mtu3_qmu.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * mtu3_qmu.c - Queue Management Unit driver for device controller
  4. *
  5. * Copyright (C) 2016 MediaTek Inc.
  6. *
  7. * Author: Chunfeng Yun <chunfeng.yun@mediatek.com>
  8. *
  9. * This software is licensed under the terms of the GNU General Public
  10. * License version 2, as published by the Free Software Foundation, and
  11. * may be copied, distributed, and modified under those terms.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. */
  19. /*
  20. * Queue Management Unit (QMU) is designed to unload SW effort
  21. * to serve DMA interrupts.
  22. * By preparing General Purpose Descriptor (GPD) and Buffer Descriptor (BD),
  23. * SW links data buffers and triggers QMU to send / receive data to
  24. * host / from device at a time.
  25. * And now only GPD is supported.
  26. *
  27. * For more detailed information, please refer to QMU Programming Guide
  28. */
  29. #include <linux/dmapool.h>
  30. #include <linux/iopoll.h>
  31. #include "mtu3.h"
  32. #define QMU_CHECKSUM_LEN 16
  33. #define GPD_FLAGS_HWO BIT(0)
  34. #define GPD_FLAGS_BDP BIT(1)
  35. #define GPD_FLAGS_BPS BIT(2)
  36. #define GPD_FLAGS_IOC BIT(7)
  37. #define GPD_EXT_FLAG_ZLP BIT(5)
  38. #define GPD_EXT_NGP(x) (((x) & 0xf) << 4)
  39. #define GPD_EXT_BUF(x) (((x) & 0xf) << 0)
  40. #define HILO_GEN64(hi, lo) (((u64)(hi) << 32) + (lo))
  41. #define HILO_DMA(hi, lo) \
  42. ((dma_addr_t)HILO_GEN64((le32_to_cpu(hi)), (le32_to_cpu(lo))))
  43. static dma_addr_t read_txq_cur_addr(void __iomem *mbase, u8 epnum)
  44. {
  45. u32 txcpr;
  46. u32 txhiar;
  47. txcpr = mtu3_readl(mbase, USB_QMU_TQCPR(epnum));
  48. txhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum));
  49. return HILO_DMA(QMU_CUR_GPD_ADDR_HI(txhiar), txcpr);
  50. }
  51. static dma_addr_t read_rxq_cur_addr(void __iomem *mbase, u8 epnum)
  52. {
  53. u32 rxcpr;
  54. u32 rxhiar;
  55. rxcpr = mtu3_readl(mbase, USB_QMU_RQCPR(epnum));
  56. rxhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum));
  57. return HILO_DMA(QMU_CUR_GPD_ADDR_HI(rxhiar), rxcpr);
  58. }
  59. static void write_txq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma)
  60. {
  61. u32 tqhiar;
  62. mtu3_writel(mbase, USB_QMU_TQSAR(epnum),
  63. cpu_to_le32(lower_32_bits(dma)));
  64. tqhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum));
  65. tqhiar &= ~QMU_START_ADDR_HI_MSK;
  66. tqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma));
  67. mtu3_writel(mbase, USB_QMU_TQHIAR(epnum), tqhiar);
  68. }
  69. static void write_rxq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma)
  70. {
  71. u32 rqhiar;
  72. mtu3_writel(mbase, USB_QMU_RQSAR(epnum),
  73. cpu_to_le32(lower_32_bits(dma)));
  74. rqhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum));
  75. rqhiar &= ~QMU_START_ADDR_HI_MSK;
  76. rqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma));
  77. mtu3_writel(mbase, USB_QMU_RQHIAR(epnum), rqhiar);
  78. }
  79. static struct qmu_gpd *gpd_dma_to_virt(struct mtu3_gpd_ring *ring,
