vrf.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523
  1. /*
  2. * vrf.c: device driver to encapsulate a VRF space
  3. *
  4. * Copyright (c) 2015 Cumulus Networks. All rights reserved.
  5. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
  6. * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
  7. *
  8. * Based on dummy, team and ipvlan drivers
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ip.h>
  20. #include <linux/init.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/netfilter.h>
  23. #include <linux/rtnetlink.h>
  24. #include <net/rtnetlink.h>
  25. #include <linux/u64_stats_sync.h>
  26. #include <linux/hashtable.h>
  27. #include <linux/inetdevice.h>
  28. #include <net/arp.h>
  29. #include <net/ip.h>
  30. #include <net/ip_fib.h>
  31. #include <net/ip6_fib.h>
  32. #include <net/ip6_route.h>
  33. #include <net/route.h>
  34. #include <net/addrconf.h>
  35. #include <net/l3mdev.h>
  36. #include <net/fib_rules.h>
  37. #define DRV_NAME "vrf"
  38. #define DRV_VERSION "1.0"
  39. #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
  40. static bool add_fib_rules = true;
  41. struct net_vrf {
  42. struct rtable __rcu *rth;
  43. struct rtable __rcu *rth_local;
  44. struct rt6_info __rcu *rt6;
  45. struct rt6_info __rcu *rt6_local;
  46. u32 tb_id;
  47. };
  48. struct pcpu_dstats {
  49. u64 tx_pkts;
  50. u64 tx_bytes;
  51. u64 tx_drps;
  52. u64 rx_pkts;
  53. u64 rx_bytes;
  54. u64 rx_drps;
  55. struct u64_stats_sync syncp;
  56. };
  57. static void vrf_rx_stats(struct net_device *dev, int len)
  58. {
  59. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  60. u64_stats_update_begin(&dstats->syncp);
  61. dstats->rx_pkts++;
  62. dstats->rx_bytes += len;
  63. u64_stats_update_end(&dstats->syncp);
  64. }
  65. static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  66. {
  67. vrf_dev->stats.tx_errors++;
  68. kfree_skb(skb);
  69. }
  70. static void vrf_get_stats64(struct net_device *dev,
  71. struct rtnl_link_stats64 *stats)
  72. {
  73. int i;
  74. for_each_possible_cpu(i) {
  75. const struct pcpu_dstats *dstats;
  76. u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  77. unsigned int start;
  78. dstats = per_cpu_ptr(dev->dstats, i);
  79. do {
  80. start = u64_stats_fetch_begin_irq(&dstats->syncp);
  81. tbytes = dstats->tx_bytes;
  82. tpkts = dstats->tx_pkts;
  83. tdrops = dstats->tx_drps;
  84. rbytes = dstats->rx_bytes;
  85. rpkts = dstats->rx_pkts;
  86. } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  87. stats->tx_bytes += tbytes;
  88. stats->tx_packets += tpkts;
  89. stats->tx_dropped += tdrops;
  90. stats->rx_bytes += rbytes;
  91. stats->rx_packets += rpkts;
  92. }
  93. }
  94. /* by default VRF devices do not have a qdisc and are expected
  95. * to be created with only a single queue.
  96. */
  97. static bool qdisc_tx_is_default(const struct net_device *dev)
  98. {
  99. struct netdev_queue *txq;
  100. struct Qdisc *qdisc;
  101. if (dev->num_tx_queues > 1)
  102. return false;
  103. txq = netdev_get_tx_queue(dev, 0);
  104. qdisc = rcu_access_pointer(txq->qdisc);
  105. return !qdisc->enqueue;
  106. }
  107. /* Local traffic destined to local address. Reinsert the packet to rx
  108. * path, similar to loopback handling.
  109. */
  110. static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
  111. struct dst_entry *dst)
  112. {
  113. int len = skb->len;
  114. skb_orphan(skb);
  115. skb_dst_set(skb, dst);
  116. skb_dst_force(skb);
  117. /* set pkt_type to avoid skb hitting packet taps twice -
  118. * once on Tx and again in Rx processing
  119. */
  120. skb->pkt_type = PACKET_LOOPBACK;
  121. skb->protocol = eth_type_trans(skb, dev);
  122. if (likely(netif_rx(skb) == NET_RX_SUCCESS))
  123. vrf_rx_stats(dev, len);
  124. else
  125. this_cpu_inc(dev->dstats->rx_drps);
  126. return NETDEV_TX_OK;
  127. }
  128. #if IS_ENABLED(CONFIG_IPV6)
  129. static int vrf_ip6_local_out(struct net *net, struct sock *sk,
  130. struct sk_buff *skb)
  131. {
  132. int err;
  133. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
  134. sk, skb, NULL, skb_dst(skb)->dev, dst_output);
  135. if (likely(err == 1))
  136. err = dst_output(net, sk, skb);
  137. return err;
  138. }
  139. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  140. struct net_device *dev)
  141. {
  142. const struct ipv6hdr *iph = ipv6_hdr(skb);
  143. struct net *net = dev_net(skb->dev);
  144. struct flowi6 fl6 = {
  145. /* needed to match OIF rule */
  146. .flowi6_oif = dev->ifindex,
  147. .flowi6_iif = LOOPBACK_IFINDEX,
  148. .daddr = iph->daddr,
  149. .saddr = iph->saddr,
  150. .flowlabel = ip6_flowinfo(iph),
  151. .flowi6_mark = skb->mark,
  152. .flowi6_proto = iph->nexthdr,
  153. .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
  154. };
  155. int ret = NET_XMIT_DROP;
  156. struct dst_entry *dst;
  157. struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
  158. dst = ip6_route_output(net, NULL, &fl6);
  159. if (dst == dst_null)
  160. goto err;
  161. skb_dst_drop(skb);
  162. /* if dst.dev is loopback or the VRF device again this is locally
  163. * originated traffic destined to a local address. Short circuit
  164. * to Rx path using our local dst
  165. */
  166. if (dst->dev == net->loopback_dev || dst->dev == dev) {
  167. struct net_vrf *vrf = netdev_priv(dev);
  168. struct rt6_info *rt6_local;
  169. /* release looked up dst and use cached local dst */
  170. dst_release(dst);
  171. rcu_read_lock();
  172. rt6_local = rcu_dereference(vrf->rt6_local);
  173. if (unlikely(!rt6_local)) {
  174. rcu_read_unlock();
  175. goto err;
  176. }
  177. /* Ordering issue: cached local dst is created on newlink
  178. * before the IPv6 initialization. Using the local dst
  179. * requires rt6i_idev to be set so make sure it is.
