md.c 213 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/module.h>
  39. #include <linux/reboot.h>
  40. #include <linux/file.h>
  41. #include <linux/compat.h>
  42. #include <linux/delay.h>
  43. #include <linux/raid/md_p.h>
  44. #include <linux/raid/md_u.h>
  45. #include <linux/slab.h>
  46. #include "md.h"
  47. #include "bitmap.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. static void md_print_devices(void);
  59. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  60. static struct workqueue_struct *md_wq;
  61. static struct workqueue_struct *md_misc_wq;
  62. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  63. /*
  64. * Default number of read corrections we'll attempt on an rdev
  65. * before ejecting it from the array. We divide the read error
  66. * count by 2 for every hour elapsed between read errors.
  67. */
  68. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  69. /*
  70. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  71. * is 1000 KB/sec, so the extra system load does not show up that much.
  72. * Increase it if you want to have more _guaranteed_ speed. Note that
  73. * the RAID driver will use the maximum available bandwidth if the IO
  74. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  75. * speed limit - in case reconstruction slows down your system despite
  76. * idle IO detection.
  77. *
  78. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  79. * or /sys/block/mdX/md/sync_speed_{min,max}
  80. */
  81. static int sysctl_speed_limit_min = 1000;
  82. static int sysctl_speed_limit_max = 200000;
  83. static inline int speed_min(struct mddev *mddev)
  84. {
  85. return mddev->sync_speed_min ?
  86. mddev->sync_speed_min : sysctl_speed_limit_min;
  87. }
  88. static inline int speed_max(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_max ?
  91. mddev->sync_speed_max : sysctl_speed_limit_max;
  92. }
  93. static struct ctl_table_header *raid_table_header;
  94. static ctl_table raid_table[] = {
  95. {
  96. .procname = "speed_limit_min",
  97. .data = &sysctl_speed_limit_min,
  98. .maxlen = sizeof(int),
  99. .mode = S_IRUGO|S_IWUSR,
  100. .proc_handler = proc_dointvec,
  101. },
  102. {
  103. .procname = "speed_limit_max",
  104. .data = &sysctl_speed_limit_max,
  105. .maxlen = sizeof(int),
  106. .mode = S_IRUGO|S_IWUSR,
  107. .proc_handler = proc_dointvec,
  108. },
  109. { }
  110. };
  111. static ctl_table raid_dir_table[] = {
  112. {
  113. .procname = "raid",
  114. .maxlen = 0,
  115. .mode = S_IRUGO|S_IXUGO,
  116. .child = raid_table,
  117. },
  118. { }
  119. };
  120. static ctl_table raid_root_table[] = {
  121. {
  122. .procname = "dev",
  123. .maxlen = 0,
  124. .mode = 0555,
  125. .child = raid_dir_table,
  126. },
  127. { }
  128. };
  129. static const struct block_device_operations md_fops;
  130. static int start_readonly;
  131. /* bio_clone_mddev
  132. * like bio_clone, but with a local bio set
  133. */
  134. static void mddev_bio_destructor(struct bio *bio)
  135. {
  136. struct mddev *mddev, **mddevp;
  137. mddevp = (void*)bio;
  138. mddev = mddevp[-1];
  139. bio_free(bio, mddev->bio_set);
  140. }
  141. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  142. struct mddev *mddev)
  143. {
  144. struct bio *b;
  145. struct mddev **mddevp;
  146. if (!mddev || !mddev->bio_set)
  147. return bio_alloc(gfp_mask, nr_iovecs);
  148. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  149. mddev->bio_set);
  150. if (!b)
  151. return NULL;
  152. mddevp = (void*)b;
  153. mddevp[-1] = mddev;
  154. b->bi_destructor = mddev_bio_destructor;
  155. return b;
  156. }
  157. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  158. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  159. struct mddev *mddev)
  160. {
  161. struct bio *b;
  162. struct mddev **mddevp;
  163. if (!mddev || !mddev->bio_set)
  164. return bio_clone(bio, gfp_mask);
  165. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  166. mddev->bio_set);
  167. if (!b)
  168. return NULL;
  169. mddevp = (void*)b;
  170. mddevp[-1] = mddev;
  171. b->bi_destructor = mddev_bio_destructor;
  172. __bio_clone(b, bio);
  173. if (bio_integrity(bio)) {
  174. int ret;
  175. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  176. if (ret < 0) {
  177. bio_put(b);
  178. return NULL;
  179. }
  180. }
  181. return b;
  182. }
  183. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  184. void md_trim_bio(struct bio *bio, int offset, int size)
  185. {
  186. /* 'bio' is a cloned bio which we need to trim to match
  187. * the given offset and size.
