fsl_ucc_hdlc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. /* Freescale QUICC Engine HDLC Device Driver
  2. *
  3. * Copyright 2016 Freescale Semiconductor Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/hdlc.h>
  13. #include <linux/init.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/io.h>
  16. #include <linux/irq.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/sched.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/stddef.h>
  29. #include <soc/fsl/qe/qe_tdm.h>
  30. #include <uapi/linux/if_arp.h>
  31. #include "fsl_ucc_hdlc.h"
  32. #define DRV_DESC "Freescale QE UCC HDLC Driver"
  33. #define DRV_NAME "ucc_hdlc"
  34. #define TDM_PPPOHT_SLIC_MAXIN
  35. static struct ucc_tdm_info utdm_primary_info = {
  36. .uf_info = {
  37. .tsa = 0,
  38. .cdp = 0,
  39. .cds = 1,
  40. .ctsp = 1,
  41. .ctss = 1,
  42. .revd = 0,
  43. .urfs = 256,
  44. .utfs = 256,
  45. .urfet = 128,
  46. .urfset = 192,
  47. .utfet = 128,
  48. .utftt = 0x40,
  49. .ufpt = 256,
  50. .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  51. .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  52. .tenc = UCC_FAST_TX_ENCODING_NRZ,
  53. .renc = UCC_FAST_RX_ENCODING_NRZ,
  54. .tcrc = UCC_FAST_16_BIT_CRC,
  55. .synl = UCC_FAST_SYNC_LEN_NOT_USED,
  56. },
  57. .si_info = {
  58. #ifdef TDM_PPPOHT_SLIC_MAXIN
  59. .simr_rfsd = 1,
  60. .simr_tfsd = 2,
  61. #else
  62. .simr_rfsd = 0,
  63. .simr_tfsd = 0,
  64. #endif
  65. .simr_crt = 0,
  66. .simr_sl = 0,
  67. .simr_ce = 1,
  68. .simr_fe = 1,
  69. .simr_gm = 0,
  70. },
  71. };
  72. static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
  73. static int uhdlc_init(struct ucc_hdlc_private *priv)
  74. {
  75. struct ucc_tdm_info *ut_info;
  76. struct ucc_fast_info *uf_info;
  77. u32 cecr_subblock;
  78. u16 bd_status;
  79. int ret, i;
  80. void *bd_buffer;
  81. dma_addr_t bd_dma_addr;
  82. u32 riptr;
  83. u32 tiptr;
  84. u32 gumr;
  85. ut_info = priv->ut_info;
  86. uf_info = &ut_info->uf_info;
  87. if (priv->tsa) {
  88. uf_info->tsa = 1;
  89. uf_info->ctsp = 1;
  90. }
  91. /* This sets HPM register in CMXUCR register which configures a
  92. * open drain connected HDLC bus
  93. */
  94. if (priv->hdlc_bus)
  95. uf_info->brkpt_support = 1;
  96. uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
  97. UCC_HDLC_UCCE_TXB) << 16);
  98. ret = ucc_fast_init(uf_info, &priv->uccf);
  99. if (ret) {
  100. dev_err(priv->dev, "Failed to init uccf.");
  101. return ret;
  102. }
  103. priv->uf_regs = priv->uccf->uf_regs;
  104. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  105. /* Loopback mode */
  106. if (priv->loopback) {
  107. dev_info(priv->dev, "Loopback Mode\n");
  108. /* use the same clock when work in loopback */
  109. qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
  110. gumr = ioread32be(&priv->uf_regs->gumr);
  111. gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
  112. UCC_FAST_GUMR_TCI);
  113. gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
  114. iowrite32be(gumr, &priv->uf_regs->gumr);
  115. }
  116. /* Initialize SI */
  117. if (priv->tsa)
  118. ucc_tdm_init(priv->utdm, priv->ut_info);
  119. /* Write to QE CECR, UCCx channel to Stop Transmission */
  120. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  121. ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
  122. QE_CR_PROTOCOL_UNSPECIFIED, 0);
  123. /* Set UPSMR normal mode (need fixed)*/
  124. iowrite32be(0, &priv->uf_regs->upsmr);
  125. /* hdlc_bus mode */
  126. if (priv->hdlc_bus) {
  127. u32 upsmr;
  128. dev_info(priv->dev, "HDLC bus Mode\n");
  129. upsmr = ioread32be(&priv->uf_regs->upsmr);
  130. /* bus mode and retransmit enable, with collision window
  131. * set to 8 bytes
  132. */
  133. upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
  134. UCC_HDLC_UPSMR_CW8;
  135. iowrite32be(upsmr, &priv->uf_regs->upsmr);
  136. /* explicitly disable CDS & CTSP */
  137. gumr = ioread32be(&priv->uf_regs->gumr);
  138. gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
  139. /* set automatic sync to explicitly ignore CD signal */