  180. */
  181. if (unlikely(!rt6_local->rt6i_idev)) {
  182. rt6_local->rt6i_idev = in6_dev_get(dev);
  183. if (!rt6_local->rt6i_idev) {
  184. rcu_read_unlock();
  185. goto err;
  186. }
  187. }
  188. dst = &rt6_local->dst;
  189. dst_hold(dst);
  190. rcu_read_unlock();
  191. return vrf_local_xmit(skb, dev, &rt6_local->dst);
  192. }
  193. skb_dst_set(skb, dst);
  194. /* strip the ethernet header added for pass through VRF device */
  195. __skb_pull(skb, skb_network_offset(skb));
  196. ret = vrf_ip6_local_out(net, skb->sk, skb);
  197. if (unlikely(net_xmit_eval(ret)))
  198. dev->stats.tx_errors++;
  199. else
  200. ret = NET_XMIT_SUCCESS;
  201. return ret;
  202. err:
  203. vrf_tx_error(dev, skb);
  204. return NET_XMIT_DROP;
  205. }
  206. #else
  207. static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
  208. struct net_device *dev)
  209. {
  210. vrf_tx_error(dev, skb);
  211. return NET_XMIT_DROP;
  212. }
  213. #endif
  214. /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
  215. static int vrf_ip_local_out(struct net *net, struct sock *sk,
  216. struct sk_buff *skb)
  217. {
  218. int err;
  219. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  220. skb, NULL, skb_dst(skb)->dev, dst_output);
  221. if (likely(err == 1))
  222. err = dst_output(net, sk, skb);
  223. return err;
  224. }
  225. static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
  226. struct net_device *vrf_dev)
  227. {
  228. struct iphdr *ip4h = ip_hdr(skb);
  229. int ret = NET_XMIT_DROP;
  230. struct flowi4 fl4 = {
  231. /* needed to match OIF rule */
  232. .flowi4_oif = vrf_dev->ifindex,
  233. .flowi4_iif = LOOPBACK_IFINDEX,
  234. .flowi4_tos = RT_TOS(ip4h->tos),
  235. .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
  236. .flowi4_proto = ip4h->protocol,
  237. .daddr = ip4h->daddr,
  238. .saddr = ip4h->saddr,
  239. };
  240. struct net *net = dev_net(vrf_dev);
  241. struct rtable *rt;
  242. rt = ip_route_output_flow(net, &fl4, NULL);
  243. if (IS_ERR(rt))
  244. goto err;
  245. skb_dst_drop(skb);
  246. /* if dst.dev is loopback or the VRF device again this is locally
  247. * originated traffic destined to a local address. Short circuit
  248. * to Rx path using our local dst
  249. */
  250. if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
  251. struct net_vrf *vrf = netdev_priv(vrf_dev);
  252. struct rtable *rth_local;
  253. struct dst_entry *dst = NULL;
  254. ip_rt_put(rt);
  255. rcu_read_lock();
  256. rth_local = rcu_dereference(vrf->rth_local);
  257. if (likely(rth_local)) {
  258. dst = &rth_local->dst;
  259. dst_hold(dst);
  260. }
  261. rcu_read_unlock();
  262. if (unlikely(!dst))
  263. goto err;
  264. return vrf_local_xmit(skb, vrf_dev, dst);
  265. }
  266. skb_dst_set(skb, &rt->dst);
  267. /* strip the ethernet header added for pass through VRF device */
  268. __skb_pull(skb, skb_network_offset(skb));
  269. if (!ip4h->saddr) {
  270. ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
  271. RT_SCOPE_LINK);
  272. }
  273. ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
  274. if (unlikely(net_xmit_eval(ret)))
  275. vrf_dev->stats.tx_errors++;
  276. else
  277. ret = NET_XMIT_SUCCESS;
  278. out:
  279. return ret;
  280. err:
  281. vrf_tx_error(vrf_dev, skb);
  282. goto out;
  283. }
  284. static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
  285. {
  286. switch (skb->protocol) {
  287. case htons(ETH_P_IP):
  288. return vrf_process_v4_outbound(skb, dev);
  289. case htons(ETH_P_IPV6):
  290. return vrf_process_v6_outbound(skb, dev);
  291. default:
  292. vrf_tx_error(dev, skb);
  293. return NET_XMIT_DROP;
  294. }
  295. }
  296. static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
  297. {
  298. int len = skb->len;
  299. netdev_tx_t ret = is_ip_tx_frame(skb, dev);
  300. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  301. struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  302. u64_stats_update_begin(&dstats->syncp);
  303. dstats->tx_pkts++;
  304. dstats->tx_bytes += len;
  305. u64_stats_update_end(&dstats->syncp);
  306. } else {
  307. this_cpu_inc(dev->dstats->tx_drps);
  308. }
  309. return ret;
  310. }
  311. static int vrf_finish_direct(struct net *net, struct sock *sk,
  312. struct sk_buff *skb)
  313. {
  314. struct net_device *vrf_dev = skb->dev;
  315. if (!list_empty(&vrf_dev->ptype_all) &&
  316. likely(skb_headroom(skb) >= ETH_HLEN)) {
  317. struct ethhdr *eth = (struct ethhdr *)skb_push(skb, ETH_HLEN);
  318. ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
  319. eth_zero_addr(eth->h_dest);
  320. eth->h_proto = skb->protocol;
  321. rcu_read_lock_bh();
  322. dev_queue_xmit_nit(skb, vrf_dev);
  323. rcu_read_unlock_bh();
  324. skb_pull(skb, ETH_HLEN);
  325. }
  326. return 1;
  327. }
  328. #if IS_ENABLED(CONFIG_IPV6)
  329. /* modelled after ip6_finish_output2 */
  330. static int vrf_finish_output6(struct net *net, struct sock *sk,
  331. struct sk_buff *skb)
  332. {
  333. struct dst_entry *dst = skb_dst(skb);
  334. struct net_device *dev = dst->dev;
  335. struct neighbour *neigh;
  336. struct in6_addr *nexthop;
  337. int ret;
  338. nf_reset(skb);
  339. skb->protocol = htons(ETH_P_IPV6);
  340. skb->dev = dev;
  341. rcu_read_lock_bh();