  80. dma_addr_t dma_addr)
  81. {
  82. dma_addr_t dma_base = ring->dma;
  83. struct qmu_gpd *gpd_head = ring->start;
  84. u32 offset = (dma_addr - dma_base) / sizeof(*gpd_head);
  85. if (offset >= MAX_GPD_NUM)
  86. return NULL;
  87. return gpd_head + offset;
  88. }
  89. static dma_addr_t gpd_virt_to_dma(struct mtu3_gpd_ring *ring,
  90. struct qmu_gpd *gpd)
  91. {
  92. dma_addr_t dma_base = ring->dma;
  93. struct qmu_gpd *gpd_head = ring->start;
  94. u32 offset;
  95. offset = gpd - gpd_head;
  96. if (offset >= MAX_GPD_NUM)
  97. return 0;
  98. return dma_base + (offset * sizeof(*gpd));
  99. }
  100. static void gpd_ring_init(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd)
  101. {
  102. ring->start = gpd;
  103. ring->enqueue = gpd;
  104. ring->dequeue = gpd;
  105. ring->end = gpd + MAX_GPD_NUM - 1;
  106. }
  107. static void reset_gpd_list(struct mtu3_ep *mep)
  108. {
  109. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  110. struct qmu_gpd *gpd = ring->start;
  111. if (gpd) {
  112. gpd->flag &= ~GPD_FLAGS_HWO;
  113. gpd_ring_init(ring, gpd);
  114. }
  115. }
  116. int mtu3_gpd_ring_alloc(struct mtu3_ep *mep)
  117. {
  118. struct qmu_gpd *gpd;
  119. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  120. /* software own all gpds as default */
  121. gpd = dma_pool_zalloc(mep->mtu->qmu_gpd_pool, GFP_ATOMIC, &ring->dma);
  122. if (gpd == NULL)
  123. return -ENOMEM;
  124. gpd_ring_init(ring, gpd);
  125. return 0;
  126. }
  127. void mtu3_gpd_ring_free(struct mtu3_ep *mep)
  128. {
  129. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  130. dma_pool_free(mep->mtu->qmu_gpd_pool,
  131. ring->start, ring->dma);
  132. memset(ring, 0, sizeof(*ring));
  133. }
  134. /*
  135. * calculate check sum of a gpd or bd
  136. * add "noinline" and "mb" to prevent wrong calculation
  137. */
  138. static noinline u8 qmu_calc_checksum(u8 *data)
  139. {
  140. u8 chksum = 0;
  141. int i;
  142. data[1] = 0x0; /* set checksum to 0 */
  143. mb(); /* ensure the gpd/bd is really up-to-date */
  144. for (i = 0; i < QMU_CHECKSUM_LEN; i++)
  145. chksum += data[i];
  146. /* Default: HWO=1, @flag[bit0] */
  147. chksum += 1;
  148. return 0xFF - chksum;
  149. }
  150. void mtu3_qmu_resume(struct mtu3_ep *mep)
  151. {
  152. struct mtu3 *mtu = mep->mtu;
  153. void __iomem *mbase = mtu->mac_base;
  154. int epnum = mep->epnum;
  155. u32 offset;
  156. offset = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum);
  157. mtu3_writel(mbase, offset, QMU_Q_RESUME);
  158. if (!(mtu3_readl(mbase, offset) & QMU_Q_ACTIVE))
  159. mtu3_writel(mbase, offset, QMU_Q_RESUME);
  160. }
  161. static struct qmu_gpd *advance_enq_gpd(struct mtu3_gpd_ring *ring)
  162. {
  163. if (ring->enqueue < ring->end)
  164. ring->enqueue++;
  165. else
  166. ring->enqueue = ring->start;
  167. return ring->enqueue;
  168. }
  169. static struct qmu_gpd *advance_deq_gpd(struct mtu3_gpd_ring *ring)
  170. {
  171. if (ring->dequeue < ring->end)
  172. ring->dequeue++;
  173. else
  174. ring->dequeue = ring->start;
