux/vmstat.h>
  782. static __always_inline void *lowmem_page_address(const struct page *page)
  783. {
  784. return __va(PFN_PHYS(page_to_pfn(page)));
  785. }
  786. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  787. #define HASHED_PAGE_VIRTUAL
  788. #endif
  789. #if defined(WANT_PAGE_VIRTUAL)
  790. static inline void *page_address(const struct page *page)
  791. {
  792. return page->virtual;
  793. }
  794. static inline void set_page_address(struct page *page, void *address)
  795. {
  796. page->virtual = address;
  797. }
  798. #define page_address_init() do { } while(0)
  799. #endif
  800. #if defined(HASHED_PAGE_VIRTUAL)
  801. void *page_address(const struct page *page);
  802. void set_page_address(struct page *page, void *virtual);
  803. void page_address_init(void);
  804. #endif
  805. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  806. #define page_address(page) lowmem_page_address(page)
  807. #define set_page_address(page, address) do { } while(0)
  808. #define page_address_init() do { } while(0)
  809. #endif
  810. extern void *page_rmapping(struct page *page);
  811. extern struct anon_vma *page_anon_vma(struct page *page);
  812. extern struct address_space *page_mapping(struct page *page);
  813. extern struct address_space *__page_file_mapping(struct page *);
  814. static inline
  815. struct address_space *page_file_mapping(struct page *page)
  816. {
  817. if (unlikely(PageSwapCache(page)))
  818. return __page_file_mapping(page);
  819. return page->mapping;
  820. }
  821. /*
  822. * Return the pagecache index of the passed page. Regular pagecache pages
  823. * use ->index whereas swapcache pages use ->private
  824. */
  825. static inline pgoff_t page_index(struct page *page)
  826. {
  827. if (unlikely(PageSwapCache(page)))
  828. return page_private(page);
  829. return page->index;
  830. }
  831. extern pgoff_t __page_file_index(struct page *page);
  832. /*
  833. * Return the file index of the page. Regular pagecache pages use ->index
  834. * whereas swapcache pages use swp_offset(->private)
  835. */
  836. static inline pgoff_t page_file_index(struct page *page)
  837. {
  838. if (unlikely(PageSwapCache(page)))
  839. return __page_file_index(page);
  840. return page->index;
  841. }
  842. /*
  843. * Return true if this page is mapped into pagetables.
  844. */
  845. static inline int page_mapped(struct page *page)
  846. {
  847. return atomic_read(&(page)->_mapcount) >= 0;
  848. }
  849. /*
  850. * Return true only if the page has been allocated with
  851. * ALLOC_NO_WATERMARKS and the low watermark was not
  852. * met implying that the system is under some pressure.
  853. */
  854. static inline bool page_is_pfmemalloc(struct page *page)
  855. {
  856. /*
  857. * Page index cannot be this large so this must be
  858. * a pfmemalloc page.
  859. */
  860. return page->index == -1UL;
  861. }
  862. /*
  863. * Only to be called by the page allocator on a freshly allocated
  864. * page.
  865. */
  866. static inline void set_page_pfmemalloc(struct page *page)
  867. {
  868. page->index = -1UL;
  869. }
  870. static inline void clear_page_pfmemalloc(struct page *page)
  871. {
  872. page->index = 0;
  873. }
  874. /*
  875. * Different kinds of faults, as returned by handle_mm_fault().
  876. * Used to decide whether a process gets delivered SIGBUS or
  877. * just gets major/minor fault counters bumped up.
  878. */
  879. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  880. #define VM_FAULT_OOM 0x0001
  881. #define VM_FAULT_SIGBUS 0x0002
  882. #define VM_FAULT_MAJOR 0x0004
  883. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  884. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  885. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  886. #define VM_FAULT_SIGSEGV 0x0040
  887. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  888. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  889. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  890. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  891. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  892. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  893. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  894. VM_FAULT_FALLBACK)
  895. /* Encode hstate index for a hwpoisoned large page */
  896. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  897. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  898. /*
  899. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  900. */
  901. extern void pagefault_out_of_memory(void);
  902. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  903. /*
  904. * Flags passed to show_mem() and show_free_areas() to suppress output in
  905. * various contexts.
  906. */
  907. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  908. extern void show_free_areas(unsigned int flags);
  909. extern bool skip_free_areas_node(unsigned int flags, int nid);
  910. int shmem_zero_setup(struct vm_area_struct *);
  911. #ifdef CONFIG_SHMEM
  912. bool shmem_mapping(struct address_space *mapping);
  913. #else
  914. static inline bool shmem_mapping(struct address_space *mapping)
  915. {
  916. return false;
  917. }
  918. #endif
  919. extern int can_do_mlock(void);
  920. extern int user_shm_lock(size_t, struct user_struct *);
  921. extern void user_shm_unlock(size_t, struct user_struct *);
  922. /*
  923. * Parameter block passed down to zap_pte_range in exceptional cases.