  342. nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
  343. neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
  344. if (unlikely(!neigh))
  345. neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
  346. if (!IS_ERR(neigh)) {
  347. sock_confirm_neigh(skb, neigh);
  348. ret = neigh_output(neigh, skb);
  349. rcu_read_unlock_bh();
  350. return ret;
  351. }
  352. rcu_read_unlock_bh();
  353. IP6_INC_STATS(dev_net(dst->dev),
  354. ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
  355. kfree_skb(skb);
  356. return -EINVAL;
  357. }
  358. /* modelled after ip6_output */
  359. static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
  360. {
  361. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  362. net, sk, skb, NULL, skb_dst(skb)->dev,
  363. vrf_finish_output6,
  364. !(IP6CB(skb)->flags & IP6SKB_REROUTED));
  365. }
  366. /* set dst on skb to send packet to us via dev_xmit path. Allows
  367. * packet to go through device based features such as qdisc, netfilter
  368. * hooks and packet sockets with skb->dev set to vrf device.
  369. */
  370. static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
  371. struct sk_buff *skb)
  372. {
  373. struct net_vrf *vrf = netdev_priv(vrf_dev);
  374. struct dst_entry *dst = NULL;
  375. struct rt6_info *rt6;
  376. rcu_read_lock();
  377. rt6 = rcu_dereference(vrf->rt6);
  378. if (likely(rt6)) {
  379. dst = &rt6->dst;
  380. dst_hold(dst);
  381. }
  382. rcu_read_unlock();
  383. if (unlikely(!dst)) {
  384. vrf_tx_error(vrf_dev, skb);
  385. return NULL;
  386. }
  387. skb_dst_drop(skb);
  388. skb_dst_set(skb, dst);
  389. return skb;
  390. }
  391. static int vrf_output6_direct(struct net *net, struct sock *sk,
  392. struct sk_buff *skb)
  393. {
  394. skb->protocol = htons(ETH_P_IPV6);
  395. return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
  396. net, sk, skb, NULL, skb->dev,
  397. vrf_finish_direct,
  398. !(IPCB(skb)->flags & IPSKB_REROUTED));
  399. }
  400. static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
  401. struct sock *sk,
  402. struct sk_buff *skb)
  403. {
  404. struct net *net = dev_net(vrf_dev);
  405. int err;
  406. skb->dev = vrf_dev;
  407. err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
  408. skb, NULL, vrf_dev, vrf_output6_direct);
  409. if (likely(err == 1))
  410. err = vrf_output6_direct(net, sk, skb);
  411. /* reset skb device */
  412. if (likely(err == 1))
  413. nf_reset(skb);
  414. else
  415. skb = NULL;
  416. return skb;
  417. }
  418. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  419. struct sock *sk,
  420. struct sk_buff *skb)
  421. {
  422. /* don't divert link scope packets */
  423. if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
  424. return skb;
  425. if (qdisc_tx_is_default(vrf_dev))
  426. return vrf_ip6_out_direct(vrf_dev, sk, skb);
  427. return vrf_ip6_out_redirect(vrf_dev, skb);
  428. }
  429. /* holding rtnl */
  430. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  431. {
  432. struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
  433. struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
  434. struct net *net = dev_net(dev);
  435. struct dst_entry *dst;
  436. RCU_INIT_POINTER(vrf->rt6, NULL);
  437. RCU_INIT_POINTER(vrf->rt6_local, NULL);
  438. synchronize_rcu();
  439. /* move dev in dst's to loopback so this VRF device can be deleted
  440. * - based on dst_ifdown
  441. */
  442. if (rt6) {
  443. dst = &rt6->dst;
  444. dev_put(dst->dev);
  445. dst->dev = net->loopback_dev;
  446. dev_hold(dst->dev);
  447. dst_release(dst);
  448. }
  449. if (rt6_local) {
  450. if (rt6_local->rt6i_idev) {
  451. in6_dev_put(rt6_local->rt6i_idev);
  452. rt6_local->rt6i_idev = NULL;
  453. }
  454. dst = &rt6_local->dst;
  455. dev_put(dst->dev);
  456. dst->dev = net->loopback_dev;
  457. dev_hold(dst->dev);
  458. dst_release(dst);
  459. }
  460. }
  461. static int vrf_rt6_create(struct net_device *dev)
  462. {
  463. int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
  464. struct net_vrf *vrf = netdev_priv(dev);
  465. struct net *net = dev_net(dev);
  466. struct fib6_table *rt6i_table;
  467. struct rt6_info *rt6, *rt6_local;
  468. int rc = -ENOMEM;
  469. /* IPv6 can be CONFIG enabled and then disabled runtime */
  470. if (!ipv6_mod_enabled())
  471. return 0;
  472. rt6i_table = fib6_new_table(net, vrf->tb_id);
  473. if (!rt6i_table)
  474. goto out;
  475. /* create a dst for routing packets out a VRF device */
  476. rt6 = ip6_dst_alloc(net, dev, flags);
  477. if (!rt6)
  478. goto out;
  479. dst_hold(&rt6->dst);
  480. rt6->rt6i_table = rt6i_table;
  481. rt6->dst.output = vrf_output6;
  482. /* create a dst for local routing - packets sent locally
  483. * to local address via the VRF device as a loopback
  484. */
  485. rt6_local = ip6_dst_alloc(net, dev, flags);
  486. if (!rt6_local) {
  487. dst_release(&rt6->dst);
  488. goto out;
  489. }
  490. dst_hold(&rt6_local->dst);
  491. rt6_local->rt6i_idev = in6_dev_get(dev);
  492. rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
  493. rt6_local->rt6i_table = rt6i_table;
  494. rt6_local->dst.input = ip6_input;
  495. rcu_assign_pointer(vrf->rt6, rt6);
  496. rcu_assign_pointer(vrf->rt6_local, rt6_local);
  497. rc = 0;
  498. out:
  499. return rc;
  500. }
  501. #else
  502. static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
  503. struct sock *sk,
  504. struct sk_buff *skb)
  505. {
  506. return skb;
  507. }
  508. static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
  509. {
  510. }
  511. static int vrf_rt6_create(struct net_device *dev)
  512. {
  513. return 0;
  514. }
  515. #endif
  516. /* modelled after ip_finish_output2 */
  517. static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  518. {
  519. struct dst_entry *dst = skb_dst(skb);
  520. struct rtable *rt = (struct rtable *)dst;
  521. struct net_device *dev = dst->dev;
  522. unsigned int hh_len = LL_RESERVED_SPACE(dev);
  523. struct neighbour *neigh;
  524. u32 nexthop;
  525. int ret = -EINVAL;
  526. nf_reset(skb);
  527. /* Be paranoid, rather than too clever. */
  528. if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
  529. struct sk_buff *skb2;
  530. skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
  531. if (!skb2) {
  532. ret = -ENOMEM;
  533. goto err;
  534. }
  535. if (skb->sk)
  536. skb_set_owner_w(skb2, skb->sk);
  537. consume_skb(skb);
  538. skb = skb2;
  539. }
  540. rcu_read_lock_bh();
  541. nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
  542. neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
  543. if (unlikely(!neigh))
  544. neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
  545. if (!IS_ERR(neigh)) {
  546. sock_confirm_neigh(skb, neigh);
  547. ret = neigh_output(neigh, skb);
  548. }
  549. rcu_read_unlock_bh();
  550. err:
  551. if (unlikely(ret < 0))
  552. vrf_tx_error(skb->dev, skb);
  553. return ret;
  554. }
  555. static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
  556. {
  557. struct net_device *dev = skb_dst(skb)->dev;
  558. IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
  559. skb->dev = dev;
  560. skb->protocol = htons(ETH_P_IP);
  561. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  562. net, sk, skb, NULL, dev,
  563. vrf_finish_output,
  564. !(IPCB(skb)->flags & IPSKB_REROUTED));
  565. }
  566. /* set dst on skb to send packet to us via dev_xmit path. Allows
  567. * packet to go through device based features such as qdisc, netfilter
  568. * hooks and packet sockets with skb->dev set to vrf device.
  569. */
  570. static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
  571. struct sk_buff *skb)
  572. {
  573. struct net_vrf *vrf = netdev_priv(vrf_dev);
  574. struct dst_entry *dst = NULL;
  575. struct rtable *rth;
  576. rcu_read_lock();
  577. rth = rcu_dereference(vrf->rth);
  578. if (likely(rth)) {
  579. dst = &rth->dst;
  580. dst_hold(dst);
  581. }
  582. rcu_read_unlock();
  583. if (unlikely(!dst)) {
  584. vrf_tx_error(vrf_dev, skb);
  585. return NULL;
  586. }
  587. skb_dst_drop(skb);
  588. skb_dst_set(skb, dst);
  589. return skb;
  590. }
  591. static int vrf_output_direct(struct net *net, struct sock *sk,
  592. struct sk_buff *skb)
  593. {
  594. skb->protocol = htons(ETH_P_IP);
  595. return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
  596. net, sk, skb, NULL, skb->dev,
  597. vrf_finish_direct,
  598. !(IPCB(skb)->flags & IPSKB_REROUTED));
  599. }
  600. static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
  601. struct sock *sk,
  602. struct sk_buff *skb)
  603. {
  604. struct net *net = dev_net(vrf_dev);
  605. int err;
  606. skb->dev = vrf_dev;
  607. err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
  608. skb, NULL, vrf_dev, vrf_output_direct);
  609. if (likely(err == 1))
  610. err = vrf_output_direct(net, sk, skb);
  611. /* reset skb device */
  612. if (likely(err == 1))
  613. nf_reset(skb);
  614. else
  615. skb = NULL;
  616. return skb;
  617. }
  618. static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
  619. struct sock *sk,
  620. struct sk_buff *skb)
  621. {
  622. /* don't divert multicast */
  623. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  624. return skb;
  625. if (qdisc_tx_is_default(vrf_dev))
  626. return vrf_ip_out_direct(vrf_dev, sk, skb);
  627. return vrf_ip_out_redirect(vrf_dev, skb);
  628. }
  629. /* called with rcu lock held */
  630. static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
  631. struct sock *sk,
  632. struct sk_buff *skb,
  633. u16 proto)
  634. {
  635. switch (proto) {
  636. case AF_INET:
  637. return vrf_ip_out(vrf_dev, sk, skb);
  638. case AF_INET6:
  639. return vrf_ip6_out(vrf_dev, sk, skb);
  640. }
  641. return skb;
  642. }
  643. /* holding rtnl */
  644. static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
  645. {
  646. struct rtable *rth = rtnl_dereference(vrf->rth);
  647. struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
  648. struct net *net = dev_net(dev);
  649. struct dst_entry *dst;
  650. RCU_INIT_POINTER(vrf->rth, NULL);
  651. RCU_INIT_POINTER(vrf->rth_local, NULL);
  652. synchronize_rcu();
  653. /* move dev in dst's to loopback so this VRF device can be deleted
  654. * - based on dst_ifdown
  655. */
  656. if (rth) {
  657. dst = &rth->dst;
  658. dev_put(dst->dev);
  659. dst->dev = net->loopback_dev;
  660. dev_hold(dst->dev);
  661. dst_release(dst);
  662. }
  663. if (rth_local) {
  664. dst = &rth_local->dst;
  665. dev_put(dst->dev);
  666. dst->dev = net->loopback_dev;