  175. return ring->dequeue;
  176. }
  177. /* check if a ring is emtpy */
  178. static int gpd_ring_empty(struct mtu3_gpd_ring *ring)
  179. {
  180. struct qmu_gpd *enq = ring->enqueue;
  181. struct qmu_gpd *next;
  182. if (ring->enqueue < ring->end)
  183. next = enq + 1;
  184. else
  185. next = ring->start;
  186. /* one gpd is reserved to simplify gpd preparation */
  187. return next == ring->dequeue;
  188. }
  189. int mtu3_prepare_transfer(struct mtu3_ep *mep)
  190. {
  191. return gpd_ring_empty(&mep->gpd_ring);
  192. }
  193. static int mtu3_prepare_tx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  194. {
  195. struct qmu_gpd *enq;
  196. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  197. struct qmu_gpd *gpd = ring->enqueue;
  198. struct usb_request *req = &mreq->request;
  199. dma_addr_t enq_dma;
  200. u16 ext_addr;
  201. /* set all fields to zero as default value */
  202. memset(gpd, 0, sizeof(*gpd));
  203. gpd->buffer = cpu_to_le32(lower_32_bits(req->dma));
  204. ext_addr = GPD_EXT_BUF(upper_32_bits(req->dma));
  205. gpd->buf_len = cpu_to_le16(req->length);
  206. gpd->flag |= GPD_FLAGS_IOC;
  207. /* get the next GPD */
  208. enq = advance_enq_gpd(ring);
  209. enq_dma = gpd_virt_to_dma(ring, enq);
  210. dev_dbg(mep->mtu->dev, "TX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n",
  211. mep->epnum, gpd, enq, &enq_dma);
  212. enq->flag &= ~GPD_FLAGS_HWO;
  213. gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma));
  214. ext_addr |= GPD_EXT_NGP(upper_32_bits(enq_dma));
  215. gpd->tx_ext_addr = cpu_to_le16(ext_addr);
  216. if (req->zero)
  217. gpd->ext_flag |= GPD_EXT_FLAG_ZLP;
  218. gpd->chksum = qmu_calc_checksum((u8 *)gpd);
  219. gpd->flag |= GPD_FLAGS_HWO;
  220. mreq->gpd = gpd;
  221. return 0;
  222. }
  223. static int mtu3_prepare_rx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  224. {
  225. struct qmu_gpd *enq;
  226. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  227. struct qmu_gpd *gpd = ring->enqueue;
  228. struct usb_request *req = &mreq->request;
  229. dma_addr_t enq_dma;
  230. u16 ext_addr;
  231. /* set all fields to zero as default value */
  232. memset(gpd, 0, sizeof(*gpd));
  233. gpd->buffer = cpu_to_le32(lower_32_bits(req->dma));
  234. ext_addr = GPD_EXT_BUF(upper_32_bits(req->dma));
  235. gpd->data_buf_len = cpu_to_le16(req->length);
  236. gpd->flag |= GPD_FLAGS_IOC;
  237. /* get the next GPD */
  238. enq = advance_enq_gpd(ring);
  239. enq_dma = gpd_virt_to_dma(ring, enq);
  240. dev_dbg(mep->mtu->dev, "RX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n",
  241. mep->epnum, gpd, enq, &enq_dma);
  242. enq->flag &= ~GPD_FLAGS_HWO;
  243. gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma));
  244. ext_addr |= GPD_EXT_NGP(upper_32_bits(enq_dma));
  245. gpd->rx_ext_addr = cpu_to_le16(ext_addr);
  246. gpd->chksum = qmu_calc_checksum((u8 *)gpd);
  247. gpd->flag |= GPD_FLAGS_HWO;
  248. mreq->gpd = gpd;
  249. return 0;
  250. }
  251. void mtu3_insert_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq)
  252. {