  140. gumr |= UCC_FAST_GUMR_SYNL_AUTO;
  141. iowrite32be(gumr, &priv->uf_regs->gumr);
  142. }
  143. priv->rx_ring_size = RX_BD_RING_LEN;
  144. priv->tx_ring_size = TX_BD_RING_LEN;
  145. /* Alloc Rx BD */
  146. priv->rx_bd_base = dma_alloc_coherent(priv->dev,
  147. RX_BD_RING_LEN * sizeof(struct qe_bd),
  148. &priv->dma_rx_bd, GFP_KERNEL);
  149. if (!priv->rx_bd_base) {
  150. dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
  151. ret = -ENOMEM;
  152. goto free_uccf;
  153. }
  154. /* Alloc Tx BD */
  155. priv->tx_bd_base = dma_alloc_coherent(priv->dev,
  156. TX_BD_RING_LEN * sizeof(struct qe_bd),
  157. &priv->dma_tx_bd, GFP_KERNEL);
  158. if (!priv->tx_bd_base) {
  159. dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
  160. ret = -ENOMEM;
  161. goto free_rx_bd;
  162. }
  163. /* Alloc parameter ram for ucc hdlc */
  164. priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
  165. ALIGNMENT_OF_UCC_HDLC_PRAM);
  166. if (priv->ucc_pram_offset < 0) {
  167. dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
  168. ret = -ENOMEM;
  169. goto free_tx_bd;
  170. }
  171. priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
  172. GFP_KERNEL);
  173. if (!priv->rx_skbuff)
  174. goto free_ucc_pram;
  175. priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
  176. GFP_KERNEL);
  177. if (!priv->tx_skbuff)
  178. goto free_rx_skbuff;
  179. priv->skb_curtx = 0;
  180. priv->skb_dirtytx = 0;
  181. priv->curtx_bd = priv->tx_bd_base;
  182. priv->dirty_tx = priv->tx_bd_base;
  183. priv->currx_bd = priv->rx_bd_base;
  184. priv->currx_bdnum = 0;
  185. /* init parameter base */
  186. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  187. ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
  188. QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
  189. priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
  190. qe_muram_addr(priv->ucc_pram_offset);
  191. /* Zero out parameter ram */
  192. memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
  193. /* Alloc riptr, tiptr */
  194. riptr = qe_muram_alloc(32, 32);
  195. if (riptr < 0) {
  196. dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
  197. ret = -ENOMEM;
  198. goto free_tx_skbuff;
  199. }
  200. tiptr = qe_muram_alloc(32, 32);
  201. if (tiptr < 0) {
  202. dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
  203. ret = -ENOMEM;
  204. goto free_riptr;
  205. }
  206. /* Set RIPTR, TIPTR */
  207. iowrite16be(riptr, &priv->ucc_pram->riptr);
  208. iowrite16be(tiptr, &priv->ucc_pram->tiptr);
  209. /* Set MRBLR */
  210. iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
  211. /* Set RBASE, TBASE */
  212. iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
  213. iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
  214. /* Set RSTATE, TSTATE */
  215. iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
  216. iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
  217. /* Set C_MASK, C_PRES for 16bit CRC */
  218. iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
  219. iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
  220. iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
  221. iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
  222. iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
  223. iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
  224. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
  225. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
  226. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
  227. iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
  228. /* Get BD buffer */
  229. bd_buffer = dma_alloc_coherent(priv->dev,
  230. (RX_BD_RING_LEN + TX_BD_RING_LEN) *
  231. MAX_RX_BUF_LENGTH,
  232. &bd_dma_addr, GFP_KERNEL);
  233. if (!bd_buffer) {
  234. dev_err(priv->dev, "Could not allocate buffer descriptors\n");
  235. ret = -ENOMEM;
  236. goto free_tiptr;
  237. }
  238. memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
  239. * MAX_RX_BUF_LENGTH);
  240. priv->rx_buffer = bd_buffer;
  241. priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