  667. dev_hold(dst->dev);
  668. dst_release(dst);
  669. }
  670. }
  671. static int vrf_rtable_create(struct net_device *dev)
  672. {
  673. struct net_vrf *vrf = netdev_priv(dev);
  674. struct rtable *rth, *rth_local;
  675. if (!fib_new_table(dev_net(dev), vrf->tb_id))
  676. return -ENOMEM;
  677. /* create a dst for routing packets out through a VRF device */
  678. rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
  679. if (!rth)
  680. return -ENOMEM;
  681. /* create a dst for local ingress routing - packets sent locally
  682. * to local address via the VRF device as a loopback
  683. */
  684. rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
  685. if (!rth_local) {
  686. dst_release(&rth->dst);
  687. return -ENOMEM;
  688. }
  689. rth->dst.output = vrf_output;
  690. rth->rt_table_id = vrf->tb_id;
  691. rth_local->rt_table_id = vrf->tb_id;
  692. rcu_assign_pointer(vrf->rth, rth);
  693. rcu_assign_pointer(vrf->rth_local, rth_local);
  694. return 0;
  695. }
  696. /**************************** device handling ********************/
  697. /* cycle interface to flush neighbor cache and move routes across tables */
  698. static void cycle_netdev(struct net_device *dev)
  699. {
  700. unsigned int flags = dev->flags;
  701. int ret;
  702. if (!netif_running(dev))
  703. return;
  704. ret = dev_change_flags(dev, flags & ~IFF_UP);
  705. if (ret >= 0)
  706. ret = dev_change_flags(dev, flags);
  707. if (ret < 0) {
  708. netdev_err(dev,
  709. "Failed to cycle device %s; route tables might be wrong!\n",
  710. dev->name);
  711. }
  712. }
  713. static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
  714. {
  715. int ret;
  716. /* do not allow loopback device to be enslaved to a VRF.
  717. * The vrf device acts as the loopback for the vrf.
  718. */
  719. if (port_dev == dev_net(dev)->loopback_dev)
  720. return -EOPNOTSUPP;
  721. port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
  722. ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
  723. if (ret < 0)
  724. goto err;
  725. cycle_netdev(port_dev);
  726. return 0;
  727. err:
  728. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  729. return ret;
  730. }
  731. static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
  732. {
  733. if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
  734. return -EINVAL;
  735. return do_vrf_add_slave(dev, port_dev);
  736. }
  737. /* inverse of do_vrf_add_slave */
  738. static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  739. {
  740. netdev_upper_dev_unlink(port_dev, dev);
  741. port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
  742. cycle_netdev(port_dev);
  743. return 0;
  744. }
  745. static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
  746. {
  747. return do_vrf_del_slave(dev, port_dev);
  748. }
  749. static void vrf_dev_uninit(struct net_device *dev)
  750. {
  751. struct net_vrf *vrf = netdev_priv(dev);
  752. struct net_device *port_dev;
  753. struct list_head *iter;
  754. vrf_rtable_release(dev, vrf);
  755. vrf_rt6_release(dev, vrf);
  756. netdev_for_each_lower_dev(dev, port_dev, iter)
  757. vrf_del_slave(dev, port_dev);
  758. free_percpu(dev->dstats);
  759. dev->dstats = NULL;
  760. }
  761. static int vrf_dev_init(struct net_device *dev)
  762. {
  763. struct net_vrf *vrf = netdev_priv(dev);
  764. dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
  765. if (!dev->dstats)
  766. goto out_nomem;
  767. /* create the default dst which points back to us */
  768. if (vrf_rtable_create(dev) != 0)
  769. goto out_stats;
  770. if (vrf_rt6_create(dev) != 0)
  771. goto out_rth;
  772. dev->flags = IFF_MASTER | IFF_NOARP;
  773. /* MTU is irrelevant for VRF device; set to 64k similar to lo */
  774. dev->mtu = 64 * 1024;
  775. /* similarly, oper state is irrelevant; set to up to avoid confusion */
  776. dev->operstate = IF_OPER_UP;
  777. netdev_lockdep_set_classes(dev);
  778. return 0;
  779. out_rth:
  780. vrf_rtable_release(dev, vrf);
  781. out_stats:
  782. free_percpu(dev->dstats);
  783. dev->dstats = NULL;
  784. out_nomem:
  785. return -ENOMEM;
  786. }
  787. static const struct net_device_ops vrf_netdev_ops = {
  788. .ndo_init = vrf_dev_init,
  789. .ndo_uninit = vrf_dev_uninit,
  790. .ndo_start_xmit = vrf_xmit,
  791. .ndo_get_stats64 = vrf_get_stats64,
  792. .ndo_add_slave = vrf_add_slave,
  793. .ndo_del_slave = vrf_del_slave,
  794. };
  795. static u32 vrf_fib_table(const struct net_device *dev)
  796. {
  797. struct net_vrf *vrf = netdev_priv(dev);
  798. return vrf->tb_id;
  799. }
  800. static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
  801. {
  802. kfree_skb(skb);
  803. return 0;
  804. }
  805. static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
  806. struct sk_buff *skb,
  807. struct net_device *dev)
  808. {
  809. struct net *net = dev_net(dev);
  810. if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
  811. skb = NULL; /* kfree_skb(skb) handled by nf code */
  812. return skb;
  813. }
  814. #if IS_ENABLED(CONFIG_IPV6)
  815. /* neighbor handling is done with actual device; do not want
  816. * to flip skb->dev for those ndisc packets. This really fails
  817. * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
  818. * a start.
