raid5.c 159 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743
  1. /*
  2. * raid5.c : Multiple Devices driver for Linux
  3. * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  4. * Copyright (C) 1999, 2000 Ingo Molnar
  5. * Copyright (C) 2002, 2003 H. Peter Anvin
  6. *
  7. * RAID-4/5/6 management functions.
  8. * Thanks to Penguin Computing for making the RAID-6 development possible
  9. * by donating a test server!
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. /*
  21. * BITMAP UNPLUGGING:
  22. *
  23. * The sequencing for updating the bitmap reliably is a little
  24. * subtle (and I got it wrong the first time) so it deserves some
  25. * explanation.
  26. *
  27. * We group bitmap updates into batches. Each batch has a number.
  28. * We may write out several batches at once, but that isn't very important.
  29. * conf->seq_write is the number of the last batch successfully written.
  30. * conf->seq_flush is the number of the last batch that was closed to
  31. * new additions.
  32. * When we discover that we will need to write to any block in a stripe
  33. * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  34. * the number of the batch it will be in. This is seq_flush+1.
  35. * When we are ready to do a write, if that batch hasn't been written yet,
  36. * we plug the array and queue the stripe for later.
  37. * When an unplug happens, we increment bm_flush, thus closing the current
  38. * batch.
  39. * When we notice that bm_flush > bm_write, we write out all pending updates
  40. * to the bitmap, and advance bm_write to where bm_flush was.
  41. * This may occasionally write a bit out twice, but is sure never to
  42. * miss any bits.
  43. */
  44. #include <linux/blkdev.h>
  45. #include <linux/kthread.h>
  46. #include <linux/raid/pq.h>
  47. #include <linux/async_tx.h>
  48. #include <linux/module.h>
  49. #include <linux/async.h>
  50. #include <linux/seq_file.h>
  51. #include <linux/cpu.h>
  52. #include <linux/slab.h>
  53. #include <linux/ratelimit.h>
  54. #include "md.h"
  55. #include "raid5.h"
  56. #include "raid0.h"
  57. #include "bitmap.h"
  58. /*
  59. * Stripe cache
  60. */
  61. #define NR_STRIPES 256
  62. #define STRIPE_SIZE PAGE_SIZE
  63. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  64. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  65. #define IO_THRESHOLD 1
  66. #define BYPASS_THRESHOLD 1
  67. #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
  68. #define HASH_MASK (NR_HASH - 1)
  69. static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  70. {
  71. int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  72. return &conf->stripe_hashtbl[hash];
  73. }
  74. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  75. * order without overlap. There may be several bio's per stripe+device, and
  76. * a bio could span several devices.
  77. * When walking this list for a particular stripe+device, we must never proceed
  78. * beyond a bio that extends past this device, as the next bio might no longer
  79. * be valid.
  80. * This function is used to determine the 'next' bio in the list, given the sector
  81. * of the current stripe+device
  82. */
  83. static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
  84. {
  85. int sectors = bio->bi_size >> 9;
  86. if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
  87. return bio->bi_next;
  88. else
  89. return NULL;
  90. }
  91. /*
  92. * We maintain a biased count of active stripes in the bottom 16 bits of
  93. * bi_phys_segments, and a count of processed stripes in the upper 16 bits
  94. */
  95. static inline int raid5_bi_phys_segments(struct bio *bio)
  96. {
  97. return bio->bi_phys_segments & 0xffff;
  98. }
  99. static inline int raid5_bi_hw_segments(struct bio *bio)
  100. {
  101. return (bio->bi_phys_segments >> 16) & 0xffff;
  102. }
  103. static inline int raid5_dec_bi_phys_segments(struct bio *bio)
  104. {
  105. --bio->bi_phys_segments;
  106. return raid5_bi_phys_segments(bio);
  107. }
  108. static inline int raid5_dec_bi_hw_segments(struct bio *bio)
  109. {
  110. unsigned short val = raid5_bi_hw_segments(bio);
  111. --val;
  112. bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
  113. return val;
  114. }
  115. static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
  116. {
  117. bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
  118. }
  119. /* Find first data disk in a raid6 stripe */
  120. static inline int raid6_d0(struct stripe_head *sh)
  121. {
  122. if (sh->ddf_layout)
  123. /* ddf always start from first device */
  124. return 0;
  125. /* md starts just after Q block */
  126. if (sh->qd_idx == sh->disks - 1)
  127. return 0;
  128. else
  129. return sh->qd_idx + 1;
  130. }
  131. static inline int raid6_next_disk(int disk, int raid_disks)
  132. {
  133. disk++;
  134. return (disk < raid_disks) ? disk : 0;
  135. }
  136. /* When walking through the disks in a raid5, starting at raid6_d0,
  137. * We need to map each disk to a 'slot', where the data disks are slot
  138. * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
  139. * is raid_disks-1. This help does that mapping.
  140. */
  141. static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
  142. int *count, int syndrome_disks)
  143. {
  144. int slot = *count;
  145. if (sh->ddf_layout)
  146. (*count)++;
  147. if (idx == sh->pd_idx)
  148. return syndrome_disks;
  149. if (idx == sh->qd_idx)
  150. return syndrome_disks + 1;
  151. if (!sh->ddf_layout)
  152. (*count)++;
  153. return slot;
  154. }
  155. static void return_io(struct bio *return_bi)
  156. {
  157. struct bio *bi = return_bi;
  158. while (bi) {
  159. return_bi = bi->bi_next;
  160. bi->bi_next = NULL;
  161. bi->bi_size = 0;
  162. bio_endio(bi, 0);
  163. bi = return_bi;
  164. }
  165. }
  166. static void print_raid5_conf (struct r5conf *conf);
  167. static int stripe_operations_active(struct stripe_head *sh)
  168. {
  169. return sh->check_state || sh->reconstruct_state ||
  170. test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
  171. test_bit(STRIPE_COMPUTE_RUN, &sh->state);
  172. }
  173. static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
  174. {
  175. if (atomic_dec_and_test(&sh->count)) {
  176. BUG_ON(!list_empty(&sh->lru));
  177. BUG_ON(atomic_read(&conf->active_stripes)==0);
  178. if (test_bit(STRIPE_HANDLE, &sh->state)) {
  179. if (test_bit(STRIPE_DELAYED, &sh->state))
  180. list_add_tail(&sh->lru, &conf->delayed_list);
  181. else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
  182. sh->bm_seq - conf->seq_write > 0)
  183. list_add_tail(&sh->lru, &conf->bitmap_list);
  184. else {
  185. clear_bit(STRIPE_BIT_DELAY, &sh->state);
  186. list_add_tail(&sh->lru, &conf->handle_list);
  187. }
  188. md_wakeup_thread(conf->mddev->thread);
  189. } else {
  190. BUG_ON(stripe_operations_active(sh));
  191. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  192. atomic_dec(&conf->preread_active_stripes);
  193. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
  194. md_wakeup_thread(conf->mddev->thread);
  195. }
  196. atomic_dec(&conf->active_stripes);
  197. if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
  198. list_add_tail(&sh->lru, &conf->inactive_list);
  199. wake_up(&conf->wait_for_stripe);
  200. if (conf->retry_read_aligned)
  201. md_wakeup_thread(conf->mddev->thread);
  202. }
  203. }
  204. }
  205. }
  206. static void release_stripe(struct stripe_head *sh)
  207. {
  208. struct r5conf *conf = sh->raid_conf;
  209. unsigned long flags;
  210. spin_lock_irqsave(&conf->device_lock, flags);
  211. __release_stripe(conf, sh);
  212. spin_unlock_irqrestore(&conf->device_lock, flags);
  213. }
  214. static inline void remove_hash(struct stripe_head *sh)
  215. {
  216. pr_debug("remove_hash(), stripe %llu\n",
  217. (unsigned long long)sh->sector);
  218. hlist_del_init(&sh->hash);
  219. }
  220. static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
  221. {
  222. struct hlist_head *hp = stripe_hash(conf, sh->sector);
  223. pr_debug("insert_hash(), stripe %llu\n",
  224. (unsigned long long)sh->sector);
  225. hlist_add_head(&sh->hash, hp);
  226. }
  227. /* find an idle stripe, make sure it is unhashed, and return it. */
  228. static struct stripe_head *get_free_stripe(struct r5conf *conf)
  229. {
  230. struct stripe_head *sh = NULL;
  231. struct list_head *first;
  232. if (list_empty(&conf->inactive_list))
  233. goto out;
  234. first = conf->inactive_list.next;
  235. sh = list_entry(first, struct stripe_head, lru);
  236. list_del_init(first);
  237. remove_hash(sh);
  238. atomic_inc(&conf->active_stripes);
  239. out:
  240. return sh;
  241. }
  242. static void shrink_buffers(struct stripe_head *sh)
  243. {
  244. struct page *p;
  245. int i;
  246. int num = sh->raid_conf->pool_size;
  247. for (i = 0; i < num ; i++) {
  248. p = sh->dev[i].page;
  249. if (!p)
  250. continue;
  251. sh->dev[i].page = NULL;
  252. put_page(p);
  253. }
  254. }
  255. static int grow_buffers(struct stripe_head *sh)
  256. {
  257. int i;
  258. int num = sh->raid_conf->pool_size;
  259. for (i = 0; i < num; i++) {
  260. struct page *page;
  261. if (!(page = alloc_page(GFP_KERNEL))) {
  262. return 1;
  263. }
  264. sh->dev[i].page = page;
  265. }
  266. return 0;
  267. }
  268. static void raid5_build_block(struct stripe_head *sh, int i, int previous);
  269. static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
  270. struct stripe_head *sh);
  271. static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
  272. {
  273. struct r5conf *conf = sh->raid_conf;
  274. int i;
  275. BUG_ON(atomic_read(&sh->count) != 0);
  276. BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
  277. BUG_ON(stripe_operations_active(sh));
  278. pr_debug("init_stripe called, stripe %llu\n",
  279. (unsigned long long)sh->sector);
  280. remove_hash(sh);
  281. sh->generation = conf->generation - previous;
  282. sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
  283. sh->sector = sector;
  284. stripe_set_idx(sector, conf, previous, sh);
  285. sh->state = 0;
  286. for (i = sh->disks; i--; ) {
  287. struct r5dev *dev = &sh->dev[i];
  288. if (dev->toread || dev->read || dev->towrite || dev->written ||
  289. test_bit(R5_LOCKED, &dev->flags)) {
  290. printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
  291. (unsigned long long)sh->sector, i, dev->toread,
  292. dev->read, dev->towrite, dev->written,
  293. test_bit(R5_LOCKED, &dev->flags));
  294. WARN_ON(1);
  295. }
  296. dev->flags = 0;
  297. raid5_build_block(sh, i, previous);
  298. }
  299. insert_hash(conf, sh);
  300. }
  301. static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
  302. short generation)
  303. {
  304. struct stripe_head *sh;
  305. struct hlist_node *hn;
  306. pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
  307. hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
  308. if (sh->sector == sector && sh->generation == generation)
  309. return sh;
  310. pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
  311. return NULL;
  312. }
  313. /*
  314. * Need to check if array has failed when deciding whether to:
  315. * - start an array
  316. * - remove non-faulty devices
  317. * - add a spare
  318. * - allow a reshape
  319. * This determination is simple when no reshape is happening.
  320. * However if there is a reshape, we need to carefully check
  321. * both the before and after sections.
  322. * This is because some failed devices may only affect one
  323. * of the two sections, and some non-in_sync devices may
  324. * be insync in the section most affected by failed devices.
  325. */
  326. static int has_failed(struct r5conf *conf)
  327. {
  328. int degraded;
  329. int i;
  330. if (conf->mddev->reshape_position == MaxSector)
  331. return conf->mddev->degraded > conf->max_degraded;
  332. rcu_read_lock();
  333. degraded = 0;
  334. for (i = 0; i < conf->previous_raid_disks; i++) {
  335. struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
  336. if (!rdev || test_bit(Faulty, &rdev->flags))
  337. degraded++;
  338. else if (test_bit(In_sync, &rdev->flags))
  339. ;
  340. else
  341. /* not in-sync or faulty.
  342. * If the reshape increases the number of devices,
  343. * this is being recovered by the reshape, so
  344. * this 'previous' section is not in_sync.
  345. * If the number of devices is being reduced however,
  346. * the device can only be part of the array if
  347. * we are reverting a reshape, so this section will
  348. * be in-sync.
  349. */
  350. if (conf->raid_disks >= conf->previous_raid_disks)
  351. degraded++;
  352. }
  353. rcu_read_unlock();
  354. if (degraded > conf->max_degraded)
  355. return 1;
  356. rcu_read_lock();
  357. degraded = 0;
  358. for (i = 0; i < conf->raid_disks; i++) {
  359. struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
  360. if (!rdev || test_bit(Faulty, &rdev->flags))
  361. degraded++;
  362. else if (test_bit(In_sync, &rdev->flags))
  363. ;
  364. else
  365. /* not in-sync or faulty.
  366. * If reshape increases the number of devices, this
  367. * section has already been recovered, else it
  368. * almost certainly hasn't.
  369. */
  370. if (conf->raid_disks <= conf->previous_raid_disks)
  371. degraded++;
  372. }
  373. rcu_read_unlock();
  374. if (degraded > conf->max_degraded)
  375. return 1;
  376. return 0;
  377. }
  378. static struct stripe_head *
  379. get_active_stripe(struct r5conf *conf, sector_t sector,
  380. int previous, int noblock, int noquiesce)
  381. {
  382. struct stripe_head *sh;
  383. pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
  384. spin_lock_irq(&conf->device_lock);
  385. do {
  386. wait_event_lock_irq(conf->wait_for_stripe,
  387. conf->quiesce == 0 || noquiesce,
  388. conf->device_lock, /* nothing */);
  389. sh = __find_stripe(conf, sector, conf->generation - previous);
  390. if (!sh) {
  391. if (!conf->inactive_blocked)
  392. sh = get_free_stripe(conf);
  393. if (noblock && sh == NULL)
  394. break;
  395. if (!sh) {
  396. conf->inactive_blocked = 1;
  397. wait_event_lock_irq(conf->wait_for_stripe,
  398. !list_empty(&conf->inactive_list) &&
  399. (atomic_read(&conf->active_stripes)
  400. < (conf->max_nr_stripes *3/4)
  401. || !conf->inactive_blocked),
  402. conf->device_lock,
  403. );
  404. conf->inactive_blocked = 0;
  405. } else
  406. init_stripe(sh, sector, previous);
  407. } else {
  408. if (atomic_read(&sh->count)) {
  409. BUG_ON(!list_empty(&sh->lru)
  410. && !test_bit(STRIPE_EXPANDING, &sh->state));
  411. } else {
  412. if (!test_bit(STRIPE_HANDLE, &sh->state))
  413. atomic_inc(&conf->active_stripes);
  414. if (list_empty(&sh->lru) &&
  415. !test_bit(STRIPE_EXPANDING, &sh->state))
  416. BUG();
  417. list_del_init(&sh->lru);
  418. }
  419. }
  420. } while (sh == NULL);
  421. if (sh)
  422. atomic_inc(&sh->count);
  423. spin_unlock_irq(&conf->device_lock);
  424. return sh;
  425. }
  426. static void
  427. raid5_end_read_request(struct bio *bi, int error);
  428. static void
  429. raid5_end_write_request(struct bio *bi, int error);
  430. static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
  431. {
  432. struct r5conf *conf = sh->raid_conf;
  433. int i, disks = sh->disks;
  434. might_sleep();
  435. for (i = disks; i--; ) {
  436. int rw;
  437. struct bio *bi;
  438. struct md_rdev *rdev;
  439. if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
  440. if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
  441. rw = WRITE_FUA;
  442. else
  443. rw = WRITE;
  444. } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
  445. rw = READ;
  446. else
  447. continue;
  448. bi = &sh->dev[i].req;
  449. bi->bi_rw = rw;
  450. if (rw & WRITE)
  451. bi->bi_end_io = raid5_end_write_request;
  452. else
  453. bi->bi_end_io = raid5_end_read_request;
  454. rcu_read_lock();
  455. rdev = rcu_dereference(conf->disks[i].rdev);
  456. if (rdev && test_bit(Faulty, &rdev->flags))
  457. rdev = NULL;
  458. if (rdev)
  459. atomic_inc(&rdev->nr_pending);
  460. rcu_read_unlock();
  461. /* We have already checked bad blocks for reads. Now
  462. * need to check for writes.
  463. */
  464. while ((rw & WRITE) && rdev &&
  465. test_bit(WriteErrorSeen, &rdev->flags)) {
  466. sector_t first_bad;
  467. int bad_sectors;
  468. int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
  469. &first_bad, &bad_sectors);
  470. if (!bad)
  471. break;
  472. if (bad < 0) {
  473. set_bit(BlockedBadBlocks, &rdev->flags);
  474. if (!conf->mddev->external &&
  475. conf->mddev->flags) {
  476. /* It is very unlikely, but we might
  477. * still need to write out the
  478. * bad block log - better give it
  479. * a chance*/
  480. md_check_recovery(conf->mddev);
  481. }
  482. md_wait_for_blocked_rdev(rdev, conf->mddev);
  483. } else {
  484. /* Acknowledged bad block - skip the write */
  485. rdev_dec_pending(rdev, conf->mddev);
  486. rdev = NULL;
  487. }
  488. }
  489. if (rdev) {
  490. if (s->syncing || s->expanding || s->expanded)
  491. md_sync_acct(rdev->bdev, STRIPE_SECTORS);
  492. set_bit(STRIPE_IO_STARTED, &sh->state);
  493. bi->bi_bdev = rdev->bdev;
  494. pr_debug("%s: for %llu schedule op %ld on disc %d\n",
  495. __func__, (unsigned long long)sh->sector,
  496. bi->bi_rw, i);
  497. atomic_inc(&sh->count);
  498. bi->bi_sector = sh->sector + rdev->data_offset;
  499. bi->bi_flags = 1 << BIO_UPTODATE;
  500. bi->bi_vcnt = 1;
  501. bi->bi_max_vecs = 1;
  502. bi->bi_idx = 0;
  503. bi->bi_io_vec = &sh->dev[i].vec;
  504. bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
  505. bi->bi_io_vec[0].bv_offset = 0;
  506. bi->bi_size = STRIPE_SIZE;
  507. bi->bi_next = NULL;
  508. generic_make_request(bi);
  509. } else {
  510. if (rw & WRITE)
  511. set_bit(STRIPE_DEGRADED, &sh->state);
  512. pr_debug("skip op %ld on disc %d for sector %llu\n",
  513. bi->bi_rw, i, (unsigned long long)sh->sector);
  514. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  515. set_bit(STRIPE_HANDLE, &sh->state);
  516. }
  517. }
  518. }
  519. static struct dma_async_tx_descriptor *
  520. async_copy_data(int frombio, struct bio *bio, struct page *page,
  521. sector_t sector, struct dma_async_tx_descriptor *tx)
  522. {
  523. struct bio_vec *bvl;
  524. struct page *bio_page;
  525. int i;
  526. int page_offset;
  527. struct async_submit_ctl submit;
  528. enum async_tx_flags flags = 0;
  529. if (bio->bi_sector >= sector)
  530. page_offset = (signed)(bio->bi_sector - sector) * 512;
  531. else
  532. page_offset = (signed)(sector - bio->bi_sector) * -512;
  533. if (frombio)
  534. flags |= ASYNC_TX_FENCE;
  535. init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
  536. bio_for_each_segment(bvl, bio, i) {
  537. int len = bvl->bv_len;
  538. int clen;
  539. int b_offset = 0;
  540. if (page_offset < 0) {
  541. b_offset = -page_offset;
  542. page_offset += b_offset;
  543. len -= b_offset;
  544. }
  545. if (len > 0 && page_offset + len > STRIPE_SIZE)
  546. clen = STRIPE_SIZE - page_offset;
  547. else
  548. clen = len;
  549. if (clen > 0) {
  550. b_offset += bvl->bv_offset;
  551. bio_page = bvl->bv_page;
  552. if (frombio)
  553. tx = async_memcpy(page, bio_page, page_offset,
  554. b_offset, clen, &submit);
  555. else
  556. tx = async_memcpy(bio_page, page, b_offset,
  557. page_offset, clen, &submit);
  558. }
  559. /* chain the operations */
  560. submit.depend_tx = tx;
  561. if (clen < len) /* hit end of page */
  562. break;
  563. page_offset += len;
  564. }
  565. return tx;
  566. }
  567. static void ops_complete_biofill(void *stripe_head_ref)
  568. {
  569. struct stripe_head *sh = stripe_head_ref;
  570. struct bio *return_bi = NULL;
  571. struct r5conf *conf = sh->raid_conf;
  572. int i;
  573. pr_debug("%s: stripe %llu\n", __func__,
  574. (unsigned long long)sh->sector);
  575. /* clear completed biofills */
  576. spin_lock_irq(&conf->device_lock);
  577. for (i = sh->disks; i--; ) {
  578. struct r5dev *dev = &sh->dev[i];
  579. /* acknowledge completion of a biofill operation */
  580. /* and check if we need to reply to a read request,
  581. * new R5_Wantfill requests are held off until
  582. * !STRIPE_BIOFILL_RUN
  583. */
  584. if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
  585. struct bio *rbi, *rbi2;
  586. BUG_ON(!dev->read);
  587. rbi = dev->read;
  588. dev->read = NULL;
  589. while (rbi && rbi->bi_sector <
  590. dev->sector + STRIPE_SECTORS) {
  591. rbi2 = r5_next_bio(rbi, dev->sector);
  592. if (!raid5_dec_bi_phys_segments(rbi)) {
  593. rbi->bi_next = return_bi;
  594. return_bi = rbi;
  595. }
  596. rbi = rbi2;
  597. }
  598. }
  599. }
  600. spin_unlock_irq(&conf->device_lock);
  601. clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
  602. return_io(return_bi);
  603. set_bit(STRIPE_HANDLE, &sh->state);
  604. release_stripe(sh);
  605. }
  606. static void ops_run_biofill(struct stripe_head *sh)
  607. {
  608. struct dma_async_tx_descriptor *tx = NULL;
  609. struct r5conf *conf = sh->raid_conf;
  610. struct async_submit_ctl submit;
  611. int i;
  612. pr_debug("%s: stripe %llu\n", __func__,
  613. (unsigned long long)sh->sector);
  614. for (i = sh->disks; i--; ) {
  615. struct r5dev *dev = &sh->dev[i];
  616. if (test_bit(R5_Wantfill, &dev->flags)) {
  617. struct bio *rbi;
  618. spin_lock_irq(&conf->device_lock);
  619. dev->read = rbi = dev->toread;
  620. dev->toread = NULL;
  621. spin_unlock_irq(&conf->device_lock);
  622. while (rbi && rbi->bi_sector <
  623. dev->sector + STRIPE_SECTORS) {
  624. tx = async_copy_data(0, rbi, dev->page,
  625. dev->sector, tx);
  626. rbi = r5_next_bio(rbi, dev->sector);
  627. }
  628. }
  629. }
  630. atomic_inc(&sh->count);
  631. init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
  632. async_trigger_callback(&submit);
  633. }
  634. static void mark_target_uptodate(struct stripe_head *sh, int target)
  635. {
  636. struct r5dev *tgt;
  637. if (target < 0)
  638. return;
  639. tgt = &sh->dev[target];
  640. set_bit(R5_UPTODATE, &tgt->flags);
  641. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  642. clear_bit(R5_Wantcompute, &tgt->flags);
  643. }
  644. static void ops_complete_compute(void *stripe_head_ref)
  645. {
  646. struct stripe_head *sh = stripe_head_ref;
  647. pr_debug("%s: stripe %llu\n", __func__,
  648. (unsigned long long)sh->sector);
  649. /* mark the computed target(s) as uptodate */
  650. mark_target_uptodate(sh, sh->ops.target);
  651. mark_target_uptodate(sh, sh->ops.target2);
  652. clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
  653. if (sh->check_state == check_state_compute_run)
  654. sh->check_state = check_state_compute_result;
  655. set_bit(STRIPE_HANDLE, &sh->state);
  656. release_stripe(sh);
  657. }
  658. /* return a pointer to the address conversion region of the scribble buffer */
  659. static addr_conv_t *to_addr_conv(struct stripe_head *sh,
  660. struct raid5_percpu *percpu)
  661. {
  662. return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
  663. }
  664. static struct dma_async_tx_descriptor *
  665. ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
  666. {
  667. int disks = sh->disks;
  668. struct page **xor_srcs = percpu->scribble;
  669. int target = sh->ops.target;
  670. struct r5dev *tgt = &sh->dev[target];
  671. struct page *xor_dest = tgt->page;
  672. int count = 0;
  673. struct dma_async_tx_descriptor *tx;
  674. struct async_submit_ctl submit;
  675. int i;
  676. pr_debug("%s: stripe %llu block: %d\n",
  677. __func__, (unsigned long long)sh->sector, target);
  678. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  679. for (i = disks; i--; )
  680. if (i != target)
  681. xor_srcs[count++] = sh->dev[i].page;
  682. atomic_inc(&sh->count);
  683. init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
  684. ops_complete_compute, sh, to_addr_conv(sh, percpu));
  685. if (unlikely(count == 1))
  686. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
  687. else
  688. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
  689. return tx;
  690. }
  691. /* set_syndrome_sources - populate source buffers for gen_syndrome
  692. * @srcs - (struct page *) array of size sh->disks
  693. * @sh - stripe_head to parse
  694. *
  695. * Populates srcs in proper layout order for the stripe and returns the
  696. * 'count' of sources to be used in a call to async_gen_syndrome. The P
  697. * destination buffer is recorded in srcs[count] and the Q destination
  698. * is recorded in srcs[count+1]].