  242. priv->dma_rx_addr = bd_dma_addr;
  243. priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
  244. for (i = 0; i < RX_BD_RING_LEN; i++) {
  245. if (i < (RX_BD_RING_LEN - 1))
  246. bd_status = R_E_S | R_I_S;
  247. else
  248. bd_status = R_E_S | R_I_S | R_W_S;
  249. iowrite16be(bd_status, &priv->rx_bd_base[i].status);
  250. iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
  251. &priv->rx_bd_base[i].buf);
  252. }
  253. for (i = 0; i < TX_BD_RING_LEN; i++) {
  254. if (i < (TX_BD_RING_LEN - 1))
  255. bd_status = T_I_S | T_TC_S;
  256. else
  257. bd_status = T_I_S | T_TC_S | T_W_S;
  258. iowrite16be(bd_status, &priv->tx_bd_base[i].status);
  259. iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
  260. &priv->tx_bd_base[i].buf);
  261. }
  262. return 0;
  263. free_tiptr:
  264. qe_muram_free(tiptr);
  265. free_riptr:
  266. qe_muram_free(riptr);
  267. free_tx_skbuff:
  268. kfree(priv->tx_skbuff);
  269. free_rx_skbuff:
  270. kfree(priv->rx_skbuff);
  271. free_ucc_pram:
  272. qe_muram_free(priv->ucc_pram_offset);
  273. free_tx_bd:
  274. dma_free_coherent(priv->dev,
  275. TX_BD_RING_LEN * sizeof(struct qe_bd),
  276. priv->tx_bd_base, priv->dma_tx_bd);
  277. free_rx_bd:
  278. dma_free_coherent(priv->dev,
  279. RX_BD_RING_LEN * sizeof(struct qe_bd),
  280. priv->rx_bd_base, priv->dma_rx_bd);
  281. free_uccf:
  282. ucc_fast_free(priv->uccf);
  283. return ret;
  284. }
  285. static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
  286. {
  287. hdlc_device *hdlc = dev_to_hdlc(dev);
  288. struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
  289. struct qe_bd __iomem *bd;
  290. u16 bd_status;
  291. unsigned long flags;
  292. u16 *proto_head;
  293. switch (dev->type) {
  294. case ARPHRD_RAWHDLC:
  295. if (skb_headroom(skb) < HDLC_HEAD_LEN) {
  296. dev->stats.tx_dropped++;
  297. dev_kfree_skb(skb);
  298. netdev_err(dev, "No enough space for hdlc head\n");
  299. return -ENOMEM;
  300. }
  301. skb_push(skb, HDLC_HEAD_LEN);
  302. proto_head = (u16 *)skb->data;
  303. *proto_head = htons(DEFAULT_HDLC_HEAD);
  304. dev->stats.tx_bytes += skb->len;
  305. break;
  306. case ARPHRD_PPP:
  307. proto_head = (u16 *)skb->data;
  308. if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
  309. dev->stats.tx_dropped++;
  310. dev_kfree_skb(skb);
  311. netdev_err(dev, "Wrong ppp header\n");
  312. return -ENOMEM;
  313. }
  314. dev->stats.tx_bytes += skb->len;
  315. break;
  316. default:
  317. dev->stats.tx_dropped++;
  318. dev_kfree_skb(skb);
  319. return -ENOMEM;
  320. }
  321. spin_lock_irqsave(&priv->lock, flags);
  322. /* Start from the next BD that should be filled */
  323. bd = priv->curtx_bd;
  324. bd_status = ioread16be(&bd->status);
  325. /* Save the skb pointer so we can free it later */
  326. priv->tx_skbuff[priv->skb_curtx] = skb;
  327. /* Update the current skb pointer (wrapping if this was the last) */
  328. priv->skb_curtx =
  329. (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
  330. /* copy skb data to tx buffer for sdma processing */
  331. memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
  332. skb->data, skb->len);
  333. /* set bd status and length */
  334. bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
  335. iowrite16be(skb->len, &bd->length);
  336. iowrite16be(bd_status, &bd->status);
  337. /* Move to next BD in the ring */
  338. if (!(bd_status & T_W_S))
  339. bd += 1;
  340. else
  341. bd = priv->tx_bd_base;
  342. if (bd == priv->dirty_tx) {
  343. if (!netif_queue_stopped(dev))
  344. netif_stop_queue(dev);
  345. }
  346. priv->curtx_bd = bd;
  347. spin_unlock_irqrestore(&priv->lock, flags);
  348. return NETDEV_TX_OK;
  349. }
  350. static int hdlc_tx_done(struct ucc_hdlc_private *priv)
  351. {
  352. /* Start from the next BD that should be filled */
  353. struct net_device *dev = priv->ndev;
  354. struct qe_bd *bd; /* BD pointer */
  355. u16 bd_status;
  356. bd = priv->dirty_tx;
  357. bd_status = ioread16be(&bd->status);
  358. /* Normal processing. */
  359. while ((bd_status & T_R_S) == 0) {
  360. struct sk_buff *skb;