  819. */
  820. static bool ipv6_ndisc_frame(const struct sk_buff *skb)
  821. {
  822. const struct ipv6hdr *iph = ipv6_hdr(skb);
  823. bool rc = false;
  824. if (iph->nexthdr == NEXTHDR_ICMP) {
  825. const struct icmp6hdr *icmph;
  826. struct icmp6hdr _icmph;
  827. icmph = skb_header_pointer(skb, sizeof(*iph),
  828. sizeof(_icmph), &_icmph);
  829. if (!icmph)
  830. goto out;
  831. switch (icmph->icmp6_type) {
  832. case NDISC_ROUTER_SOLICITATION:
  833. case NDISC_ROUTER_ADVERTISEMENT:
  834. case NDISC_NEIGHBOUR_SOLICITATION:
  835. case NDISC_NEIGHBOUR_ADVERTISEMENT:
  836. case NDISC_REDIRECT:
  837. rc = true;
  838. break;
  839. }
  840. }
  841. out:
  842. return rc;
  843. }
  844. static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
  845. const struct net_device *dev,
  846. struct flowi6 *fl6,
  847. int ifindex,
  848. int flags)
  849. {
  850. struct net_vrf *vrf = netdev_priv(dev);
  851. struct fib6_table *table = NULL;
  852. struct rt6_info *rt6;
  853. rcu_read_lock();
  854. /* fib6_table does not have a refcnt and can not be freed */
  855. rt6 = rcu_dereference(vrf->rt6);
  856. if (likely(rt6))
  857. table = rt6->rt6i_table;
  858. rcu_read_unlock();
  859. if (!table)
  860. return NULL;
  861. return ip6_pol_route(net, table, ifindex, fl6, flags);
  862. }
  863. static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
  864. int ifindex)
  865. {
  866. const struct ipv6hdr *iph = ipv6_hdr(skb);
  867. struct flowi6 fl6 = {
  868. .daddr = iph->daddr,
  869. .saddr = iph->saddr,
  870. .flowlabel = ip6_flowinfo(iph),
  871. .flowi6_mark = skb->mark,
  872. .flowi6_proto = iph->nexthdr,
  873. .flowi6_iif = ifindex,
  874. };
  875. struct net *net = dev_net(vrf_dev);
  876. struct rt6_info *rt6;
  877. rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
  878. RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
  879. if (unlikely(!rt6))
  880. return;
  881. if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
  882. return;
  883. skb_dst_set(skb, &rt6->dst);
  884. }
  885. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  886. struct sk_buff *skb)
  887. {
  888. int orig_iif = skb->skb_iif;
  889. bool need_strict;
  890. /* loopback traffic; do not push through packet taps again.
  891. * Reset pkt_type for upper layers to process skb
  892. */
  893. if (skb->pkt_type == PACKET_LOOPBACK) {
  894. skb->dev = vrf_dev;
  895. skb->skb_iif = vrf_dev->ifindex;
  896. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  897. skb->pkt_type = PACKET_HOST;
  898. goto out;
  899. }
  900. /* if packet is NDISC or addressed to multicast or link-local
  901. * then keep the ingress interface
  902. */
  903. need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
  904. if (!ipv6_ndisc_frame(skb) && !need_strict) {
  905. vrf_rx_stats(vrf_dev, skb->len);
  906. skb->dev = vrf_dev;
  907. skb->skb_iif = vrf_dev->ifindex;
  908. if (!list_empty(&vrf_dev->ptype_all)) {
  909. skb_push(skb, skb->mac_len);
  910. dev_queue_xmit_nit(skb, vrf_dev);
  911. skb_pull(skb, skb->mac_len);
  912. }
  913. IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
  914. }
  915. if (need_strict)
  916. vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
  917. skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
  918. out:
  919. return skb;
  920. }
  921. #else
  922. static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
  923. struct sk_buff *skb)
  924. {
  925. return skb;
  926. }
  927. #endif
  928. static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
  929. struct sk_buff *skb)
  930. {
  931. skb->dev = vrf_dev;
  932. skb->skb_iif = vrf_dev->ifindex;
  933. IPCB(skb)->flags |= IPSKB_L3SLAVE;
  934. if (ipv4_is_multicast(ip_hdr(skb)->daddr))
  935. goto out;
  936. /* loopback traffic; do not push through packet taps again.