  924. */
  925. struct zap_details {
  926. struct address_space *check_mapping; /* Check page->mapping if set */
  927. pgoff_t first_index; /* Lowest page->index to unmap */
  928. pgoff_t last_index; /* Highest page->index to unmap */
  929. };
  930. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  931. pte_t pte);
  932. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  933. unsigned long size);
  934. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  935. unsigned long size, struct zap_details *);
  936. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  937. unsigned long start, unsigned long end);
  938. /**
  939. * mm_walk - callbacks for walk_page_range
  940. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  941. * this handler is required to be able to handle
  942. * pmd_trans_huge() pmds. They may simply choose to
  943. * split_huge_page() instead of handling it explicitly.
  944. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  945. * @pte_hole: if set, called for each hole at all levels
  946. * @hugetlb_entry: if set, called for each hugetlb entry
  947. * @test_walk: caller specific callback function to determine whether
  948. * we walk over the current vma or not. A positive returned
  949. * value means "do page table walk over the current vma,"
  950. * and a negative one means "abort current page table walk
  951. * right now." 0 means "skip the current vma."
  952. * @mm: mm_struct representing the target process of page table walk
  953. * @vma: vma currently walked (NULL if walking outside vmas)
  954. * @private: private data for callbacks' usage
  955. *
  956. * (see the comment on walk_page_range() for more details)
  957. */
  958. struct mm_walk {
  959. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  960. unsigned long next, struct mm_walk *walk);
  961. int (*pte_entry)(pte_t *pte, unsigned long addr,
  962. unsigned long next, struct mm_walk *walk);
  963. int (*pte_hole)(unsigned long addr, unsigned long next,
  964. struct mm_walk *walk);
  965. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  966. unsigned long addr, unsigned long next,
  967. struct mm_walk *walk);
  968. int (*test_walk)(unsigned long addr, unsigned long next,
  969. struct mm_walk *walk);
  970. struct mm_struct *mm;
  971. struct vm_area_struct *vma;
  972. void *private;
  973. };
  974. int walk_page_range(unsigned long addr, unsigned long end,
  975. struct mm_walk *walk);
  976. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  977. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  978. unsigned long end, unsigned long floor, unsigned long ceiling);
  979. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  980. struct vm_area_struct *vma);
  981. void unmap_mapping_range(struct address_space *mapping,
  982. loff_t const holebegin, loff_t const holelen, int even_cows);
  983. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  984. unsigned long *pfn);
  985. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  986. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  987. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  988. void *buf, int len, int write);
  989. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  990. loff_t const holebegin, loff_t const holelen)
  991. {
  992. unmap_mapping_range(mapping, holebegin, holelen, 0);
  993. }
  994. extern void truncate_pagecache(struct inode *inode, loff_t new);
  995. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  996. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  997. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  998. int truncate_inode_page(struct address_space *mapping, struct page *page);
  999. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1000. int invalidate_inode_page(struct page *page);
  1001. #ifdef CONFIG_MMU
  1002. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1003. unsigned long address, unsigned int flags);
  1004. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1005. unsigned long address, unsigned int fault_flags);
  1006. #else
  1007. static inline int handle_mm_fault(struct mm_struct *mm,
  1008. struct vm_area_struct *vma, unsigned long address,
  1009. unsigned int flags)
  1010. {
  1011. /* should never happen if there's no MMU */
  1012. BUG();
  1013. return VM_FAULT_SIGBUS;
  1014. }
  1015. static inline int fixup_user_fault(struct task_struct *tsk,
  1016. struct mm_struct *mm, unsigned long address,
  1017. unsigned int fault_flags)
  1018. {
  1019. /* should never happen if there's no MMU */
  1020. BUG();
  1021. return -EFAULT;
  1022. }
  1023. #endif
  1024. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1025. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1026. void *buf, int len, int write);
  1027. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1028. unsigned long start, unsigned long nr_pages,
  1029. unsigned int foll_flags, struct page **pages,
  1030. struct vm_area_struct **vmas, int *nonblocking);
  1031. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1032. unsigned long start, unsigned long nr_pages,
  1033. int write, int force, struct page **pages,
  1034. struct vm_area_struct **vmas);
  1035. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1036. unsigned long start, unsigned long nr_pages,
  1037. int write, int force, struct page **pages,
  1038. int *locked);
  1039. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1040. unsigned long start, unsigned long nr_pages,
  1041. int write, int force, struct page **pages,
  1042. unsigned int gup_flags);
  1043. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1044. unsigned long start, unsigned long nr_pages,
  1045. int write, int force, struct page **pages);
  1046. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1047. struct page **pages);
  1048. /* Container for pinned pfns / pages */
  1049. struct frame_vector {
  1050. unsigned int nr_allocated; /* Number of frames we have space for */
  1051. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1052. bool got_ref; /* Did we pin pages by getting page ref? */
  1053. bool is_pfns; /* Does array contain pages or pfns? */
  1054. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1055. * pfns_vector_pages() or pfns_vector_pfns()
  1056. * for access */
  1057. };
  1058. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1059. void frame_vector_destroy(struct frame_vector *vec);
  1060. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1061. bool write, bool force, struct frame_vector *vec);
  1062. void put_vaddr_frames(struct frame_vector *vec);
  1063. int frame_vector_to_pages(struct frame_vector *vec);
  1064. void frame_vector_to_pfns(struct frame_vector *vec);
  1065. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1066. {
  1067. return vec->nr_frames;
  1068. }
  1069. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1070. {
  1071. if (vec->is_pfns) {
  1072. int err = frame_vector_to_pages(vec);
  1073. if (err)
  1074. return ERR_PTR(err);
  1075. }
  1076. return (struct page **)(vec->ptrs);
  1077. }