  361. /* BD contains already transmitted buffer. */
  362. /* Handle the transmitted buffer and release */
  363. /* the BD to be used with the current frame */
  364. skb = priv->tx_skbuff[priv->skb_dirtytx];
  365. if (!skb)
  366. break;
  367. dev->stats.tx_packets++;
  368. memset(priv->tx_buffer +
  369. (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
  370. 0, skb->len);
  371. dev_kfree_skb_irq(skb);
  372. priv->tx_skbuff[priv->skb_dirtytx] = NULL;
  373. priv->skb_dirtytx =
  374. (priv->skb_dirtytx +
  375. 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
  376. /* We freed a buffer, so now we can restart transmission */
  377. if (netif_queue_stopped(dev))
  378. netif_wake_queue(dev);
  379. /* Advance the confirmation BD pointer */
  380. if (!(bd_status & T_W_S))
  381. bd += 1;
  382. else
  383. bd = priv->tx_bd_base;
  384. bd_status = ioread16be(&bd->status);
  385. }
  386. priv->dirty_tx = bd;
  387. return 0;
  388. }
  389. static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
  390. {
  391. struct net_device *dev = priv->ndev;
  392. struct sk_buff *skb = NULL;
  393. hdlc_device *hdlc = dev_to_hdlc(dev);
  394. struct qe_bd *bd;
  395. u16 bd_status;
  396. u16 length, howmany = 0;
  397. u8 *bdbuffer;
  398. bd = priv->currx_bd;
  399. bd_status = ioread16be(&bd->status);
  400. /* while there are received buffers and BD is full (~R_E) */
  401. while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
  402. if (bd_status & R_OV_S)
  403. dev->stats.rx_over_errors++;
  404. if (bd_status & R_CR_S) {
  405. dev->stats.rx_crc_errors++;
  406. dev->stats.rx_dropped++;
  407. goto recycle;
  408. }
  409. bdbuffer = priv->rx_buffer +
  410. (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
  411. length = ioread16be(&bd->length);
  412. switch (dev->type) {
  413. case ARPHRD_RAWHDLC:
  414. bdbuffer += HDLC_HEAD_LEN;
  415. length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
  416. skb = dev_alloc_skb(length);
  417. if (!skb) {
  418. dev->stats.rx_dropped++;
  419. return -ENOMEM;
  420. }
  421. skb_put(skb, length);
  422. skb->len = length;
  423. skb->dev = dev;
  424. memcpy(skb->data, bdbuffer, length);
  425. break;
  426. case ARPHRD_PPP:
  427. length -= HDLC_CRC_SIZE;
  428. skb = dev_alloc_skb(length);
  429. if (!skb) {
  430. dev->stats.rx_dropped++;
  431. return -ENOMEM;
  432. }
  433. skb_put(skb, length);
  434. skb->len = length;
  435. skb->dev = dev;
  436. memcpy(skb->data, bdbuffer, length);
  437. break;
  438. }
  439. dev->stats.rx_packets++;
  440. dev->stats.rx_bytes += skb->len;
  441. howmany++;
  442. if (hdlc->proto)
  443. skb->protocol = hdlc_type_trans(skb, dev);
  444. netif_receive_skb(skb);
  445. recycle:
  446. iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
  447. /* update to point at the next bd */
  448. if (bd_status & R_W_S) {
  449. priv->currx_bdnum = 0;
  450. bd = priv->rx_bd_base;
  451. } else {
  452. if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
  453. priv->currx_bdnum += 1;
  454. else
  455. priv->currx_bdnum = RX_BD_RING_LEN - 1;
  456. bd += 1;
  457. }
  458. bd_status = ioread16be(&bd->status);
  459. }
  460. priv->currx_bd = bd;
  461. return howmany;
  462. }
  463. static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
  464. {
  465. struct ucc_hdlc_private *priv = container_of(napi,
  466. struct ucc_hdlc_private,
  467. napi);
  468. int howmany;
  469. /* Tx event processing */
  470. spin_lock(&priv->lock);
  471. hdlc_tx_done(priv);
  472. spin_unlock(&priv->lock);
  473. howmany = 0;
  474. howmany += hdlc_rx_done(priv, budget - howmany);
  475. if (howmany < budget) {
  476. napi_complete_done(napi, howmany);
  477. qe_setbits32(priv->uccf->p_uccm,
  478. (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
  479. }
  480. return howmany;
  481. }
  482. static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
  483. {
  484. struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
  485. struct net_device *dev = priv->ndev;
  486. struct ucc_fast_private *uccf;
  487. struct ucc_tdm_info *ut_info;