  937. * Reset pkt_type for upper layers to process skb
  938. */
  939. if (skb->pkt_type == PACKET_LOOPBACK) {
  940. skb->pkt_type = PACKET_HOST;
  941. goto out;
  942. }
  943. vrf_rx_stats(vrf_dev, skb->len);
  944. if (!list_empty(&vrf_dev->ptype_all)) {
  945. skb_push(skb, skb->mac_len);
  946. dev_queue_xmit_nit(skb, vrf_dev);
  947. skb_pull(skb, skb->mac_len);
  948. }
  949. skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
  950. out:
  951. return skb;
  952. }
  953. /* called with rcu lock held */
  954. static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
  955. struct sk_buff *skb,
  956. u16 proto)
  957. {
  958. switch (proto) {
  959. case AF_INET:
  960. return vrf_ip_rcv(vrf_dev, skb);
  961. case AF_INET6:
  962. return vrf_ip6_rcv(vrf_dev, skb);
  963. }
  964. return skb;
  965. }
  966. #if IS_ENABLED(CONFIG_IPV6)
  967. /* send to link-local or multicast address via interface enslaved to
  968. * VRF device. Force lookup to VRF table without changing flow struct
  969. */
  970. static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
  971. struct flowi6 *fl6)
  972. {
  973. struct net *net = dev_net(dev);
  974. int flags = RT6_LOOKUP_F_IFACE;
  975. struct dst_entry *dst = NULL;
  976. struct rt6_info *rt;
  977. /* VRF device does not have a link-local address and
  978. * sending packets to link-local or mcast addresses over
  979. * a VRF device does not make sense
  980. */
  981. if (fl6->flowi6_oif == dev->ifindex) {
  982. dst = &net->ipv6.ip6_null_entry->dst;
  983. dst_hold(dst);
  984. return dst;
  985. }
  986. if (!ipv6_addr_any(&fl6->saddr))
  987. flags |= RT6_LOOKUP_F_HAS_SADDR;
  988. rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
  989. if (rt)
  990. dst = &rt->dst;
  991. return dst;
  992. }
  993. #endif
  994. static const struct l3mdev_ops vrf_l3mdev_ops = {
  995. .l3mdev_fib_table = vrf_fib_table,
  996. .l3mdev_l3_rcv = vrf_l3_rcv,
  997. .l3mdev_l3_out = vrf_l3_out,
  998. #if IS_ENABLED(CONFIG_IPV6)
  999. .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
  1000. #endif
  1001. };
  1002. static void vrf_get_drvinfo(struct net_device *dev,
  1003. struct ethtool_drvinfo *info)
  1004. {
  1005. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  1006. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1007. }
  1008. static const struct ethtool_ops vrf_ethtool_ops = {
  1009. .get_drvinfo = vrf_get_drvinfo,
  1010. };
  1011. static inline size_t vrf_fib_rule_nl_size(void)
  1012. {
  1013. size_t sz;
  1014. sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
  1015. sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
  1016. sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
  1017. return sz;
  1018. }
  1019. static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
  1020. {
  1021. struct fib_rule_hdr *frh;
  1022. struct nlmsghdr *nlh;
  1023. struct sk_buff *skb;
  1024. int err;
  1025. if (family == AF_INET6 && !ipv6_mod_enabled())
  1026. return 0;
  1027. skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
  1028. if (!skb)
  1029. return -ENOMEM;
  1030. nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
  1031. if (!nlh)
  1032. goto nla_put_failure;
  1033. /* rule only needs to appear once */
  1034. nlh->nlmsg_flags |= NLM_F_EXCL;
  1035. frh = nlmsg_data(nlh);
  1036. memset(frh, 0, sizeof(*frh));
  1037. frh->family = family;
  1038. frh->action = FR_ACT_TO_TBL;
  1039. if (nla_put_u32(skb, FRA_L3MDEV, 1))
  1040. goto nla_put_failure;
  1041. if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
  1042. goto nla_put_failure;
  1043. nlmsg_end(skb, nlh);
  1044. /* fib_nl_{new,del}rule handling looks for net from skb->sk */
  1045. skb->sk = dev_net(dev)->rtnl;
  1046. if (add_it) {
  1047. err = fib_nl_newrule(skb, nlh, NULL);
  1048. if (err == -EEXIST)
  1049. err = 0;
  1050. } else {
  1051. err = fib_nl_delrule(skb, nlh, NULL);
  1052. if (err == -ENOENT)
  1053. err = 0;
  1054. }
  1055. nlmsg_free(skb);
  1056. return err;
  1057. nla_put_failure:
  1058. nlmsg_free(skb);
  1059. return -EMSGSIZE;
  1060. }
  1061. static int vrf_add_fib_rules(const struct net_device *dev)
  1062. {
  1063. int err;
  1064. err = vrf_fib_rule(dev, AF_INET, true);
  1065. if (err < 0)
  1066. goto out_err;
  1067. err = vrf_fib_rule(dev, AF_INET6, true);
  1068. if (err < 0)
  1069. goto ipv6_err;
  1070. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1071. err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
  1072. if (err < 0)
  1073. goto ipmr_err;
  1074. #endif
  1075. return 0;
  1076. #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
  1077. ipmr_err:
  1078. vrf_fib_rule(dev, AF_INET6, false);
  1079. #endif
  1080. ipv6_err:
  1081. vrf_fib_rule(dev, AF_INET, false);
  1082. out_err:
  1083. netdev_err(dev, "Failed to add FIB rules.\n");
  1084. return err;
  1085. }
  1086. static void vrf_setup(struct net_device *dev)
  1087. {
  1088. ether_setup(dev);
  1089. /* Initialize the device structure. */