  699. */
  700. static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
  701. {
  702. int disks = sh->disks;
  703. int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
  704. int d0_idx = raid6_d0(sh);
  705. int count;
  706. int i;
  707. for (i = 0; i < disks; i++)
  708. srcs[i] = NULL;
  709. count = 0;
  710. i = d0_idx;
  711. do {
  712. int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
  713. srcs[slot] = sh->dev[i].page;
  714. i = raid6_next_disk(i, disks);
  715. } while (i != d0_idx);
  716. return syndrome_disks;
  717. }
  718. static struct dma_async_tx_descriptor *
  719. ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
  720. {
  721. int disks = sh->disks;
  722. struct page **blocks = percpu->scribble;
  723. int target;
  724. int qd_idx = sh->qd_idx;
  725. struct dma_async_tx_descriptor *tx;
  726. struct async_submit_ctl submit;
  727. struct r5dev *tgt;
  728. struct page *dest;
  729. int i;
  730. int count;
  731. if (sh->ops.target < 0)
  732. target = sh->ops.target2;
  733. else if (sh->ops.target2 < 0)
  734. target = sh->ops.target;
  735. else
  736. /* we should only have one valid target */
  737. BUG();
  738. BUG_ON(target < 0);
  739. pr_debug("%s: stripe %llu block: %d\n",
  740. __func__, (unsigned long long)sh->sector, target);
  741. tgt = &sh->dev[target];
  742. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  743. dest = tgt->page;
  744. atomic_inc(&sh->count);
  745. if (target == qd_idx) {
  746. count = set_syndrome_sources(blocks, sh);
  747. blocks[count] = NULL; /* regenerating p is not necessary */
  748. BUG_ON(blocks[count+1] != dest); /* q should already be set */
  749. init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
  750. ops_complete_compute, sh,
  751. to_addr_conv(sh, percpu));
  752. tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
  753. } else {
  754. /* Compute any data- or p-drive using XOR */
  755. count = 0;
  756. for (i = disks; i-- ; ) {
  757. if (i == target || i == qd_idx)
  758. continue;
  759. blocks[count++] = sh->dev[i].page;
  760. }
  761. init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
  762. NULL, ops_complete_compute, sh,
  763. to_addr_conv(sh, percpu));
  764. tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
  765. }
  766. return tx;
  767. }
  768. static struct dma_async_tx_descriptor *
  769. ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
  770. {
  771. int i, count, disks = sh->disks;
  772. int syndrome_disks = sh->ddf_layout ? disks : disks-2;
  773. int d0_idx = raid6_d0(sh);
  774. int faila = -1, failb = -1;
  775. int target = sh->ops.target;
  776. int target2 = sh->ops.target2;
  777. struct r5dev *tgt = &sh->dev[target];
  778. struct r5dev *tgt2 = &sh->dev[target2];
  779. struct dma_async_tx_descriptor *tx;
  780. struct page **blocks = percpu->scribble;
  781. struct async_submit_ctl submit;
  782. pr_debug("%s: stripe %llu block1: %d block2: %d\n",
  783. __func__, (unsigned long long)sh->sector, target, target2);
  784. BUG_ON(target < 0 || target2 < 0);
  785. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  786. BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
  787. /* we need to open-code set_syndrome_sources to handle the
  788. * slot number conversion for 'faila' and 'failb'
  789. */
  790. for (i = 0; i < disks ; i++)
  791. blocks[i] = NULL;
  792. count = 0;
  793. i = d0_idx;
  794. do {
  795. int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
  796. blocks[slot] = sh->dev[i].page;
  797. if (i == target)
  798. faila = slot;
  799. if (i == target2)
  800. failb = slot;
  801. i = raid6_next_disk(i, disks);
  802. } while (i != d0_idx);
  803. BUG_ON(faila == failb);
  804. if (failb < faila)
  805. swap(faila, failb);
  806. pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
  807. __func__, (unsigned long long)sh->sector, faila, failb);
  808. atomic_inc(&sh->count);
  809. if (failb == syndrome_disks+1) {
  810. /* Q disk is one of the missing disks */
  811. if (faila == syndrome_disks) {
  812. /* Missing P+Q, just recompute */
  813. init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
  814. ops_complete_compute, sh,
  815. to_addr_conv(sh, percpu));
  816. return async_gen_syndrome(blocks, 0, syndrome_disks+2,
  817. STRIPE_SIZE, &submit);
  818. } else {
  819. struct page *dest;
  820. int data_target;
  821. int qd_idx = sh->qd_idx;
  822. /* Missing D+Q: recompute D from P, then recompute Q */
  823. if (target == qd_idx)
  824. data_target = target2;
  825. else
  826. data_target = target;
  827. count = 0;
  828. for (i = disks; i-- ; ) {
  829. if (i == data_target || i == qd_idx)
  830. continue;
  831. blocks[count++] = sh->dev[i].page;
  832. }
  833. dest = sh->dev[data_target].page;
  834. init_async_submit(&submit,
  835. ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
  836. NULL, NULL, NULL,
  837. to_addr_conv(sh, percpu));
  838. tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
  839. &submit);
  840. count = set_syndrome_sources(blocks, sh);
  841. init_async_submit(&submit, ASYNC_TX_FENCE, tx,
  842. ops_complete_compute, sh,
  843. to_addr_conv(sh, percpu));
  844. return async_gen_syndrome(blocks, 0, count+2,
  845. STRIPE_SIZE, &submit);
  846. }
  847. } else {
  848. init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
  849. ops_complete_compute, sh,
  850. to_addr_conv(sh, percpu));
  851. if (failb == syndrome_disks) {
  852. /* We're missing D+P. */
  853. return async_raid6_datap_recov(syndrome_disks+2,
  854. STRIPE_SIZE, faila,
  855. blocks, &submit);
  856. } else {
  857. /* We're missing D+D. */
  858. return async_raid6_2data_recov(syndrome_disks+2,
  859. STRIPE_SIZE, faila, failb,
  860. blocks, &submit);
  861. }
  862. }
  863. }
  864. static void ops_complete_prexor(void *stripe_head_ref)
  865. {
  866. struct stripe_head *sh = stripe_head_ref;
  867. pr_debug("%s: stripe %llu\n", __func__,
  868. (unsigned long long)sh->sector);
  869. }
  870. static struct dma_async_tx_descriptor *
  871. ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
  872. struct dma_async_tx_descriptor *tx)
  873. {
  874. int disks = sh->disks;
  875. struct page **xor_srcs = percpu->scribble;
  876. int count = 0, pd_idx = sh->pd_idx, i;
  877. struct async_submit_ctl submit;
  878. /* existing parity data subtracted */
  879. struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  880. pr_debug("%s: stripe %llu\n", __func__,
  881. (unsigned long long)sh->sector);
  882. for (i = disks; i--; ) {
  883. struct r5dev *dev = &sh->dev[i];
  884. /* Only process blocks that are known to be uptodate */
  885. if (test_bit(R5_Wantdrain, &dev->flags))
  886. xor_srcs[count++] = dev->page;
  887. }
  888. init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
  889. ops_complete_prexor, sh, to_addr_conv(sh, percpu));
  890. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
  891. return tx;
  892. }
  893. static struct dma_async_tx_descriptor *
  894. ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  895. {
  896. int disks = sh->disks;
  897. int i;
  898. pr_debug("%s: stripe %llu\n", __func__,
  899. (unsigned long long)sh->sector);
  900. for (i = disks; i--; ) {
  901. struct r5dev *dev = &sh->dev[i];
  902. struct bio *chosen;
  903. if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
  904. struct bio *wbi;
  905. spin_lock_irq(&sh->raid_conf->device_lock);
  906. chosen = dev->towrite;
  907. dev->towrite = NULL;
  908. BUG_ON(dev->written);
  909. wbi = dev->written = chosen;
  910. spin_unlock_irq(&sh->raid_conf->device_lock);
  911. while (wbi && wbi->bi_sector <
  912. dev->sector + STRIPE_SECTORS) {
  913. if (wbi->bi_rw & REQ_FUA)
  914. set_bit(R5_WantFUA, &dev->flags);
  915. tx = async_copy_data(1, wbi, dev->page,
  916. dev->sector, tx);
  917. wbi = r5_next_bio(wbi, dev->sector);
  918. }
  919. }
  920. }
  921. return tx;
  922. }
  923. static void ops_complete_reconstruct(void *stripe_head_ref)
  924. {
  925. struct stripe_head *sh = stripe_head_ref;
  926. int disks = sh->disks;
  927. int pd_idx = sh->pd_idx;
  928. int qd_idx = sh->qd_idx;
  929. int i;
  930. bool fua = false;
  931. pr_debug("%s: stripe %llu\n", __func__,
  932. (unsigned long long)sh->sector);
  933. for (i = disks; i--; )
  934. fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
  935. for (i = disks; i--; ) {
  936. struct r5dev *dev = &sh->dev[i];
  937. if (dev->written || i == pd_idx || i == qd_idx) {
  938. set_bit(R5_UPTODATE, &dev->flags);
  939. if (fua)
  940. set_bit(R5_WantFUA, &dev->flags);
  941. }
  942. }
  943. if (sh->reconstruct_state == reconstruct_state_drain_run)
  944. sh->reconstruct_state = reconstruct_state_drain_result;
  945. else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
  946. sh->reconstruct_state = reconstruct_state_prexor_drain_result;
  947. else {
  948. BUG_ON(sh->reconstruct_state != reconstruct_state_run);
  949. sh->reconstruct_state = reconstruct_state_result;
  950. }
  951. set_bit(STRIPE_HANDLE, &sh->state);
  952. release_stripe(sh);
  953. }
  954. static void
  955. ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
  956. struct dma_async_tx_descriptor *tx)
  957. {
  958. int disks = sh->disks;
  959. struct page **xor_srcs = percpu->scribble;
  960. struct async_submit_ctl submit;
  961. int count = 0, pd_idx = sh->pd_idx, i;
  962. struct page *xor_dest;
  963. int prexor = 0;
  964. unsigned long flags;
  965. pr_debug("%s: stripe %llu\n", __func__,
  966. (unsigned long long)sh->sector);
  967. /* check if prexor is active which means only process blocks
  968. * that are part of a read-modify-write (written)
  969. */
  970. if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
  971. prexor = 1;
  972. xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  973. for (i = disks; i--; ) {
  974. struct r5dev *dev = &sh->dev[i];
  975. if (dev->written)
  976. xor_srcs[count++] = dev->page;
  977. }
  978. } else {
  979. xor_dest = sh->dev[pd_idx].page;
  980. for (i = disks; i--; ) {
  981. struct r5dev *dev = &sh->dev[i];
  982. if (i != pd_idx)
  983. xor_srcs[count++] = dev->page;
  984. }
  985. }
  986. /* 1/ if we prexor'd then the dest is reused as a source
  987. * 2/ if we did not prexor then we are redoing the parity
  988. * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
  989. * for the synchronous xor case
  990. */
  991. flags = ASYNC_TX_ACK |
  992. (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
  993. atomic_inc(&sh->count);
  994. init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
  995. to_addr_conv(sh, percpu));
  996. if (unlikely(count == 1))
  997. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
  998. else
  999. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
  1000. }
  1001. static void
  1002. ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
  1003. struct dma_async_tx_descriptor *tx)
  1004. {
  1005. struct async_submit_ctl submit;
  1006. struct page **blocks = percpu->scribble;
  1007. int count;
  1008. pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
  1009. count = set_syndrome_sources(blocks, sh);
  1010. atomic_inc(&sh->count);
  1011. init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
  1012. sh, to_addr_conv(sh, percpu));
  1013. async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
  1014. }
  1015. static void ops_complete_check(void *stripe_head_ref)
  1016. {
  1017. struct stripe_head *sh = stripe_head_ref;
  1018. pr_debug("%s: stripe %llu\n", __func__,
  1019. (unsigned long long)sh->sector);
  1020. sh->check_state = check_state_check_result;
  1021. set_bit(STRIPE_HANDLE, &sh->state);
  1022. release_stripe(sh);
  1023. }
  1024. static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
  1025. {
  1026. int disks = sh->disks;
  1027. int pd_idx = sh->pd_idx;
  1028. int qd_idx = sh->qd_idx;
  1029. struct page *xor_dest;
  1030. struct page **xor_srcs = percpu->scribble;
  1031. struct dma_async_tx_descriptor *tx;
  1032. struct async_submit_ctl submit;
  1033. int count;
  1034. int i;
  1035. pr_debug("%s: stripe %llu\n", __func__,
  1036. (unsigned long long)sh->sector);
  1037. count = 0;
  1038. xor_dest = sh->dev[pd_idx].page;
  1039. xor_srcs[count++] = xor_dest;
  1040. for (i = disks; i--; ) {
  1041. if (i == pd_idx || i == qd_idx)
  1042. continue;
  1043. xor_srcs[count++] = sh->dev[i].page;
  1044. }
  1045. init_async_submit(&submit, 0, NULL, NULL, NULL,
  1046. to_addr_conv(sh, percpu));
  1047. tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  1048. &sh->ops.zero_sum_result, &submit);
  1049. atomic_inc(&sh->count);
  1050. init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
  1051. tx = async_trigger_callback(&submit);
  1052. }
  1053. static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
  1054. {
  1055. struct page **srcs = percpu->scribble;
  1056. struct async_submit_ctl submit;
  1057. int count;
  1058. pr_debug("%s: stripe %llu checkp: %d\n", __func__,
  1059. (unsigned long long)sh->sector, checkp);
  1060. count = set_syndrome_sources(srcs, sh);
  1061. if (!checkp)
  1062. srcs[count] = NULL;
  1063. atomic_inc(&sh->count);
  1064. init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
  1065. sh, to_addr_conv(sh, percpu));
  1066. async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
  1067. &sh->ops.zero_sum_result, percpu->spare_page, &submit);
  1068. }
  1069. static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
  1070. {
  1071. int overlap_clear = 0, i, disks = sh->disks;
  1072. struct dma_async_tx_descriptor *tx = NULL;
  1073. struct r5conf *conf = sh->raid_conf;
  1074. int level = conf->level;
  1075. struct raid5_percpu *percpu;
  1076. unsigned long cpu;
  1077. cpu = get_cpu();
  1078. percpu = per_cpu_ptr(conf->percpu, cpu);
  1079. if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
  1080. ops_run_biofill(sh);
  1081. overlap_clear++;
  1082. }
  1083. if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
  1084. if (level < 6)
  1085. tx = ops_run_compute5(sh, percpu);
  1086. else {
  1087. if (sh->ops.target2 < 0 || sh->ops.target < 0)
  1088. tx = ops_run_compute6_1(sh, percpu);
  1089. else
  1090. tx = ops_run_compute6_2(sh, percpu);
  1091. }
  1092. /* terminate the chain if reconstruct is not set to be run */
  1093. if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
  1094. async_tx_ack(tx);
  1095. }
  1096. if (test_bit(STRIPE_OP_PREXOR, &ops_request))
  1097. tx = ops_run_prexor(sh, percpu, tx);
  1098. if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
  1099. tx = ops_run_biodrain(sh, tx);
  1100. overlap_clear++;
  1101. }
  1102. if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
  1103. if (level < 6)
  1104. ops_run_reconstruct5(sh, percpu, tx);
  1105. else
  1106. ops_run_reconstruct6(sh, percpu, tx);
  1107. }
  1108. if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
  1109. if (sh->check_state == check_state_run)
  1110. ops_run_check_p(sh, percpu);
  1111. else if (sh->check_state == check_state_run_q)
  1112. ops_run_check_pq(sh, percpu, 0);
  1113. else if (sh->check_state == check_state_run_pq)
  1114. ops_run_check_pq(sh, percpu, 1);
  1115. else
  1116. BUG();
  1117. }
  1118. if (overlap_clear)
  1119. for (i = disks; i--; ) {
  1120. struct r5dev *dev = &sh->dev[i];
  1121. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  1122. wake_up(&sh->raid_conf->wait_for_overlap);
  1123. }
  1124. put_cpu();
  1125. }
  1126. #ifdef CONFIG_MULTICORE_RAID456
  1127. static void async_run_ops(void *param, async_cookie_t cookie)
  1128. {
  1129. struct stripe_head *sh = param;
  1130. unsigned long ops_request = sh->ops.request;
  1131. clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
  1132. wake_up(&sh->ops.wait_for_ops);
  1133. __raid_run_ops(sh, ops_request);
  1134. release_stripe(sh);
  1135. }
  1136. static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
  1137. {
  1138. /* since handle_stripe can be called outside of raid5d context
  1139. * we need to ensure sh->ops.request is de-staged before another
  1140. * request arrives
  1141. */
  1142. wait_event(sh->ops.wait_for_ops,
  1143. !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
  1144. sh->ops.request = ops_request;
  1145. atomic_inc(&sh->count);
  1146. async_schedule(async_run_ops, sh);
  1147. }
  1148. #else
  1149. #define raid_run_ops __raid_run_ops
  1150. #endif
  1151. static int grow_one_stripe(struct r5conf *conf)
  1152. {
  1153. struct stripe_head *sh;
  1154. sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
  1155. if (!sh)
  1156. return 0;
  1157. sh->raid_conf = conf;
  1158. #ifdef CONFIG_MULTICORE_RAID456
  1159. init_waitqueue_head(&sh->ops.wait_for_ops);
  1160. #endif
  1161. if (grow_buffers(sh)) {
  1162. shrink_buffers(sh);
  1163. kmem_cache_free(conf->slab_cache, sh);
  1164. return 0;
  1165. }
  1166. /* we just created an active stripe so... */
  1167. atomic_set(&sh->count, 1);
  1168. atomic_inc(&conf->active_stripes);
  1169. INIT_LIST_HEAD(&sh->lru);
  1170. release_stripe(sh);
  1171. return 1;
  1172. }
  1173. static int grow_stripes(struct r5conf *conf, int num)
  1174. {
  1175. struct kmem_cache *sc;
  1176. int devs = max(conf->raid_disks, conf->previous_raid_disks);
  1177. if (conf->mddev->gendisk)
  1178. sprintf(conf->cache_name[0],
  1179. "raid%d-%s", conf->level, mdname(conf->mddev));
  1180. else
  1181. sprintf(conf->cache_name[0],
  1182. "raid%d-%p", conf->level, conf->mddev);
  1183. sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
  1184. conf->active_name = 0;
  1185. sc = kmem_cache_create(conf->cache_name[conf->active_name],
  1186. sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
  1187. 0, 0, NULL);
  1188. if (!sc)
  1189. return 1;
  1190. conf->slab_cache = sc;
  1191. conf->pool_size = devs;
  1192. while (num--)
  1193. if (!grow_one_stripe(conf))
  1194. return 1;
  1195. return 0;
  1196. }
  1197. /**
  1198. * scribble_len - return the required size of the scribble region
  1199. * @num - total number of disks in the array
  1200. *
  1201. * The size must be enough to contain:
  1202. * 1/ a struct page pointer for each device in the array +2
  1203. * 2/ room to convert each entry in (1) to its corresponding dma
  1204. * (dma_map_page()) or page (page_address()) address.
  1205. *
  1206. * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
  1207. * calculate over all devices (not just the data blocks), using zeros in place
  1208. * of the P and Q blocks.
  1209. */
  1210. static size_t scribble_len(int num)
  1211. {
  1212. size_t len;
  1213. len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
  1214. return len;
  1215. }
  1216. static int resize_stripes(struct r5conf *conf, int newsize)
  1217. {
  1218. /* Make all the stripes able to hold 'newsize' devices.
  1219. * New slots in each stripe get 'page' set to a new page.
  1220. *
  1221. * This happens in stages:
  1222. * 1/ create a new kmem_cache and allocate the required number of
  1223. * stripe_heads.
  1224. * 2/ gather all the old stripe_heads and tranfer the pages across
  1225. * to the new stripe_heads. This will have the side effect of
  1226. * freezing the array as once all stripe_heads have been collected,
  1227. * no IO will be possible. Old stripe heads are freed once their
  1228. * pages have been transferred over, and the old kmem_cache is
  1229. * freed when all stripes are done.
  1230. * 3/ reallocate conf->disks to be suitable bigger. If this fails,
  1231. * we simple return a failre status - no need to clean anything up.
  1232. * 4/ allocate new pages for the new slots in the new stripe_heads.
  1233. * If this fails, we don't bother trying the shrink the
  1234. * stripe_heads down again, we just leave them as they are.
  1235. * As each stripe_head is processed the new one is released into
  1236. * active service.
  1237. *
  1238. * Once step2 is started, we cannot afford to wait for a write,
  1239. * so we use GFP_NOIO allocations.
  1240. */
  1241. struct stripe_head *osh, *nsh;
  1242. LIST_HEAD(newstripes);
  1243. struct disk_info *ndisks;
  1244. unsigned long cpu;
  1245. int err;
  1246. struct kmem_cache *sc;
  1247. int i;
  1248. if (newsize <= conf->pool_size)
  1249. return 0; /* never bother to shrink */
  1250. err = md_allow_write(conf->mddev);
  1251. if (err)
  1252. return err;
  1253. /* Step 1 */
  1254. sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
  1255. sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
  1256. 0, 0, NULL);
  1257. if (!sc)
  1258. return -ENOMEM;
  1259. for (i = conf->max_nr_stripes; i; i--) {
  1260. nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
  1261. if (!nsh)
  1262. break;
  1263. nsh->raid_conf = conf;
  1264. #ifdef CONFIG_MULTICORE_RAID456
  1265. init_waitqueue_head(&nsh->ops.wait_for_ops);
  1266. #endif
  1267. list_add(&nsh->lru, &newstripes);
  1268. }
  1269. if (i) {
  1270. /* didn't get enough, give up */
  1271. while (!list_empty(&newstripes)) {
  1272. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  1273. list_del(&nsh->lru);
  1274. kmem_cache_free(sc, nsh);
  1275. }
  1276. kmem_cache_destroy(sc);
  1277. return -ENOMEM;
  1278. }
  1279. /* Step 2 - Must use GFP_NOIO now.
  1280. * OK, we have enough stripes, start collecting inactive
  1281. * stripes and copying them over
  1282. */
  1283. list_for_each_entry(nsh, &newstripes, lru) {
  1284. spin_lock_irq(&conf->device_lock);
  1285. wait_event_lock_irq(conf->wait_for_stripe,
  1286. !list_empty(&conf->inactive_list),
  1287. conf->device_lock,
  1288. );
  1289. osh = get_free_stripe(conf);
  1290. spin_unlock_irq(&conf->device_lock);
  1291. atomic_set(&nsh->count, 1);
  1292. for(i=0; i<conf->pool_size; i++)
  1293. nsh->dev[i].page = osh->dev[i].page;
  1294. for( ; i<newsize; i++)
  1295. nsh->dev[i].page = NULL;
  1296. kmem_cache_free(conf->slab_cache, osh);
  1297. }
  1298. kmem_cache_destroy(conf->slab_cache);
  1299. /* Step 3.