  1078. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1079. {
  1080. if (!vec->is_pfns)
  1081. frame_vector_to_pfns(vec);
  1082. return (unsigned long *)(vec->ptrs);
  1083. }
  1084. struct kvec;
  1085. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1086. struct page **pages);
  1087. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1088. struct page *get_dump_page(unsigned long addr);
  1089. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1090. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1091. unsigned int length);
  1092. int __set_page_dirty_nobuffers(struct page *page);
  1093. int __set_page_dirty_no_writeback(struct page *page);
  1094. int redirty_page_for_writepage(struct writeback_control *wbc,
  1095. struct page *page);
  1096. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1097. struct mem_cgroup *memcg);
  1098. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1099. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1100. int set_page_dirty(struct page *page);
  1101. int set_page_dirty_lock(struct page *page);
  1102. void cancel_dirty_page(struct page *page);
  1103. int clear_page_dirty_for_io(struct page *page);
  1104. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1105. /* Is the vma a continuation of the stack vma above it? */
  1106. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1107. {
  1108. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1109. }
  1110. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1111. {
  1112. return !vma->vm_ops;
  1113. }
  1114. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1115. unsigned long addr)
  1116. {
  1117. return (vma->vm_flags & VM_GROWSDOWN) &&
  1118. (vma->vm_start == addr) &&
  1119. !vma_growsdown(vma->vm_prev, addr);
  1120. }
  1121. /* Is the vma a continuation of the stack vma below it? */
  1122. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1123. {
  1124. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1125. }
  1126. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1127. unsigned long addr)
  1128. {
  1129. return (vma->vm_flags & VM_GROWSUP) &&
  1130. (vma->vm_end == addr) &&
  1131. !vma_growsup(vma->vm_next, addr);
  1132. }
  1133. extern struct task_struct *task_of_stack(struct task_struct *task,
  1134. struct vm_area_struct *vma, bool in_group);
  1135. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1136. unsigned long old_addr, struct vm_area_struct *new_vma,
  1137. unsigned long new_addr, unsigned long len,
  1138. bool need_rmap_locks);
  1139. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1140. unsigned long end, pgprot_t newprot,
  1141. int dirty_accountable, int prot_numa);
  1142. extern int mprotect_fixup(struct vm_area_struct *vma,
  1143. struct vm_area_struct **pprev, unsigned long start,
  1144. unsigned long end, unsigned long newflags);
  1145. /*
  1146. * doesn't attempt to fault and will return short.
  1147. */
  1148. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1149. struct page **pages);
  1150. /*
  1151. * per-process(per-mm_struct) statistics.
  1152. */
  1153. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1154. {
  1155. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1156. #ifdef SPLIT_RSS_COUNTING
  1157. /*
  1158. * counter is updated in asynchronous manner and may go to minus.
  1159. * But it's never be expected number for users.
  1160. */
  1161. if (val < 0)
  1162. val = 0;
  1163. #endif
  1164. return (unsigned long)val;
  1165. }
  1166. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1167. {
  1168. atomic_long_add(value, &mm->rss_stat.count[member]);
  1169. }
  1170. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1171. {
  1172. atomic_long_inc(&mm->rss_stat.count[member]);
  1173. }
  1174. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1175. {
  1176. atomic_long_dec(&mm->rss_stat.count[member]);
  1177. }
  1178. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1179. {
  1180. return get_mm_counter(mm, MM_FILEPAGES) +
  1181. get_mm_counter(mm, MM_ANONPAGES);
  1182. }
  1183. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1184. {
  1185. return max(mm->hiwater_rss, get_mm_rss(mm));
  1186. }
  1187. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1188. {
  1189. return max(mm->hiwater_vm, mm->total_vm);
  1190. }
  1191. static inline void update_hiwater_rss(struct mm_struct *mm)
  1192. {
  1193. unsigned long _rss = get_mm_rss(mm);
  1194. if ((mm)->hiwater_rss < _rss)
  1195. (mm)->hiwater_rss = _rss;
  1196. }
  1197. static inline void update_hiwater_vm(struct mm_struct *mm)
  1198. {
  1199. if (mm->hiwater_vm < mm->total_vm)
  1200. mm->hiwater_vm = mm->total_vm;
  1201. }
  1202. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1203. {
  1204. mm->hiwater_rss = get_mm_rss(mm);
  1205. }
  1206. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1207. struct mm_struct *mm)
  1208. {
  1209. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1210. if (*maxrss < hiwater_rss)
  1211. *maxrss = hiwater_rss;
  1212. }
  1213. #if defined(SPLIT_RSS_COUNTING)
  1214. void sync_mm_rss(struct mm_struct *mm);
  1215. #else
  1216. static inline void sync_mm_rss(struct mm_struct *mm)
  1217. {
  1218. }
  1219. #endif
  1220. int vma_wants_writenotify(struct vm_area_struct *vma);
  1221. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1222. spinlock_t **ptl);
  1223. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1224. spinlock_t **ptl)
  1225. {
  1226. pte_t *ptep;
  1227. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1228. return ptep;
  1229. }
  1230. #ifdef __PAGETABLE_PUD_FOLDED
  1231. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1232. unsigned long address)
  1233. {
  1234. return 0;
  1235. }
  1236. #else
  1237. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1238. #endif
  1239. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1240. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1241. unsigned long address)
  1242. {
  1243. return 0;
  1244. }
  1245. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1246. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1247. {
  1248. return 0;
  1249. }
  1250. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1251. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1252. #else
  1253. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1254. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1255. {
  1256. atomic_long_set(&mm->nr_pmds, 0);
  1257. }
  1258. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1259. {
  1260. return atomic_long_read(&mm->nr_pmds);
  1261. }
  1262. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1263. {
  1264. atomic_long_inc(&mm->nr_pmds);
  1265. }
  1266. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1267. {
  1268. atomic_long_dec(&mm->nr_pmds);
  1269. }
  1270. #endif
  1271. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1272. pmd_t *pmd, unsigned long address);
  1273. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1274. /*
  1275. * The following ifdef needed to get the 4level-fixup.h header to work.