  188. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  189. */
  190. int i;
  191. struct bio_vec *bvec;
  192. int sofar = 0;
  193. size <<= 9;
  194. if (offset == 0 && size == bio->bi_size)
  195. return;
  196. bio->bi_sector += offset;
  197. bio->bi_size = size;
  198. offset <<= 9;
  199. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  200. while (bio->bi_idx < bio->bi_vcnt &&
  201. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  202. /* remove this whole bio_vec */
  203. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  204. bio->bi_idx++;
  205. }
  206. if (bio->bi_idx < bio->bi_vcnt) {
  207. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  208. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  209. }
  210. /* avoid any complications with bi_idx being non-zero*/
  211. if (bio->bi_idx) {
  212. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  213. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  214. bio->bi_vcnt -= bio->bi_idx;
  215. bio->bi_idx = 0;
  216. }
  217. /* Make sure vcnt and last bv are not too big */
  218. bio_for_each_segment(bvec, bio, i) {
  219. if (sofar + bvec->bv_len > size)
  220. bvec->bv_len = size - sofar;
  221. if (bvec->bv_len == 0) {
  222. bio->bi_vcnt = i;
  223. break;
  224. }
  225. sofar += bvec->bv_len;
  226. }
  227. }
  228. EXPORT_SYMBOL_GPL(md_trim_bio);
  229. /*
  230. * We have a system wide 'event count' that is incremented
  231. * on any 'interesting' event, and readers of /proc/mdstat
  232. * can use 'poll' or 'select' to find out when the event
  233. * count increases.
  234. *
  235. * Events are:
  236. * start array, stop array, error, add device, remove device,
  237. * start build, activate spare
  238. */
  239. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  240. static atomic_t md_event_count;
  241. void md_new_event(struct mddev *mddev)
  242. {
  243. atomic_inc(&md_event_count);
  244. wake_up(&md_event_waiters);
  245. }
  246. EXPORT_SYMBOL_GPL(md_new_event);
  247. /* Alternate version that can be called from interrupts
  248. * when calling sysfs_notify isn't needed.
  249. */
  250. static void md_new_event_inintr(struct mddev *mddev)
  251. {
  252. atomic_inc(&md_event_count);
  253. wake_up(&md_event_waiters);
  254. }
  255. /*
  256. * Enables to iterate over all existing md arrays
  257. * all_mddevs_lock protects this list.
  258. */
  259. static LIST_HEAD(all_mddevs);
  260. static DEFINE_SPINLOCK(all_mddevs_lock);
  261. /*
  262. * iterates through all used mddevs in the system.
  263. * We take care to grab the all_mddevs_lock whenever navigating
  264. * the list, and to always hold a refcount when unlocked.
  265. * Any code which breaks out of this loop while own
  266. * a reference to the current mddev and must mddev_put it.
  267. */
  268. #define for_each_mddev(_mddev,_tmp) \
  269. \
  270. for (({ spin_lock(&all_mddevs_lock); \
  271. _tmp = all_mddevs.next; \
  272. _mddev = NULL;}); \
  273. ({ if (_tmp != &all_mddevs) \
  274. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  275. spin_unlock(&all_mddevs_lock); \
  276. if (_mddev) mddev_put(_mddev); \
  277. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  278. _tmp != &all_mddevs;}); \
  279. ({ spin_lock(&all_mddevs_lock); \
  280. _tmp = _tmp->next;}) \
  281. )
  282. /* Rather than calling directly into the personality make_request function,
  283. * IO requests come here first so that we can check if the device is
  284. * being suspended pending a reconfiguration.
  285. * We hold a refcount over the call to ->make_request. By the time that
  286. * call has finished, the bio has been linked into some internal structure
  287. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  288. */
  289. static int md_make_request(struct request_queue *q, struct bio *bio)
  290. {
  291. const int rw = bio_data_dir(bio);
  292. struct mddev *mddev = q->queuedata;
  293. int rv;
  294. int cpu;
  295. unsigned int sectors;
  296. if (mddev == NULL || mddev->pers == NULL
  297. || !mddev->ready) {
  298. bio_io_error(bio);
  299. return 0;
  300. }
  301. smp_rmb(); /* Ensure implications of 'active' are visible */
  302. rcu_read_lock();
  303. if (mddev->suspended) {
  304. DEFINE_WAIT(__wait);
  305. for (;;) {
  306. prepare_to_wait(&mddev->sb_wait, &__wait,
  307. TASK_UNINTERRUPTIBLE);
  308. if (!mddev->suspended)
  309. break;
  310. rcu_read_unlock();
  311. schedule();
  312. rcu_read_lock();
  313. }
  314. finish_wait(&mddev->sb_wait, &__wait);
  315. }
  316. atomic_inc(&mddev->active_io);
  317. rcu_read_unlock();
  318. /*
  319. * save the sectors now since our bio can
  320. * go away inside make_request
  321. */
  322. sectors = bio_sectors(bio);
  323. rv = mddev->pers->make_request(mddev, bio);
  324. cpu = part_stat_lock();
  325. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  326. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  327. part_stat_unlock();
  328. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  329. wake_up(&mddev->sb_wait);
  330. return rv;
  331. }
  332. /* mddev_suspend makes sure no new requests are submitted
  333. * to the device, and that any requests that have been submitted
  334. * are completely handled.
  335. * Once ->stop is called and completes, the module will be completely
  336. * unused.