  1300. * At this point, we are holding all the stripes so the array
  1301. * is completely stalled, so now is a good time to resize
  1302. * conf->disks and the scribble region
  1303. */
  1304. ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
  1305. if (ndisks) {
  1306. for (i=0; i<conf->raid_disks; i++)
  1307. ndisks[i] = conf->disks[i];
  1308. kfree(conf->disks);
  1309. conf->disks = ndisks;
  1310. } else
  1311. err = -ENOMEM;
  1312. get_online_cpus();
  1313. conf->scribble_len = scribble_len(newsize);
  1314. for_each_present_cpu(cpu) {
  1315. struct raid5_percpu *percpu;
  1316. void *scribble;
  1317. percpu = per_cpu_ptr(conf->percpu, cpu);
  1318. scribble = kmalloc(conf->scribble_len, GFP_NOIO);
  1319. if (scribble) {
  1320. kfree(percpu->scribble);
  1321. percpu->scribble = scribble;
  1322. } else {
  1323. err = -ENOMEM;
  1324. break;
  1325. }
  1326. }
  1327. put_online_cpus();
  1328. /* Step 4, return new stripes to service */
  1329. while(!list_empty(&newstripes)) {
  1330. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  1331. list_del_init(&nsh->lru);
  1332. for (i=conf->raid_disks; i < newsize; i++)
  1333. if (nsh->dev[i].page == NULL) {
  1334. struct page *p = alloc_page(GFP_NOIO);
  1335. nsh->dev[i].page = p;
  1336. if (!p)
  1337. err = -ENOMEM;
  1338. }
  1339. release_stripe(nsh);
  1340. }
  1341. /* critical section pass, GFP_NOIO no longer needed */
  1342. conf->slab_cache = sc;
  1343. conf->active_name = 1-conf->active_name;
  1344. conf->pool_size = newsize;
  1345. return err;
  1346. }
  1347. static int drop_one_stripe(struct r5conf *conf)
  1348. {
  1349. struct stripe_head *sh;
  1350. spin_lock_irq(&conf->device_lock);
  1351. sh = get_free_stripe(conf);
  1352. spin_unlock_irq(&conf->device_lock);
  1353. if (!sh)
  1354. return 0;
  1355. BUG_ON(atomic_read(&sh->count));
  1356. shrink_buffers(sh);
  1357. kmem_cache_free(conf->slab_cache, sh);
  1358. atomic_dec(&conf->active_stripes);
  1359. return 1;
  1360. }
  1361. static void shrink_stripes(struct r5conf *conf)
  1362. {
  1363. while (drop_one_stripe(conf))
  1364. ;
  1365. if (conf->slab_cache)
  1366. kmem_cache_destroy(conf->slab_cache);
  1367. conf->slab_cache = NULL;
  1368. }
  1369. static void raid5_end_read_request(struct bio * bi, int error)
  1370. {
  1371. struct stripe_head *sh = bi->bi_private;
  1372. struct r5conf *conf = sh->raid_conf;
  1373. int disks = sh->disks, i;
  1374. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  1375. char b[BDEVNAME_SIZE];
  1376. struct md_rdev *rdev;
  1377. for (i=0 ; i<disks; i++)
  1378. if (bi == &sh->dev[i].req)
  1379. break;
  1380. pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
  1381. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  1382. uptodate);
  1383. if (i == disks) {
  1384. BUG();
  1385. return;
  1386. }
  1387. if (uptodate) {
  1388. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  1389. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  1390. rdev = conf->disks[i].rdev;
  1391. printk_ratelimited(
  1392. KERN_INFO
  1393. "md/raid:%s: read error corrected"
  1394. " (%lu sectors at %llu on %s)\n",
  1395. mdname(conf->mddev), STRIPE_SECTORS,
  1396. (unsigned long long)(sh->sector
  1397. + rdev->data_offset),
  1398. bdevname(rdev->bdev, b));
  1399. atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
  1400. clear_bit(R5_ReadError, &sh->dev[i].flags);
  1401. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  1402. }
  1403. if (atomic_read(&conf->disks[i].rdev->read_errors))
  1404. atomic_set(&conf->disks[i].rdev->read_errors, 0);
  1405. } else {
  1406. const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
  1407. int retry = 0;
  1408. rdev = conf->disks[i].rdev;
  1409. clear_bit(R5_UPTODATE, &sh->dev[i].flags);
  1410. atomic_inc(&rdev->read_errors);
  1411. if (conf->mddev->degraded >= conf->max_degraded)
  1412. printk_ratelimited(
  1413. KERN_WARNING
  1414. "md/raid:%s: read error not correctable "
  1415. "(sector %llu on %s).\n",
  1416. mdname(conf->mddev),
  1417. (unsigned long long)(sh->sector
  1418. + rdev->data_offset),
  1419. bdn);
  1420. else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
  1421. /* Oh, no!!! */
  1422. printk_ratelimited(
  1423. KERN_WARNING
  1424. "md/raid:%s: read error NOT corrected!! "
  1425. "(sector %llu on %s).\n",
  1426. mdname(conf->mddev),
  1427. (unsigned long long)(sh->sector
  1428. + rdev->data_offset),
  1429. bdn);
  1430. else if (atomic_read(&rdev->read_errors)
  1431. > conf->max_nr_stripes)
  1432. printk(KERN_WARNING
  1433. "md/raid:%s: Too many read errors, failing device %s.\n",
  1434. mdname(conf->mddev), bdn);
  1435. else
  1436. retry = 1;
  1437. if (retry)
  1438. set_bit(R5_ReadError, &sh->dev[i].flags);
  1439. else {
  1440. clear_bit(R5_ReadError, &sh->dev[i].flags);
  1441. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  1442. md_error(conf->mddev, rdev);
  1443. }
  1444. }
  1445. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  1446. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  1447. set_bit(STRIPE_HANDLE, &sh->state);
  1448. release_stripe(sh);
  1449. }
  1450. static void raid5_end_write_request(struct bio *bi, int error)
  1451. {
  1452. struct stripe_head *sh = bi->bi_private;
  1453. struct r5conf *conf = sh->raid_conf;
  1454. int disks = sh->disks, i;
  1455. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  1456. sector_t first_bad;
  1457. int bad_sectors;
  1458. for (i=0 ; i<disks; i++)
  1459. if (bi == &sh->dev[i].req)
  1460. break;
  1461. pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
  1462. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  1463. uptodate);
  1464. if (i == disks) {
  1465. BUG();
  1466. return;
  1467. }
  1468. if (!uptodate) {
  1469. set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
  1470. set_bit(R5_WriteError, &sh->dev[i].flags);
  1471. } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
  1472. &first_bad, &bad_sectors))
  1473. set_bit(R5_MadeGood, &sh->dev[i].flags);
  1474. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  1475. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  1476. set_bit(STRIPE_HANDLE, &sh->state);
  1477. release_stripe(sh);
  1478. }
  1479. static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
  1480. static void raid5_build_block(struct stripe_head *sh, int i, int previous)
  1481. {
  1482. struct r5dev *dev = &sh->dev[i];
  1483. bio_init(&dev->req);
  1484. dev->req.bi_io_vec = &dev->vec;
  1485. dev->req.bi_vcnt++;
  1486. dev->req.bi_max_vecs++;
  1487. dev->vec.bv_page = dev->page;
  1488. dev->vec.bv_len = STRIPE_SIZE;
  1489. dev->vec.bv_offset = 0;
  1490. dev->req.bi_sector = sh->sector;
  1491. dev->req.bi_private = sh;
  1492. dev->flags = 0;
  1493. dev->sector = compute_blocknr(sh, i, previous);
  1494. }
  1495. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1496. {
  1497. char b[BDEVNAME_SIZE];
  1498. struct r5conf *conf = mddev->private;
  1499. pr_debug("raid456: error called\n");
  1500. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1501. unsigned long flags;
  1502. spin_lock_irqsave(&conf->device_lock, flags);
  1503. mddev->degraded++;
  1504. spin_unlock_irqrestore(&conf->device_lock, flags);
  1505. /*
  1506. * if recovery was running, make sure it aborts.
  1507. */
  1508. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1509. }
  1510. set_bit(Blocked, &rdev->flags);
  1511. set_bit(Faulty, &rdev->flags);
  1512. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1513. printk(KERN_ALERT
  1514. "md/raid:%s: Disk failure on %s, disabling device.\n"
  1515. "md/raid:%s: Operation continuing on %d devices.\n",
  1516. mdname(mddev),
  1517. bdevname(rdev->bdev, b),
  1518. mdname(mddev),
  1519. conf->raid_disks - mddev->degraded);
  1520. }
  1521. /*
  1522. * Input: a 'big' sector number,
  1523. * Output: index of the data and parity disk, and the sector # in them.
  1524. */
  1525. static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
  1526. int previous, int *dd_idx,
  1527. struct stripe_head *sh)
  1528. {
  1529. sector_t stripe, stripe2;
  1530. sector_t chunk_number;
  1531. unsigned int chunk_offset;
  1532. int pd_idx, qd_idx;
  1533. int ddf_layout = 0;
  1534. sector_t new_sector;
  1535. int algorithm = previous ? conf->prev_algo
  1536. : conf->algorithm;
  1537. int sectors_per_chunk = previous ? conf->prev_chunk_sectors
  1538. : conf->chunk_sectors;
  1539. int raid_disks = previous ? conf->previous_raid_disks
  1540. : conf->raid_disks;
  1541. int data_disks = raid_disks - conf->max_degraded;
  1542. /* First compute the information on this sector */
  1543. /*
  1544. * Compute the chunk number and the sector offset inside the chunk
  1545. */
  1546. chunk_offset = sector_div(r_sector, sectors_per_chunk);
  1547. chunk_number = r_sector;
  1548. /*
  1549. * Compute the stripe number
  1550. */
  1551. stripe = chunk_number;
  1552. *dd_idx = sector_div(stripe, data_disks);
  1553. stripe2 = stripe;
  1554. /*
  1555. * Select the parity disk based on the user selected algorithm.
  1556. */
  1557. pd_idx = qd_idx = -1;
  1558. switch(conf->level) {
  1559. case 4:
  1560. pd_idx = data_disks;
  1561. break;
  1562. case 5:
  1563. switch (algorithm) {
  1564. case ALGORITHM_LEFT_ASYMMETRIC:
  1565. pd_idx = data_disks - sector_div(stripe2, raid_disks);
  1566. if (*dd_idx >= pd_idx)
  1567. (*dd_idx)++;
  1568. break;
  1569. case ALGORITHM_RIGHT_ASYMMETRIC:
  1570. pd_idx = sector_div(stripe2, raid_disks);
  1571. if (*dd_idx >= pd_idx)
  1572. (*dd_idx)++;
  1573. break;
  1574. case ALGORITHM_LEFT_SYMMETRIC:
  1575. pd_idx = data_disks - sector_div(stripe2, raid_disks);
  1576. *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
  1577. break;
  1578. case ALGORITHM_RIGHT_SYMMETRIC:
  1579. pd_idx = sector_div(stripe2, raid_disks);
  1580. *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
  1581. break;
  1582. case ALGORITHM_PARITY_0:
  1583. pd_idx = 0;
  1584. (*dd_idx)++;
  1585. break;
  1586. case ALGORITHM_PARITY_N:
  1587. pd_idx = data_disks;
  1588. break;
  1589. default:
  1590. BUG();
  1591. }
  1592. break;
  1593. case 6:
  1594. switch (algorithm) {
  1595. case ALGORITHM_LEFT_ASYMMETRIC:
  1596. pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
  1597. qd_idx = pd_idx + 1;
  1598. if (pd_idx == raid_disks-1) {
  1599. (*dd_idx)++; /* Q D D D P */
  1600. qd_idx = 0;
  1601. } else if (*dd_idx >= pd_idx)
  1602. (*dd_idx) += 2; /* D D P Q D */
  1603. break;
  1604. case ALGORITHM_RIGHT_ASYMMETRIC:
  1605. pd_idx = sector_div(stripe2, raid_disks);
  1606. qd_idx = pd_idx + 1;
  1607. if (pd_idx == raid_disks-1) {
  1608. (*dd_idx)++; /* Q D D D P */
  1609. qd_idx = 0;
  1610. } else if (*dd_idx >= pd_idx)
  1611. (*dd_idx) += 2; /* D D P Q D */
  1612. break;
  1613. case ALGORITHM_LEFT_SYMMETRIC:
  1614. pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
  1615. qd_idx = (pd_idx + 1) % raid_disks;
  1616. *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
  1617. break;
  1618. case ALGORITHM_RIGHT_SYMMETRIC:
  1619. pd_idx = sector_div(stripe2, raid_disks);
  1620. qd_idx = (pd_idx + 1) % raid_disks;
  1621. *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
  1622. break;
  1623. case ALGORITHM_PARITY_0:
  1624. pd_idx = 0;
  1625. qd_idx = 1;
  1626. (*dd_idx) += 2;
  1627. break;
  1628. case ALGORITHM_PARITY_N:
  1629. pd_idx = data_disks;
  1630. qd_idx = data_disks + 1;
  1631. break;
  1632. case ALGORITHM_ROTATING_ZERO_RESTART:
  1633. /* Exactly the same as RIGHT_ASYMMETRIC, but or
  1634. * of blocks for computing Q is different.
  1635. */
  1636. pd_idx = sector_div(stripe2, raid_disks);
  1637. qd_idx = pd_idx + 1;
  1638. if (pd_idx == raid_disks-1) {
  1639. (*dd_idx)++; /* Q D D D P */
  1640. qd_idx = 0;
  1641. } else if (*dd_idx >= pd_idx)
  1642. (*dd_idx) += 2; /* D D P Q D */
  1643. ddf_layout = 1;
  1644. break;
  1645. case ALGORITHM_ROTATING_N_RESTART:
  1646. /* Same a left_asymmetric, by first stripe is
  1647. * D D D P Q rather than
  1648. * Q D D D P
  1649. */
  1650. stripe2 += 1;
  1651. pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
  1652. qd_idx = pd_idx + 1;
  1653. if (pd_idx == raid_disks-1) {
  1654. (*dd_idx)++; /* Q D D D P */
  1655. qd_idx = 0;
  1656. } else if (*dd_idx >= pd_idx)
  1657. (*dd_idx) += 2; /* D D P Q D */
  1658. ddf_layout = 1;
  1659. break;
  1660. case ALGORITHM_ROTATING_N_CONTINUE:
  1661. /* Same as left_symmetric but Q is before P */
  1662. pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
  1663. qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
  1664. *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
  1665. ddf_layout = 1;
  1666. break;
  1667. case ALGORITHM_LEFT_ASYMMETRIC_6:
  1668. /* RAID5 left_asymmetric, with Q on last device */
  1669. pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
  1670. if (*dd_idx >= pd_idx)
  1671. (*dd_idx)++;
  1672. qd_idx = raid_disks - 1;
  1673. break;
  1674. case ALGORITHM_RIGHT_ASYMMETRIC_6:
  1675. pd_idx = sector_div(stripe2, raid_disks-1);
  1676. if (*dd_idx >= pd_idx)
  1677. (*dd_idx)++;
  1678. qd_idx = raid_disks - 1;
  1679. break;
  1680. case ALGORITHM_LEFT_SYMMETRIC_6:
  1681. pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
  1682. *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
  1683. qd_idx = raid_disks - 1;
  1684. break;
  1685. case ALGORITHM_RIGHT_SYMMETRIC_6:
  1686. pd_idx = sector_div(stripe2, raid_disks-1);
  1687. *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
  1688. qd_idx = raid_disks - 1;
  1689. break;
  1690. case ALGORITHM_PARITY_0_6:
  1691. pd_idx = 0;
  1692. (*dd_idx)++;
  1693. qd_idx = raid_disks - 1;
  1694. break;
  1695. default:
  1696. BUG();
  1697. }
  1698. break;
  1699. }
  1700. if (sh) {
  1701. sh->pd_idx = pd_idx;
  1702. sh->qd_idx = qd_idx;
  1703. sh->ddf_layout = ddf_layout;
  1704. }
  1705. /*
  1706. * Finally, compute the new sector number
  1707. */
  1708. new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
  1709. return new_sector;
  1710. }
  1711. static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
  1712. {
  1713. struct r5conf *conf = sh->raid_conf;
  1714. int raid_disks = sh->disks;
  1715. int data_disks = raid_disks - conf->max_degraded;
  1716. sector_t new_sector = sh->sector, check;
  1717. int sectors_per_chunk = previous ? conf->prev_chunk_sectors
  1718. : conf->chunk_sectors;
  1719. int algorithm = previous ? conf->prev_algo
  1720. : conf->algorithm;
  1721. sector_t stripe;
  1722. int chunk_offset;
  1723. sector_t chunk_number;
  1724. int dummy1, dd_idx = i;
  1725. sector_t r_sector;
  1726. struct stripe_head sh2;
  1727. chunk_offset = sector_div(new_sector, sectors_per_chunk);
  1728. stripe = new_sector;
  1729. if (i == sh->pd_idx)
  1730. return 0;
  1731. switch(conf->level) {
  1732. case 4: break;
  1733. case 5:
  1734. switch (algorithm) {
  1735. case ALGORITHM_LEFT_ASYMMETRIC:
  1736. case ALGORITHM_RIGHT_ASYMMETRIC:
  1737. if (i > sh->pd_idx)
  1738. i--;
  1739. break;
  1740. case ALGORITHM_LEFT_SYMMETRIC:
  1741. case ALGORITHM_RIGHT_SYMMETRIC:
  1742. if (i < sh->pd_idx)
  1743. i += raid_disks;
  1744. i -= (sh->pd_idx + 1);
  1745. break;
  1746. case ALGORITHM_PARITY_0:
  1747. i -= 1;
  1748. break;
  1749. case ALGORITHM_PARITY_N:
  1750. break;
  1751. default:
  1752. BUG();
  1753. }
  1754. break;
  1755. case 6:
  1756. if (i == sh->qd_idx)
  1757. return 0; /* It is the Q disk */
  1758. switch (algorithm) {
  1759. case ALGORITHM_LEFT_ASYMMETRIC:
  1760. case ALGORITHM_RIGHT_ASYMMETRIC:
  1761. case ALGORITHM_ROTATING_ZERO_RESTART:
  1762. case ALGORITHM_ROTATING_N_RESTART:
  1763. if (sh->pd_idx == raid_disks-1)
  1764. i--; /* Q D D D P */
  1765. else if (i > sh->pd_idx)
  1766. i -= 2; /* D D P Q D */
  1767. break;
  1768. case ALGORITHM_LEFT_SYMMETRIC:
  1769. case ALGORITHM_RIGHT_SYMMETRIC:
  1770. if (sh->pd_idx == raid_disks-1)
  1771. i--; /* Q D D D P */
  1772. else {
  1773. /* D D P Q D */
  1774. if (i < sh->pd_idx)
  1775. i += raid_disks;
  1776. i -= (sh->pd_idx + 2);
  1777. }
  1778. break;
  1779. case ALGORITHM_PARITY_0:
  1780. i -= 2;
  1781. break;
  1782. case ALGORITHM_PARITY_N:
  1783. break;
  1784. case ALGORITHM_ROTATING_N_CONTINUE:
  1785. /* Like left_symmetric, but P is before Q */
  1786. if (sh->pd_idx == 0)
  1787. i--; /* P D D D Q */
  1788. else {
  1789. /* D D Q P D */
  1790. if (i < sh->pd_idx)
  1791. i += raid_disks;
  1792. i -= (sh->pd_idx + 1);
  1793. }
  1794. break;
  1795. case ALGORITHM_LEFT_ASYMMETRIC_6:
  1796. case ALGORITHM_RIGHT_ASYMMETRIC_6:
  1797. if (i > sh->pd_idx)
  1798. i--;
  1799. break;
  1800. case ALGORITHM_LEFT_SYMMETRIC_6:
  1801. case ALGORITHM_RIGHT_SYMMETRIC_6:
  1802. if (i < sh->pd_idx)
  1803. i += data_disks + 1;
  1804. i -= (sh->pd_idx + 1);
  1805. break;
  1806. case ALGORITHM_PARITY_0_6:
  1807. i -= 1;
  1808. break;
  1809. default:
  1810. BUG();
  1811. }
  1812. break;
  1813. }
  1814. chunk_number = stripe * data_disks + i;
  1815. r_sector = chunk_number * sectors_per_chunk + chunk_offset;
  1816. check = raid5_compute_sector(conf, r_sector,
  1817. previous, &dummy1, &sh2);
  1818. if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
  1819. || sh2.qd_idx != sh->qd_idx) {
  1820. printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
  1821. mdname(conf->mddev));
  1822. return 0;
  1823. }
  1824. return r_sector;
  1825. }
  1826. static void
  1827. schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
  1828. int rcw, int expand)
  1829. {
  1830. int i, pd_idx = sh->pd_idx, disks = sh->disks;
  1831. struct r5conf *conf = sh->raid_conf;
  1832. int level = conf->level;
  1833. if (rcw) {
  1834. /* if we are not expanding this is a proper write request, and
  1835. * there will be bios with new data to be drained into the
  1836. * stripe cache
  1837. */
  1838. if (!expand) {
  1839. sh->reconstruct_state = reconstruct_state_drain_run;
  1840. set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
  1841. } else
  1842. sh->reconstruct_state = reconstruct_state_run;
  1843. set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
  1844. for (i = disks; i--; ) {
  1845. struct r5dev *dev = &sh->dev[i];
  1846. if (dev->towrite) {
  1847. set_bit(R5_LOCKED, &dev->flags);
  1848. set_bit(R5_Wantdrain, &dev->flags);
  1849. if (!expand)
  1850. clear_bit(R5_UPTODATE, &dev->flags);
  1851. s->locked++;
  1852. }
  1853. }
  1854. if (s->locked + conf->max_degraded == disks)
  1855. if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
  1856. atomic_inc(&conf->pending_full_writes);
  1857. } else {
  1858. BUG_ON(level == 6);
  1859. BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
  1860. test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
  1861. sh->reconstruct_state = reconstruct_state_prexor_drain_run;
  1862. set_bit(STRIPE_OP_PREXOR, &s->ops_request);
  1863. set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
  1864. set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
  1865. for (i = disks; i--; ) {
  1866. struct r5dev *dev = &sh->dev[i];
  1867. if (i == pd_idx)
  1868. continue;
  1869. if (dev->towrite &&
  1870. (test_bit(R5_UPTODATE, &dev->flags) ||
  1871. test_bit(R5_Wantcompute, &dev->flags))) {
  1872. set_bit(R5_Wantdrain, &dev->flags);
  1873. set_bit(R5_LOCKED, &dev->flags);
  1874. clear_bit(R5_UPTODATE, &dev->flags);
  1875. s->locked++;
  1876. }
  1877. }
  1878. }
  1879. /* keep the parity disk(s) locked while asynchronous operations
  1880. * are in flight
  1881. */
  1882. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  1883. clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1884. s->locked++;
  1885. if (level == 6) {
  1886. int qd_idx = sh->qd_idx;
  1887. struct r5dev *dev = &sh->dev[qd_idx];
  1888. set_bit(R5_LOCKED, &dev->flags);
  1889. clear_bit(R5_UPTODATE, &dev->flags);
  1890. s->locked++;
  1891. }
  1892. pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
  1893. __func__, (unsigned long long)sh->sector,
  1894. s->locked, s->ops_request);
  1895. }
  1896. /*
  1897. * Each stripe/dev can have one or more bion attached.
  1898. * toread/towrite point to the first in a chain.
  1899. * The bi_next chain must be in order.
  1900. */
  1901. static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
  1902. {
  1903. struct bio **bip;
  1904. struct r5conf *conf = sh->raid_conf;
  1905. int firstwrite=0;
  1906. pr_debug("adding bi b#%llu to stripe s#%llu\n",
  1907. (unsigned long long)bi->bi_sector,
  1908. (unsigned long long)sh->sector);
  1909. spin_lock_irq(&conf->device_lock);
  1910. if (forwrite) {
  1911. bip = &sh->dev[dd_idx].towrite;
  1912. if (*bip == NULL && sh->dev[dd_idx].written == NULL)
  1913. firstwrite = 1;
  1914. } else
  1915. bip = &sh->dev[dd_idx].toread;
  1916. while (*bip && (*bip)->bi_sector < bi->bi_sector) {
  1917. if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
  1918. goto overlap;
  1919. bip = & (*bip)->bi_next;
  1920. }
  1921. if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
  1922. goto overlap;
  1923. BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
  1924. if (*bip)
  1925. bi->bi_next = *bip;
  1926. *bip = bi;
  1927. bi->bi_phys_segments++;
  1928. if (forwrite) {
  1929. /* check if page is covered */
  1930. sector_t sector = sh->dev[dd_idx].sector;
  1931. for (bi=sh->dev[dd_idx].towrite;
  1932. sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
  1933. bi && bi->bi_sector <= sector;
  1934. bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
  1935. if (bi->bi_sector + (bi->bi_size>>9) >= sector)
  1936. sector = bi->bi_sector + (bi->bi_size>>9);
  1937. }
  1938. if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
  1939. set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
  1940. }
  1941. spin_unlock_irq(&conf->device_lock);
  1942. pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
  1943. (unsigned long long)(*bip)->bi_sector,
  1944. (unsigned long long)sh->sector, dd_idx);
  1945. if (conf->mddev->bitmap && firstwrite) {
  1946. bitmap_startwrite(conf->mddev->bitmap, sh->sector,
  1947. STRIPE_SECTORS, 0);
  1948. sh->bm_seq = conf->seq_flush+1;
  1949. set_bit(STRIPE_BIT_DELAY, &sh->state);
  1950. }
  1951. return 1;
  1952. overlap:
  1953. set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
  1954. spin_unlock_irq(&conf->device_lock);
  1955. return 0;
  1956. }
  1957. static void end_reshape(struct r5conf *conf);
  1958. static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
  1959. struct stripe_head *sh)
  1960. {
  1961. int sectors_per_chunk =
  1962. previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
  1963. int dd_idx;
  1964. int chunk_offset = sector_div(stripe, sectors_per_chunk);
  1965. int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
  1966. raid5_compute_sector(conf,
  1967. stripe * (disks - conf->max_degraded)
  1968. *sectors_per_chunk + chunk_offset,
  1969. previous,
  1970. &dd_idx, sh);
  1971. }
  1972. static void
  1973. handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
  1974. struct stripe_head_state *s, int disks,
  1975. struct bio **return_bi)
  1976. {
  1977. int i;
  1978. for (i = disks; i--; ) {
  1979. struct bio *bi;
  1980. int bitmap_end = 0;
  1981. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  1982. struct md_rdev *rdev;
  1983. rcu_read_lock();
  1984. rdev = rcu_dereference(conf->disks[i].rdev);
  1985. if (rdev && test_bit(In_sync, &rdev->flags))
  1986. atomic_inc(&rdev->nr_pending);
  1987. else
  1988. rdev = NULL;
  1989. rcu_read_unlock();
  1990. if (rdev) {
  1991. if (!rdev_set_badblocks(
  1992. rdev,
  1993. sh->sector,
  1994. STRIPE_SECTORS, 0))
  1995. md_error(conf->mddev, rdev);
  1996. rdev_dec_pending(rdev, conf->mddev);
  1997. }
  1998. }
  1999. spin_lock_irq(&conf->device_lock);
  2000. /* fail all writes first */
  2001. bi = sh->dev[i].towrite;
  2002. sh->dev[i].towrite = NULL;
  2003. if (bi) {
  2004. s->to_write--;
  2005. bitmap_end = 1;
  2006. }
  2007. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  2008. wake_up(&conf->wait_for_overlap);
  2009. while (bi && bi->bi_sector <
  2010. sh->dev[i].sector + STRIPE_SECTORS) {
  2011. struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
  2012. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  2013. if (!raid5_dec_bi_phys_segments(bi)) {
  2014. md_write_end(conf->mddev);
  2015. bi->bi_next = *return_bi;
  2016. *return_bi = bi;
  2017. }
  2018. bi = nextbi;
  2019. }
  2020. /* and fail all 'written' */
  2021. bi = sh->dev[i].written;
  2022. sh->dev[i].written = NULL;
  2023. if (bi) bitmap_end = 1;
  2024. while (bi && bi->bi_sector <
  2025. sh->dev[i].sector + STRIPE_SECTORS) {
  2026. struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
  2027. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  2028. if (!raid5_dec_bi_phys_segments(bi)) {
  2029. md_write_end(conf->mddev);
  2030. bi->bi_next = *return_bi;
  2031. *return_bi = bi;
  2032. }
  2033. bi = bi2;
  2034. }
  2035. /* fail any reads if this device is non-operational and
  2036. * the data has not reached the cache yet.