  1276. * Remove it when 4level-fixup.h has been removed.
  1277. */
  1278. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1279. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1280. {
  1281. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1282. NULL: pud_offset(pgd, address);
  1283. }
  1284. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1285. {
  1286. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1287. NULL: pmd_offset(pud, address);
  1288. }
  1289. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1290. #if USE_SPLIT_PTE_PTLOCKS
  1291. #if ALLOC_SPLIT_PTLOCKS
  1292. void __init ptlock_cache_init(void);
  1293. extern bool ptlock_alloc(struct page *page);
  1294. extern void ptlock_free(struct page *page);
  1295. static inline spinlock_t *ptlock_ptr(struct page *page)
  1296. {
  1297. return page->ptl;
  1298. }
  1299. #else /* ALLOC_SPLIT_PTLOCKS */
  1300. static inline void ptlock_cache_init(void)
  1301. {
  1302. }
  1303. static inline bool ptlock_alloc(struct page *page)
  1304. {
  1305. return true;
  1306. }
  1307. static inline void ptlock_free(struct page *page)
  1308. {
  1309. }
  1310. static inline spinlock_t *ptlock_ptr(struct page *page)
  1311. {
  1312. return &page->ptl;
  1313. }
  1314. #endif /* ALLOC_SPLIT_PTLOCKS */
  1315. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1316. {
  1317. return ptlock_ptr(pmd_page(*pmd));
  1318. }
  1319. static inline bool ptlock_init(struct page *page)
  1320. {
  1321. /*
  1322. * prep_new_page() initialize page->private (and therefore page->ptl)
  1323. * with 0. Make sure nobody took it in use in between.
  1324. *
  1325. * It can happen if arch try to use slab for page table allocation:
  1326. * slab code uses page->slab_cache and page->first_page (for tail
  1327. * pages), which share storage with page->ptl.
  1328. */
  1329. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1330. if (!ptlock_alloc(page))
  1331. return false;
  1332. spin_lock_init(ptlock_ptr(page));
  1333. return true;
  1334. }
  1335. /* Reset page->mapping so free_pages_check won't complain. */
  1336. static inline void pte_lock_deinit(struct page *page)
  1337. {
  1338. page->mapping = NULL;
  1339. ptlock_free(page);
  1340. }
  1341. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1342. /*
  1343. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1344. */
  1345. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1346. {
  1347. return &mm->page_table_lock;
  1348. }
  1349. static inline void ptlock_cache_init(void) {}
  1350. static inline bool ptlock_init(struct page *page) { return true; }
  1351. static inline void pte_lock_deinit(struct page *page) {}
  1352. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1353. static inline void pgtable_init(void)
  1354. {
  1355. ptlock_cache_init();
  1356. pgtable_cache_init();
  1357. }
  1358. static inline bool pgtable_page_ctor(struct page *page)
  1359. {
  1360. inc_zone_page_state(page, NR_PAGETABLE);
  1361. return ptlock_init(page);
  1362. }
  1363. static inline void pgtable_page_dtor(struct page *page)
  1364. {
  1365. pte_lock_deinit(page);
  1366. dec_zone_page_state(page, NR_PAGETABLE);
  1367. }
  1368. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1369. ({ \
  1370. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1371. pte_t *__pte = pte_offset_map(pmd, address); \
  1372. *(ptlp) = __ptl; \
  1373. spin_lock(__ptl); \
  1374. __pte; \
  1375. })
  1376. #define pte_unmap_unlock(pte, ptl) do { \
  1377. spin_unlock(ptl); \
  1378. pte_unmap(pte); \
  1379. } while (0)
  1380. #define pte_alloc_map(mm, vma, pmd, address) \
  1381. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1382. pmd, address))? \
  1383. NULL: pte_offset_map(pmd, address))
  1384. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1385. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1386. pmd, address))? \
  1387. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1388. #define pte_alloc_kernel(pmd, address) \
  1389. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1390. NULL: pte_offset_kernel(pmd, address))
  1391. #if USE_SPLIT_PMD_PTLOCKS
  1392. static struct page *pmd_to_page(pmd_t *pmd)
  1393. {
  1394. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1395. return virt_to_page((void *)((unsigned long) pmd & mask));
  1396. }
  1397. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1398. {
  1399. return ptlock_ptr(pmd_to_page(pmd));
  1400. }
  1401. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1402. {
  1403. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1404. page->pmd_huge_pte = NULL;
  1405. #endif
  1406. return ptlock_init(page);
  1407. }
  1408. static inline void pgtable_pmd_page_dtor(struct page *page)
  1409. {
  1410. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1411. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1412. #endif
  1413. ptlock_free(page);
  1414. }
  1415. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1416. #else
  1417. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1418. {
  1419. return &mm->page_table_lock;
  1420. }
  1421. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1422. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1423. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1424. #endif
  1425. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1426. {
  1427. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1428. spin_lock(ptl);
  1429. return ptl;
  1430. }
  1431. extern void free_area_init(unsigned long * zones_size);
  1432. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1433. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1434. extern void free_initmem(void);
  1435. /*
  1436. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1437. * into the buddy system. The freed pages will be poisoned with pattern
  1438. * "poison" if it's within range [0, UCHAR_MAX].