  337. */
  338. void mddev_suspend(struct mddev *mddev)
  339. {
  340. BUG_ON(mddev->suspended);
  341. mddev->suspended = 1;
  342. synchronize_rcu();
  343. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  344. mddev->pers->quiesce(mddev, 1);
  345. }
  346. EXPORT_SYMBOL_GPL(mddev_suspend);
  347. void mddev_resume(struct mddev *mddev)
  348. {
  349. mddev->suspended = 0;
  350. wake_up(&mddev->sb_wait);
  351. mddev->pers->quiesce(mddev, 0);
  352. md_wakeup_thread(mddev->thread);
  353. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  354. }
  355. EXPORT_SYMBOL_GPL(mddev_resume);
  356. int mddev_congested(struct mddev *mddev, int bits)
  357. {
  358. return mddev->suspended;
  359. }
  360. EXPORT_SYMBOL(mddev_congested);
  361. /*
  362. * Generic flush handling for md
  363. */
  364. static void md_end_flush(struct bio *bio, int err)
  365. {
  366. struct md_rdev *rdev = bio->bi_private;
  367. struct mddev *mddev = rdev->mddev;
  368. rdev_dec_pending(rdev, mddev);
  369. if (atomic_dec_and_test(&mddev->flush_pending)) {
  370. /* The pre-request flush has finished */
  371. queue_work(md_wq, &mddev->flush_work);
  372. }
  373. bio_put(bio);
  374. }
  375. static void md_submit_flush_data(struct work_struct *ws);
  376. static void submit_flushes(struct work_struct *ws)
  377. {
  378. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  379. struct md_rdev *rdev;
  380. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  381. atomic_set(&mddev->flush_pending, 1);
  382. rcu_read_lock();
  383. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  384. if (rdev->raid_disk >= 0 &&
  385. !test_bit(Faulty, &rdev->flags)) {
  386. /* Take two references, one is dropped
  387. * when request finishes, one after
  388. * we reclaim rcu_read_lock
  389. */
  390. struct bio *bi;
  391. atomic_inc(&rdev->nr_pending);
  392. atomic_inc(&rdev->nr_pending);
  393. rcu_read_unlock();
  394. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  395. bi->bi_end_io = md_end_flush;
  396. bi->bi_private = rdev;
  397. bi->bi_bdev = rdev->bdev;
  398. atomic_inc(&mddev->flush_pending);
  399. submit_bio(WRITE_FLUSH, bi);
  400. rcu_read_lock();
  401. rdev_dec_pending(rdev, mddev);
  402. }
  403. rcu_read_unlock();
  404. if (atomic_dec_and_test(&mddev->flush_pending))
  405. queue_work(md_wq, &mddev->flush_work);
  406. }
  407. static void md_submit_flush_data(struct work_struct *ws)
  408. {
  409. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  410. struct bio *bio = mddev->flush_bio;
  411. if (bio->bi_size == 0)
  412. /* an empty barrier - all done */
  413. bio_endio(bio, 0);
  414. else {
  415. bio->bi_rw &= ~REQ_FLUSH;
  416. if (mddev->pers->make_request(mddev, bio))
  417. generic_make_request(bio);
  418. }
  419. mddev->flush_bio = NULL;
  420. wake_up(&mddev->sb_wait);
  421. }
  422. void md_flush_request(struct mddev *mddev, struct bio *bio)
  423. {
  424. spin_lock_irq(&mddev->write_lock);
  425. wait_event_lock_irq(mddev->sb_wait,
  426. !mddev->flush_bio,
  427. mddev->write_lock, /*nothing*/);
  428. mddev->flush_bio = bio;
  429. spin_unlock_irq(&mddev->write_lock);
  430. INIT_WORK(&mddev->flush_work, submit_flushes);
  431. queue_work(md_wq, &mddev->flush_work);
  432. }
  433. EXPORT_SYMBOL(md_flush_request);
  434. /* Support for plugging.
  435. * This mirrors the plugging support in request_queue, but does not
  436. * require having a whole queue or request structures.
  437. * We allocate an md_plug_cb for each md device and each thread it gets
  438. * plugged on. This links tot the private plug_handle structure in the
  439. * personality data where we keep a count of the number of outstanding
  440. * plugs so other code can see if a plug is active.
  441. */
  442. struct md_plug_cb {
  443. struct blk_plug_cb cb;
  444. struct mddev *mddev;
  445. };
  446. static void plugger_unplug(struct blk_plug_cb *cb)
  447. {
  448. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  449. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  450. md_wakeup_thread(mdcb->mddev->thread);
  451. kfree(mdcb);
  452. }
  453. /* Check that an unplug wakeup will come shortly.