  2037. */
  2038. if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
  2039. (!test_bit(R5_Insync, &sh->dev[i].flags) ||
  2040. test_bit(R5_ReadError, &sh->dev[i].flags))) {
  2041. bi = sh->dev[i].toread;
  2042. sh->dev[i].toread = NULL;
  2043. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  2044. wake_up(&conf->wait_for_overlap);
  2045. if (bi) s->to_read--;
  2046. while (bi && bi->bi_sector <
  2047. sh->dev[i].sector + STRIPE_SECTORS) {
  2048. struct bio *nextbi =
  2049. r5_next_bio(bi, sh->dev[i].sector);
  2050. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  2051. if (!raid5_dec_bi_phys_segments(bi)) {
  2052. bi->bi_next = *return_bi;
  2053. *return_bi = bi;
  2054. }
  2055. bi = nextbi;
  2056. }
  2057. }
  2058. spin_unlock_irq(&conf->device_lock);
  2059. if (bitmap_end)
  2060. bitmap_endwrite(conf->mddev->bitmap, sh->sector,
  2061. STRIPE_SECTORS, 0, 0);
  2062. /* If we were in the middle of a write the parity block might
  2063. * still be locked - so just clear all R5_LOCKED flags
  2064. */
  2065. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  2066. }
  2067. if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
  2068. if (atomic_dec_and_test(&conf->pending_full_writes))
  2069. md_wakeup_thread(conf->mddev->thread);
  2070. }
  2071. static void
  2072. handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
  2073. struct stripe_head_state *s)
  2074. {
  2075. int abort = 0;
  2076. int i;
  2077. md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
  2078. clear_bit(STRIPE_SYNCING, &sh->state);
  2079. s->syncing = 0;
  2080. /* There is nothing more to do for sync/check/repair.
  2081. * For recover we need to record a bad block on all
  2082. * non-sync devices, or abort the recovery
  2083. */
  2084. if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
  2085. return;
  2086. /* During recovery devices cannot be removed, so locking and
  2087. * refcounting of rdevs is not needed
  2088. */
  2089. for (i = 0; i < conf->raid_disks; i++) {
  2090. struct md_rdev *rdev = conf->disks[i].rdev;
  2091. if (!rdev
  2092. || test_bit(Faulty, &rdev->flags)
  2093. || test_bit(In_sync, &rdev->flags))
  2094. continue;
  2095. if (!rdev_set_badblocks(rdev, sh->sector,
  2096. STRIPE_SECTORS, 0))
  2097. abort = 1;
  2098. }
  2099. if (abort) {
  2100. conf->recovery_disabled = conf->mddev->recovery_disabled;
  2101. set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
  2102. }
  2103. }
  2104. /* fetch_block - checks the given member device to see if its data needs
  2105. * to be read or computed to satisfy a request.
  2106. *
  2107. * Returns 1 when no more member devices need to be checked, otherwise returns
  2108. * 0 to tell the loop in handle_stripe_fill to continue
  2109. */
  2110. static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
  2111. int disk_idx, int disks)
  2112. {
  2113. struct r5dev *dev = &sh->dev[disk_idx];
  2114. struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
  2115. &sh->dev[s->failed_num[1]] };
  2116. /* is the data in this block needed, and can we get it? */
  2117. if (!test_bit(R5_LOCKED, &dev->flags) &&
  2118. !test_bit(R5_UPTODATE, &dev->flags) &&
  2119. (dev->toread ||
  2120. (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
  2121. s->syncing || s->expanding ||
  2122. (s->failed >= 1 && fdev[0]->toread) ||
  2123. (s->failed >= 2 && fdev[1]->toread) ||
  2124. (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
  2125. !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
  2126. (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
  2127. /* we would like to get this block, possibly by computing it,
  2128. * otherwise read it if the backing disk is insync
  2129. */
  2130. BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
  2131. BUG_ON(test_bit(R5_Wantread, &dev->flags));
  2132. if ((s->uptodate == disks - 1) &&
  2133. (s->failed && (disk_idx == s->failed_num[0] ||
  2134. disk_idx == s->failed_num[1]))) {
  2135. /* have disk failed, and we're requested to fetch it;
  2136. * do compute it
  2137. */
  2138. pr_debug("Computing stripe %llu block %d\n",
  2139. (unsigned long long)sh->sector, disk_idx);
  2140. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  2141. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  2142. set_bit(R5_Wantcompute, &dev->flags);
  2143. sh->ops.target = disk_idx;
  2144. sh->ops.target2 = -1; /* no 2nd target */
  2145. s->req_compute = 1;
  2146. /* Careful: from this point on 'uptodate' is in the eye
  2147. * of raid_run_ops which services 'compute' operations
  2148. * before writes. R5_Wantcompute flags a block that will
  2149. * be R5_UPTODATE by the time it is needed for a
  2150. * subsequent operation.
  2151. */
  2152. s->uptodate++;
  2153. return 1;
  2154. } else if (s->uptodate == disks-2 && s->failed >= 2) {
  2155. /* Computing 2-failure is *very* expensive; only
  2156. * do it if failed >= 2
  2157. */
  2158. int other;
  2159. for (other = disks; other--; ) {
  2160. if (other == disk_idx)
  2161. continue;
  2162. if (!test_bit(R5_UPTODATE,
  2163. &sh->dev[other].flags))
  2164. break;
  2165. }
  2166. BUG_ON(other < 0);
  2167. pr_debug("Computing stripe %llu blocks %d,%d\n",
  2168. (unsigned long long)sh->sector,
  2169. disk_idx, other);
  2170. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  2171. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  2172. set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
  2173. set_bit(R5_Wantcompute, &sh->dev[other].flags);
  2174. sh->ops.target = disk_idx;
  2175. sh->ops.target2 = other;
  2176. s->uptodate += 2;
  2177. s->req_compute = 1;
  2178. return 1;
  2179. } else if (test_bit(R5_Insync, &dev->flags)) {
  2180. set_bit(R5_LOCKED, &dev->flags);
  2181. set_bit(R5_Wantread, &dev->flags);
  2182. s->locked++;
  2183. pr_debug("Reading block %d (sync=%d)\n",
  2184. disk_idx, s->syncing);
  2185. }
  2186. }
  2187. return 0;
  2188. }
  2189. /**
  2190. * handle_stripe_fill - read or compute data to satisfy pending requests.
  2191. */
  2192. static void handle_stripe_fill(struct stripe_head *sh,
  2193. struct stripe_head_state *s,
  2194. int disks)
  2195. {
  2196. int i;
  2197. /* look for blocks to read/compute, skip this if a compute
  2198. * is already in flight, or if the stripe contents are in the
  2199. * midst of changing due to a write
  2200. */
  2201. if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
  2202. !sh->reconstruct_state)
  2203. for (i = disks; i--; )
  2204. if (fetch_block(sh, s, i, disks))
  2205. break;
  2206. set_bit(STRIPE_HANDLE, &sh->state);
  2207. }
  2208. /* handle_stripe_clean_event
  2209. * any written block on an uptodate or failed drive can be returned.
  2210. * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
  2211. * never LOCKED, so we don't need to test 'failed' directly.
  2212. */
  2213. static void handle_stripe_clean_event(struct r5conf *conf,
  2214. struct stripe_head *sh, int disks, struct bio **return_bi)
  2215. {
  2216. int i;
  2217. struct r5dev *dev;
  2218. for (i = disks; i--; )
  2219. if (sh->dev[i].written) {
  2220. dev = &sh->dev[i];
  2221. if (!test_bit(R5_LOCKED, &dev->flags) &&
  2222. test_bit(R5_UPTODATE, &dev->flags)) {
  2223. /* We can return any write requests */
  2224. struct bio *wbi, *wbi2;
  2225. int bitmap_end = 0;
  2226. pr_debug("Return write for disc %d\n", i);
  2227. spin_lock_irq(&conf->device_lock);
  2228. wbi = dev->written;
  2229. dev->written = NULL;
  2230. while (wbi && wbi->bi_sector <
  2231. dev->sector + STRIPE_SECTORS) {
  2232. wbi2 = r5_next_bio(wbi, dev->sector);
  2233. if (!raid5_dec_bi_phys_segments(wbi)) {
  2234. md_write_end(conf->mddev);
  2235. wbi->bi_next = *return_bi;
  2236. *return_bi = wbi;
  2237. }
  2238. wbi = wbi2;
  2239. }
  2240. if (dev->towrite == NULL)
  2241. bitmap_end = 1;
  2242. spin_unlock_irq(&conf->device_lock);
  2243. if (bitmap_end)
  2244. bitmap_endwrite(conf->mddev->bitmap,
  2245. sh->sector,
  2246. STRIPE_SECTORS,
  2247. !test_bit(STRIPE_DEGRADED, &sh->state),
  2248. 0);
  2249. }
  2250. }
  2251. if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
  2252. if (atomic_dec_and_test(&conf->pending_full_writes))
  2253. md_wakeup_thread(conf->mddev->thread);
  2254. }
  2255. static void handle_stripe_dirtying(struct r5conf *conf,
  2256. struct stripe_head *sh,
  2257. struct stripe_head_state *s,
  2258. int disks)
  2259. {
  2260. int rmw = 0, rcw = 0, i;
  2261. if (conf->max_degraded == 2) {
  2262. /* RAID6 requires 'rcw' in current implementation
  2263. * Calculate the real rcw later - for now fake it
  2264. * look like rcw is cheaper
  2265. */
  2266. rcw = 1; rmw = 2;
  2267. } else for (i = disks; i--; ) {
  2268. /* would I have to read this buffer for read_modify_write */
  2269. struct r5dev *dev = &sh->dev[i];
  2270. if ((dev->towrite || i == sh->pd_idx) &&
  2271. !test_bit(R5_LOCKED, &dev->flags) &&
  2272. !(test_bit(R5_UPTODATE, &dev->flags) ||
  2273. test_bit(R5_Wantcompute, &dev->flags))) {
  2274. if (test_bit(R5_Insync, &dev->flags))
  2275. rmw++;
  2276. else
  2277. rmw += 2*disks; /* cannot read it */
  2278. }
  2279. /* Would I have to read this buffer for reconstruct_write */
  2280. if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
  2281. !test_bit(R5_LOCKED, &dev->flags) &&
  2282. !(test_bit(R5_UPTODATE, &dev->flags) ||
  2283. test_bit(R5_Wantcompute, &dev->flags))) {
  2284. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  2285. else
  2286. rcw += 2*disks;
  2287. }
  2288. }
  2289. pr_debug("for sector %llu, rmw=%d rcw=%d\n",
  2290. (unsigned long long)sh->sector, rmw, rcw);
  2291. set_bit(STRIPE_HANDLE, &sh->state);
  2292. if (rmw < rcw && rmw > 0)
  2293. /* prefer read-modify-write, but need to get some data */
  2294. for (i = disks; i--; ) {
  2295. struct r5dev *dev = &sh->dev[i];
  2296. if ((dev->towrite || i == sh->pd_idx) &&
  2297. !test_bit(R5_LOCKED, &dev->flags) &&
  2298. !(test_bit(R5_UPTODATE, &dev->flags) ||
  2299. test_bit(R5_Wantcompute, &dev->flags)) &&
  2300. test_bit(R5_Insync, &dev->flags)) {
  2301. if (
  2302. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2303. pr_debug("Read_old block "
  2304. "%d for r-m-w\n", i);
  2305. set_bit(R5_LOCKED, &dev->flags);
  2306. set_bit(R5_Wantread, &dev->flags);
  2307. s->locked++;
  2308. } else {
  2309. set_bit(STRIPE_DELAYED, &sh->state);
  2310. set_bit(STRIPE_HANDLE, &sh->state);
  2311. }
  2312. }
  2313. }
  2314. if (rcw <= rmw && rcw > 0) {
  2315. /* want reconstruct write, but need to get some data */
  2316. rcw = 0;
  2317. for (i = disks; i--; ) {
  2318. struct r5dev *dev = &sh->dev[i];
  2319. if (!test_bit(R5_OVERWRITE, &dev->flags) &&
  2320. i != sh->pd_idx && i != sh->qd_idx &&
  2321. !test_bit(R5_LOCKED, &dev->flags) &&
  2322. !(test_bit(R5_UPTODATE, &dev->flags) ||
  2323. test_bit(R5_Wantcompute, &dev->flags))) {
  2324. rcw++;
  2325. if (!test_bit(R5_Insync, &dev->flags))
  2326. continue; /* it's a failed drive */
  2327. if (
  2328. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2329. pr_debug("Read_old block "
  2330. "%d for Reconstruct\n", i);
  2331. set_bit(R5_LOCKED, &dev->flags);
  2332. set_bit(R5_Wantread, &dev->flags);
  2333. s->locked++;
  2334. } else {
  2335. set_bit(STRIPE_DELAYED, &sh->state);
  2336. set_bit(STRIPE_HANDLE, &sh->state);
  2337. }
  2338. }
  2339. }
  2340. }
  2341. /* now if nothing is locked, and if we have enough data,
  2342. * we can start a write request
  2343. */
  2344. /* since handle_stripe can be called at any time we need to handle the
  2345. * case where a compute block operation has been submitted and then a
  2346. * subsequent call wants to start a write request. raid_run_ops only
  2347. * handles the case where compute block and reconstruct are requested
  2348. * simultaneously. If this is not the case then new writes need to be
  2349. * held off until the compute completes.
  2350. */
  2351. if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
  2352. (s->locked == 0 && (rcw == 0 || rmw == 0) &&
  2353. !test_bit(STRIPE_BIT_DELAY, &sh->state)))
  2354. schedule_reconstruction(sh, s, rcw == 0, 0);
  2355. }
  2356. static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
  2357. struct stripe_head_state *s, int disks)
  2358. {
  2359. struct r5dev *dev = NULL;
  2360. set_bit(STRIPE_HANDLE, &sh->state);
  2361. switch (sh->check_state) {
  2362. case check_state_idle:
  2363. /* start a new check operation if there are no failures */
  2364. if (s->failed == 0) {
  2365. BUG_ON(s->uptodate != disks);
  2366. sh->check_state = check_state_run;
  2367. set_bit(STRIPE_OP_CHECK, &s->ops_request);
  2368. clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
  2369. s->uptodate--;
  2370. break;
  2371. }
  2372. dev = &sh->dev[s->failed_num[0]];
  2373. /* fall through */
  2374. case check_state_compute_result:
  2375. sh->check_state = check_state_idle;
  2376. if (!dev)
  2377. dev = &sh->dev[sh->pd_idx];
  2378. /* check that a write has not made the stripe insync */
  2379. if (test_bit(STRIPE_INSYNC, &sh->state))
  2380. break;
  2381. /* either failed parity check, or recovery is happening */
  2382. BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
  2383. BUG_ON(s->uptodate != disks);
  2384. set_bit(R5_LOCKED, &dev->flags);
  2385. s->locked++;
  2386. set_bit(R5_Wantwrite, &dev->flags);
  2387. clear_bit(STRIPE_DEGRADED, &sh->state);
  2388. set_bit(STRIPE_INSYNC, &sh->state);
  2389. break;
  2390. case check_state_run:
  2391. break; /* we will be called again upon completion */
  2392. case check_state_check_result:
  2393. sh->check_state = check_state_idle;
  2394. /* if a failure occurred during the check operation, leave
  2395. * STRIPE_INSYNC not set and let the stripe be handled again
  2396. */
  2397. if (s->failed)
  2398. break;
  2399. /* handle a successful check operation, if parity is correct
  2400. * we are done. Otherwise update the mismatch count and repair
  2401. * parity if !MD_RECOVERY_CHECK
  2402. */
  2403. if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
  2404. /* parity is correct (on disc,
  2405. * not in buffer any more)
  2406. */
  2407. set_bit(STRIPE_INSYNC, &sh->state);
  2408. else {
  2409. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  2410. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2411. /* don't try to repair!! */
  2412. set_bit(STRIPE_INSYNC, &sh->state);
  2413. else {
  2414. sh->check_state = check_state_compute_run;
  2415. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  2416. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  2417. set_bit(R5_Wantcompute,
  2418. &sh->dev[sh->pd_idx].flags);
  2419. sh->ops.target = sh->pd_idx;
  2420. sh->ops.target2 = -1;
  2421. s->uptodate++;
  2422. }
  2423. }
  2424. break;
  2425. case check_state_compute_run:
  2426. break;
  2427. default:
  2428. printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
  2429. __func__, sh->check_state,
  2430. (unsigned long long) sh->sector);
  2431. BUG();
  2432. }
  2433. }
  2434. static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
  2435. struct stripe_head_state *s,
  2436. int disks)
  2437. {
  2438. int pd_idx = sh->pd_idx;
  2439. int qd_idx = sh->qd_idx;
  2440. struct r5dev *dev;
  2441. set_bit(STRIPE_HANDLE, &sh->state);
  2442. BUG_ON(s->failed > 2);
  2443. /* Want to check and possibly repair P and Q.
  2444. * However there could be one 'failed' device, in which
  2445. * case we can only check one of them, possibly using the
  2446. * other to generate missing data
  2447. */
  2448. switch (sh->check_state) {
  2449. case check_state_idle:
  2450. /* start a new check operation if there are < 2 failures */
  2451. if (s->failed == s->q_failed) {
  2452. /* The only possible failed device holds Q, so it
  2453. * makes sense to check P (If anything else were failed,
  2454. * we would have used P to recreate it).
  2455. */
  2456. sh->check_state = check_state_run;
  2457. }
  2458. if (!s->q_failed && s->failed < 2) {
  2459. /* Q is not failed, and we didn't use it to generate
  2460. * anything, so it makes sense to check it
  2461. */
  2462. if (sh->check_state == check_state_run)
  2463. sh->check_state = check_state_run_pq;
  2464. else
  2465. sh->check_state = check_state_run_q;
  2466. }
  2467. /* discard potentially stale zero_sum_result */
  2468. sh->ops.zero_sum_result = 0;
  2469. if (sh->check_state == check_state_run) {
  2470. /* async_xor_zero_sum destroys the contents of P */
  2471. clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  2472. s->uptodate--;
  2473. }
  2474. if (sh->check_state >= check_state_run &&
  2475. sh->check_state <= check_state_run_pq) {
  2476. /* async_syndrome_zero_sum preserves P and Q, so
  2477. * no need to mark them !uptodate here
  2478. */
  2479. set_bit(STRIPE_OP_CHECK, &s->ops_request);
  2480. break;
  2481. }
  2482. /* we have 2-disk failure */
  2483. BUG_ON(s->failed != 2);
  2484. /* fall through */
  2485. case check_state_compute_result:
  2486. sh->check_state = check_state_idle;
  2487. /* check that a write has not made the stripe insync */
  2488. if (test_bit(STRIPE_INSYNC, &sh->state))
  2489. break;
  2490. /* now write out any block on a failed drive,
  2491. * or P or Q if they were recomputed
  2492. */
  2493. BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
  2494. if (s->failed == 2) {
  2495. dev = &sh->dev[s->failed_num[1]];
  2496. s->locked++;
  2497. set_bit(R5_LOCKED, &dev->flags);
  2498. set_bit(R5_Wantwrite, &dev->flags);
  2499. }
  2500. if (s->failed >= 1) {
  2501. dev = &sh->dev[s->failed_num[0]];
  2502. s->locked++;
  2503. set_bit(R5_LOCKED, &dev->flags);
  2504. set_bit(R5_Wantwrite, &dev->flags);
  2505. }
  2506. if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
  2507. dev = &sh->dev[pd_idx];
  2508. s->locked++;
  2509. set_bit(R5_LOCKED, &dev->flags);
  2510. set_bit(R5_Wantwrite, &dev->flags);
  2511. }
  2512. if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
  2513. dev = &sh->dev[qd_idx];
  2514. s->locked++;
  2515. set_bit(R5_LOCKED, &dev->flags);
  2516. set_bit(R5_Wantwrite, &dev->flags);
  2517. }
  2518. clear_bit(STRIPE_DEGRADED, &sh->state);
  2519. set_bit(STRIPE_INSYNC, &sh->state);
  2520. break;
  2521. case check_state_run:
  2522. case check_state_run_q:
  2523. case check_state_run_pq:
  2524. break; /* we will be called again upon completion */
  2525. case check_state_check_result:
  2526. sh->check_state = check_state_idle;
  2527. /* handle a successful check operation, if parity is correct
  2528. * we are done. Otherwise update the mismatch count and repair
  2529. * parity if !MD_RECOVERY_CHECK
  2530. */
  2531. if (sh->ops.zero_sum_result == 0) {
  2532. /* both parities are correct */
  2533. if (!s->failed)
  2534. set_bit(STRIPE_INSYNC, &sh->state);
  2535. else {
  2536. /* in contrast to the raid5 case we can validate
  2537. * parity, but still have a failure to write
  2538. * back
  2539. */
  2540. sh->check_state = check_state_compute_result;
  2541. /* Returning at this point means that we may go
  2542. * off and bring p and/or q uptodate again so
  2543. * we make sure to check zero_sum_result again
  2544. * to verify if p or q need writeback
  2545. */
  2546. }
  2547. } else {
  2548. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  2549. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2550. /* don't try to repair!! */
  2551. set_bit(STRIPE_INSYNC, &sh->state);
  2552. else {
  2553. int *target = &sh->ops.target;
  2554. sh->ops.target = -1;
  2555. sh->ops.target2 = -1;
  2556. sh->check_state = check_state_compute_run;
  2557. set_bit(STRIPE_COMPUTE_RUN, &sh->state);
  2558. set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
  2559. if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
  2560. set_bit(R5_Wantcompute,
  2561. &sh->dev[pd_idx].flags);
  2562. *target = pd_idx;
  2563. target = &sh->ops.target2;
  2564. s->uptodate++;
  2565. }
  2566. if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
  2567. set_bit(R5_Wantcompute,
  2568. &sh->dev[qd_idx].flags);
  2569. *target = qd_idx;
  2570. s->uptodate++;
  2571. }
  2572. }
  2573. }
  2574. break;
  2575. case check_state_compute_run:
  2576. break;
  2577. default:
  2578. printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
  2579. __func__, sh->check_state,
  2580. (unsigned long long) sh->sector);
  2581. BUG();
  2582. }
  2583. }
  2584. static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
  2585. {
  2586. int i;
  2587. /* We have read all the blocks in this stripe and now we need to
  2588. * copy some of them into a target stripe for expand.
  2589. */
  2590. struct dma_async_tx_descriptor *tx = NULL;
  2591. clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2592. for (i = 0; i < sh->disks; i++)
  2593. if (i != sh->pd_idx && i != sh->qd_idx) {
  2594. int dd_idx, j;
  2595. struct stripe_head *sh2;
  2596. struct async_submit_ctl submit;
  2597. sector_t bn = compute_blocknr(sh, i, 1);
  2598. sector_t s = raid5_compute_sector(conf, bn, 0,
  2599. &dd_idx, NULL);
  2600. sh2 = get_active_stripe(conf, s, 0, 1, 1);
  2601. if (sh2 == NULL)
  2602. /* so far only the early blocks of this stripe
  2603. * have been requested. When later blocks
  2604. * get requested, we will try again
  2605. */
  2606. continue;
  2607. if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
  2608. test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
  2609. /* must have already done this block */
  2610. release_stripe(sh2);
  2611. continue;
  2612. }
  2613. /* place all the copies on one channel */
  2614. init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
  2615. tx = async_memcpy(sh2->dev[dd_idx].page,
  2616. sh->dev[i].page, 0, 0, STRIPE_SIZE,
  2617. &submit);
  2618. set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
  2619. set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
  2620. for (j = 0; j < conf->raid_disks; j++)
  2621. if (j != sh2->pd_idx &&
  2622. j != sh2->qd_idx &&
  2623. !test_bit(R5_Expanded, &sh2->dev[j].flags))
  2624. break;
  2625. if (j == conf->raid_disks) {
  2626. set_bit(STRIPE_EXPAND_READY, &sh2->state);
  2627. set_bit(STRIPE_HANDLE, &sh2->state);
  2628. }
  2629. release_stripe(sh2);
  2630. }
  2631. /* done submitting copies, wait for them to complete */
  2632. if (tx) {
  2633. async_tx_ack(tx);
  2634. dma_wait_for_async_tx(tx);
  2635. }
  2636. }
  2637. /*
  2638. * handle_stripe - do things to a stripe.