  1439. * Return pages freed into the buddy system.
  1440. */
  1441. extern unsigned long free_reserved_area(void *start, void *end,
  1442. int poison, char *s);
  1443. #ifdef CONFIG_HIGHMEM
  1444. /*
  1445. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1446. * and totalram_pages.
  1447. */
  1448. extern void free_highmem_page(struct page *page);
  1449. #endif
  1450. extern void adjust_managed_page_count(struct page *page, long count);
  1451. extern void mem_init_print_info(const char *str);
  1452. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1453. /* Free the reserved page into the buddy system, so it gets managed. */
  1454. static inline void __free_reserved_page(struct page *page)
  1455. {
  1456. ClearPageReserved(page);
  1457. init_page_count(page);
  1458. __free_page(page);
  1459. }
  1460. static inline void free_reserved_page(struct page *page)
  1461. {
  1462. __free_reserved_page(page);
  1463. adjust_managed_page_count(page, 1);
  1464. }
  1465. static inline void mark_page_reserved(struct page *page)
  1466. {
  1467. SetPageReserved(page);
  1468. adjust_managed_page_count(page, -1);
  1469. }
  1470. /*
  1471. * Default method to free all the __init memory into the buddy system.
  1472. * The freed pages will be poisoned with pattern "poison" if it's within
  1473. * range [0, UCHAR_MAX].
  1474. * Return pages freed into the buddy system.
  1475. */
  1476. static inline unsigned long free_initmem_default(int poison)
  1477. {
  1478. extern char __init_begin[], __init_end[];
  1479. return free_reserved_area(&__init_begin, &__init_end,
  1480. poison, "unused kernel");
  1481. }
  1482. static inline unsigned long get_num_physpages(void)
  1483. {
  1484. int nid;
  1485. unsigned long phys_pages = 0;
  1486. for_each_online_node(nid)
  1487. phys_pages += node_present_pages(nid);
  1488. return phys_pages;
  1489. }
  1490. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1491. /*
  1492. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1493. * zones, allocate the backing mem_map and account for memory holes in a more
  1494. * architecture independent manner. This is a substitute for creating the
  1495. * zone_sizes[] and zholes_size[] arrays and passing them to
  1496. * free_area_init_node()
  1497. *
  1498. * An architecture is expected to register range of page frames backed by
  1499. * physical memory with memblock_add[_node]() before calling
  1500. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1501. * usage, an architecture is expected to do something like
  1502. *
  1503. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1504. * max_highmem_pfn};
  1505. * for_each_valid_physical_page_range()
  1506. * memblock_add_node(base, size, nid)
  1507. * free_area_init_nodes(max_zone_pfns);
  1508. *
  1509. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1510. * registered physical page range. Similarly
  1511. * sparse_memory_present_with_active_regions() calls memory_present() for
  1512. * each range when SPARSEMEM is enabled.