  488. u32 ucce;
  489. u32 uccm;
  490. ut_info = priv->ut_info;
  491. uccf = priv->uccf;
  492. ucce = ioread32be(uccf->p_ucce);
  493. uccm = ioread32be(uccf->p_uccm);
  494. ucce &= uccm;
  495. iowrite32be(ucce, uccf->p_ucce);
  496. if (!ucce)
  497. return IRQ_NONE;
  498. if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
  499. if (napi_schedule_prep(&priv->napi)) {
  500. uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
  501. << 16);
  502. iowrite32be(uccm, uccf->p_uccm);
  503. __napi_schedule(&priv->napi);
  504. }
  505. }
  506. /* Errors and other events */
  507. if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
  508. dev->stats.rx_errors++;
  509. if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
  510. dev->stats.tx_errors++;
  511. return IRQ_HANDLED;
  512. }
  513. static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  514. {
  515. const size_t size = sizeof(te1_settings);
  516. te1_settings line;
  517. struct ucc_hdlc_private *priv = netdev_priv(dev);
  518. if (cmd != SIOCWANDEV)
  519. return hdlc_ioctl(dev, ifr, cmd);
  520. switch (ifr->ifr_settings.type) {
  521. case IF_GET_IFACE:
  522. ifr->ifr_settings.type = IF_IFACE_E1;
  523. if (ifr->ifr_settings.size < size) {
  524. ifr->ifr_settings.size = size; /* data size wanted */
  525. return -ENOBUFS;
  526. }
  527. memset(&line, 0, sizeof(line));
  528. line.clock_type = priv->clocking;
  529. if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
  530. return -EFAULT;
  531. return 0;
  532. default:
  533. return hdlc_ioctl(dev, ifr, cmd);
  534. }
  535. }
  536. static int uhdlc_open(struct net_device *dev)
  537. {
  538. u32 cecr_subblock;
  539. hdlc_device *hdlc = dev_to_hdlc(dev);
  540. struct ucc_hdlc_private *priv = hdlc->priv;
  541. struct ucc_tdm *utdm = priv->utdm;
  542. if (priv->hdlc_busy != 1) {
  543. if (request_irq(priv->ut_info->uf_info.irq,
  544. ucc_hdlc_irq_handler, 0, "hdlc", priv))
  545. return -ENODEV;
  546. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  547. priv->ut_info->uf_info.ucc_num);
  548. qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
  549. QE_CR_PROTOCOL_UNSPECIFIED, 0);
  550. ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  551. /* Enable the TDM port */
  552. if (priv->tsa)
  553. utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
  554. priv->hdlc_busy = 1;
  555. netif_device_attach(priv->ndev);
  556. napi_enable(&priv->napi);
  557. netif_start_queue(dev);
  558. hdlc_open(dev);
  559. }
  560. return 0;
  561. }
  562. static void uhdlc_memclean(struct ucc_hdlc_private *priv)
  563. {
  564. qe_muram_free(priv->ucc_pram->riptr);
  565. qe_muram_free(priv->ucc_pram->tiptr);
  566. if (priv->rx_bd_base) {
  567. dma_free_coherent(priv->dev,
  568. RX_BD_RING_LEN * sizeof(struct qe_bd),
  569. priv->rx_bd_base, priv->dma_rx_bd);
  570. priv->rx_bd_base = NULL;
  571. priv->dma_rx_bd = 0;
  572. }
  573. if (priv->tx_bd_base) {
  574. dma_free_coherent(priv->dev,
  575. TX_BD_RING_LEN * sizeof(struct qe_bd),
  576. priv->tx_bd_base, priv->dma_tx_bd);
  577. priv->tx_bd_base = NULL;
  578. priv->dma_tx_bd = 0;
  579. }
  580. if (priv->ucc_pram) {
  581. qe_muram_free(priv->ucc_pram_offset);
  582. priv->ucc_pram = NULL;
  583. priv->ucc_pram_offset = 0;
  584. }
  585. kfree(priv->rx_skbuff);
  586. priv->rx_skbuff = NULL;
  587. kfree(priv->tx_skbuff);
  588. priv->tx_skbuff = NULL;
  589. if (priv->uf_regs) {
  590. iounmap(priv->uf_regs);
  591. priv->uf_regs = NULL;
  592. }
  593. if (priv->uccf) {
  594. ucc_fast_free(priv->uccf);
  595. priv->uccf = NULL;
  596. }
  597. if (priv->rx_buffer) {
  598. dma_free_coherent(priv->dev,
  599. RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
  600. priv->rx_buffer, priv->dma_rx_addr);
  601. priv->rx_buffer = NULL;
  602. priv->dma_rx_addr = 0;
  603. }
  604. if (priv->tx_buffer) {
  605. dma_free_coherent(priv->dev,
  606. TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
  607. priv->tx_buffer, priv->dma_tx_addr);
  608. priv->tx_buffer = NULL;
  609. priv->dma_tx_addr = 0;
  610. }
  611. }