  454. * If not, wakeup the md thread immediately
  455. */
  456. int mddev_check_plugged(struct mddev *mddev)
  457. {
  458. struct blk_plug *plug = current->plug;
  459. struct md_plug_cb *mdcb;
  460. if (!plug)
  461. return 0;
  462. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  463. if (mdcb->cb.callback == plugger_unplug &&
  464. mdcb->mddev == mddev) {
  465. /* Already on the list, move to top */
  466. if (mdcb != list_first_entry(&plug->cb_list,
  467. struct md_plug_cb,
  468. cb.list))
  469. list_move(&mdcb->cb.list, &plug->cb_list);
  470. return 1;
  471. }
  472. }
  473. /* Not currently on the callback list */
  474. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  475. if (!mdcb)
  476. return 0;
  477. mdcb->mddev = mddev;
  478. mdcb->cb.callback = plugger_unplug;
  479. atomic_inc(&mddev->plug_cnt);
  480. list_add(&mdcb->cb.list, &plug->cb_list);
  481. return 1;
  482. }
  483. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  484. static inline struct mddev *mddev_get(struct mddev *mddev)
  485. {
  486. atomic_inc(&mddev->active);
  487. return mddev;
  488. }
  489. static void mddev_delayed_delete(struct work_struct *ws);
  490. static void mddev_put(struct mddev *mddev)
  491. {
  492. struct bio_set *bs = NULL;
  493. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  494. return;
  495. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  496. mddev->ctime == 0 && !mddev->hold_active) {
  497. /* Array is not configured at all, and not held active,
  498. * so destroy it */
  499. list_del(&mddev->all_mddevs);
  500. bs = mddev->bio_set;
  501. mddev->bio_set = NULL;
  502. if (mddev->gendisk) {
  503. /* We did a probe so need to clean up. Call
  504. * queue_work inside the spinlock so that
  505. * flush_workqueue() after mddev_find will
  506. * succeed in waiting for the work to be done.
  507. */
  508. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  509. queue_work(md_misc_wq, &mddev->del_work);
  510. } else
  511. kfree(mddev);
  512. }
  513. spin_unlock(&all_mddevs_lock);
  514. if (bs)
  515. bioset_free(bs);
  516. }
  517. void mddev_init(struct mddev *mddev)
  518. {
  519. mutex_init(&mddev->open_mutex);
  520. mutex_init(&mddev->reconfig_mutex);
  521. mutex_init(&mddev->bitmap_info.mutex);
  522. INIT_LIST_HEAD(&mddev->disks);
  523. INIT_LIST_HEAD(&mddev->all_mddevs);
  524. init_timer(&mddev->safemode_timer);
  525. atomic_set(&mddev->active, 1);
  526. atomic_set(&mddev->openers, 0);
  527. atomic_set(&mddev->active_io, 0);
  528. atomic_set(&mddev->plug_cnt, 0);
  529. spin_lock_init(&mddev->write_lock);
  530. atomic_set(&mddev->flush_pending, 0);
  531. init_waitqueue_head(&mddev->sb_wait);
  532. init_waitqueue_head(&mddev->recovery_wait);
  533. mddev->reshape_position = MaxSector;
  534. mddev->resync_min = 0;
  535. mddev->resync_max = MaxSector;
  536. mddev->level = LEVEL_NONE;
  537. }
  538. EXPORT_SYMBOL_GPL(mddev_init);
  539. static struct mddev * mddev_find(dev_t unit)
  540. {
  541. struct mddev *mddev, *new = NULL;
  542. if (unit && MAJOR(unit) != MD_MAJOR)
  543. unit &= ~((1<<MdpMinorShift)-1);
  544. retry:
  545. spin_lock(&all_mddevs_lock);
  546. if (unit) {
  547. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  548. if (mddev->unit == unit) {
  549. mddev_get(mddev);
  550. spin_unlock(&all_mddevs_lock);
  551. kfree(new);
  552. return mddev;
  553. }
  554. if (new) {
  555. list_add(&new->all_mddevs, &all_mddevs);
  556. spin_unlock(&all_mddevs_lock);
  557. new->hold_active = UNTIL_IOCTL;
  558. return new;
  559. }
  560. } else if (new) {
  561. /* find an unused unit number */
  562. static int next_minor = 512;
  563. int start = next_minor;
  564. int is_free = 0;
  565. int dev = 0;
  566. while (!is_free) {
  567. dev = MKDEV(MD_MAJOR, next_minor);
  568. next_minor++;
  569. if (next_minor > MINORMASK)
  570. next_minor = 0;
  571. if (next_minor == start) {
  572. /* Oh dear, all in use. */
  573. spin_unlock(&all_mddevs_lock);
  574. kfree(new);
  575. return NULL;
  576. }
  577. is_free = 1;
  578. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  579. if (mddev->unit == dev) {
  580. is_free = 0;
  581. break;
  582. }
  583. }
  584. new->unit = dev;
  585. new->md_minor = MINOR(dev);
  586. new->hold_active = UNTIL_STOP;
  587. list_add(&new->all_mddevs, &all_mddevs);
  588. spin_unlock(&all_mddevs_lock);
  589. return new;
  590. }
  591. spin_unlock(&all_mddevs_lock);
  592. new = kzalloc(sizeof(*new), GFP_KERNEL);
  593. if (!new)
  594. return NULL;
  595. new->unit = unit;
  596. if (MAJOR(unit) == MD_MAJOR)
  597. new->md_minor = MINOR(unit);
  598. else
  599. new->md_minor = MINOR(unit) >> MdpMinorShift;
  600. mddev_init(new);
  601. goto retry;
  602. }
  603. static inline int mddev_lock(struct mddev * mddev)
  604. {
  605. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  606. }
  607. static inline int mddev_is_locked(struct mddev *mddev)
  608. {
  609. return mutex_is_locked(&mddev->reconfig_mutex);
  610. }
  611. static inline int mddev_trylock(struct mddev * mddev)
  612. {
  613. return mutex_trylock(&mddev->reconfig_mutex);
  614. }
  615. static struct attribute_group md_redundancy_group;
  616. static void mddev_unlock(struct mddev * mddev)
  617. {
  618. if (mddev->to_remove) {
  619. /* These cannot be removed under reconfig_mutex as
  620. * an access to the files will try to take reconfig_mutex
  621. * while holding the file unremovable, which leads to
  622. * a deadlock.