  1090. dev->netdev_ops = &vrf_netdev_ops;
  1091. dev->l3mdev_ops = &vrf_l3mdev_ops;
  1092. dev->ethtool_ops = &vrf_ethtool_ops;
  1093. dev->destructor = free_netdev;
  1094. /* Fill in device structure with ethernet-generic values. */
  1095. eth_hw_addr_random(dev);
  1096. /* don't acquire vrf device's netif_tx_lock when transmitting */
  1097. dev->features |= NETIF_F_LLTX;
  1098. /* don't allow vrf devices to change network namespaces. */
  1099. dev->features |= NETIF_F_NETNS_LOCAL;
  1100. /* does not make sense for a VLAN to be added to a vrf device */
  1101. dev->features |= NETIF_F_VLAN_CHALLENGED;
  1102. /* enable offload features */
  1103. dev->features |= NETIF_F_GSO_SOFTWARE;
  1104. dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
  1105. dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
  1106. dev->hw_features = dev->features;
  1107. dev->hw_enc_features = dev->features;
  1108. /* default to no qdisc; user can add if desired */
  1109. dev->priv_flags |= IFF_NO_QUEUE;
  1110. }
  1111. static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
  1112. {
  1113. if (tb[IFLA_ADDRESS]) {
  1114. if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
  1115. return -EINVAL;
  1116. if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
  1117. return -EADDRNOTAVAIL;
  1118. }
  1119. return 0;
  1120. }
  1121. static void vrf_dellink(struct net_device *dev, struct list_head *head)
  1122. {
  1123. unregister_netdevice_queue(dev, head);
  1124. }
  1125. static int vrf_newlink(struct net *src_net, struct net_device *dev,
  1126. struct nlattr *tb[], struct nlattr *data[])
  1127. {
  1128. struct net_vrf *vrf = netdev_priv(dev);
  1129. int err;
  1130. if (!data || !data[IFLA_VRF_TABLE])
  1131. return -EINVAL;
  1132. vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
  1133. if (vrf->tb_id == RT_TABLE_UNSPEC)
  1134. return -EINVAL;
  1135. dev->priv_flags |= IFF_L3MDEV_MASTER;
  1136. err = register_netdevice(dev);
  1137. if (err)
  1138. goto out;
  1139. if (add_fib_rules) {
  1140. err = vrf_add_fib_rules(dev);
  1141. if (err) {
  1142. unregister_netdevice(dev);
  1143. goto out;
  1144. }
  1145. add_fib_rules = false;
  1146. }
  1147. out:
  1148. return err;
  1149. }
  1150. static size_t vrf_nl_getsize(const struct net_device *dev)
  1151. {
  1152. return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
  1153. }
  1154. static int vrf_fillinfo(struct sk_buff *skb,
  1155. const struct net_device *dev)
  1156. {
  1157. struct net_vrf *vrf = netdev_priv(dev);
  1158. return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
  1159. }
  1160. static size_t vrf_get_slave_size(const struct net_device *bond_dev,
  1161. const struct net_device *slave_dev)
  1162. {
  1163. return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
  1164. }
  1165. static int vrf_fill_slave_info(struct sk_buff *skb,
  1166. const struct net_device *vrf_dev,
  1167. const struct net_device *slave_dev)
  1168. {
  1169. struct net_vrf *vrf = netdev_priv(vrf_dev);
  1170. if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
  1171. return -EMSGSIZE;
  1172. return 0;
  1173. }
  1174. static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
  1175. [IFLA_VRF_TABLE] = { .type = NLA_U32 },
  1176. };
  1177. static struct rtnl_link_ops vrf_link_ops __read_mostly = {
  1178. .kind = DRV_NAME,
  1179. .priv_size = sizeof(struct net_vrf),
  1180. .get_size = vrf_nl_getsize,
  1181. .policy = vrf_nl_policy,
  1182. .validate = vrf_validate,
  1183. .fill_info = vrf_fillinfo,
  1184. .get_slave_size = vrf_get_slave_size,
  1185. .fill_slave_info = vrf_fill_slave_info,
  1186. .newlink = vrf_newlink,
  1187. .dellink = vrf_dellink,
  1188. .setup = vrf_setup,
  1189. .maxtype = IFLA_VRF_MAX,
  1190. };
  1191. static int vrf_device_event(struct notifier_block *unused,
  1192. unsigned long event, void *ptr)
  1193. {
  1194. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1195. /* only care about unregister events to drop slave references */
  1196. if (event == NETDEV_UNREGISTER) {
  1197. struct net_device *vrf_dev;
  1198. if (!netif_is_l3_slave(dev))
  1199. goto out;
  1200. vrf_dev = netdev_master_upper_dev_get(dev);
  1201. vrf_del_slave(vrf_dev, dev);
  1202. }
  1203. out:
  1204. return NOTIFY_DONE;
  1205. }
  1206. static struct notifier_block vrf_notifier_block __read_mostly = {
  1207. .notifier_call = vrf_device_event,
  1208. };
  1209. static int __init vrf_init_module(void)
  1210. {
  1211. int rc;
  1212. register_netdevice_notifier(&vrf_notifier_block);
  1213. rc = rtnl_link_register(&vrf_link_ops);
  1214. if (rc < 0)
  1215. goto error;
  1216. return 0;
  1217. error:
  1218. unregister_netdevice_notifier(&vrf_notifier_block);
  1219. return rc;
  1220. }
  1221. module_init(vrf_init_module);
  1222. MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
  1223. MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
  1224. MODULE_LICENSE("GPL");
  1225. MODULE_ALIAS_RTNL_LINK(DRV_NAME);
  1226. MODULE_VERSION(DRV_VERSION);