  612. static int uhdlc_close(struct net_device *dev)
  613. {
  614. struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
  615. struct ucc_tdm *utdm = priv->utdm;
  616. u32 cecr_subblock;
  617. napi_disable(&priv->napi);
  618. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  619. priv->ut_info->uf_info.ucc_num);
  620. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  621. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  622. qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
  623. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  624. if (priv->tsa)
  625. utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
  626. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  627. free_irq(priv->ut_info->uf_info.irq, priv);
  628. netif_stop_queue(dev);
  629. priv->hdlc_busy = 0;
  630. return 0;
  631. }
  632. static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
  633. unsigned short parity)
  634. {
  635. struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
  636. if (encoding != ENCODING_NRZ &&
  637. encoding != ENCODING_NRZI)
  638. return -EINVAL;
  639. if (parity != PARITY_NONE &&
  640. parity != PARITY_CRC32_PR1_CCITT &&
  641. parity != PARITY_CRC16_PR1_CCITT)
  642. return -EINVAL;
  643. priv->encoding = encoding;
  644. priv->parity = parity;
  645. return 0;
  646. }
  647. #ifdef CONFIG_PM
  648. static void store_clk_config(struct ucc_hdlc_private *priv)
  649. {
  650. struct qe_mux *qe_mux_reg = &qe_immr->qmx;
  651. /* store si clk */
  652. priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
  653. priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
  654. /* store si sync */
  655. priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
  656. /* store ucc clk */
  657. memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
  658. }
  659. static void resume_clk_config(struct ucc_hdlc_private *priv)
  660. {
  661. struct qe_mux *qe_mux_reg = &qe_immr->qmx;
  662. memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
  663. iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
  664. iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
  665. iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
  666. }
  667. static int uhdlc_suspend(struct device *dev)
  668. {
  669. struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
  670. struct ucc_tdm_info *ut_info;
  671. struct ucc_fast __iomem *uf_regs;
  672. if (!priv)
  673. return -EINVAL;
  674. if (!netif_running(priv->ndev))
  675. return 0;
  676. netif_device_detach(priv->ndev);
  677. napi_disable(&priv->napi);
  678. ut_info = priv->ut_info;
  679. uf_regs = priv->uf_regs;
  680. /* backup gumr guemr*/
  681. priv->gumr = ioread32be(&uf_regs->gumr);
  682. priv->guemr = ioread8(&uf_regs->guemr);
  683. priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
  684. GFP_KERNEL);
  685. if (!priv->ucc_pram_bak)
  686. return -ENOMEM;
  687. /* backup HDLC parameter */
  688. memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
  689. sizeof(struct ucc_hdlc_param));
  690. /* store the clk configuration */
  691. store_clk_config(priv);
  692. /* save power */
  693. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  694. return 0;
  695. }
  696. static int uhdlc_resume(struct device *dev)
  697. {
  698. struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
  699. struct ucc_tdm *utdm;
  700. struct ucc_tdm_info *ut_info;
  701. struct ucc_fast __iomem *uf_regs;
  702. struct ucc_fast_private *uccf;
  703. struct ucc_fast_info *uf_info;
  704. int ret, i;
  705. u32 cecr_subblock;
  706. u16 bd_status;
  707. if (!priv)
  708. return -EINVAL;
  709. if (!netif_running(priv->ndev))
  710. return 0;
  711. utdm = priv->utdm;
  712. ut_info = priv->ut_info;
  713. uf_info = &ut_info->uf_info;
  714. uf_regs = priv->uf_regs;
  715. uccf = priv->uccf;
  716. /* restore gumr guemr */
  717. iowrite8(priv->guemr, &uf_regs->guemr);
  718. iowrite32be(priv->gumr, &uf_regs->gumr);
  719. /* Set Virtual Fifo registers */
  720. iowrite16be(uf_info->urfs, &uf_regs->urfs);
  721. iowrite16be(uf_info->urfet, &uf_regs->urfet);