  623. * So hold set sysfs_active while the remove in happeing,
  624. * and anything else which might set ->to_remove or my
  625. * otherwise change the sysfs namespace will fail with
  626. * -EBUSY if sysfs_active is still set.
  627. * We set sysfs_active under reconfig_mutex and elsewhere
  628. * test it under the same mutex to ensure its correct value
  629. * is seen.
  630. */
  631. struct attribute_group *to_remove = mddev->to_remove;
  632. mddev->to_remove = NULL;
  633. mddev->sysfs_active = 1;
  634. mutex_unlock(&mddev->reconfig_mutex);
  635. if (mddev->kobj.sd) {
  636. if (to_remove != &md_redundancy_group)
  637. sysfs_remove_group(&mddev->kobj, to_remove);
  638. if (mddev->pers == NULL ||
  639. mddev->pers->sync_request == NULL) {
  640. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  641. if (mddev->sysfs_action)
  642. sysfs_put(mddev->sysfs_action);
  643. mddev->sysfs_action = NULL;
  644. }
  645. }
  646. mddev->sysfs_active = 0;
  647. } else
  648. mutex_unlock(&mddev->reconfig_mutex);
  649. /* As we've dropped the mutex we need a spinlock to
  650. * make sure the thread doesn't disappear
  651. */
  652. spin_lock(&pers_lock);
  653. md_wakeup_thread(mddev->thread);
  654. spin_unlock(&pers_lock);
  655. }
  656. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  657. {
  658. struct md_rdev *rdev;
  659. list_for_each_entry(rdev, &mddev->disks, same_set)
  660. if (rdev->desc_nr == nr)
  661. return rdev;
  662. return NULL;
  663. }
  664. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  665. {
  666. struct md_rdev *rdev;
  667. list_for_each_entry(rdev, &mddev->disks, same_set)
  668. if (rdev->bdev->bd_dev == dev)
  669. return rdev;
  670. return NULL;
  671. }
  672. static struct md_personality *find_pers(int level, char *clevel)
  673. {
  674. struct md_personality *pers;
  675. list_for_each_entry(pers, &pers_list, list) {
  676. if (level != LEVEL_NONE && pers->level == level)
  677. return pers;
  678. if (strcmp(pers->name, clevel)==0)
  679. return pers;
  680. }
  681. return NULL;
  682. }
  683. /* return the offset of the super block in 512byte sectors */
  684. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  685. {
  686. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  687. return MD_NEW_SIZE_SECTORS(num_sectors);
  688. }
  689. static int alloc_disk_sb(struct md_rdev * rdev)
  690. {
  691. if (rdev->sb_page)
  692. MD_BUG();
  693. rdev->sb_page = alloc_page(GFP_KERNEL);
  694. if (!rdev->sb_page) {
  695. printk(KERN_ALERT "md: out of memory.\n");
  696. return -ENOMEM;
  697. }
  698. return 0;
  699. }
  700. static void free_disk_sb(struct md_rdev * rdev)
  701. {
  702. if (rdev->sb_page) {
  703. put_page(rdev->sb_page);
  704. rdev->sb_loaded = 0;
  705. rdev->sb_page = NULL;
  706. rdev->sb_start = 0;
  707. rdev->sectors = 0;
  708. }
  709. if (rdev->bb_page) {
  710. put_page(rdev->bb_page);
  711. rdev->bb_page = NULL;
  712. }
  713. }
  714. static void super_written(struct bio *bio, int error)
  715. {
  716. struct md_rdev *rdev = bio->bi_private;
  717. struct mddev *mddev = rdev->mddev;
  718. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  719. printk("md: super_written gets error=%d, uptodate=%d\n",
  720. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  721. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  722. md_error(mddev, rdev);
  723. }
  724. if (atomic_dec_and_test(&mddev->pending_writes))
  725. wake_up(&mddev->sb_wait);
  726. bio_put(bio);
  727. }
  728. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  729. sector_t sector, int size, struct page *page)
  730. {
  731. /* write first size bytes of page to sector of rdev
  732. * Increment mddev->pending_writes before returning
  733. * and decrement it on completion, waking up sb_wait
  734. * if zero is reached.