  1513. *
  1514. * See mm/page_alloc.c for more information on each function exposed by
  1515. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1516. */
  1517. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1518. unsigned long node_map_pfn_alignment(void);
  1519. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1520. unsigned long end_pfn);
  1521. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1522. unsigned long end_pfn);
  1523. extern void get_pfn_range_for_nid(unsigned int nid,
  1524. unsigned long *start_pfn, unsigned long *end_pfn);
  1525. extern unsigned long find_min_pfn_with_active_regions(void);
  1526. extern void free_bootmem_with_active_regions(int nid,
  1527. unsigned long max_low_pfn);
  1528. extern void sparse_memory_present_with_active_regions(int nid);
  1529. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1530. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1531. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1532. static inline int __early_pfn_to_nid(unsigned long pfn,
  1533. struct mminit_pfnnid_cache *state)
  1534. {
  1535. return 0;
  1536. }
  1537. #else
  1538. /* please see mm/page_alloc.c */
  1539. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1540. /* there is a per-arch backend function. */
  1541. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1542. struct mminit_pfnnid_cache *state);
  1543. #endif
  1544. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1545. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1546. unsigned long, enum memmap_context);
  1547. extern void setup_per_zone_wmarks(void);
  1548. extern int __meminit init_per_zone_wmark_min(void);
  1549. extern void mem_init(void);
  1550. extern void __init mmap_init(void);
  1551. extern void show_mem(unsigned int flags);
  1552. extern void si_meminfo(struct sysinfo * val);
  1553. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1554. extern __printf(3, 4)
  1555. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1556. extern void setup_per_cpu_pageset(void);
  1557. extern void zone_pcp_update(struct zone *zone);
  1558. extern void zone_pcp_reset(struct zone *zone);
  1559. /* page_alloc.c */
  1560. extern int min_free_kbytes;
  1561. /* nommu.c */
  1562. extern atomic_long_t mmap_pages_allocated;
  1563. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1564. /* interval_tree.c */
  1565. void vma_interval_tree_insert(struct vm_area_struct *node,
  1566. struct rb_root *root);
  1567. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1568. struct vm_area_struct *prev,
  1569. struct rb_root *root);
  1570. void vma_interval_tree_remove(struct vm_area_struct *node,
  1571. struct rb_root *root);
  1572. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1573. unsigned long start, unsigned long last);
  1574. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1575. unsigned long start, unsigned long last);
  1576. #define vma_interval_tree_foreach(vma, root, start, last) \
  1577. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1578. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1579. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1580. struct rb_root *root);
  1581. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1582. struct rb_root *root);
  1583. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1584. struct rb_root *root, unsigned long start, unsigned long last);
  1585. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1586. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1587. #ifdef CONFIG_DEBUG_VM_RB
  1588. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1589. #endif
  1590. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1591. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1592. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1593. /* mmap.c */
  1594. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1595. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1596. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1597. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1598. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1599. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1600. struct mempolicy *, struct vm_userfaultfd_ctx);
  1601. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1602. extern int split_vma(struct mm_struct *,
  1603. struct vm_area_struct *, unsigned long addr, int new_below);
  1604. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1605. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1606. struct rb_node **, struct rb_node *);
  1607. extern void unlink_file_vma(struct vm_area_struct *);
  1608. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1609. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1610. bool *need_rmap_locks);
  1611. extern void exit_mmap(struct mm_struct *);
  1612. static inline int check_data_rlimit(unsigned long rlim,
  1613. unsigned long new,
  1614. unsigned long start,
  1615. unsigned long end_data,
  1616. unsigned long start_data)
  1617. {
  1618. if (rlim < RLIM_INFINITY) {
  1619. if (((new - start) + (end_data - start_data)) > rlim)
  1620. return -ENOSPC;
  1621. }
  1622. return 0;
  1623. }
  1624. extern int mm_take_all_locks(struct mm_struct *mm);
  1625. extern void mm_drop_all_locks(struct mm_struct *mm);
  1626. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1627. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1628. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1629. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1630. unsigned long addr, unsigned long len,
  1631. unsigned long flags,
  1632. const struct vm_special_mapping *spec);
  1633. /* This is an obsolete alternative to _install_special_mapping. */
  1634. extern int install_special_mapping(struct mm_struct *mm,
  1635. unsigned long addr, unsigned long len,
  1636. unsigned long flags, struct page **pages);
  1637. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1638. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1639. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1640. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1641. unsigned long len, unsigned long prot, unsigned long flags,
  1642. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1643. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1644. static inline unsigned long
  1645. do_mmap_pgoff(struct file *file, unsigned long addr,
  1646. unsigned long len, unsigned long prot, unsigned long flags,
  1647. unsigned long pgoff, unsigned long *populate)
  1648. {
  1649. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1650. }
  1651. #ifdef CONFIG_MMU
  1652. extern int __mm_populate(unsigned long addr, unsigned long len,
  1653. int ignore_errors);
  1654. static inline void mm_populate(unsigned long addr, unsigned long len)
  1655. {
  1656. /* Ignore errors */
  1657. (void) __mm_populate(addr, len, 1);
  1658. }
  1659. #else
  1660. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1661. #endif
  1662. /* These take the mm semaphore themselves */
  1663. extern unsigned long vm_brk(unsigned long, unsigned long);
  1664. extern int vm_munmap(unsigned long, size_t);
  1665. extern unsigned long vm_mmap(struct file *, unsigned long,
  1666. unsigned long, unsigned long,
  1667. unsigned long, unsigned long);
  1668. struct vm_unmapped_area_info {
  1669. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1670. unsigned long flags;
  1671. unsigned long length;
  1672. unsigned long low_limit;
  1673. unsigned long high_limit;
  1674. unsigned long align_mask;
  1675. unsigned long align_offset;
  1676. };
  1677. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1678. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1679. /*
  1680. * Search for an unmapped address range.
  1681. *
  1682. * We are looking for a range that:
  1683. * - does not intersect with any VMA;
  1684. * - is contained within the [low_limit, high_limit) interval;
  1685. * - is at least the desired size.