  2639. *
  2640. * We lock the stripe and then examine the state of various bits
  2641. * to see what needs to be done.
  2642. * Possible results:
  2643. * return some read request which now have data
  2644. * return some write requests which are safely on disc
  2645. * schedule a read on some buffers
  2646. * schedule a write of some buffers
  2647. * return confirmation of parity correctness
  2648. *
  2649. * buffers are taken off read_list or write_list, and bh_cache buffers
  2650. * get BH_Lock set before the stripe lock is released.
  2651. *
  2652. */
  2653. static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
  2654. {
  2655. struct r5conf *conf = sh->raid_conf;
  2656. int disks = sh->disks;
  2657. struct r5dev *dev;
  2658. int i;
  2659. memset(s, 0, sizeof(*s));
  2660. s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
  2661. s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2662. s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
  2663. s->failed_num[0] = -1;
  2664. s->failed_num[1] = -1;
  2665. /* Now to look around and see what can be done */
  2666. rcu_read_lock();
  2667. spin_lock_irq(&conf->device_lock);
  2668. for (i=disks; i--; ) {
  2669. struct md_rdev *rdev;
  2670. sector_t first_bad;
  2671. int bad_sectors;
  2672. int is_bad = 0;
  2673. dev = &sh->dev[i];
  2674. pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
  2675. i, dev->flags, dev->toread, dev->towrite, dev->written);
  2676. /* maybe we can reply to a read
  2677. *
  2678. * new wantfill requests are only permitted while
  2679. * ops_complete_biofill is guaranteed to be inactive
  2680. */
  2681. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
  2682. !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
  2683. set_bit(R5_Wantfill, &dev->flags);
  2684. /* now count some things */
  2685. if (test_bit(R5_LOCKED, &dev->flags))
  2686. s->locked++;
  2687. if (test_bit(R5_UPTODATE, &dev->flags))
  2688. s->uptodate++;
  2689. if (test_bit(R5_Wantcompute, &dev->flags)) {
  2690. s->compute++;
  2691. BUG_ON(s->compute > 2);
  2692. }
  2693. if (test_bit(R5_Wantfill, &dev->flags))
  2694. s->to_fill++;
  2695. else if (dev->toread)
  2696. s->to_read++;
  2697. if (dev->towrite) {
  2698. s->to_write++;
  2699. if (!test_bit(R5_OVERWRITE, &dev->flags))
  2700. s->non_overwrite++;
  2701. }
  2702. if (dev->written)
  2703. s->written++;
  2704. rdev = rcu_dereference(conf->disks[i].rdev);
  2705. if (rdev) {
  2706. is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
  2707. &first_bad, &bad_sectors);
  2708. if (s->blocked_rdev == NULL
  2709. && (test_bit(Blocked, &rdev->flags)
  2710. || is_bad < 0)) {
  2711. if (is_bad < 0)
  2712. set_bit(BlockedBadBlocks,
  2713. &rdev->flags);
  2714. s->blocked_rdev = rdev;
  2715. atomic_inc(&rdev->nr_pending);
  2716. }
  2717. }
  2718. clear_bit(R5_Insync, &dev->flags);
  2719. if (!rdev)
  2720. /* Not in-sync */;
  2721. else if (is_bad) {
  2722. /* also not in-sync */
  2723. if (!test_bit(WriteErrorSeen, &rdev->flags)) {
  2724. /* treat as in-sync, but with a read error
  2725. * which we can now try to correct
  2726. */
  2727. set_bit(R5_Insync, &dev->flags);
  2728. set_bit(R5_ReadError, &dev->flags);
  2729. }
  2730. } else if (test_bit(In_sync, &rdev->flags))
  2731. set_bit(R5_Insync, &dev->flags);
  2732. else if (!test_bit(Faulty, &rdev->flags)) {
  2733. /* in sync if before recovery_offset */
  2734. if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
  2735. set_bit(R5_Insync, &dev->flags);
  2736. }
  2737. if (test_bit(R5_WriteError, &dev->flags)) {
  2738. clear_bit(R5_Insync, &dev->flags);
  2739. if (!test_bit(Faulty, &rdev->flags)) {
  2740. s->handle_bad_blocks = 1;
  2741. atomic_inc(&rdev->nr_pending);
  2742. } else
  2743. clear_bit(R5_WriteError, &dev->flags);
  2744. }
  2745. if (test_bit(R5_MadeGood, &dev->flags)) {
  2746. if (!test_bit(Faulty, &rdev->flags)) {
  2747. s->handle_bad_blocks = 1;
  2748. atomic_inc(&rdev->nr_pending);
  2749. } else
  2750. clear_bit(R5_MadeGood, &dev->flags);
  2751. }
  2752. if (!test_bit(R5_Insync, &dev->flags)) {
  2753. /* The ReadError flag will just be confusing now */
  2754. clear_bit(R5_ReadError, &dev->flags);
  2755. clear_bit(R5_ReWrite, &dev->flags);
  2756. }
  2757. if (test_bit(R5_ReadError, &dev->flags))
  2758. clear_bit(R5_Insync, &dev->flags);
  2759. if (!test_bit(R5_Insync, &dev->flags)) {
  2760. if (s->failed < 2)
  2761. s->failed_num[s->failed] = i;
  2762. s->failed++;
  2763. }
  2764. }
  2765. spin_unlock_irq(&conf->device_lock);
  2766. rcu_read_unlock();
  2767. }
  2768. static void handle_stripe(struct stripe_head *sh)
  2769. {
  2770. struct stripe_head_state s;
  2771. struct r5conf *conf = sh->raid_conf;
  2772. int i;
  2773. int prexor;
  2774. int disks = sh->disks;
  2775. struct r5dev *pdev, *qdev;
  2776. clear_bit(STRIPE_HANDLE, &sh->state);
  2777. if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
  2778. /* already being handled, ensure it gets handled
  2779. * again when current action finishes */
  2780. set_bit(STRIPE_HANDLE, &sh->state);
  2781. return;
  2782. }
  2783. if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
  2784. set_bit(STRIPE_SYNCING, &sh->state);
  2785. clear_bit(STRIPE_INSYNC, &sh->state);
  2786. }
  2787. clear_bit(STRIPE_DELAYED, &sh->state);
  2788. pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
  2789. "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
  2790. (unsigned long long)sh->sector, sh->state,
  2791. atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
  2792. sh->check_state, sh->reconstruct_state);
  2793. analyse_stripe(sh, &s);
  2794. if (s.handle_bad_blocks) {
  2795. set_bit(STRIPE_HANDLE, &sh->state);
  2796. goto finish;
  2797. }
  2798. if (unlikely(s.blocked_rdev)) {
  2799. if (s.syncing || s.expanding || s.expanded ||
  2800. s.to_write || s.written) {
  2801. set_bit(STRIPE_HANDLE, &sh->state);
  2802. goto finish;
  2803. }
  2804. /* There is nothing for the blocked_rdev to block */
  2805. rdev_dec_pending(s.blocked_rdev, conf->mddev);
  2806. s.blocked_rdev = NULL;
  2807. }
  2808. if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
  2809. set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
  2810. set_bit(STRIPE_BIOFILL_RUN, &sh->state);
  2811. }
  2812. pr_debug("locked=%d uptodate=%d to_read=%d"
  2813. " to_write=%d failed=%d failed_num=%d,%d\n",
  2814. s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
  2815. s.failed_num[0], s.failed_num[1]);
  2816. /* check if the array has lost more than max_degraded devices and,
  2817. * if so, some requests might need to be failed.
  2818. */
  2819. if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
  2820. handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
  2821. if (s.failed > conf->max_degraded && s.syncing)
  2822. handle_failed_sync(conf, sh, &s);
  2823. /*
  2824. * might be able to return some write requests if the parity blocks
  2825. * are safe, or on a failed drive
  2826. */
  2827. pdev = &sh->dev[sh->pd_idx];
  2828. s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
  2829. || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
  2830. qdev = &sh->dev[sh->qd_idx];
  2831. s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
  2832. || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
  2833. || conf->level < 6;
  2834. if (s.written &&
  2835. (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
  2836. && !test_bit(R5_LOCKED, &pdev->flags)
  2837. && test_bit(R5_UPTODATE, &pdev->flags)))) &&
  2838. (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
  2839. && !test_bit(R5_LOCKED, &qdev->flags)
  2840. && test_bit(R5_UPTODATE, &qdev->flags)))))
  2841. handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
  2842. /* Now we might consider reading some blocks, either to check/generate
  2843. * parity, or to satisfy requests
  2844. * or to load a block that is being partially written.
  2845. */
  2846. if (s.to_read || s.non_overwrite
  2847. || (conf->level == 6 && s.to_write && s.failed)
  2848. || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
  2849. handle_stripe_fill(sh, &s, disks);
  2850. /* Now we check to see if any write operations have recently
  2851. * completed
  2852. */
  2853. prexor = 0;
  2854. if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
  2855. prexor = 1;
  2856. if (sh->reconstruct_state == reconstruct_state_drain_result ||
  2857. sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
  2858. sh->reconstruct_state = reconstruct_state_idle;
  2859. /* All the 'written' buffers and the parity block are ready to
  2860. * be written back to disk
  2861. */
  2862. BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
  2863. BUG_ON(sh->qd_idx >= 0 &&
  2864. !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
  2865. for (i = disks; i--; ) {
  2866. struct r5dev *dev = &sh->dev[i];
  2867. if (test_bit(R5_LOCKED, &dev->flags) &&
  2868. (i == sh->pd_idx || i == sh->qd_idx ||
  2869. dev->written)) {
  2870. pr_debug("Writing block %d\n", i);
  2871. set_bit(R5_Wantwrite, &dev->flags);
  2872. if (prexor)
  2873. continue;
  2874. if (!test_bit(R5_Insync, &dev->flags) ||
  2875. ((i == sh->pd_idx || i == sh->qd_idx) &&
  2876. s.failed == 0))
  2877. set_bit(STRIPE_INSYNC, &sh->state);
  2878. }
  2879. }
  2880. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  2881. s.dec_preread_active = 1;
  2882. }
  2883. /* Now to consider new write requests and what else, if anything
  2884. * should be read. We do not handle new writes when:
  2885. * 1/ A 'write' operation (copy+xor) is already in flight.
  2886. * 2/ A 'check' operation is in flight, as it may clobber the parity
  2887. * block.
  2888. */
  2889. if (s.to_write && !sh->reconstruct_state && !sh->check_state)
  2890. handle_stripe_dirtying(conf, sh, &s, disks);
  2891. /* maybe we need to check and possibly fix the parity for this stripe
  2892. * Any reads will already have been scheduled, so we just see if enough
  2893. * data is available. The parity check is held off while parity
  2894. * dependent operations are in flight.
  2895. */
  2896. if (sh->check_state ||
  2897. (s.syncing && s.locked == 0 &&
  2898. !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
  2899. !test_bit(STRIPE_INSYNC, &sh->state))) {
  2900. if (conf->level == 6)
  2901. handle_parity_checks6(conf, sh, &s, disks);
  2902. else
  2903. handle_parity_checks5(conf, sh, &s, disks);
  2904. }
  2905. if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  2906. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2907. clear_bit(STRIPE_SYNCING, &sh->state);
  2908. }
  2909. /* If the failed drives are just a ReadError, then we might need
  2910. * to progress the repair/check process
  2911. */
  2912. if (s.failed <= conf->max_degraded && !conf->mddev->ro)
  2913. for (i = 0; i < s.failed; i++) {
  2914. struct r5dev *dev = &sh->dev[s.failed_num[i]];
  2915. if (test_bit(R5_ReadError, &dev->flags)
  2916. && !test_bit(R5_LOCKED, &dev->flags)
  2917. && test_bit(R5_UPTODATE, &dev->flags)
  2918. ) {
  2919. if (!test_bit(R5_ReWrite, &dev->flags)) {
  2920. set_bit(R5_Wantwrite, &dev->flags);
  2921. set_bit(R5_ReWrite, &dev->flags);
  2922. set_bit(R5_LOCKED, &dev->flags);
  2923. s.locked++;
  2924. } else {
  2925. /* let's read it back */
  2926. set_bit(R5_Wantread, &dev->flags);
  2927. set_bit(R5_LOCKED, &dev->flags);
  2928. s.locked++;
  2929. }
  2930. }
  2931. }
  2932. /* Finish reconstruct operations initiated by the expansion process */
  2933. if (sh->reconstruct_state == reconstruct_state_result) {
  2934. struct stripe_head *sh_src
  2935. = get_active_stripe(conf, sh->sector, 1, 1, 1);
  2936. if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
  2937. /* sh cannot be written until sh_src has been read.
  2938. * so arrange for sh to be delayed a little
  2939. */
  2940. set_bit(STRIPE_DELAYED, &sh->state);
  2941. set_bit(STRIPE_HANDLE, &sh->state);
  2942. if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
  2943. &sh_src->state))
  2944. atomic_inc(&conf->preread_active_stripes);
  2945. release_stripe(sh_src);
  2946. goto finish;
  2947. }
  2948. if (sh_src)
  2949. release_stripe(sh_src);
  2950. sh->reconstruct_state = reconstruct_state_idle;
  2951. clear_bit(STRIPE_EXPANDING, &sh->state);
  2952. for (i = conf->raid_disks; i--; ) {
  2953. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2954. set_bit(R5_LOCKED, &sh->dev[i].flags);
  2955. s.locked++;
  2956. }
  2957. }
  2958. if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
  2959. !sh->reconstruct_state) {
  2960. /* Need to write out all blocks after computing parity */
  2961. sh->disks = conf->raid_disks;
  2962. stripe_set_idx(sh->sector, conf, 0, sh);
  2963. schedule_reconstruction(sh, &s, 1, 1);
  2964. } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
  2965. clear_bit(STRIPE_EXPAND_READY, &sh->state);
  2966. atomic_dec(&conf->reshape_stripes);
  2967. wake_up(&conf->wait_for_overlap);
  2968. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2969. }
  2970. if (s.expanding && s.locked == 0 &&
  2971. !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
  2972. handle_stripe_expansion(conf, sh);
  2973. finish:
  2974. /* wait for this device to become unblocked */
  2975. if (conf->mddev->external && unlikely(s.blocked_rdev))
  2976. md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
  2977. if (s.handle_bad_blocks)
  2978. for (i = disks; i--; ) {
  2979. struct md_rdev *rdev;
  2980. struct r5dev *dev = &sh->dev[i];
  2981. if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
  2982. /* We own a safe reference to the rdev */
  2983. rdev = conf->disks[i].rdev;
  2984. if (!rdev_set_badblocks(rdev, sh->sector,
  2985. STRIPE_SECTORS, 0))
  2986. md_error(conf->mddev, rdev);
  2987. rdev_dec_pending(rdev, conf->mddev);
  2988. }
  2989. if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
  2990. rdev = conf->disks[i].rdev;
  2991. rdev_clear_badblocks(rdev, sh->sector,
  2992. STRIPE_SECTORS);
  2993. rdev_dec_pending(rdev, conf->mddev);
  2994. }
  2995. }
  2996. if (s.ops_request)
  2997. raid_run_ops(sh, s.ops_request);
  2998. ops_run_io(sh, &s);
  2999. if (s.dec_preread_active) {
  3000. /* We delay this until after ops_run_io so that if make_request
  3001. * is waiting on a flush, it won't continue until the writes
  3002. * have actually been submitted.
  3003. */
  3004. atomic_dec(&conf->preread_active_stripes);
  3005. if (atomic_read(&conf->preread_active_stripes) <
  3006. IO_THRESHOLD)
  3007. md_wakeup_thread(conf->mddev->thread);
  3008. }
  3009. return_io(s.return_bi);
  3010. clear_bit(STRIPE_ACTIVE, &sh->state);
  3011. }
  3012. static void raid5_activate_delayed(struct r5conf *conf)
  3013. {
  3014. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
  3015. while (!list_empty(&conf->delayed_list)) {
  3016. struct list_head *l = conf->delayed_list.next;
  3017. struct stripe_head *sh;
  3018. sh = list_entry(l, struct stripe_head, lru);
  3019. list_del_init(l);
  3020. clear_bit(STRIPE_DELAYED, &sh->state);
  3021. if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  3022. atomic_inc(&conf->preread_active_stripes);
  3023. list_add_tail(&sh->lru, &conf->hold_list);
  3024. }
  3025. }
  3026. }
  3027. static void activate_bit_delay(struct r5conf *conf)
  3028. {
  3029. /* device_lock is held */
  3030. struct list_head head;
  3031. list_add(&head, &conf->bitmap_list);
  3032. list_del_init(&conf->bitmap_list);
  3033. while (!list_empty(&head)) {
  3034. struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
  3035. list_del_init(&sh->lru);
  3036. atomic_inc(&sh->count);
  3037. __release_stripe(conf, sh);
  3038. }
  3039. }
  3040. int md_raid5_congested(struct mddev *mddev, int bits)
  3041. {
  3042. struct r5conf *conf = mddev->private;
  3043. /* No difference between reads and writes. Just check
  3044. * how busy the stripe_cache is
  3045. */
  3046. if (conf->inactive_blocked)
  3047. return 1;
  3048. if (conf->quiesce)
  3049. return 1;
  3050. if (list_empty_careful(&conf->inactive_list))
  3051. return 1;
  3052. return 0;
  3053. }
  3054. EXPORT_SYMBOL_GPL(md_raid5_congested);
  3055. static int raid5_congested(void *data, int bits)
  3056. {
  3057. struct mddev *mddev = data;
  3058. return mddev_congested(mddev, bits) ||
  3059. md_raid5_congested(mddev, bits);
  3060. }
  3061. /* We want read requests to align with chunks where possible,
  3062. * but write requests don't need to.
  3063. */
  3064. static int raid5_mergeable_bvec(struct request_queue *q,
  3065. struct bvec_merge_data *bvm,
  3066. struct bio_vec *biovec)
  3067. {
  3068. struct mddev *mddev = q->queuedata;
  3069. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  3070. int max;
  3071. unsigned int chunk_sectors = mddev->chunk_sectors;
  3072. unsigned int bio_sectors = bvm->bi_size >> 9;
  3073. if ((bvm->bi_rw & 1) == WRITE)
  3074. return biovec->bv_len; /* always allow writes to be mergeable */
  3075. if (mddev->new_chunk_sectors < mddev->chunk_sectors)
  3076. chunk_sectors = mddev->new_chunk_sectors;
  3077. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  3078. if (max < 0) max = 0;
  3079. if (max <= biovec->bv_len && bio_sectors == 0)
  3080. return biovec->bv_len;
  3081. else
  3082. return max;
  3083. }
  3084. static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
  3085. {
  3086. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  3087. unsigned int chunk_sectors = mddev->chunk_sectors;
  3088. unsigned int bio_sectors = bio->bi_size >> 9;
  3089. if (mddev->new_chunk_sectors < mddev->chunk_sectors)
  3090. chunk_sectors = mddev->new_chunk_sectors;
  3091. return chunk_sectors >=
  3092. ((sector & (chunk_sectors - 1)) + bio_sectors);
  3093. }
  3094. /*
  3095. * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
  3096. * later sampled by raid5d.
  3097. */
  3098. static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
  3099. {
  3100. unsigned long flags;
  3101. spin_lock_irqsave(&conf->device_lock, flags);
  3102. bi->bi_next = conf->retry_read_aligned_list;
  3103. conf->retry_read_aligned_list = bi;
  3104. spin_unlock_irqrestore(&conf->device_lock, flags);
  3105. md_wakeup_thread(conf->mddev->thread);
  3106. }
  3107. static struct bio *remove_bio_from_retry(struct r5conf *conf)
  3108. {
  3109. struct bio *bi;
  3110. bi = conf->retry_read_aligned;
  3111. if (bi) {
  3112. conf->retry_read_aligned = NULL;
  3113. return bi;
  3114. }
  3115. bi = conf->retry_read_aligned_list;
  3116. if(bi) {
  3117. conf->retry_read_aligned_list = bi->bi_next;
  3118. bi->bi_next = NULL;
  3119. /*
  3120. * this sets the active strip count to 1 and the processed
  3121. * strip count to zero (upper 8 bits)
  3122. */
  3123. bi->bi_phys_segments = 1; /* biased count of active stripes */
  3124. }
  3125. return bi;
  3126. }
  3127. /*
  3128. * The "raid5_align_endio" should check if the read succeeded and if it
  3129. * did, call bio_endio on the original bio (having bio_put the new bio
  3130. * first).
  3131. * If the read failed..
  3132. */
  3133. static void raid5_align_endio(struct bio *bi, int error)
  3134. {
  3135. struct bio* raid_bi = bi->bi_private;
  3136. struct mddev *mddev;
  3137. struct r5conf *conf;
  3138. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  3139. struct md_rdev *rdev;
  3140. bio_put(bi);
  3141. rdev = (void*)raid_bi->bi_next;
  3142. raid_bi->bi_next = NULL;
  3143. mddev = rdev->mddev;
  3144. conf = mddev->private;
  3145. rdev_dec_pending(rdev, conf->mddev);
  3146. if (!error && uptodate) {
  3147. bio_endio(raid_bi, 0);
  3148. if (atomic_dec_and_test(&conf->active_aligned_reads))
  3149. wake_up(&conf->wait_for_stripe);
  3150. return;
  3151. }
  3152. pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
  3153. add_bio_to_retry(raid_bi, conf);
  3154. }
  3155. static int bio_fits_rdev(struct bio *bi)
  3156. {
  3157. struct request_queue *q = bdev_get_queue(bi->bi_bdev);
  3158. if ((bi->bi_size>>9) > queue_max_sectors(q))
  3159. return 0;
  3160. blk_recount_segments(q, bi);
  3161. if (bi->bi_phys_segments > queue_max_segments(q))
  3162. return 0;
  3163. if (q->merge_bvec_fn)
  3164. /* it's too hard to apply the merge_bvec_fn at this stage,
  3165. * just just give up
  3166. */
  3167. return 0;
  3168. return 1;
  3169. }
  3170. static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
  3171. {
  3172. struct r5conf *conf = mddev->private;
  3173. int dd_idx;
  3174. struct bio* align_bi;
  3175. struct md_rdev *rdev;
  3176. if (!in_chunk_boundary(mddev, raid_bio)) {
  3177. pr_debug("chunk_aligned_read : non aligned\n");
  3178. return 0;
  3179. }
  3180. /*
  3181. * use bio_clone_mddev to make a copy of the bio
  3182. */
  3183. align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
  3184. if (!align_bi)
  3185. return 0;
  3186. /*
  3187. * set bi_end_io to a new function, and set bi_private to the
  3188. * original bio.
  3189. */
  3190. align_bi->bi_end_io = raid5_align_endio;
  3191. align_bi->bi_private = raid_bio;
  3192. /*
  3193. * compute position
  3194. */
  3195. align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
  3196. 0,
  3197. &dd_idx, NULL);
  3198. rcu_read_lock();
  3199. rdev = rcu_dereference(conf->disks[dd_idx].rdev);
  3200. if (rdev && test_bit(In_sync, &rdev->flags)) {
  3201. sector_t first_bad;
  3202. int bad_sectors;
  3203. atomic_inc(&rdev->nr_pending);
  3204. rcu_read_unlock();
  3205. raid_bio->bi_next = (void*)rdev;
  3206. align_bi->bi_bdev = rdev->bdev;
  3207. align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
  3208. align_bi->bi_sector += rdev->data_offset;
  3209. if (!bio_fits_rdev(align_bi) ||
  3210. is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
  3211. &first_bad, &bad_sectors)) {
  3212. /* too big in some way, or has a known bad block */
  3213. bio_put(align_bi);
  3214. rdev_dec_pending(rdev, mddev);
  3215. return 0;
  3216. }
  3217. spin_lock_irq(&conf->device_lock);
  3218. wait_event_lock_irq(conf->wait_for_stripe,
  3219. conf->quiesce == 0,
  3220. conf->device_lock, /* nothing */);
  3221. atomic_inc(&conf->active_aligned_reads);
  3222. spin_unlock_irq(&conf->device_lock);
  3223. generic_make_request(align_bi);
  3224. return 1;
  3225. } else {
  3226. rcu_read_unlock();
  3227. bio_put(align_bi);
  3228. return 0;
  3229. }
  3230. }
  3231. /* __get_priority_stripe - get the next stripe to process
  3232. *
  3233. * Full stripe writes are allowed to pass preread active stripes up until
  3234. * the bypass_threshold is exceeded. In general the bypass_count
  3235. * increments when the handle_list is handled before the hold_list; however, it
  3236. * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
  3237. * stripe with in flight i/o. The bypass_count will be reset when the
  3238. * head of the hold_list has changed, i.e. the head was promoted to the
  3239. * handle_list.