  722. iowrite16be(uf_info->urfset, &uf_regs->urfset);
  723. iowrite16be(uf_info->utfs, &uf_regs->utfs);
  724. iowrite16be(uf_info->utfet, &uf_regs->utfet);
  725. iowrite16be(uf_info->utftt, &uf_regs->utftt);
  726. /* utfb, urfb are offsets from MURAM base */
  727. iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
  728. iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
  729. /* Rx Tx and sync clock routing */
  730. resume_clk_config(priv);
  731. iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
  732. iowrite32be(0xffffffff, &uf_regs->ucce);
  733. ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  734. /* rebuild SIRAM */
  735. if (priv->tsa)
  736. ucc_tdm_init(priv->utdm, priv->ut_info);
  737. /* Write to QE CECR, UCCx channel to Stop Transmission */
  738. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  739. ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
  740. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  741. /* Set UPSMR normal mode */
  742. iowrite32be(0, &uf_regs->upsmr);
  743. /* init parameter base */
  744. cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
  745. ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
  746. QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
  747. priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
  748. qe_muram_addr(priv->ucc_pram_offset);
  749. /* restore ucc parameter */
  750. memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
  751. sizeof(struct ucc_hdlc_param));
  752. kfree(priv->ucc_pram_bak);
  753. /* rebuild BD entry */
  754. for (i = 0; i < RX_BD_RING_LEN; i++) {
  755. if (i < (RX_BD_RING_LEN - 1))
  756. bd_status = R_E_S | R_I_S;
  757. else
  758. bd_status = R_E_S | R_I_S | R_W_S;
  759. iowrite16be(bd_status, &priv->rx_bd_base[i].status);
  760. iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
  761. &priv->rx_bd_base[i].buf);
  762. }
  763. for (i = 0; i < TX_BD_RING_LEN; i++) {
  764. if (i < (TX_BD_RING_LEN - 1))
  765. bd_status = T_I_S | T_TC_S;
  766. else
  767. bd_status = T_I_S | T_TC_S | T_W_S;
  768. iowrite16be(bd_status, &priv->tx_bd_base[i].status);
  769. iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
  770. &priv->tx_bd_base[i].buf);
  771. }
  772. /* if hdlc is busy enable TX and RX */
  773. if (priv->hdlc_busy == 1) {
  774. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  775. priv->ut_info->uf_info.ucc_num);
  776. qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
  777. (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
  778. ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
  779. /* Enable the TDM port */
  780. if (priv->tsa)
  781. utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
  782. }
  783. napi_enable(&priv->napi);
  784. netif_device_attach(priv->ndev);
  785. return 0;
  786. }
  787. static const struct dev_pm_ops uhdlc_pm_ops = {
  788. .suspend = uhdlc_suspend,
  789. .resume = uhdlc_resume,
  790. .freeze = uhdlc_suspend,
  791. .thaw = uhdlc_resume,
  792. };
  793. #define HDLC_PM_OPS (&uhdlc_pm_ops)
  794. #else
  795. #define HDLC_PM_OPS NULL
  796. #endif
  797. static const struct net_device_ops uhdlc_ops = {
  798. .ndo_open = uhdlc_open,
  799. .ndo_stop = uhdlc_close,
  800. .ndo_start_xmit = hdlc_start_xmit,
  801. .ndo_do_ioctl = uhdlc_ioctl,
  802. };
  803. static int ucc_hdlc_probe(struct platform_device *pdev)
  804. {
  805. struct device_node *np = pdev->dev.of_node;
  806. struct ucc_hdlc_private *uhdlc_priv = NULL;
  807. struct ucc_tdm_info *ut_info;
  808. struct ucc_tdm *utdm = NULL;
  809. struct resource res;
  810. struct net_device *dev;
  811. hdlc_device *hdlc;
  812. int ucc_num;
  813. const char *sprop;
  814. int ret;
  815. u32 val;
  816. ret = of_property_read_u32_index(np, "cell-index", 0, &val);
  817. if (ret) {
  818. dev_err(&pdev->dev, "Invalid ucc property\n");
  819. return -ENODEV;
  820. }
  821. ucc_num = val - 1;
  822. if ((ucc_num > 3) || (ucc_num < 0)) {
  823. dev_err(&pdev->dev, ": Invalid UCC num\n");
  824. return -EINVAL;
  825. }
  826. memcpy(&utdm_info[ucc_num], &utdm_primary_info,