  253. if (mep->is_in)
  254. mtu3_prepare_tx_gpd(mep, mreq);
  255. else
  256. mtu3_prepare_rx_gpd(mep, mreq);
  257. }
  258. int mtu3_qmu_start(struct mtu3_ep *mep)
  259. {
  260. struct mtu3 *mtu = mep->mtu;
  261. void __iomem *mbase = mtu->mac_base;
  262. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  263. u8 epnum = mep->epnum;
  264. if (mep->is_in) {
  265. /* set QMU start address */
  266. write_txq_start_addr(mbase, epnum, ring->dma);
  267. mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_DMAREQEN);
  268. mtu3_setbits(mbase, U3D_QCR0, QMU_TX_CS_EN(epnum));
  269. /* send zero length packet according to ZLP flag in GPD */
  270. mtu3_setbits(mbase, U3D_QCR1, QMU_TX_ZLP(epnum));
  271. mtu3_writel(mbase, U3D_TQERRIESR0,
  272. QMU_TX_LEN_ERR(epnum) | QMU_TX_CS_ERR(epnum));
  273. if (mtu3_readl(mbase, USB_QMU_TQCSR(epnum)) & QMU_Q_ACTIVE) {
  274. dev_warn(mtu->dev, "Tx %d Active Now!\n", epnum);
  275. return 0;
  276. }
  277. mtu3_writel(mbase, USB_QMU_TQCSR(epnum), QMU_Q_START);
  278. } else {
  279. write_rxq_start_addr(mbase, epnum, ring->dma);
  280. mtu3_setbits(mbase, MU3D_EP_RXCR0(epnum), RX_DMAREQEN);
  281. mtu3_setbits(mbase, U3D_QCR0, QMU_RX_CS_EN(epnum));
  282. /* don't expect ZLP */
  283. mtu3_clrbits(mbase, U3D_QCR3, QMU_RX_ZLP(epnum));
  284. /* move to next GPD when receive ZLP */
  285. mtu3_setbits(mbase, U3D_QCR3, QMU_RX_COZ(epnum));
  286. mtu3_writel(mbase, U3D_RQERRIESR0,
  287. QMU_RX_LEN_ERR(epnum) | QMU_RX_CS_ERR(epnum));
  288. mtu3_writel(mbase, U3D_RQERRIESR1, QMU_RX_ZLP_ERR(epnum));
  289. if (mtu3_readl(mbase, USB_QMU_RQCSR(epnum)) & QMU_Q_ACTIVE) {
  290. dev_warn(mtu->dev, "Rx %d Active Now!\n", epnum);
  291. return 0;
  292. }
  293. mtu3_writel(mbase, USB_QMU_RQCSR(epnum), QMU_Q_START);
  294. }
  295. return 0;
  296. }
  297. /* may called in atomic context */
  298. void mtu3_qmu_stop(struct mtu3_ep *mep)
  299. {
  300. struct mtu3 *mtu = mep->mtu;
  301. void __iomem *mbase = mtu->mac_base;
  302. int epnum = mep->epnum;
  303. u32 value = 0;
  304. u32 qcsr;
  305. int ret;
  306. qcsr = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum);
  307. if (!(mtu3_readl(mbase, qcsr) & QMU_Q_ACTIVE)) {
  308. dev_dbg(mtu->dev, "%s's qmu is inactive now!\n", mep->name);
  309. return;
  310. }
  311. mtu3_writel(mbase, qcsr, QMU_Q_STOP);
  312. ret = readl_poll_timeout_atomic(mbase + qcsr, value,
  313. !(value & QMU_Q_ACTIVE), 1, 1000);
  314. if (ret) {
  315. dev_err(mtu->dev, "stop %s's qmu failed\n", mep->name);
  316. return;
  317. }
  318. dev_dbg(mtu->dev, "%s's qmu stop now!\n", mep->name);
  319. }
  320. void mtu3_qmu_flush(struct mtu3_ep *mep)
  321. {
  322. dev_dbg(mep->mtu->dev, "%s flush QMU %s\n", __func__,
  323. ((mep->is_in) ? "TX" : "RX"));
  324. /*Stop QMU */
  325. mtu3_qmu_stop(mep);
  326. reset_gpd_list(mep);
  327. }
  328. /*
  329. * QMU can't transfer zero length packet directly (a hardware limit
  330. * on old SoCs), so when needs to send ZLP, we intentionally trigger
  331. * a length error interrupt, and in the ISR sends a ZLP by BMU.