  3240. */
  3241. static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
  3242. {
  3243. struct stripe_head *sh;
  3244. pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
  3245. __func__,
  3246. list_empty(&conf->handle_list) ? "empty" : "busy",
  3247. list_empty(&conf->hold_list) ? "empty" : "busy",
  3248. atomic_read(&conf->pending_full_writes), conf->bypass_count);
  3249. if (!list_empty(&conf->handle_list)) {
  3250. sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
  3251. if (list_empty(&conf->hold_list))
  3252. conf->bypass_count = 0;
  3253. else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
  3254. if (conf->hold_list.next == conf->last_hold)
  3255. conf->bypass_count++;
  3256. else {
  3257. conf->last_hold = conf->hold_list.next;
  3258. conf->bypass_count -= conf->bypass_threshold;
  3259. if (conf->bypass_count < 0)
  3260. conf->bypass_count = 0;
  3261. }
  3262. }
  3263. } else if (!list_empty(&conf->hold_list) &&
  3264. ((conf->bypass_threshold &&
  3265. conf->bypass_count > conf->bypass_threshold) ||
  3266. atomic_read(&conf->pending_full_writes) == 0)) {
  3267. sh = list_entry(conf->hold_list.next,
  3268. typeof(*sh), lru);
  3269. conf->bypass_count -= conf->bypass_threshold;
  3270. if (conf->bypass_count < 0)
  3271. conf->bypass_count = 0;
  3272. } else
  3273. return NULL;
  3274. list_del_init(&sh->lru);
  3275. atomic_inc(&sh->count);
  3276. BUG_ON(atomic_read(&sh->count) != 1);
  3277. return sh;
  3278. }
  3279. static int make_request(struct mddev *mddev, struct bio * bi)
  3280. {
  3281. struct r5conf *conf = mddev->private;
  3282. int dd_idx;
  3283. sector_t new_sector;
  3284. sector_t logical_sector, last_sector;
  3285. struct stripe_head *sh;
  3286. const int rw = bio_data_dir(bi);
  3287. int remaining;
  3288. int plugged;
  3289. if (unlikely(bi->bi_rw & REQ_FLUSH)) {
  3290. md_flush_request(mddev, bi);
  3291. return 0;
  3292. }
  3293. md_write_start(mddev, bi);
  3294. if (rw == READ &&
  3295. mddev->reshape_position == MaxSector &&
  3296. chunk_aligned_read(mddev,bi))
  3297. return 0;
  3298. logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  3299. last_sector = bi->bi_sector + (bi->bi_size>>9);
  3300. bi->bi_next = NULL;
  3301. bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
  3302. plugged = mddev_check_plugged(mddev);
  3303. for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
  3304. DEFINE_WAIT(w);
  3305. int disks, data_disks;
  3306. int previous;
  3307. retry:
  3308. previous = 0;
  3309. disks = conf->raid_disks;
  3310. prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
  3311. if (unlikely(conf->reshape_progress != MaxSector)) {
  3312. /* spinlock is needed as reshape_progress may be
  3313. * 64bit on a 32bit platform, and so it might be
  3314. * possible to see a half-updated value
  3315. * Of course reshape_progress could change after
  3316. * the lock is dropped, so once we get a reference
  3317. * to the stripe that we think it is, we will have
  3318. * to check again.
  3319. */
  3320. spin_lock_irq(&conf->device_lock);
  3321. if (mddev->delta_disks < 0
  3322. ? logical_sector < conf->reshape_progress
  3323. : logical_sector >= conf->reshape_progress) {
  3324. disks = conf->previous_raid_disks;
  3325. previous = 1;
  3326. } else {
  3327. if (mddev->delta_disks < 0
  3328. ? logical_sector < conf->reshape_safe
  3329. : logical_sector >= conf->reshape_safe) {
  3330. spin_unlock_irq(&conf->device_lock);
  3331. schedule();
  3332. goto retry;
  3333. }
  3334. }
  3335. spin_unlock_irq(&conf->device_lock);
  3336. }
  3337. data_disks = disks - conf->max_degraded;
  3338. new_sector = raid5_compute_sector(conf, logical_sector,
  3339. previous,
  3340. &dd_idx, NULL);
  3341. pr_debug("raid456: make_request, sector %llu logical %llu\n",
  3342. (unsigned long long)new_sector,
  3343. (unsigned long long)logical_sector);
  3344. sh = get_active_stripe(conf, new_sector, previous,
  3345. (bi->bi_rw&RWA_MASK), 0);
  3346. if (sh) {
  3347. if (unlikely(previous)) {
  3348. /* expansion might have moved on while waiting for a
  3349. * stripe, so we must do the range check again.
  3350. * Expansion could still move past after this
  3351. * test, but as we are holding a reference to
  3352. * 'sh', we know that if that happens,
  3353. * STRIPE_EXPANDING will get set and the expansion
  3354. * won't proceed until we finish with the stripe.
  3355. */
  3356. int must_retry = 0;
  3357. spin_lock_irq(&conf->device_lock);
  3358. if (mddev->delta_disks < 0
  3359. ? logical_sector >= conf->reshape_progress
  3360. : logical_sector < conf->reshape_progress)
  3361. /* mismatch, need to try again */
  3362. must_retry = 1;
  3363. spin_unlock_irq(&conf->device_lock);
  3364. if (must_retry) {
  3365. release_stripe(sh);
  3366. schedule();
  3367. goto retry;
  3368. }
  3369. }
  3370. if (rw == WRITE &&
  3371. logical_sector >= mddev->suspend_lo &&
  3372. logical_sector < mddev->suspend_hi) {
  3373. release_stripe(sh);
  3374. /* As the suspend_* range is controlled by
  3375. * userspace, we want an interruptible
  3376. * wait.
  3377. */
  3378. flush_signals(current);
  3379. prepare_to_wait(&conf->wait_for_overlap,
  3380. &w, TASK_INTERRUPTIBLE);
  3381. if (logical_sector >= mddev->suspend_lo &&
  3382. logical_sector < mddev->suspend_hi)
  3383. schedule();
  3384. goto retry;
  3385. }
  3386. if (test_bit(STRIPE_EXPANDING, &sh->state) ||
  3387. !add_stripe_bio(sh, bi, dd_idx, rw)) {
  3388. /* Stripe is busy expanding or
  3389. * add failed due to overlap. Flush everything
  3390. * and wait a while
  3391. */
  3392. md_wakeup_thread(mddev->thread);
  3393. release_stripe(sh);
  3394. schedule();
  3395. goto retry;
  3396. }
  3397. finish_wait(&conf->wait_for_overlap, &w);
  3398. set_bit(STRIPE_HANDLE, &sh->state);
  3399. clear_bit(STRIPE_DELAYED, &sh->state);
  3400. if ((bi->bi_rw & REQ_SYNC) &&
  3401. !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  3402. atomic_inc(&conf->preread_active_stripes);
  3403. release_stripe(sh);
  3404. } else {
  3405. /* cannot get stripe for read-ahead, just give-up */
  3406. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  3407. finish_wait(&conf->wait_for_overlap, &w);
  3408. break;
  3409. }
  3410. }
  3411. if (!plugged)
  3412. md_wakeup_thread(mddev->thread);
  3413. spin_lock_irq(&conf->device_lock);
  3414. remaining = raid5_dec_bi_phys_segments(bi);
  3415. spin_unlock_irq(&conf->device_lock);
  3416. if (remaining == 0) {
  3417. if ( rw == WRITE )
  3418. md_write_end(mddev);
  3419. bio_endio(bi, 0);
  3420. }
  3421. return 0;
  3422. }
  3423. static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
  3424. static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
  3425. {
  3426. /* reshaping is quite different to recovery/resync so it is
  3427. * handled quite separately ... here.
  3428. *
  3429. * On each call to sync_request, we gather one chunk worth of
  3430. * destination stripes and flag them as expanding.
  3431. * Then we find all the source stripes and request reads.
  3432. * As the reads complete, handle_stripe will copy the data
  3433. * into the destination stripe and release that stripe.
  3434. */
  3435. struct r5conf *conf = mddev->private;
  3436. struct stripe_head *sh;
  3437. sector_t first_sector, last_sector;
  3438. int raid_disks = conf->previous_raid_disks;
  3439. int data_disks = raid_disks - conf->max_degraded;
  3440. int new_data_disks = conf->raid_disks - conf->max_degraded;
  3441. int i;
  3442. int dd_idx;
  3443. sector_t writepos, readpos, safepos;
  3444. sector_t stripe_addr;
  3445. int reshape_sectors;
  3446. struct list_head stripes;
  3447. if (sector_nr == 0) {
  3448. /* If restarting in the middle, skip the initial sectors */
  3449. if (mddev->delta_disks < 0 &&
  3450. conf->reshape_progress < raid5_size(mddev, 0, 0)) {
  3451. sector_nr = raid5_size(mddev, 0, 0)
  3452. - conf->reshape_progress;
  3453. } else if (mddev->delta_disks >= 0 &&
  3454. conf->reshape_progress > 0)
  3455. sector_nr = conf->reshape_progress;
  3456. sector_div(sector_nr, new_data_disks);
  3457. if (sector_nr) {
  3458. mddev->curr_resync_completed = sector_nr;
  3459. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  3460. *skipped = 1;
  3461. return sector_nr;
  3462. }
  3463. }
  3464. /* We need to process a full chunk at a time.
  3465. * If old and new chunk sizes differ, we need to process the
  3466. * largest of these
  3467. */
  3468. if (mddev->new_chunk_sectors > mddev->chunk_sectors)
  3469. reshape_sectors = mddev->new_chunk_sectors;
  3470. else
  3471. reshape_sectors = mddev->chunk_sectors;
  3472. /* we update the metadata when there is more than 3Meg
  3473. * in the block range (that is rather arbitrary, should
  3474. * probably be time based) or when the data about to be
  3475. * copied would over-write the source of the data at
  3476. * the front of the range.
  3477. * i.e. one new_stripe along from reshape_progress new_maps
  3478. * to after where reshape_safe old_maps to
  3479. */
  3480. writepos = conf->reshape_progress;
  3481. sector_div(writepos, new_data_disks);
  3482. readpos = conf->reshape_progress;
  3483. sector_div(readpos, data_disks);
  3484. safepos = conf->reshape_safe;
  3485. sector_div(safepos, data_disks);
  3486. if (mddev->delta_disks < 0) {
  3487. writepos -= min_t(sector_t, reshape_sectors, writepos);
  3488. readpos += reshape_sectors;
  3489. safepos += reshape_sectors;
  3490. } else {
  3491. writepos += reshape_sectors;
  3492. readpos -= min_t(sector_t, reshape_sectors, readpos);
  3493. safepos -= min_t(sector_t, reshape_sectors, safepos);
  3494. }
  3495. /* 'writepos' is the most advanced device address we might write.
  3496. * 'readpos' is the least advanced device address we might read.
  3497. * 'safepos' is the least address recorded in the metadata as having
  3498. * been reshaped.
  3499. * If 'readpos' is behind 'writepos', then there is no way that we can
  3500. * ensure safety in the face of a crash - that must be done by userspace
  3501. * making a backup of the data. So in that case there is no particular
  3502. * rush to update metadata.
  3503. * Otherwise if 'safepos' is behind 'writepos', then we really need to
  3504. * update the metadata to advance 'safepos' to match 'readpos' so that
  3505. * we can be safe in the event of a crash.
  3506. * So we insist on updating metadata if safepos is behind writepos and
  3507. * readpos is beyond writepos.
  3508. * In any case, update the metadata every 10 seconds.
  3509. * Maybe that number should be configurable, but I'm not sure it is
  3510. * worth it.... maybe it could be a multiple of safemode_delay???
  3511. */
  3512. if ((mddev->delta_disks < 0
  3513. ? (safepos > writepos && readpos < writepos)
  3514. : (safepos < writepos && readpos > writepos)) ||
  3515. time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
  3516. /* Cannot proceed until we've updated the superblock... */
  3517. wait_event(conf->wait_for_overlap,
  3518. atomic_read(&conf->reshape_stripes)==0);
  3519. mddev->reshape_position = conf->reshape_progress;
  3520. mddev->curr_resync_completed = sector_nr;
  3521. conf->reshape_checkpoint = jiffies;
  3522. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3523. md_wakeup_thread(mddev->thread);
  3524. wait_event(mddev->sb_wait, mddev->flags == 0 ||
  3525. kthread_should_stop());
  3526. spin_lock_irq(&conf->device_lock);
  3527. conf->reshape_safe = mddev->reshape_position;
  3528. spin_unlock_irq(&conf->device_lock);
  3529. wake_up(&conf->wait_for_overlap);
  3530. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  3531. }
  3532. if (mddev->delta_disks < 0) {
  3533. BUG_ON(conf->reshape_progress == 0);
  3534. stripe_addr = writepos;
  3535. BUG_ON((mddev->dev_sectors &
  3536. ~((sector_t)reshape_sectors - 1))
  3537. - reshape_sectors - stripe_addr
  3538. != sector_nr);
  3539. } else {
  3540. BUG_ON(writepos != sector_nr + reshape_sectors);
  3541. stripe_addr = sector_nr;
  3542. }
  3543. INIT_LIST_HEAD(&stripes);
  3544. for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
  3545. int j;
  3546. int skipped_disk = 0;
  3547. sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
  3548. set_bit(STRIPE_EXPANDING, &sh->state);
  3549. atomic_inc(&conf->reshape_stripes);
  3550. /* If any of this stripe is beyond the end of the old
  3551. * array, then we need to zero those blocks
  3552. */
  3553. for (j=sh->disks; j--;) {
  3554. sector_t s;
  3555. if (j == sh->pd_idx)
  3556. continue;
  3557. if (conf->level == 6 &&
  3558. j == sh->qd_idx)
  3559. continue;
  3560. s = compute_blocknr(sh, j, 0);
  3561. if (s < raid5_size(mddev, 0, 0)) {
  3562. skipped_disk = 1;
  3563. continue;
  3564. }
  3565. memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
  3566. set_bit(R5_Expanded, &sh->dev[j].flags);
  3567. set_bit(R5_UPTODATE, &sh->dev[j].flags);
  3568. }
  3569. if (!skipped_disk) {
  3570. set_bit(STRIPE_EXPAND_READY, &sh->state);
  3571. set_bit(STRIPE_HANDLE, &sh->state);
  3572. }
  3573. list_add(&sh->lru, &stripes);
  3574. }
  3575. spin_lock_irq(&conf->device_lock);
  3576. if (mddev->delta_disks < 0)
  3577. conf->reshape_progress -= reshape_sectors * new_data_disks;
  3578. else
  3579. conf->reshape_progress += reshape_sectors * new_data_disks;
  3580. spin_unlock_irq(&conf->device_lock);
  3581. /* Ok, those stripe are ready. We can start scheduling
  3582. * reads on the source stripes.
  3583. * The source stripes are determined by mapping the first and last
  3584. * block on the destination stripes.
  3585. */
  3586. first_sector =
  3587. raid5_compute_sector(conf, stripe_addr*(new_data_disks),
  3588. 1, &dd_idx, NULL);
  3589. last_sector =
  3590. raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
  3591. * new_data_disks - 1),
  3592. 1, &dd_idx, NULL);
  3593. if (last_sector >= mddev->dev_sectors)
  3594. last_sector = mddev->dev_sectors - 1;
  3595. while (first_sector <= last_sector) {
  3596. sh = get_active_stripe(conf, first_sector, 1, 0, 1);
  3597. set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  3598. set_bit(STRIPE_HANDLE, &sh->state);
  3599. release_stripe(sh);
  3600. first_sector += STRIPE_SECTORS;
  3601. }
  3602. /* Now that the sources are clearly marked, we can release
  3603. * the destination stripes
  3604. */
  3605. while (!list_empty(&stripes)) {
  3606. sh = list_entry(stripes.next, struct stripe_head, lru);
  3607. list_del_init(&sh->lru);
  3608. release_stripe(sh);
  3609. }
  3610. /* If this takes us to the resync_max point where we have to pause,
  3611. * then we need to write out the superblock.
  3612. */
  3613. sector_nr += reshape_sectors;
  3614. if ((sector_nr - mddev->curr_resync_completed) * 2
  3615. >= mddev->resync_max - mddev->curr_resync_completed) {
  3616. /* Cannot proceed until we've updated the superblock... */
  3617. wait_event(conf->wait_for_overlap,
  3618. atomic_read(&conf->reshape_stripes) == 0);
  3619. mddev->reshape_position = conf->reshape_progress;
  3620. mddev->curr_resync_completed = sector_nr;
  3621. conf->reshape_checkpoint = jiffies;
  3622. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3623. md_wakeup_thread(mddev->thread);
  3624. wait_event(mddev->sb_wait,
  3625. !test_bit(MD_CHANGE_DEVS, &mddev->flags)
  3626. || kthread_should_stop());
  3627. spin_lock_irq(&conf->device_lock);
  3628. conf->reshape_safe = mddev->reshape_position;
  3629. spin_unlock_irq(&conf->device_lock);
  3630. wake_up(&conf->wait_for_overlap);
  3631. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  3632. }
  3633. return reshape_sectors;
  3634. }
  3635. /* FIXME go_faster isn't used */
  3636. static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  3637. {
  3638. struct r5conf *conf = mddev->private;
  3639. struct stripe_head *sh;
  3640. sector_t max_sector = mddev->dev_sectors;
  3641. sector_t sync_blocks;
  3642. int still_degraded = 0;
  3643. int i;
  3644. if (sector_nr >= max_sector) {
  3645. /* just being told to finish up .. nothing much to do */
  3646. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
  3647. end_reshape(conf);
  3648. return 0;
  3649. }
  3650. if (mddev->curr_resync < max_sector) /* aborted */
  3651. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  3652. &sync_blocks, 1);
  3653. else /* completed sync */
  3654. conf->fullsync = 0;
  3655. bitmap_close_sync(mddev->bitmap);
  3656. return 0;
  3657. }
  3658. /* Allow raid5_quiesce to complete */
  3659. wait_event(conf->wait_for_overlap, conf->quiesce != 2);
  3660. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3661. return reshape_request(mddev, sector_nr, skipped);
  3662. /* No need to check resync_max as we never do more than one
  3663. * stripe, and as resync_max will always be on a chunk boundary,
  3664. * if the check in md_do_sync didn't fire, there is no chance
  3665. * of overstepping resync_max here
  3666. */
  3667. /* if there is too many failed drives and we are trying
  3668. * to resync, then assert that we are finished, because there is
  3669. * nothing we can do.
  3670. */
  3671. if (mddev->degraded >= conf->max_degraded &&
  3672. test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3673. sector_t rv = mddev->dev_sectors - sector_nr;
  3674. *skipped = 1;
  3675. return rv;
  3676. }
  3677. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  3678. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  3679. !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
  3680. /* we can skip this block, and probably more */
  3681. sync_blocks /= STRIPE_SECTORS;
  3682. *skipped = 1;
  3683. return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
  3684. }
  3685. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  3686. sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
  3687. if (sh == NULL) {
  3688. sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
  3689. /* make sure we don't swamp the stripe cache if someone else
  3690. * is trying to get access
  3691. */
  3692. schedule_timeout_uninterruptible(1);
  3693. }
  3694. /* Need to check if array will still be degraded after recovery/resync
  3695. * We don't need to check the 'failed' flag as when that gets set,
  3696. * recovery aborts.
  3697. */
  3698. for (i = 0; i < conf->raid_disks; i++)
  3699. if (conf->disks[i].rdev == NULL)
  3700. still_degraded = 1;
  3701. bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
  3702. set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
  3703. handle_stripe(sh);
  3704. release_stripe(sh);
  3705. return STRIPE_SECTORS;
  3706. }
  3707. static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
  3708. {
  3709. /* We may not be able to submit a whole bio at once as there
  3710. * may not be enough stripe_heads available.
  3711. * We cannot pre-allocate enough stripe_heads as we may need
  3712. * more than exist in the cache (if we allow ever large chunks).
  3713. * So we do one stripe head at a time and record in
  3714. * ->bi_hw_segments how many have been done.
  3715. *
  3716. * We *know* that this entire raid_bio is in one chunk, so
  3717. * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
  3718. */
  3719. struct stripe_head *sh;
  3720. int dd_idx;
  3721. sector_t sector, logical_sector, last_sector;
  3722. int scnt = 0;
  3723. int remaining;
  3724. int handled = 0;
  3725. logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  3726. sector = raid5_compute_sector(conf, logical_sector,
  3727. 0, &dd_idx, NULL);
  3728. last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
  3729. for (; logical_sector < last_sector;
  3730. logical_sector += STRIPE_SECTORS,
  3731. sector += STRIPE_SECTORS,
  3732. scnt++) {
  3733. if (scnt < raid5_bi_hw_segments(raid_bio))
  3734. /* already done this stripe */
  3735. continue;
  3736. sh = get_active_stripe(conf, sector, 0, 1, 0);
  3737. if (!sh) {
  3738. /* failed to get a stripe - must wait */
  3739. raid5_set_bi_hw_segments(raid_bio, scnt);
  3740. conf->retry_read_aligned = raid_bio;
  3741. return handled;
  3742. }
  3743. set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
  3744. if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
  3745. release_stripe(sh);
  3746. raid5_set_bi_hw_segments(raid_bio, scnt);
  3747. conf->retry_read_aligned = raid_bio;
  3748. return handled;
  3749. }
  3750. handle_stripe(sh);
  3751. release_stripe(sh);
  3752. handled++;
  3753. }
  3754. spin_lock_irq(&conf->device_lock);
  3755. remaining = raid5_dec_bi_phys_segments(raid_bio);
  3756. spin_unlock_irq(&conf->device_lock);
  3757. if (remaining == 0)
  3758. bio_endio(raid_bio, 0);
  3759. if (atomic_dec_and_test(&conf->active_aligned_reads))
  3760. wake_up(&conf->wait_for_stripe);
  3761. return handled;
  3762. }
  3763. /*
  3764. * This is our raid5 kernel thread.
  3765. *
  3766. * We scan the hash table for stripes which can be handled now.
  3767. * During the scan, completed stripes are saved for us by the interrupt
  3768. * handler, so that they will not have to wait for our next wakeup.