  735. * If an error occurred, call md_error
  736. */
  737. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  738. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  739. bio->bi_sector = sector;
  740. bio_add_page(bio, page, size, 0);
  741. bio->bi_private = rdev;
  742. bio->bi_end_io = super_written;
  743. atomic_inc(&mddev->pending_writes);
  744. submit_bio(WRITE_FLUSH_FUA, bio);
  745. }
  746. void md_super_wait(struct mddev *mddev)
  747. {
  748. /* wait for all superblock writes that were scheduled to complete */
  749. DEFINE_WAIT(wq);
  750. for(;;) {
  751. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  752. if (atomic_read(&mddev->pending_writes)==0)
  753. break;
  754. schedule();
  755. }
  756. finish_wait(&mddev->sb_wait, &wq);
  757. }
  758. static void bi_complete(struct bio *bio, int error)
  759. {
  760. complete((struct completion*)bio->bi_private);
  761. }
  762. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  763. struct page *page, int rw, bool metadata_op)
  764. {
  765. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  766. struct completion event;
  767. int ret;
  768. rw |= REQ_SYNC;
  769. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  770. rdev->meta_bdev : rdev->bdev;
  771. if (metadata_op)
  772. bio->bi_sector = sector + rdev->sb_start;
  773. else
  774. bio->bi_sector = sector + rdev->data_offset;
  775. bio_add_page(bio, page, size, 0);
  776. init_completion(&event);
  777. bio->bi_private = &event;
  778. bio->bi_end_io = bi_complete;
  779. submit_bio(rw, bio);
  780. wait_for_completion(&event);
  781. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  782. bio_put(bio);
  783. return ret;
  784. }
  785. EXPORT_SYMBOL_GPL(sync_page_io);
  786. static int read_disk_sb(struct md_rdev * rdev, int size)
  787. {
  788. char b[BDEVNAME_SIZE];
  789. if (!rdev->sb_page) {
  790. MD_BUG();
  791. return -EINVAL;
  792. }
  793. if (rdev->sb_loaded)
  794. return 0;
  795. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  796. goto fail;
  797. rdev->sb_loaded = 1;
  798. return 0;
  799. fail:
  800. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  801. bdevname(rdev->bdev,b));
  802. return -EINVAL;
  803. }
  804. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  805. {
  806. return sb1->set_uuid0 == sb2->set_uuid0 &&
  807. sb1->set_uuid1 == sb2->set_uuid1 &&
  808. sb1->set_uuid2 == sb2->set_uuid2 &&
  809. sb1->set_uuid3 == sb2->set_uuid3;
  810. }
  811. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  812. {
  813. int ret;
  814. mdp_super_t *tmp1, *tmp2;
  815. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  816. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  817. if (!tmp1 || !tmp2) {
  818. ret = 0;
  819. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  820. goto abort;
  821. }
  822. *tmp1 = *sb1;
  823. *tmp2 = *sb2;
  824. /*
  825. * nr_disks is not constant
  826. */
  827. tmp1->nr_disks = 0;
  828. tmp2->nr_disks = 0;
  829. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  830. abort:
  831. kfree(tmp1);
  832. kfree(tmp2);
  833. return ret;
  834. }
  835. static u32 md_csum_fold(u32 csum)
  836. {
  837. csum = (csum & 0xffff) + (csum >> 16);
  838. return (csum & 0xffff) + (csum >> 16);
  839. }
  840. static unsigned int calc_sb_csum(mdp_super_t * sb)
  841. {
  842. u64 newcsum = 0;
  843. u32 *sb32 = (u32*)sb;
  844. int i;
  845. unsigned int disk_csum, csum;
  846. disk_csum = sb->sb_csum;
  847. sb->sb_csum = 0;
  848. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  849. newcsum += sb32[i];
  850. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  851. #ifdef CONFIG_ALPHA
  852. /* This used to use csum_partial, which was wrong for several
  853. * reasons including that different results are returned on
  854. * different architectures. It isn't critical that we get exactly
  855. * the same return value as before (we always csum_fold before
  856. * testing, and that removes any differences). However as we
  857. * know that csum_partial always returned a 16bit value on
  858. * alphas, do a fold to maximise conformity to previous behaviour.
  859. */
  860. sb->sb_csum = md_csum_fold(disk_csum);
  861. #else
  862. sb->sb_csum = disk_csum;
  863. #endif
  864. return csum;
  865. }
  866. /*
  867. * Handle superblock details.
  868. * We want to be able to handle multiple superblock formats
  869. * so we have a common interface to them all, and an array of
  870. * different handlers.
  871. * We rely on user-space to write the initial superblock, and support
  872. * reading and updating of superblocks.
  873. * Interface methods are:
  874. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  875. * loads and validates a superblock on dev.