  827. sizeof(utdm_primary_info));
  828. ut_info = &utdm_info[ucc_num];
  829. ut_info->uf_info.ucc_num = ucc_num;
  830. sprop = of_get_property(np, "rx-clock-name", NULL);
  831. if (sprop) {
  832. ut_info->uf_info.rx_clock = qe_clock_source(sprop);
  833. if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
  834. (ut_info->uf_info.rx_clock > QE_CLK24)) {
  835. dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
  836. return -EINVAL;
  837. }
  838. } else {
  839. dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
  840. return -EINVAL;
  841. }
  842. sprop = of_get_property(np, "tx-clock-name", NULL);
  843. if (sprop) {
  844. ut_info->uf_info.tx_clock = qe_clock_source(sprop);
  845. if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
  846. (ut_info->uf_info.tx_clock > QE_CLK24)) {
  847. dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
  848. return -EINVAL;
  849. }
  850. } else {
  851. dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
  852. return -EINVAL;
  853. }
  854. ret = of_address_to_resource(np, 0, &res);
  855. if (ret)
  856. return -EINVAL;
  857. ut_info->uf_info.regs = res.start;
  858. ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
  859. uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
  860. if (!uhdlc_priv) {
  861. return -ENOMEM;
  862. }
  863. dev_set_drvdata(&pdev->dev, uhdlc_priv);
  864. uhdlc_priv->dev = &pdev->dev;
  865. uhdlc_priv->ut_info = ut_info;
  866. if (of_get_property(np, "fsl,tdm-interface", NULL))
  867. uhdlc_priv->tsa = 1;
  868. if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
  869. uhdlc_priv->loopback = 1;
  870. if (of_get_property(np, "fsl,hdlc-bus", NULL))
  871. uhdlc_priv->hdlc_bus = 1;
  872. if (uhdlc_priv->tsa == 1) {
  873. utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
  874. if (!utdm) {
  875. ret = -ENOMEM;
  876. dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
  877. goto free_uhdlc_priv;
  878. }
  879. uhdlc_priv->utdm = utdm;
  880. ret = ucc_of_parse_tdm(np, utdm, ut_info);
  881. if (ret)
  882. goto free_utdm;
  883. }
  884. ret = uhdlc_init(uhdlc_priv);
  885. if (ret) {
  886. dev_err(&pdev->dev, "Failed to init uhdlc\n");
  887. goto free_utdm;
  888. }
  889. dev = alloc_hdlcdev(uhdlc_priv);
  890. if (!dev) {
  891. ret = -ENOMEM;
  892. pr_err("ucc_hdlc: unable to allocate memory\n");
  893. goto undo_uhdlc_init;
  894. }
  895. uhdlc_priv->ndev = dev;
  896. hdlc = dev_to_hdlc(dev);
  897. dev->tx_queue_len = 16;
  898. dev->netdev_ops = &uhdlc_ops;
  899. hdlc->attach = ucc_hdlc_attach;
  900. hdlc->xmit = ucc_hdlc_tx;
  901. netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
  902. if (register_hdlc_device(dev)) {
  903. ret = -ENOBUFS;
  904. pr_err("ucc_hdlc: unable to register hdlc device\n");
  905. free_netdev(dev);
  906. goto free_dev;
  907. }
  908. return 0;
  909. free_dev:
  910. free_netdev(dev);
  911. undo_uhdlc_init:
  912. free_utdm:
  913. if (uhdlc_priv->tsa)
  914. kfree(utdm);
  915. free_uhdlc_priv:
  916. kfree(uhdlc_priv);
  917. return ret;
  918. }
  919. static int ucc_hdlc_remove(struct platform_device *pdev)
  920. {
  921. struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
  922. uhdlc_memclean(priv);
  923. if (priv->utdm->si_regs) {
  924. iounmap(priv->utdm->si_regs);
  925. priv->utdm->si_regs = NULL;
  926. }
  927. if (priv->utdm->siram) {
  928. iounmap(priv->utdm->siram);
  929. priv->utdm->siram = NULL;
  930. }
  931. kfree(priv);
  932. dev_info(&pdev->dev, "UCC based hdlc module removed\n");
  933. return 0;
  934. }
  935. static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
  936. {
  937. .compatible = "fsl,ucc-hdlc",
  938. },
  939. {},
  940. };
  941. MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
  942. static struct platform_driver ucc_hdlc_driver = {
  943. .probe = ucc_hdlc_probe,
  944. .remove = ucc_hdlc_remove,
  945. .driver = {
  946. .name = DRV_NAME,
  947. .pm = HDLC_PM_OPS,
  948. .of_match_table = fsl_ucc_hdlc_of_match,
  949. },
  950. };
  951. module_platform_driver(ucc_hdlc_driver);
  952. MODULE_LICENSE("GPL");