  3769. */
  3770. static void raid5d(struct mddev *mddev)
  3771. {
  3772. struct stripe_head *sh;
  3773. struct r5conf *conf = mddev->private;
  3774. int handled;
  3775. struct blk_plug plug;
  3776. pr_debug("+++ raid5d active\n");
  3777. md_check_recovery(mddev);
  3778. blk_start_plug(&plug);
  3779. handled = 0;
  3780. spin_lock_irq(&conf->device_lock);
  3781. while (1) {
  3782. struct bio *bio;
  3783. if (atomic_read(&mddev->plug_cnt) == 0 &&
  3784. !list_empty(&conf->bitmap_list)) {
  3785. /* Now is a good time to flush some bitmap updates */
  3786. conf->seq_flush++;
  3787. spin_unlock_irq(&conf->device_lock);
  3788. bitmap_unplug(mddev->bitmap);
  3789. spin_lock_irq(&conf->device_lock);
  3790. conf->seq_write = conf->seq_flush;
  3791. activate_bit_delay(conf);
  3792. }
  3793. if (atomic_read(&mddev->plug_cnt) == 0)
  3794. raid5_activate_delayed(conf);
  3795. while ((bio = remove_bio_from_retry(conf))) {
  3796. int ok;
  3797. spin_unlock_irq(&conf->device_lock);
  3798. ok = retry_aligned_read(conf, bio);
  3799. spin_lock_irq(&conf->device_lock);
  3800. if (!ok)
  3801. break;
  3802. handled++;
  3803. }
  3804. sh = __get_priority_stripe(conf);
  3805. if (!sh)
  3806. break;
  3807. spin_unlock_irq(&conf->device_lock);
  3808. handled++;
  3809. handle_stripe(sh);
  3810. release_stripe(sh);
  3811. cond_resched();
  3812. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  3813. md_check_recovery(mddev);
  3814. spin_lock_irq(&conf->device_lock);
  3815. }
  3816. pr_debug("%d stripes handled\n", handled);
  3817. spin_unlock_irq(&conf->device_lock);
  3818. async_tx_issue_pending_all();
  3819. blk_finish_plug(&plug);
  3820. pr_debug("--- raid5d inactive\n");
  3821. }
  3822. static ssize_t
  3823. raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
  3824. {
  3825. struct r5conf *conf = mddev->private;
  3826. if (conf)
  3827. return sprintf(page, "%d\n", conf->max_nr_stripes);
  3828. else
  3829. return 0;
  3830. }
  3831. int
  3832. raid5_set_cache_size(struct mddev *mddev, int size)
  3833. {
  3834. struct r5conf *conf = mddev->private;
  3835. int err;
  3836. if (size <= 16 || size > 32768)
  3837. return -EINVAL;
  3838. while (size < conf->max_nr_stripes) {
  3839. if (drop_one_stripe(conf))
  3840. conf->max_nr_stripes--;
  3841. else
  3842. break;
  3843. }
  3844. err = md_allow_write(mddev);
  3845. if (err)
  3846. return err;
  3847. while (size > conf->max_nr_stripes) {
  3848. if (grow_one_stripe(conf))
  3849. conf->max_nr_stripes++;
  3850. else break;
  3851. }
  3852. return 0;
  3853. }
  3854. EXPORT_SYMBOL(raid5_set_cache_size);
  3855. static ssize_t
  3856. raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
  3857. {
  3858. struct r5conf *conf = mddev->private;
  3859. unsigned long new;
  3860. int err;
  3861. if (len >= PAGE_SIZE)
  3862. return -EINVAL;
  3863. if (!conf)
  3864. return -ENODEV;
  3865. if (strict_strtoul(page, 10, &new))
  3866. return -EINVAL;
  3867. err = raid5_set_cache_size(mddev, new);
  3868. if (err)
  3869. return err;
  3870. return len;
  3871. }
  3872. static struct md_sysfs_entry
  3873. raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
  3874. raid5_show_stripe_cache_size,
  3875. raid5_store_stripe_cache_size);
  3876. static ssize_t
  3877. raid5_show_preread_threshold(struct mddev *mddev, char *page)
  3878. {
  3879. struct r5conf *conf = mddev->private;
  3880. if (conf)
  3881. return sprintf(page, "%d\n", conf->bypass_threshold);
  3882. else
  3883. return 0;
  3884. }
  3885. static ssize_t
  3886. raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
  3887. {
  3888. struct r5conf *conf = mddev->private;
  3889. unsigned long new;
  3890. if (len >= PAGE_SIZE)
  3891. return -EINVAL;
  3892. if (!conf)
  3893. return -ENODEV;
  3894. if (strict_strtoul(page, 10, &new))
  3895. return -EINVAL;
  3896. if (new > conf->max_nr_stripes)
  3897. return -EINVAL;
  3898. conf->bypass_threshold = new;
  3899. return len;
  3900. }
  3901. static struct md_sysfs_entry
  3902. raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
  3903. S_IRUGO | S_IWUSR,
  3904. raid5_show_preread_threshold,
  3905. raid5_store_preread_threshold);
  3906. static ssize_t
  3907. stripe_cache_active_show(struct mddev *mddev, char *page)
  3908. {
  3909. struct r5conf *conf = mddev->private;
  3910. if (conf)
  3911. return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
  3912. else
  3913. return 0;
  3914. }
  3915. static struct md_sysfs_entry
  3916. raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
  3917. static struct attribute *raid5_attrs[] = {
  3918. &raid5_stripecache_size.attr,
  3919. &raid5_stripecache_active.attr,
  3920. &raid5_preread_bypass_threshold.attr,
  3921. NULL,
  3922. };
  3923. static struct attribute_group raid5_attrs_group = {
  3924. .name = NULL,
  3925. .attrs = raid5_attrs,
  3926. };
  3927. static sector_t
  3928. raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  3929. {
  3930. struct r5conf *conf = mddev->private;
  3931. if (!sectors)
  3932. sectors = mddev->dev_sectors;
  3933. if (!raid_disks)
  3934. /* size is defined by the smallest of previous and new size */
  3935. raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
  3936. sectors &= ~((sector_t)mddev->chunk_sectors - 1);
  3937. sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
  3938. return sectors * (raid_disks - conf->max_degraded);
  3939. }
  3940. static void raid5_free_percpu(struct r5conf *conf)
  3941. {
  3942. struct raid5_percpu *percpu;
  3943. unsigned long cpu;
  3944. if (!conf->percpu)
  3945. return;
  3946. get_online_cpus();
  3947. for_each_possible_cpu(cpu) {
  3948. percpu = per_cpu_ptr(conf->percpu, cpu);
  3949. safe_put_page(percpu->spare_page);
  3950. kfree(percpu->scribble);
  3951. }
  3952. #ifdef CONFIG_HOTPLUG_CPU
  3953. unregister_cpu_notifier(&conf->cpu_notify);
  3954. #endif
  3955. put_online_cpus();
  3956. free_percpu(conf->percpu);
  3957. }
  3958. static void free_conf(struct r5conf *conf)
  3959. {
  3960. shrink_stripes(conf);
  3961. raid5_free_percpu(conf);
  3962. kfree(conf->disks);
  3963. kfree(conf->stripe_hashtbl);
  3964. kfree(conf);
  3965. }
  3966. #ifdef CONFIG_HOTPLUG_CPU
  3967. static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
  3968. void *hcpu)
  3969. {
  3970. struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
  3971. long cpu = (long)hcpu;
  3972. struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
  3973. switch (action) {
  3974. case CPU_UP_PREPARE:
  3975. case CPU_UP_PREPARE_FROZEN:
  3976. if (conf->level == 6 && !percpu->spare_page)
  3977. percpu->spare_page = alloc_page(GFP_KERNEL);
  3978. if (!percpu->scribble)
  3979. percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
  3980. if (!percpu->scribble ||
  3981. (conf->level == 6 && !percpu->spare_page)) {
  3982. safe_put_page(percpu->spare_page);
  3983. kfree(percpu->scribble);
  3984. pr_err("%s: failed memory allocation for cpu%ld\n",
  3985. __func__, cpu);
  3986. return notifier_from_errno(-ENOMEM);
  3987. }
  3988. break;
  3989. case CPU_DEAD:
  3990. case CPU_DEAD_FROZEN:
  3991. safe_put_page(percpu->spare_page);
  3992. kfree(percpu->scribble);
  3993. percpu->spare_page = NULL;
  3994. percpu->scribble = NULL;
  3995. break;
  3996. default:
  3997. break;
  3998. }
  3999. return NOTIFY_OK;
  4000. }
  4001. #endif
  4002. static int raid5_alloc_percpu(struct r5conf *conf)
  4003. {
  4004. unsigned long cpu;
  4005. struct page *spare_page;
  4006. struct raid5_percpu __percpu *allcpus;
  4007. void *scribble;
  4008. int err;
  4009. allcpus = alloc_percpu(struct raid5_percpu);
  4010. if (!allcpus)
  4011. return -ENOMEM;
  4012. conf->percpu = allcpus;
  4013. get_online_cpus();
  4014. err = 0;
  4015. for_each_present_cpu(cpu) {
  4016. if (conf->level == 6) {
  4017. spare_page = alloc_page(GFP_KERNEL);
  4018. if (!spare_page) {
  4019. err = -ENOMEM;
  4020. break;
  4021. }
  4022. per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
  4023. }
  4024. scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
  4025. if (!scribble) {
  4026. err = -ENOMEM;
  4027. break;
  4028. }
  4029. per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
  4030. }
  4031. #ifdef CONFIG_HOTPLUG_CPU
  4032. conf->cpu_notify.notifier_call = raid456_cpu_notify;
  4033. conf->cpu_notify.priority = 0;
  4034. if (err == 0)
  4035. err = register_cpu_notifier(&conf->cpu_notify);
  4036. #endif
  4037. put_online_cpus();
  4038. return err;
  4039. }
  4040. static struct r5conf *setup_conf(struct mddev *mddev)
  4041. {
  4042. struct r5conf *conf;
  4043. int raid_disk, memory, max_disks;
  4044. struct md_rdev *rdev;
  4045. struct disk_info *disk;
  4046. if (mddev->new_level != 5
  4047. && mddev->new_level != 4
  4048. && mddev->new_level != 6) {
  4049. printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
  4050. mdname(mddev), mddev->new_level);
  4051. return ERR_PTR(-EIO);
  4052. }
  4053. if ((mddev->new_level == 5
  4054. && !algorithm_valid_raid5(mddev->new_layout)) ||
  4055. (mddev->new_level == 6
  4056. && !algorithm_valid_raid6(mddev->new_layout))) {
  4057. printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
  4058. mdname(mddev), mddev->new_layout);
  4059. return ERR_PTR(-EIO);
  4060. }
  4061. if (mddev->new_level == 6 && mddev->raid_disks < 4) {
  4062. printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
  4063. mdname(mddev), mddev->raid_disks);
  4064. return ERR_PTR(-EINVAL);
  4065. }
  4066. if (!mddev->new_chunk_sectors ||
  4067. (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
  4068. !is_power_of_2(mddev->new_chunk_sectors)) {
  4069. printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
  4070. mdname(mddev), mddev->new_chunk_sectors << 9);
  4071. return ERR_PTR(-EINVAL);
  4072. }
  4073. conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
  4074. if (conf == NULL)
  4075. goto abort;
  4076. spin_lock_init(&conf->device_lock);
  4077. init_waitqueue_head(&conf->wait_for_stripe);
  4078. init_waitqueue_head(&conf->wait_for_overlap);
  4079. INIT_LIST_HEAD(&conf->handle_list);
  4080. INIT_LIST_HEAD(&conf->hold_list);
  4081. INIT_LIST_HEAD(&conf->delayed_list);
  4082. INIT_LIST_HEAD(&conf->bitmap_list);
  4083. INIT_LIST_HEAD(&conf->inactive_list);
  4084. atomic_set(&conf->active_stripes, 0);
  4085. atomic_set(&conf->preread_active_stripes, 0);
  4086. atomic_set(&conf->active_aligned_reads, 0);
  4087. conf->bypass_threshold = BYPASS_THRESHOLD;
  4088. conf->recovery_disabled = mddev->recovery_disabled - 1;
  4089. conf->raid_disks = mddev->raid_disks;
  4090. if (mddev->reshape_position == MaxSector)
  4091. conf->previous_raid_disks = mddev->raid_disks;
  4092. else
  4093. conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
  4094. max_disks = max(conf->raid_disks, conf->previous_raid_disks);
  4095. conf->scribble_len = scribble_len(max_disks);
  4096. conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
  4097. GFP_KERNEL);
  4098. if (!conf->disks)
  4099. goto abort;
  4100. conf->mddev = mddev;
  4101. if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
  4102. goto abort;
  4103. conf->level = mddev->new_level;
  4104. if (raid5_alloc_percpu(conf) != 0)
  4105. goto abort;
  4106. pr_debug("raid456: run(%s) called.\n", mdname(mddev));
  4107. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4108. raid_disk = rdev->raid_disk;
  4109. if (raid_disk >= max_disks
  4110. || raid_disk < 0)
  4111. continue;
  4112. disk = conf->disks + raid_disk;
  4113. disk->rdev = rdev;
  4114. if (test_bit(In_sync, &rdev->flags)) {
  4115. char b[BDEVNAME_SIZE];
  4116. printk(KERN_INFO "md/raid:%s: device %s operational as raid"
  4117. " disk %d\n",
  4118. mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
  4119. } else if (rdev->saved_raid_disk != raid_disk)
  4120. /* Cannot rely on bitmap to complete recovery */
  4121. conf->fullsync = 1;
  4122. }
  4123. conf->chunk_sectors = mddev->new_chunk_sectors;
  4124. conf->level = mddev->new_level;
  4125. if (conf->level == 6)
  4126. conf->max_degraded = 2;
  4127. else
  4128. conf->max_degraded = 1;
  4129. conf->algorithm = mddev->new_layout;
  4130. conf->max_nr_stripes = NR_STRIPES;
  4131. conf->reshape_progress = mddev->reshape_position;
  4132. if (conf->reshape_progress != MaxSector) {
  4133. conf->prev_chunk_sectors = mddev->chunk_sectors;
  4134. conf->prev_algo = mddev->layout;
  4135. }
  4136. memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
  4137. max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
  4138. if (grow_stripes(conf, conf->max_nr_stripes)) {
  4139. printk(KERN_ERR
  4140. "md/raid:%s: couldn't allocate %dkB for buffers\n",
  4141. mdname(mddev), memory);
  4142. goto abort;
  4143. } else
  4144. printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
  4145. mdname(mddev), memory);
  4146. conf->thread = md_register_thread(raid5d, mddev, NULL);
  4147. if (!conf->thread) {
  4148. printk(KERN_ERR
  4149. "md/raid:%s: couldn't allocate thread.\n",
  4150. mdname(mddev));
  4151. goto abort;
  4152. }
  4153. return conf;
  4154. abort:
  4155. if (conf) {
  4156. free_conf(conf);
  4157. return ERR_PTR(-EIO);
  4158. } else
  4159. return ERR_PTR(-ENOMEM);
  4160. }
  4161. static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
  4162. {
  4163. switch (algo) {
  4164. case ALGORITHM_PARITY_0:
  4165. if (raid_disk < max_degraded)
  4166. return 1;
  4167. break;
  4168. case ALGORITHM_PARITY_N:
  4169. if (raid_disk >= raid_disks - max_degraded)
  4170. return 1;
  4171. break;
  4172. case ALGORITHM_PARITY_0_6:
  4173. if (raid_disk == 0 ||
  4174. raid_disk == raid_disks - 1)
  4175. return 1;
  4176. break;
  4177. case ALGORITHM_LEFT_ASYMMETRIC_6:
  4178. case ALGORITHM_RIGHT_ASYMMETRIC_6:
  4179. case ALGORITHM_LEFT_SYMMETRIC_6:
  4180. case ALGORITHM_RIGHT_SYMMETRIC_6:
  4181. if (raid_disk == raid_disks - 1)
  4182. return 1;
  4183. }
  4184. return 0;
  4185. }
  4186. static int run(struct mddev *mddev)
  4187. {
  4188. struct r5conf *conf;
  4189. int working_disks = 0;
  4190. int dirty_parity_disks = 0;
  4191. struct md_rdev *rdev;
  4192. sector_t reshape_offset = 0;
  4193. if (mddev->recovery_cp != MaxSector)
  4194. printk(KERN_NOTICE "md/raid:%s: not clean"
  4195. " -- starting background reconstruction\n",
  4196. mdname(mddev));
  4197. if (mddev->reshape_position != MaxSector) {
  4198. /* Check that we can continue the reshape.
  4199. * Currently only disks can change, it must
  4200. * increase, and we must be past the point where
  4201. * a stripe over-writes itself
  4202. */
  4203. sector_t here_new, here_old;
  4204. int old_disks;
  4205. int max_degraded = (mddev->level == 6 ? 2 : 1);
  4206. if (mddev->new_level != mddev->level) {
  4207. printk(KERN_ERR "md/raid:%s: unsupported reshape "
  4208. "required - aborting.\n",
  4209. mdname(mddev));
  4210. return -EINVAL;
  4211. }
  4212. old_disks = mddev->raid_disks - mddev->delta_disks;
  4213. /* reshape_position must be on a new-stripe boundary, and one
  4214. * further up in new geometry must map after here in old
  4215. * geometry.
  4216. */
  4217. here_new = mddev->reshape_position;
  4218. if (sector_div(here_new, mddev->new_chunk_sectors *
  4219. (mddev->raid_disks - max_degraded))) {
  4220. printk(KERN_ERR "md/raid:%s: reshape_position not "
  4221. "on a stripe boundary\n", mdname(mddev));
  4222. return -EINVAL;
  4223. }
  4224. reshape_offset = here_new * mddev->new_chunk_sectors;
  4225. /* here_new is the stripe we will write to */
  4226. here_old = mddev->reshape_position;
  4227. sector_div(here_old, mddev->chunk_sectors *
  4228. (old_disks-max_degraded));
  4229. /* here_old is the first stripe that we might need to read
  4230. * from */
  4231. if (mddev->delta_disks == 0) {
  4232. /* We cannot be sure it is safe to start an in-place
  4233. * reshape. It is only safe if user-space if monitoring
  4234. * and taking constant backups.
  4235. * mdadm always starts a situation like this in
  4236. * readonly mode so it can take control before
  4237. * allowing any writes. So just check for that.
  4238. */
  4239. if ((here_new * mddev->new_chunk_sectors !=
  4240. here_old * mddev->chunk_sectors) ||
  4241. mddev->ro == 0) {
  4242. printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
  4243. " in read-only mode - aborting\n",
  4244. mdname(mddev));
  4245. return -EINVAL;
  4246. }
  4247. } else if (mddev->delta_disks < 0
  4248. ? (here_new * mddev->new_chunk_sectors <=
  4249. here_old * mddev->chunk_sectors)
  4250. : (here_new * mddev->new_chunk_sectors >=
  4251. here_old * mddev->chunk_sectors)) {
  4252. /* Reading from the same stripe as writing to - bad */
  4253. printk(KERN_ERR "md/raid:%s: reshape_position too early for "
  4254. "auto-recovery - aborting.\n",
  4255. mdname(mddev));
  4256. return -EINVAL;
  4257. }
  4258. printk(KERN_INFO "md/raid:%s: reshape will continue\n",
  4259. mdname(mddev));
  4260. /* OK, we should be able to continue; */
  4261. } else {
  4262. BUG_ON(mddev->level != mddev->new_level);
  4263. BUG_ON(mddev->layout != mddev->new_layout);
  4264. BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
  4265. BUG_ON(mddev->delta_disks != 0);
  4266. }
  4267. if (mddev->private == NULL)
  4268. conf = setup_conf(mddev);
  4269. else
  4270. conf = mddev->private;
  4271. if (IS_ERR(conf))
  4272. return PTR_ERR(conf);
  4273. mddev->thread = conf->thread;
  4274. conf->thread = NULL;
  4275. mddev->private = conf;
  4276. /*
  4277. * 0 for a fully functional array, 1 or 2 for a degraded array.
  4278. */
  4279. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4280. if (rdev->raid_disk < 0)
  4281. continue;
  4282. if (test_bit(In_sync, &rdev->flags)) {
  4283. working_disks++;
  4284. continue;
  4285. }
  4286. /* This disc is not fully in-sync. However if it
  4287. * just stored parity (beyond the recovery_offset),
  4288. * when we don't need to be concerned about the
  4289. * array being dirty.
  4290. * When reshape goes 'backwards', we never have
  4291. * partially completed devices, so we only need
  4292. * to worry about reshape going forwards.
  4293. */
  4294. /* Hack because v0.91 doesn't store recovery_offset properly. */
  4295. if (mddev->major_version == 0 &&
  4296. mddev->minor_version > 90)
  4297. rdev->recovery_offset = reshape_offset;
  4298. if (rdev->recovery_offset < reshape_offset) {
  4299. /* We need to check old and new layout */
  4300. if (!only_parity(rdev->raid_disk,
  4301. conf->algorithm,
  4302. conf->raid_disks,
  4303. conf->max_degraded))
  4304. continue;
  4305. }
  4306. if (!only_parity(rdev->raid_disk,
  4307. conf->prev_algo,
  4308. conf->previous_raid_disks,
  4309. conf->max_degraded))
  4310. continue;
  4311. dirty_parity_disks++;
  4312. }
  4313. mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
  4314. - working_disks);
  4315. if (has_failed(conf)) {
  4316. printk(KERN_ERR "md/raid:%s: not enough operational devices"
  4317. " (%d/%d failed)\n",
  4318. mdname(mddev), mddev->degraded, conf->raid_disks);
  4319. goto abort;
  4320. }
  4321. /* device size must be a multiple of chunk size */
  4322. mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
  4323. mddev->resync_max_sectors = mddev->dev_sectors;
  4324. if (mddev->degraded > dirty_parity_disks &&
  4325. mddev->recovery_cp != MaxSector) {
  4326. if (mddev->ok_start_degraded)
  4327. printk(KERN_WARNING
  4328. "md/raid:%s: starting dirty degraded array"
  4329. " - data corruption possible.\n",
  4330. mdname(mddev));
  4331. else {
  4332. printk(KERN_ERR
  4333. "md/raid:%s: cannot start dirty degraded array.\n",
  4334. mdname(mddev));
  4335. goto abort;
  4336. }
  4337. }
  4338. if (mddev->degraded == 0)
  4339. printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
  4340. " devices, algorithm %d\n", mdname(mddev), conf->level,
  4341. mddev->raid_disks-mddev->degraded, mddev->raid_disks,
  4342. mddev->new_layout);
  4343. else
  4344. printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
  4345. " out of %d devices, algorithm %d\n",
  4346. mdname(mddev), conf->level,
  4347. mddev->raid_disks - mddev->degraded,
  4348. mddev->raid_disks, mddev->new_layout);
  4349. print_raid5_conf(conf);
  4350. if (conf->reshape_progress != MaxSector) {
  4351. conf->reshape_safe = conf->reshape_progress;
  4352. atomic_set(&conf->reshape_stripes, 0);
  4353. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4354. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4355. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4356. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4357. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  4358. "reshape");
  4359. }
  4360. /* Ok, everything is just fine now */
  4361. if (mddev->to_remove == &raid5_attrs_group)
  4362. mddev->to_remove = NULL;
  4363. else if (mddev->kobj.sd &&
  4364. sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
  4365. printk(KERN_WARNING
  4366. "raid5: failed to create sysfs attributes for %s\n",
  4367. mdname(mddev));
  4368. md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
  4369. if (mddev->queue) {
  4370. int chunk_size;
  4371. /* read-ahead size must cover two whole stripes, which
  4372. * is 2 * (datadisks) * chunksize where 'n' is the
  4373. * number of raid devices
  4374. */
  4375. int data_disks = conf->previous_raid_disks - conf->max_degraded;
  4376. int stripe = data_disks *
  4377. ((mddev->chunk_sectors << 9) / PAGE_SIZE);
  4378. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4379. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4380. blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
  4381. mddev->queue->backing_dev_info.congested_data = mddev;
  4382. mddev->queue->backing_dev_info.congested_fn = raid5_congested;
  4383. chunk_size = mddev->chunk_sectors << 9;
  4384. blk_queue_io_min(mddev->queue, chunk_size);
  4385. blk_queue_io_opt(mddev->queue, chunk_size *
  4386. (conf->raid_disks - conf->max_degraded));
  4387. list_for_each_entry(rdev, &mddev->disks, same_set)
  4388. disk_stack_limits(mddev->gendisk, rdev->bdev,
  4389. rdev->data_offset << 9);
  4390. }
  4391. return 0;
  4392. abort:
  4393. md_unregister_thread(&mddev->thread);
  4394. print_raid5_conf(conf);
  4395. free_conf(conf);
  4396. mddev->private = NULL;
  4397. printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
  4398. return -EIO;
  4399. }
  4400. static int stop(struct mddev *mddev)
  4401. {
  4402. struct r5conf *conf = mddev->private;
  4403. md_unregister_thread(&mddev->thread);
  4404. if (mddev->queue)
  4405. mddev->queue->backing_dev_info.congested_fn = NULL;
  4406. free_conf(conf);
  4407. mddev->private = NULL;
  4408. mddev->to_remove = &raid5_attrs_group;
  4409. return 0;
  4410. }
  4411. static void status(struct seq_file *seq, struct mddev *mddev)
  4412. {
  4413. struct r5conf *conf = mddev->private;
  4414. int i;
  4415. seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
  4416. mddev->chunk_sectors / 2, mddev->layout);
  4417. seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
  4418. for (i = 0; i < conf->raid_disks; i++)
  4419. seq_printf (seq, "%s",
  4420. conf->disks[i].rdev &&
  4421. test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
  4422. seq_printf (seq, "]");
  4423. }
  4424. static void print_raid5_conf (struct r5conf *conf)
  4425. {
  4426. int i;
  4427. struct disk_info *tmp;
  4428. printk(KERN_DEBUG "RAID conf printout:\n");
  4429. if (!conf) {
  4430. printk("(conf==NULL)\n");
  4431. return;
  4432. }
  4433. printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
  4434. conf->raid_disks,
  4435. conf->raid_disks - conf->mddev->degraded);
  4436. for (i = 0; i < conf->raid_disks; i++) {
  4437. char b[BDEVNAME_SIZE];
  4438. tmp = conf->disks + i;
  4439. if (tmp->rdev)
  4440. printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
  4441. i, !test_bit(Faulty, &tmp->rdev->flags),
  4442. bdevname(tmp->rdev->bdev, b));
  4443. }
  4444. }
  4445. static int raid5_spare_active(struct mddev *mddev)
  4446. {
  4447. int i;
  4448. struct r5conf *conf = mddev->private;
  4449. struct disk_info *tmp;
  4450. int count = 0;
  4451. unsigned long flags;
  4452. for (i = 0; i < conf->raid_disks; i++) {
  4453. tmp = conf->disks + i;
  4454. if (tmp->rdev
  4455. && tmp->rdev->recovery_offset == MaxSector
  4456. && !test_bit(Faulty, &tmp->rdev->flags)
  4457. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  4458. count++;
  4459. sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
  4460. }
  4461. }
  4462. spin_lock_irqsave(&conf->device_lock, flags);
  4463. mddev->degraded -= count;
  4464. spin_unlock_irqrestore(&conf->device_lock, flags);
  4465. print_raid5_conf(conf);
  4466. return count;
  4467. }
  4468. static int raid5_remove_disk(struct mddev *mddev, int number)
  4469. {
  4470. struct r5conf *conf = mddev->private;
  4471. int err = 0;
  4472. struct md_rdev *rdev;
  4473. struct disk_info *p = conf->disks + number;
  4474. print_raid5_conf(conf);
  4475. rdev = p->rdev;
  4476. if (rdev) {
  4477. if (number >= conf->raid_disks &&
  4478. conf->reshape_progress == MaxSector)
  4479. clear_bit(In_sync, &rdev->flags);
  4480. if (test_bit(In_sync, &rdev->flags) ||
  4481. atomic_read(&rdev->nr_pending)) {
  4482. err = -EBUSY;
  4483. goto abort;
  4484. }
  4485. /* Only remove non-faulty devices if recovery
  4486. * isn't possible.