  1686. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1687. */
  1688. static inline unsigned long
  1689. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1690. {
  1691. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1692. return unmapped_area_topdown(info);
  1693. else
  1694. return unmapped_area(info);
  1695. }
  1696. /* truncate.c */
  1697. extern void truncate_inode_pages(struct address_space *, loff_t);
  1698. extern void truncate_inode_pages_range(struct address_space *,
  1699. loff_t lstart, loff_t lend);
  1700. extern void truncate_inode_pages_final(struct address_space *);
  1701. /* generic vm_area_ops exported for stackable file systems */
  1702. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1703. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1704. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1705. /* mm/page-writeback.c */
  1706. int write_one_page(struct page *page, int wait);
  1707. void task_dirty_inc(struct task_struct *tsk);
  1708. /* readahead.c */
  1709. #define VM_MAX_READAHEAD 128 /* kbytes */
  1710. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1711. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1712. pgoff_t offset, unsigned long nr_to_read);
  1713. void page_cache_sync_readahead(struct address_space *mapping,
  1714. struct file_ra_state *ra,
  1715. struct file *filp,
  1716. pgoff_t offset,
  1717. unsigned long size);
  1718. void page_cache_async_readahead(struct address_space *mapping,
  1719. struct file_ra_state *ra,
  1720. struct file *filp,
  1721. struct page *pg,
  1722. pgoff_t offset,
  1723. unsigned long size);
  1724. unsigned long max_sane_readahead(unsigned long nr);
  1725. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1726. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1727. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1728. extern int expand_downwards(struct vm_area_struct *vma,
  1729. unsigned long address);
  1730. #if VM_GROWSUP
  1731. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1732. #else
  1733. #define expand_upwards(vma, address) (0)
  1734. #endif
  1735. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1736. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1737. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1738. struct vm_area_struct **pprev);
  1739. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1740. NULL if none. Assume start_addr < end_addr. */
  1741. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1742. {
  1743. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1744. if (vma && end_addr <= vma->vm_start)
  1745. vma = NULL;
  1746. return vma;
  1747. }
  1748. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1749. {
  1750. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1751. }
  1752. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1753. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1754. unsigned long vm_start, unsigned long vm_end)
  1755. {
  1756. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1757. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1758. vma = NULL;
  1759. return vma;
  1760. }
  1761. #ifdef CONFIG_MMU
  1762. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1763. void vma_set_page_prot(struct vm_area_struct *vma);
  1764. #else
  1765. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1766. {
  1767. return __pgprot(0);
  1768. }
  1769. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1770. {
  1771. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1772. }
  1773. #endif
  1774. #ifdef CONFIG_NUMA_BALANCING
  1775. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1776. unsigned long start, unsigned long end);
  1777. #endif
  1778. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1779. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1780. unsigned long pfn, unsigned long size, pgprot_t);
  1781. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1782. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1783. unsigned long pfn);
  1784. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1785. unsigned long pfn);
  1786. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1787. struct page *follow_page_mask(struct vm_area_struct *vma,
  1788. unsigned long address, unsigned int foll_flags,
  1789. unsigned int *page_mask);
  1790. static inline struct page *follow_page(struct vm_area_struct *vma,
  1791. unsigned long address, unsigned int foll_flags)
  1792. {
  1793. unsigned int unused_page_mask;
  1794. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1795. }
  1796. #define FOLL_WRITE 0x01 /* check pte is writable */
  1797. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1798. #define FOLL_GET 0x04 /* do get_page on page */
  1799. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1800. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1801. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1802. * and return without waiting upon it */
  1803. #define FOLL_POPULATE 0x40 /* fault in page */
  1804. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1805. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1806. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1807. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1808. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1809. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1810. void *data);
  1811. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1812. unsigned long size, pte_fn_t fn, void *data);
  1813. #ifdef CONFIG_PROC_FS
  1814. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1815. #else
  1816. static inline void vm_stat_account(struct mm_struct *mm,
  1817. unsigned long flags, struct file *file, long pages)
  1818. {
  1819. mm->total_vm += pages;
  1820. }
  1821. #endif /* CONFIG_PROC_FS */
  1822. #ifdef CONFIG_DEBUG_PAGEALLOC
  1823. extern bool _debug_pagealloc_enabled;
  1824. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1825. static inline bool debug_pagealloc_enabled(void)
  1826. {
  1827. return _debug_pagealloc_enabled;
  1828. }