  876. * if refdev != NULL, compare superblocks on both devices
  877. * Return:
  878. * 0 - dev has a superblock that is compatible with refdev
  879. * 1 - dev has a superblock that is compatible and newer than refdev
  880. * so dev should be used as the refdev in future
  881. * -EINVAL superblock incompatible or invalid
  882. * -othererror e.g. -EIO
  883. *
  884. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  885. * Verify that dev is acceptable into mddev.
  886. * The first time, mddev->raid_disks will be 0, and data from
  887. * dev should be merged in. Subsequent calls check that dev
  888. * is new enough. Return 0 or -EINVAL
  889. *
  890. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  891. * Update the superblock for rdev with data in mddev
  892. * This does not write to disc.
  893. *
  894. */
  895. struct super_type {
  896. char *name;
  897. struct module *owner;
  898. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  899. int minor_version);
  900. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  901. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  902. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  903. sector_t num_sectors);
  904. };
  905. /*
  906. * Check that the given mddev has no bitmap.
  907. *
  908. * This function is called from the run method of all personalities that do not
  909. * support bitmaps. It prints an error message and returns non-zero if mddev
  910. * has a bitmap. Otherwise, it returns 0.
  911. *
  912. */
  913. int md_check_no_bitmap(struct mddev *mddev)
  914. {
  915. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  916. return 0;
  917. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  918. mdname(mddev), mddev->pers->name);
  919. return 1;
  920. }
  921. EXPORT_SYMBOL(md_check_no_bitmap);
  922. /*
  923. * load_super for 0.90.0
  924. */
  925. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  926. {
  927. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  928. mdp_super_t *sb;
  929. int ret;
  930. /*
  931. * Calculate the position of the superblock (512byte sectors),
  932. * it's at the end of the disk.
  933. *
  934. * It also happens to be a multiple of 4Kb.
  935. */
  936. rdev->sb_start = calc_dev_sboffset(rdev);
  937. ret = read_disk_sb(rdev, MD_SB_BYTES);
  938. if (ret) return ret;
  939. ret = -EINVAL;
  940. bdevname(rdev->bdev, b);
  941. sb = page_address(rdev->sb_page);
  942. if (sb->md_magic != MD_SB_MAGIC) {
  943. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  944. b);
  945. goto abort;
  946. }
  947. if (sb->major_version != 0 ||
  948. sb->minor_version < 90 ||
  949. sb->minor_version > 91) {
  950. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  951. sb->major_version, sb->minor_version,
  952. b);
  953. goto abort;
  954. }
  955. if (sb->raid_disks <= 0)
  956. goto abort;
  957. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  958. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  959. b);
  960. goto abort;
  961. }
  962. rdev->preferred_minor = sb->md_minor;
  963. rdev->data_offset = 0;
  964. rdev->sb_size = MD_SB_BYTES;
  965. rdev->badblocks.shift = -1;
  966. if (sb->level == LEVEL_MULTIPATH)
  967. rdev->desc_nr = -1;
  968. else
  969. rdev->desc_nr = sb->this_disk.number;
  970. if (!refdev) {
  971. ret = 1;
  972. } else {
  973. __u64 ev1, ev2;
  974. mdp_super_t *refsb = page_address(refdev->sb_page);
  975. if (!uuid_equal(refsb, sb)) {
  976. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  977. b, bdevname(refdev->bdev,b2));
  978. goto abort;
  979. }
  980. if (!sb_equal(refsb, sb)) {
  981. printk(KERN_WARNING "md: %s has same UUID"
  982. " but different superblock to %s\n",
  983. b, bdevname(refdev->bdev, b2));
  984. goto abort;
  985. }
  986. ev1 = md_event(sb);
  987. ev2 = md_event(refsb);
  988. if (ev1 > ev2)
  989. ret = 1;
  990. else
  991. ret = 0;
  992. }
  993. rdev->sectors = rdev->sb_start;
  994. /* Limit to 4TB as metadata cannot record more than that */
  995. if (rdev->sectors >= (2ULL << 32))
  996. rdev->sectors = (2ULL << 32) - 2;
  997. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  998. /* "this cannot possibly happen" ... */
  999. ret = -EINVAL;
  1000. abort:
  1001. return ret;
  1002. }
  1003. /*
  1004. * validate_super for 0.90.0
  1005. */
  1006. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1007. {
  1008. mdp_disk_t *desc;
  1009. mdp_super_t *sb = page_address(rdev->sb_page);
  1010. __u64 ev1 = md_event(sb);
  1011. rdev->raid_disk = -1;
  1012. clear_bit(Faulty, &rdev->flags);
  1013. clear_bit(In_sync, &rdev->flags);
  1014. clear_bit(WriteMostly, &rdev->flags);
  1015. if (mddev->raid_disks == 0) {
  1016. mddev->major_version = 0;
  1017. mddev->minor_version = sb->minor_version;
  1018. mddev->patch_version = sb->patch_version;
  1019. mddev->external = 0;
  1020. mddev->chunk_sectors = sb->chunk_size >> 9;
  1021. mddev->ctime = sb->ctime;
  1022. mddev->utime = sb->utime;
  1023. mddev->level = sb->level;