  4487. */
  4488. if (!test_bit(Faulty, &rdev->flags) &&
  4489. mddev->recovery_disabled != conf->recovery_disabled &&
  4490. !has_failed(conf) &&
  4491. number < conf->raid_disks) {
  4492. err = -EBUSY;
  4493. goto abort;
  4494. }
  4495. p->rdev = NULL;
  4496. synchronize_rcu();
  4497. if (atomic_read(&rdev->nr_pending)) {
  4498. /* lost the race, try later */
  4499. err = -EBUSY;
  4500. p->rdev = rdev;
  4501. }
  4502. }
  4503. abort:
  4504. print_raid5_conf(conf);
  4505. return err;
  4506. }
  4507. static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  4508. {
  4509. struct r5conf *conf = mddev->private;
  4510. int err = -EEXIST;
  4511. int disk;
  4512. struct disk_info *p;
  4513. int first = 0;
  4514. int last = conf->raid_disks - 1;
  4515. if (mddev->recovery_disabled == conf->recovery_disabled)
  4516. return -EBUSY;
  4517. if (has_failed(conf))
  4518. /* no point adding a device */
  4519. return -EINVAL;
  4520. if (rdev->raid_disk >= 0)
  4521. first = last = rdev->raid_disk;
  4522. /*
  4523. * find the disk ... but prefer rdev->saved_raid_disk
  4524. * if possible.
  4525. */
  4526. if (rdev->saved_raid_disk >= 0 &&
  4527. rdev->saved_raid_disk >= first &&
  4528. conf->disks[rdev->saved_raid_disk].rdev == NULL)
  4529. disk = rdev->saved_raid_disk;
  4530. else
  4531. disk = first;
  4532. for ( ; disk <= last ; disk++)
  4533. if ((p=conf->disks + disk)->rdev == NULL) {
  4534. clear_bit(In_sync, &rdev->flags);
  4535. rdev->raid_disk = disk;
  4536. err = 0;
  4537. if (rdev->saved_raid_disk != disk)
  4538. conf->fullsync = 1;
  4539. rcu_assign_pointer(p->rdev, rdev);
  4540. break;
  4541. }
  4542. print_raid5_conf(conf);
  4543. return err;
  4544. }
  4545. static int raid5_resize(struct mddev *mddev, sector_t sectors)
  4546. {
  4547. /* no resync is happening, and there is enough space
  4548. * on all devices, so we can resize.
  4549. * We need to make sure resync covers any new space.
  4550. * If the array is shrinking we should possibly wait until
  4551. * any io in the removed space completes, but it hardly seems
  4552. * worth it.
  4553. */
  4554. sectors &= ~((sector_t)mddev->chunk_sectors - 1);
  4555. md_set_array_sectors(mddev, raid5_size(mddev, sectors,
  4556. mddev->raid_disks));
  4557. if (mddev->array_sectors >
  4558. raid5_size(mddev, sectors, mddev->raid_disks))
  4559. return -EINVAL;
  4560. set_capacity(mddev->gendisk, mddev->array_sectors);
  4561. revalidate_disk(mddev->gendisk);
  4562. if (sectors > mddev->dev_sectors &&
  4563. mddev->recovery_cp > mddev->dev_sectors) {
  4564. mddev->recovery_cp = mddev->dev_sectors;
  4565. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4566. }
  4567. mddev->dev_sectors = sectors;
  4568. mddev->resync_max_sectors = sectors;
  4569. return 0;
  4570. }
  4571. static int check_stripe_cache(struct mddev *mddev)
  4572. {
  4573. /* Can only proceed if there are plenty of stripe_heads.
  4574. * We need a minimum of one full stripe,, and for sensible progress
  4575. * it is best to have about 4 times that.
  4576. * If we require 4 times, then the default 256 4K stripe_heads will
  4577. * allow for chunk sizes up to 256K, which is probably OK.
  4578. * If the chunk size is greater, user-space should request more
  4579. * stripe_heads first.
  4580. */
  4581. struct r5conf *conf = mddev->private;
  4582. if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
  4583. > conf->max_nr_stripes ||
  4584. ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
  4585. > conf->max_nr_stripes) {
  4586. printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
  4587. mdname(mddev),
  4588. ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
  4589. / STRIPE_SIZE)*4);
  4590. return 0;
  4591. }
  4592. return 1;
  4593. }
  4594. static int check_reshape(struct mddev *mddev)
  4595. {
  4596. struct r5conf *conf = mddev->private;
  4597. if (mddev->delta_disks == 0 &&
  4598. mddev->new_layout == mddev->layout &&
  4599. mddev->new_chunk_sectors == mddev->chunk_sectors)
  4600. return 0; /* nothing to do */
  4601. if (mddev->bitmap)
  4602. /* Cannot grow a bitmap yet */
  4603. return -EBUSY;
  4604. if (has_failed(conf))
  4605. return -EINVAL;
  4606. if (mddev->delta_disks < 0) {
  4607. /* We might be able to shrink, but the devices must
  4608. * be made bigger first.
  4609. * For raid6, 4 is the minimum size.
  4610. * Otherwise 2 is the minimum
  4611. */
  4612. int min = 2;
  4613. if (mddev->level == 6)
  4614. min = 4;
  4615. if (mddev->raid_disks + mddev->delta_disks < min)
  4616. return -EINVAL;
  4617. }
  4618. if (!check_stripe_cache(mddev))
  4619. return -ENOSPC;
  4620. return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
  4621. }
  4622. static int raid5_start_reshape(struct mddev *mddev)
  4623. {
  4624. struct r5conf *conf = mddev->private;
  4625. struct md_rdev *rdev;
  4626. int spares = 0;
  4627. unsigned long flags;
  4628. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4629. return -EBUSY;
  4630. if (!check_stripe_cache(mddev))
  4631. return -ENOSPC;
  4632. list_for_each_entry(rdev, &mddev->disks, same_set)
  4633. if (!test_bit(In_sync, &rdev->flags)
  4634. && !test_bit(Faulty, &rdev->flags))
  4635. spares++;
  4636. if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
  4637. /* Not enough devices even to make a degraded array
  4638. * of that size
  4639. */
  4640. return -EINVAL;
  4641. /* Refuse to reduce size of the array. Any reductions in
  4642. * array size must be through explicit setting of array_size
  4643. * attribute.
  4644. */
  4645. if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
  4646. < mddev->array_sectors) {
  4647. printk(KERN_ERR "md/raid:%s: array size must be reduced "
  4648. "before number of disks\n", mdname(mddev));
  4649. return -EINVAL;
  4650. }
  4651. atomic_set(&conf->reshape_stripes, 0);
  4652. spin_lock_irq(&conf->device_lock);
  4653. conf->previous_raid_disks = conf->raid_disks;
  4654. conf->raid_disks += mddev->delta_disks;
  4655. conf->prev_chunk_sectors = conf->chunk_sectors;
  4656. conf->chunk_sectors = mddev->new_chunk_sectors;
  4657. conf->prev_algo = conf->algorithm;
  4658. conf->algorithm = mddev->new_layout;
  4659. if (mddev->delta_disks < 0)
  4660. conf->reshape_progress = raid5_size(mddev, 0, 0);
  4661. else
  4662. conf->reshape_progress = 0;
  4663. conf->reshape_safe = conf->reshape_progress;
  4664. conf->generation++;
  4665. spin_unlock_irq(&conf->device_lock);
  4666. /* Add some new drives, as many as will fit.
  4667. * We know there are enough to make the newly sized array work.
  4668. * Don't add devices if we are reducing the number of
  4669. * devices in the array. This is because it is not possible
  4670. * to correctly record the "partially reconstructed" state of
  4671. * such devices during the reshape and confusion could result.
  4672. */
  4673. if (mddev->delta_disks >= 0) {
  4674. int added_devices = 0;
  4675. list_for_each_entry(rdev, &mddev->disks, same_set)
  4676. if (rdev->raid_disk < 0 &&
  4677. !test_bit(Faulty, &rdev->flags)) {
  4678. if (raid5_add_disk(mddev, rdev) == 0) {
  4679. if (rdev->raid_disk
  4680. >= conf->previous_raid_disks) {
  4681. set_bit(In_sync, &rdev->flags);
  4682. added_devices++;
  4683. } else
  4684. rdev->recovery_offset = 0;
  4685. if (sysfs_link_rdev(mddev, rdev))
  4686. /* Failure here is OK */;
  4687. }
  4688. } else if (rdev->raid_disk >= conf->previous_raid_disks
  4689. && !test_bit(Faulty, &rdev->flags)) {
  4690. /* This is a spare that was manually added */
  4691. set_bit(In_sync, &rdev->flags);
  4692. added_devices++;
  4693. }
  4694. /* When a reshape changes the number of devices,
  4695. * ->degraded is measured against the larger of the
  4696. * pre and post number of devices.
  4697. */
  4698. spin_lock_irqsave(&conf->device_lock, flags);
  4699. mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
  4700. - added_devices;
  4701. spin_unlock_irqrestore(&conf->device_lock, flags);
  4702. }
  4703. mddev->raid_disks = conf->raid_disks;
  4704. mddev->reshape_position = conf->reshape_progress;
  4705. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4706. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4707. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4708. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4709. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4710. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  4711. "reshape");
  4712. if (!mddev->sync_thread) {
  4713. mddev->recovery = 0;
  4714. spin_lock_irq(&conf->device_lock);
  4715. mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
  4716. conf->reshape_progress = MaxSector;
  4717. spin_unlock_irq(&conf->device_lock);
  4718. return -EAGAIN;
  4719. }
  4720. conf->reshape_checkpoint = jiffies;
  4721. md_wakeup_thread(mddev->sync_thread);
  4722. md_new_event(mddev);
  4723. return 0;
  4724. }
  4725. /* This is called from the reshape thread and should make any
  4726. * changes needed in 'conf'
  4727. */
  4728. static void end_reshape(struct r5conf *conf)
  4729. {
  4730. if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
  4731. spin_lock_irq(&conf->device_lock);
  4732. conf->previous_raid_disks = conf->raid_disks;
  4733. conf->reshape_progress = MaxSector;
  4734. spin_unlock_irq(&conf->device_lock);
  4735. wake_up(&conf->wait_for_overlap);
  4736. /* read-ahead size must cover two whole stripes, which is
  4737. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  4738. */
  4739. if (conf->mddev->queue) {
  4740. int data_disks = conf->raid_disks - conf->max_degraded;
  4741. int stripe = data_disks * ((conf->chunk_sectors << 9)
  4742. / PAGE_SIZE);
  4743. if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4744. conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4745. }
  4746. }
  4747. }
  4748. /* This is called from the raid5d thread with mddev_lock held.
  4749. * It makes config changes to the device.
  4750. */
  4751. static void raid5_finish_reshape(struct mddev *mddev)
  4752. {
  4753. struct r5conf *conf = mddev->private;
  4754. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4755. if (mddev->delta_disks > 0) {
  4756. md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
  4757. set_capacity(mddev->gendisk, mddev->array_sectors);
  4758. revalidate_disk(mddev->gendisk);
  4759. } else {
  4760. int d;
  4761. mddev->degraded = conf->raid_disks;
  4762. for (d = 0; d < conf->raid_disks ; d++)
  4763. if (conf->disks[d].rdev &&
  4764. test_bit(In_sync,
  4765. &conf->disks[d].rdev->flags))
  4766. mddev->degraded--;
  4767. for (d = conf->raid_disks ;
  4768. d < conf->raid_disks - mddev->delta_disks;
  4769. d++) {
  4770. struct md_rdev *rdev = conf->disks[d].rdev;
  4771. if (rdev && raid5_remove_disk(mddev, d) == 0) {
  4772. sysfs_unlink_rdev(mddev, rdev);
  4773. rdev->raid_disk = -1;
  4774. }
  4775. }
  4776. }
  4777. mddev->layout = conf->algorithm;
  4778. mddev->chunk_sectors = conf->chunk_sectors;
  4779. mddev->reshape_position = MaxSector;
  4780. mddev->delta_disks = 0;
  4781. }
  4782. }
  4783. static void raid5_quiesce(struct mddev *mddev, int state)
  4784. {
  4785. struct r5conf *conf = mddev->private;
  4786. switch(state) {
  4787. case 2: /* resume for a suspend */
  4788. wake_up(&conf->wait_for_overlap);
  4789. break;
  4790. case 1: /* stop all writes */
  4791. spin_lock_irq(&conf->device_lock);
  4792. /* '2' tells resync/reshape to pause so that all
  4793. * active stripes can drain
  4794. */
  4795. conf->quiesce = 2;
  4796. wait_event_lock_irq(conf->wait_for_stripe,
  4797. atomic_read(&conf->active_stripes) == 0 &&
  4798. atomic_read(&conf->active_aligned_reads) == 0,
  4799. conf->device_lock, /* nothing */);
  4800. conf->quiesce = 1;
  4801. spin_unlock_irq(&conf->device_lock);
  4802. /* allow reshape to continue */
  4803. wake_up(&conf->wait_for_overlap);
  4804. break;
  4805. case 0: /* re-enable writes */
  4806. spin_lock_irq(&conf->device_lock);
  4807. conf->quiesce = 0;
  4808. wake_up(&conf->wait_for_stripe);
  4809. wake_up(&conf->wait_for_overlap);
  4810. spin_unlock_irq(&conf->device_lock);
  4811. break;
  4812. }
  4813. }
  4814. static void *raid45_takeover_raid0(struct mddev *mddev, int level)
  4815. {
  4816. struct r0conf *raid0_conf = mddev->private;
  4817. sector_t sectors;
  4818. /* for raid0 takeover only one zone is supported */
  4819. if (raid0_conf->nr_strip_zones > 1) {
  4820. printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
  4821. mdname(mddev));
  4822. return ERR_PTR(-EINVAL);
  4823. }
  4824. sectors = raid0_conf->strip_zone[0].zone_end;
  4825. sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
  4826. mddev->dev_sectors = sectors;
  4827. mddev->new_level = level;
  4828. mddev->new_layout = ALGORITHM_PARITY_N;
  4829. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4830. mddev->raid_disks += 1;
  4831. mddev->delta_disks = 1;
  4832. /* make sure it will be not marked as dirty */
  4833. mddev->recovery_cp = MaxSector;
  4834. return setup_conf(mddev);
  4835. }
  4836. static void *raid5_takeover_raid1(struct mddev *mddev)
  4837. {
  4838. int chunksect;
  4839. if (mddev->raid_disks != 2 ||
  4840. mddev->degraded > 1)
  4841. return ERR_PTR(-EINVAL);
  4842. /* Should check if there are write-behind devices? */
  4843. chunksect = 64*2; /* 64K by default */
  4844. /* The array must be an exact multiple of chunksize */
  4845. while (chunksect && (mddev->array_sectors & (chunksect-1)))
  4846. chunksect >>= 1;
  4847. if ((chunksect<<9) < STRIPE_SIZE)
  4848. /* array size does not allow a suitable chunk size */
  4849. return ERR_PTR(-EINVAL);
  4850. mddev->new_level = 5;
  4851. mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
  4852. mddev->new_chunk_sectors = chunksect;
  4853. return setup_conf(mddev);
  4854. }
  4855. static void *raid5_takeover_raid6(struct mddev *mddev)
  4856. {
  4857. int new_layout;
  4858. switch (mddev->layout) {
  4859. case ALGORITHM_LEFT_ASYMMETRIC_6:
  4860. new_layout = ALGORITHM_LEFT_ASYMMETRIC;
  4861. break;
  4862. case ALGORITHM_RIGHT_ASYMMETRIC_6:
  4863. new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
  4864. break;
  4865. case ALGORITHM_LEFT_SYMMETRIC_6:
  4866. new_layout = ALGORITHM_LEFT_SYMMETRIC;
  4867. break;
  4868. case ALGORITHM_RIGHT_SYMMETRIC_6:
  4869. new_layout = ALGORITHM_RIGHT_SYMMETRIC;
  4870. break;
  4871. case ALGORITHM_PARITY_0_6:
  4872. new_layout = ALGORITHM_PARITY_0;
  4873. break;
  4874. case ALGORITHM_PARITY_N:
  4875. new_layout = ALGORITHM_PARITY_N;
  4876. break;
  4877. default:
  4878. return ERR_PTR(-EINVAL);
  4879. }
  4880. mddev->new_level = 5;
  4881. mddev->new_layout = new_layout;
  4882. mddev->delta_disks = -1;
  4883. mddev->raid_disks -= 1;
  4884. return setup_conf(mddev);
  4885. }
  4886. static int raid5_check_reshape(struct mddev *mddev)
  4887. {
  4888. /* For a 2-drive array, the layout and chunk size can be changed
  4889. * immediately as not restriping is needed.
  4890. * For larger arrays we record the new value - after validation
  4891. * to be used by a reshape pass.
  4892. */
  4893. struct r5conf *conf = mddev->private;
  4894. int new_chunk = mddev->new_chunk_sectors;
  4895. if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
  4896. return -EINVAL;
  4897. if (new_chunk > 0) {
  4898. if (!is_power_of_2(new_chunk))
  4899. return -EINVAL;
  4900. if (new_chunk < (PAGE_SIZE>>9))
  4901. return -EINVAL;
  4902. if (mddev->array_sectors & (new_chunk-1))
  4903. /* not factor of array size */
  4904. return -EINVAL;
  4905. }
  4906. /* They look valid */
  4907. if (mddev->raid_disks == 2) {
  4908. /* can make the change immediately */
  4909. if (mddev->new_layout >= 0) {
  4910. conf->algorithm = mddev->new_layout;
  4911. mddev->layout = mddev->new_layout;
  4912. }
  4913. if (new_chunk > 0) {
  4914. conf->chunk_sectors = new_chunk ;
  4915. mddev->chunk_sectors = new_chunk;
  4916. }
  4917. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4918. md_wakeup_thread(mddev->thread);
  4919. }
  4920. return check_reshape(mddev);
  4921. }
  4922. static int raid6_check_reshape(struct mddev *mddev)
  4923. {
  4924. int new_chunk = mddev->new_chunk_sectors;
  4925. if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
  4926. return -EINVAL;
  4927. if (new_chunk > 0) {
  4928. if (!is_power_of_2(new_chunk))
  4929. return -EINVAL;
  4930. if (new_chunk < (PAGE_SIZE >> 9))
  4931. return -EINVAL;
  4932. if (mddev->array_sectors & (new_chunk-1))
  4933. /* not factor of array size */
  4934. return -EINVAL;
  4935. }
  4936. /* They look valid */
  4937. return check_reshape(mddev);
  4938. }
  4939. static void *raid5_takeover(struct mddev *mddev)
  4940. {
  4941. /* raid5 can take over:
  4942. * raid0 - if there is only one strip zone - make it a raid4 layout
  4943. * raid1 - if there are two drives. We need to know the chunk size
  4944. * raid4 - trivial - just use a raid4 layout.
  4945. * raid6 - Providing it is a *_6 layout
  4946. */
  4947. if (mddev->level == 0)
  4948. return raid45_takeover_raid0(mddev, 5);
  4949. if (mddev->level == 1)
  4950. return raid5_takeover_raid1(mddev);
  4951. if (mddev->level == 4) {
  4952. mddev->new_layout = ALGORITHM_PARITY_N;
  4953. mddev->new_level = 5;
  4954. return setup_conf(mddev);
  4955. }
  4956. if (mddev->level == 6)
  4957. return raid5_takeover_raid6(mddev);
  4958. return ERR_PTR(-EINVAL);
  4959. }
  4960. static void *raid4_takeover(struct mddev *mddev)
  4961. {
  4962. /* raid4 can take over:
  4963. * raid0 - if there is only one strip zone
  4964. * raid5 - if layout is right
  4965. */
  4966. if (mddev->level == 0)
  4967. return raid45_takeover_raid0(mddev, 4);
  4968. if (mddev->level == 5 &&
  4969. mddev->layout == ALGORITHM_PARITY_N) {
  4970. mddev->new_layout = 0;
  4971. mddev->new_level = 4;
  4972. return setup_conf(mddev);
  4973. }
  4974. return ERR_PTR(-EINVAL);
  4975. }
  4976. static struct md_personality raid5_personality;
  4977. static void *raid6_takeover(struct mddev *mddev)
  4978. {
  4979. /* Currently can only take over a raid5. We map the
  4980. * personality to an equivalent raid6 personality
  4981. * with the Q block at the end.
  4982. */
  4983. int new_layout;
  4984. if (mddev->pers != &raid5_personality)
  4985. return ERR_PTR(-EINVAL);
  4986. if (mddev->degraded > 1)
  4987. return ERR_PTR(-EINVAL);
  4988. if (mddev->raid_disks > 253)
  4989. return ERR_PTR(-EINVAL);
  4990. if (mddev->raid_disks < 3)
  4991. return ERR_PTR(-EINVAL);
  4992. switch (mddev->layout) {
  4993. case ALGORITHM_LEFT_ASYMMETRIC:
  4994. new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
  4995. break;
  4996. case ALGORITHM_RIGHT_ASYMMETRIC:
  4997. new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
  4998. break;
  4999. case ALGORITHM_LEFT_SYMMETRIC:
  5000. new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
  5001. break;
  5002. case ALGORITHM_RIGHT_SYMMETRIC:
  5003. new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
  5004. break;
  5005. case ALGORITHM_PARITY_0:
  5006. new_layout = ALGORITHM_PARITY_0_6;
  5007. break;
  5008. case ALGORITHM_PARITY_N:
  5009. new_layout = ALGORITHM_PARITY_N;
  5010. break;
  5011. default:
  5012. return ERR_PTR(-EINVAL);
  5013. }
  5014. mddev->new_level = 6;
  5015. mddev->new_layout = new_layout;
  5016. mddev->delta_disks = 1;
  5017. mddev->raid_disks += 1;
  5018. return setup_conf(mddev);
  5019. }
  5020. static struct md_personality raid6_personality =
  5021. {
  5022. .name = "raid6",
  5023. .level = 6,
  5024. .owner = THIS_MODULE,
  5025. .make_request = make_request,
  5026. .run = run,
  5027. .stop = stop,
  5028. .status = status,
  5029. .error_handler = error,
  5030. .hot_add_disk = raid5_add_disk,
  5031. .hot_remove_disk= raid5_remove_disk,
  5032. .spare_active = raid5_spare_active,
  5033. .sync_request = sync_request,
  5034. .resize = raid5_resize,
  5035. .size = raid5_size,
  5036. .check_reshape = raid6_check_reshape,
  5037. .start_reshape = raid5_start_reshape,
  5038. .finish_reshape = raid5_finish_reshape,
  5039. .quiesce = raid5_quiesce,
  5040. .takeover = raid6_takeover,
  5041. };
  5042. static struct md_personality raid5_personality =
  5043. {
  5044. .name = "raid5",
  5045. .level = 5,
  5046. .owner = THIS_MODULE,
  5047. .make_request = make_request,
  5048. .run = run,
  5049. .stop = stop,
  5050. .status = status,
  5051. .error_handler = error,
  5052. .hot_add_disk = raid5_add_disk,
  5053. .hot_remove_disk= raid5_remove_disk,
  5054. .spare_active = raid5_spare_active,
  5055. .sync_request = sync_request,
  5056. .resize = raid5_resize,
  5057. .size = raid5_size,
  5058. .check_reshape = raid5_check_reshape,
  5059. .start_reshape = raid5_start_reshape,
  5060. .finish_reshape = raid5_finish_reshape,
  5061. .quiesce = raid5_quiesce,
  5062. .takeover = raid5_takeover,
  5063. };
  5064. static struct md_personality raid4_personality =
  5065. {
  5066. .name = "raid4",
  5067. .level = 4,
  5068. .owner = THIS_MODULE,
  5069. .make_request = make_request,
  5070. .run = run,
  5071. .stop = stop,
  5072. .status = status,
  5073. .error_handler = error,
  5074. .hot_add_disk = raid5_add_disk,
  5075. .hot_remove_disk= raid5_remove_disk,
  5076. .spare_active = raid5_spare_active,
  5077. .sync_request = sync_request,
  5078. .resize = raid5_resize,
  5079. .size = raid5_size,
  5080. .check_reshape = raid5_check_reshape,
  5081. .start_reshape = raid5_start_reshape,
  5082. .finish_reshape = raid5_finish_reshape,
  5083. .quiesce = raid5_quiesce,
  5084. .takeover = raid4_takeover,
  5085. };
  5086. static int __init raid5_init(void)
  5087. {
  5088. register_md_personality(&raid6_personality);
  5089. register_md_personality(&raid5_personality);
  5090. register_md_personality(&raid4_personality);
  5091. return 0;
  5092. }
  5093. static void raid5_exit(void)
  5094. {
  5095. unregister_md_personality(&raid6_personality);
  5096. unregister_md_personality(&raid5_personality);
  5097. unregister_md_personality(&raid4_personality);
  5098. }
  5099. module_init(raid5_init);
  5100. module_exit(raid5_exit);
  5101. MODULE_LICENSE("GPL");
  5102. MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
  5103. MODULE_ALIAS("md-personality-4"); /* RAID5 */
  5104. MODULE_ALIAS("md-raid5");
  5105. MODULE_ALIAS("md-raid4");
  5106. MODULE_ALIAS("md-level-5");
  5107. MODULE_ALIAS("md-level-4");
  5108. MODULE_ALIAS("md-personality-8"); /* RAID6 */
  5109. MODULE_ALIAS("md-raid6");
  5110. MODULE_ALIAS("md-level-6");
  5111. /* This used to be two separate modules, they were: */
  5112. MODULE_ALIAS("raid5");
  5113. MODULE_ALIAS("raid6");