  332. */
  333. static void qmu_tx_zlp_error_handler(struct mtu3 *mtu, u8 epnum)
  334. {
  335. struct mtu3_ep *mep = mtu->in_eps + epnum;
  336. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  337. void __iomem *mbase = mtu->mac_base;
  338. struct qmu_gpd *gpd_current = NULL;
  339. struct usb_request *req = NULL;
  340. struct mtu3_request *mreq;
  341. dma_addr_t cur_gpd_dma;
  342. u32 txcsr = 0;
  343. int ret;
  344. mreq = next_request(mep);
  345. if (mreq && mreq->request.length == 0)
  346. req = &mreq->request;
  347. else
  348. return;
  349. cur_gpd_dma = read_txq_cur_addr(mbase, epnum);
  350. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  351. if (le16_to_cpu(gpd_current->buf_len) != 0) {
  352. dev_err(mtu->dev, "TX EP%d buffer length error(!=0)\n", epnum);
  353. return;
  354. }
  355. dev_dbg(mtu->dev, "%s send ZLP for req=%p\n", __func__, mreq);
  356. mtu3_clrbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN);
  357. ret = readl_poll_timeout_atomic(mbase + MU3D_EP_TXCR0(mep->epnum),
  358. txcsr, !(txcsr & TX_FIFOFULL), 1, 1000);
  359. if (ret) {
  360. dev_err(mtu->dev, "%s wait for fifo empty fail\n", __func__);
  361. return;
  362. }
  363. mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_TXPKTRDY);
  364. /* by pass the current GDP */
  365. gpd_current->flag |= GPD_FLAGS_BPS;
  366. gpd_current->chksum = qmu_calc_checksum((u8 *)gpd_current);
  367. gpd_current->flag |= GPD_FLAGS_HWO;
  368. /*enable DMAREQEN, switch back to QMU mode */
  369. mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN);
  370. mtu3_qmu_resume(mep);
  371. }
  372. /*
  373. * NOTE: request list maybe is already empty as following case:
  374. * queue_tx --> qmu_interrupt(clear interrupt pending, schedule tasklet)-->
  375. * queue_tx --> process_tasklet(meanwhile, the second one is transferred,
  376. * tasklet process both of them)-->qmu_interrupt for second one.
  377. * To avoid upper case, put qmu_done_tx in ISR directly to process it.
  378. */
  379. static void qmu_done_tx(struct mtu3 *mtu, u8 epnum)
  380. {
  381. struct mtu3_ep *mep = mtu->in_eps + epnum;
  382. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  383. void __iomem *mbase = mtu->mac_base;
  384. struct qmu_gpd *gpd = ring->dequeue;
  385. struct qmu_gpd *gpd_current = NULL;
  386. struct usb_request *request = NULL;
  387. struct mtu3_request *mreq;
  388. dma_addr_t cur_gpd_dma;
  389. /*transfer phy address got from QMU register to virtual address */
  390. cur_gpd_dma = read_txq_cur_addr(mbase, epnum);
  391. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  392. dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n",
  393. __func__, epnum, gpd, gpd_current, ring->enqueue);
  394. while (gpd != gpd_current && !(gpd->flag & GPD_FLAGS_HWO)) {
  395. mreq = next_request(mep);
  396. if (mreq == NULL || mreq->gpd != gpd) {
  397. dev_err(mtu->dev, "no correct TX req is found\n");
  398. break;
  399. }
  400. request = &mreq->request;
  401. request->actual = le16_to_cpu(gpd->buf_len);
  402. mtu3_req_complete(mep, request, 0);
  403. gpd = advance_deq_gpd(ring);
  404. }
  405. dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n",
  406. __func__, epnum, ring->dequeue, ring->enqueue);
  407. }
  408. static void qmu_done_rx(struct mtu3 *mtu, u8 epnum)
  409. {
  410. struct mtu3_ep *mep = mtu->out_eps + epnum;
  411. struct mtu3_gpd_ring *ring = &mep->gpd_ring;
  412. void __iomem *mbase = mtu->mac_base;
  413. struct qmu_gpd *gpd = ring->dequeue;
  414. struct qmu_gpd *gpd_current = NULL;
  415. struct usb_request *req = NULL;