  1829. static inline void
  1830. kernel_map_pages(struct page *page, int numpages, int enable)
  1831. {
  1832. if (!debug_pagealloc_enabled())
  1833. return;
  1834. __kernel_map_pages(page, numpages, enable);
  1835. }
  1836. #ifdef CONFIG_HIBERNATION
  1837. extern bool kernel_page_present(struct page *page);
  1838. #endif /* CONFIG_HIBERNATION */
  1839. #else
  1840. static inline void
  1841. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1842. #ifdef CONFIG_HIBERNATION
  1843. static inline bool kernel_page_present(struct page *page) { return true; }
  1844. #endif /* CONFIG_HIBERNATION */
  1845. #endif
  1846. #ifdef __HAVE_ARCH_GATE_AREA
  1847. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1848. extern int in_gate_area_no_mm(unsigned long addr);
  1849. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1850. #else
  1851. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1852. {
  1853. return NULL;
  1854. }
  1855. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1856. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1857. {
  1858. return 0;
  1859. }
  1860. #endif /* __HAVE_ARCH_GATE_AREA */
  1861. #ifdef CONFIG_SYSCTL
  1862. extern int sysctl_drop_caches;
  1863. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1864. void __user *, size_t *, loff_t *);
  1865. #endif
  1866. void drop_slab(void);
  1867. void drop_slab_node(int nid);
  1868. #ifndef CONFIG_MMU
  1869. #define randomize_va_space 0
  1870. #else
  1871. extern int randomize_va_space;
  1872. #endif
  1873. const char * arch_vma_name(struct vm_area_struct *vma);
  1874. void print_vma_addr(char *prefix, unsigned long rip);
  1875. void sparse_mem_maps_populate_node(struct page **map_map,
  1876. unsigned long pnum_begin,
  1877. unsigned long pnum_end,
  1878. unsigned long map_count,
  1879. int nodeid);
  1880. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1881. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1882. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1883. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1884. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1885. void *vmemmap_alloc_block(unsigned long size, int node);
  1886. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1887. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1888. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1889. int node);
  1890. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1891. void vmemmap_populate_print_last(void);
  1892. #ifdef CONFIG_MEMORY_HOTPLUG
  1893. void vmemmap_free(unsigned long start, unsigned long end);
  1894. #endif
  1895. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1896. unsigned long size);
  1897. enum mf_flags {
  1898. MF_COUNT_INCREASED = 1 << 0,
  1899. MF_ACTION_REQUIRED = 1 << 1,
  1900. MF_MUST_KILL = 1 << 2,
  1901. MF_SOFT_OFFLINE = 1 << 3,
  1902. };
  1903. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1904. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1905. extern int unpoison_memory(unsigned long pfn);
  1906. extern int get_hwpoison_page(struct page *page);
  1907. extern void put_hwpoison_page(struct page *page);
  1908. extern int sysctl_memory_failure_early_kill;
  1909. extern int sysctl_memory_failure_recovery;
  1910. extern void shake_page(struct page *p, int access);
  1911. extern atomic_long_t num_poisoned_pages;
  1912. extern int soft_offline_page(struct page *page, int flags);
  1913. /*
  1914. * Error handlers for various types of pages.
  1915. */
  1916. enum mf_result {
  1917. MF_IGNORED, /* Error: cannot be handled */
  1918. MF_FAILED, /* Error: handling failed */
  1919. MF_DELAYED, /* Will be handled later */
  1920. MF_RECOVERED, /* Successfully recovered */
  1921. };
  1922. enum mf_action_page_type {
  1923. MF_MSG_KERNEL,
  1924. MF_MSG_KERNEL_HIGH_ORDER,
  1925. MF_MSG_SLAB,
  1926. MF_MSG_DIFFERENT_COMPOUND,
  1927. MF_MSG_POISONED_HUGE,
  1928. MF_MSG_HUGE,
  1929. MF_MSG_FREE_HUGE,
  1930. MF_MSG_UNMAP_FAILED,
  1931. MF_MSG_DIRTY_SWAPCACHE,
  1932. MF_MSG_CLEAN_SWAPCACHE,
  1933. MF_MSG_DIRTY_MLOCKED_LRU,
  1934. MF_MSG_CLEAN_MLOCKED_LRU,
  1935. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  1936. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  1937. MF_MSG_DIRTY_LRU,
  1938. MF_MSG_CLEAN_LRU,
  1939. MF_MSG_TRUNCATED_LRU,
  1940. MF_MSG_BUDDY,
  1941. MF_MSG_BUDDY_2ND,
  1942. MF_MSG_UNKNOWN,
  1943. };
  1944. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1945. extern void clear_huge_page(struct page *page,
  1946. unsigned long addr,
  1947. unsigned int pages_per_huge_page);
  1948. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1949. unsigned long addr, struct vm_area_struct *vma,
  1950. unsigned int pages_per_huge_page);
  1951. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1952. extern struct page_ext_operations debug_guardpage_ops;
  1953. extern struct page_ext_operations page_poisoning_ops;
  1954. #ifdef CONFIG_DEBUG_PAGEALLOC
  1955. extern unsigned int _debug_guardpage_minorder;
  1956. extern bool _debug_guardpage_enabled;
  1957. static inline unsigned int debug_guardpage_minorder(void)
  1958. {
  1959. return _debug_guardpage_minorder;
  1960. }
  1961. static inline bool debug_guardpage_enabled(void)
  1962. {
  1963. return _debug_guardpage_enabled;
  1964. }
  1965. static inline bool page_is_guard(struct page *page)
  1966. {
  1967. struct page_ext *page_ext;
  1968. if (!debug_guardpage_enabled())
  1969. return false;
  1970. page_ext = lookup_page_ext(page);
  1971. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  1972. }
  1973. #else
  1974. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1975. static inline bool debug_guardpage_enabled(void) { return false; }
  1976. static inline bool page_is_guard(struct page *page) { return false; }
  1977. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1978. #if MAX_NUMNODES > 1
  1979. void __init setup_nr_node_ids(void);
  1980. #else
  1981. static inline void setup_nr_node_ids(void) {}
  1982. #endif
  1983. #endif /* __KERNEL__ */
  1984. #endif /* _LINUX_MM_H */