  416. struct mtu3_request *mreq;
  417. dma_addr_t cur_gpd_dma;
  418. cur_gpd_dma = read_rxq_cur_addr(mbase, epnum);
  419. gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma);
  420. dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n",
  421. __func__, epnum, gpd, gpd_current, ring->enqueue);
  422. while (gpd != gpd_current && !(gpd->flag & GPD_FLAGS_HWO)) {
  423. mreq = next_request(mep);
  424. if (mreq == NULL || mreq->gpd != gpd) {
  425. dev_err(mtu->dev, "no correct RX req is found\n");
  426. break;
  427. }
  428. req = &mreq->request;
  429. req->actual = le16_to_cpu(gpd->buf_len);
  430. mtu3_req_complete(mep, req, 0);
  431. gpd = advance_deq_gpd(ring);
  432. }
  433. dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n",
  434. __func__, epnum, ring->dequeue, ring->enqueue);
  435. }
  436. static void qmu_done_isr(struct mtu3 *mtu, u32 done_status)
  437. {
  438. int i;
  439. for (i = 1; i < mtu->num_eps; i++) {
  440. if (done_status & QMU_RX_DONE_INT(i))
  441. qmu_done_rx(mtu, i);
  442. if (done_status & QMU_TX_DONE_INT(i))
  443. qmu_done_tx(mtu, i);
  444. }
  445. }
  446. static void qmu_exception_isr(struct mtu3 *mtu, u32 qmu_status)
  447. {
  448. void __iomem *mbase = mtu->mac_base;
  449. u32 errval;
  450. int i;
  451. if ((qmu_status & RXQ_CSERR_INT) || (qmu_status & RXQ_LENERR_INT)) {
  452. errval = mtu3_readl(mbase, U3D_RQERRIR0);
  453. for (i = 1; i < mtu->num_eps; i++) {
  454. if (errval & QMU_RX_CS_ERR(i))
  455. dev_err(mtu->dev, "Rx %d CS error!\n", i);
  456. if (errval & QMU_RX_LEN_ERR(i))
  457. dev_err(mtu->dev, "RX %d Length error\n", i);
  458. }
  459. mtu3_writel(mbase, U3D_RQERRIR0, errval);
  460. }
  461. if (qmu_status & RXQ_ZLPERR_INT) {
  462. errval = mtu3_readl(mbase, U3D_RQERRIR1);
  463. for (i = 1; i < mtu->num_eps; i++) {
  464. if (errval & QMU_RX_ZLP_ERR(i))
  465. dev_dbg(mtu->dev, "RX EP%d Recv ZLP\n", i);
  466. }
  467. mtu3_writel(mbase, U3D_RQERRIR1, errval);
  468. }
  469. if ((qmu_status & TXQ_CSERR_INT) || (qmu_status & TXQ_LENERR_INT)) {
  470. errval = mtu3_readl(mbase, U3D_TQERRIR0);
  471. for (i = 1; i < mtu->num_eps; i++) {
  472. if (errval & QMU_TX_CS_ERR(i))
  473. dev_err(mtu->dev, "Tx %d checksum error!\n", i);
  474. if (errval & QMU_TX_LEN_ERR(i))
  475. qmu_tx_zlp_error_handler(mtu, i);
  476. }
  477. mtu3_writel(mbase, U3D_TQERRIR0, errval);
  478. }
  479. }
  480. irqreturn_t mtu3_qmu_isr(struct mtu3 *mtu)
  481. {
  482. void __iomem *mbase = mtu->mac_base;
  483. u32 qmu_status;
  484. u32 qmu_done_status;
  485. /* U3D_QISAR1 is read update */
  486. qmu_status = mtu3_readl(mbase, U3D_QISAR1);
  487. qmu_status &= mtu3_readl(mbase, U3D_QIER1);
  488. qmu_done_status = mtu3_readl(mbase, U3D_QISAR0);
  489. qmu_done_status &= mtu3_readl(mbase, U3D_QIER0);
  490. mtu3_writel(mbase, U3D_QISAR0, qmu_done_status); /* W1C */
  491. dev_dbg(mtu->dev, "=== QMUdone[tx=%x, rx=%x] QMUexp[%x] ===\n",
  492. (qmu_done_status & 0xFFFF), qmu_done_status >> 16,
  493. qmu_status);
  494. if (qmu_done_status)
  495. qmu_done_isr(mtu, qmu_done_status);
  496. if (qmu_status)
  497. qmu_exception_isr(mtu, qmu_status);
  498. return IRQ_HANDLED;
  499. }
  500. int mtu3_qmu_init(struct mtu3 *mtu)
  501. {
  502. compiletime_assert(QMU_GPD_SIZE == 16, "QMU_GPD size SHOULD be 16B");
  503. mtu->qmu_gpd_pool = dma_pool_create("QMU_GPD", mtu->dev,
  504. QMU_GPD_RING_SIZE, QMU_GPD_SIZE, 0);
  505. if (!mtu->qmu_gpd_pool)
  506. return -ENOMEM;
  507. return 0;
  508. }
  509. void mtu3_qmu_exit(struct mtu3 *mtu)
  510. {
  511. dma_pool_destroy(mtu->qmu_gpd_pool);
  512. }