  1024. mddev->clevel[0] = 0;
  1025. mddev->layout = sb->layout;
  1026. mddev->raid_disks = sb->raid_disks;
  1027. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1028. mddev->events = ev1;
  1029. mddev->bitmap_info.offset = 0;
  1030. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1031. if (mddev->minor_version >= 91) {
  1032. mddev->reshape_position = sb->reshape_position;
  1033. mddev->delta_disks = sb->delta_disks;
  1034. mddev->new_level = sb->new_level;
  1035. mddev->new_layout = sb->new_layout;
  1036. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1037. } else {
  1038. mddev->reshape_position = MaxSector;
  1039. mddev->delta_disks = 0;
  1040. mddev->new_level = mddev->level;
  1041. mddev->new_layout = mddev->layout;
  1042. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1043. }
  1044. if (sb->state & (1<<MD_SB_CLEAN))
  1045. mddev->recovery_cp = MaxSector;
  1046. else {
  1047. if (sb->events_hi == sb->cp_events_hi &&
  1048. sb->events_lo == sb->cp_events_lo) {
  1049. mddev->recovery_cp = sb->recovery_cp;
  1050. } else
  1051. mddev->recovery_cp = 0;
  1052. }
  1053. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1054. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1055. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1056. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1057. mddev->max_disks = MD_SB_DISKS;
  1058. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1059. mddev->bitmap_info.file == NULL)
  1060. mddev->bitmap_info.offset =
  1061. mddev->bitmap_info.default_offset;
  1062. } else if (mddev->pers == NULL) {
  1063. /* Insist on good event counter while assembling, except
  1064. * for spares (which don't need an event count) */
  1065. ++ev1;
  1066. if (sb->disks[rdev->desc_nr].state & (
  1067. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1068. if (ev1 < mddev->events)
  1069. return -EINVAL;
  1070. } else if (mddev->bitmap) {
  1071. /* if adding to array with a bitmap, then we can accept an
  1072. * older device ... but not too old.
  1073. */
  1074. if (ev1 < mddev->bitmap->events_cleared)
  1075. return 0;
  1076. } else {
  1077. if (ev1 < mddev->events)
  1078. /* just a hot-add of a new device, leave raid_disk at -1 */
  1079. return 0;
  1080. }
  1081. if (mddev->level != LEVEL_MULTIPATH) {
  1082. desc = sb->disks + rdev->desc_nr;
  1083. if (desc->state & (1<<MD_DISK_FAULTY))
  1084. set_bit(Faulty, &rdev->flags);
  1085. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1086. desc->raid_disk < mddev->raid_disks */) {
  1087. set_bit(In_sync, &rdev->flags);
  1088. rdev->raid_disk = desc->raid_disk;
  1089. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1090. /* active but not in sync implies recovery up to
  1091. * reshape position. We don't know exactly where
  1092. * that is, so set to zero for now */
  1093. if (mddev->minor_version >= 91) {
  1094. rdev->recovery_offset = 0;
  1095. rdev->raid_disk = desc->raid_disk;
  1096. }
  1097. }
  1098. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1099. set_bit(WriteMostly, &rdev->flags);
  1100. } else /* MULTIPATH are always insync */
  1101. set_bit(In_sync, &rdev->flags);
  1102. return 0;
  1103. }
  1104. /*
  1105. * sync_super for 0.90.0
  1106. */
  1107. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1108. {
  1109. mdp_super_t *sb;
  1110. struct md_rdev *rdev2;
  1111. int next_spare = mddev->raid_disks;
  1112. /* make rdev->sb match mddev data..
  1113. *
  1114. * 1/ zero out disks
  1115. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1116. * 3/ any empty disks < next_spare become removed
  1117. *
  1118. * disks[0] gets initialised to REMOVED because
  1119. * we cannot be sure from other fields if it has
  1120. * been initialised or not.
  1121. */
  1122. int i;
  1123. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1124. rdev->sb_size = MD_SB_BYTES;
  1125. sb = page_address(rdev->sb_page);
  1126. memset(sb, 0, sizeof(*sb));
  1127. sb->md_magic = MD_SB_MAGIC;
  1128. sb->major_version = mddev->major_version;
  1129. sb->patch_version = mddev->patch_version;
  1130. sb->gvalid_words = 0; /* ignored */
  1131. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1132. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1133. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1134. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1135. sb->ctime = mddev->ctime;
  1136. sb->level = mddev->level;
  1137. sb->size = mddev->dev_sectors / 2;
  1138. sb->raid_disks = mddev->raid_disks;
  1139. sb->md_minor = mddev->md_minor;
  1140. sb->not_persistent = 0;
  1141. sb->utime = mddev->utime;
  1142. sb->state = 0;
  1143. sb->events_hi = (mddev->events>>32);
  1144. sb->events_lo = (u32)mddev->events;
  1145. if (mddev->reshape_position == MaxSector)
  1146. sb->minor_version = 90;
  1147. else {
  1148. sb->minor_version = 91;
  1149. sb->reshape_position = mddev->reshape_position;
  1150. sb->new_level = mddev->new_level;
  1151. sb->delta_disks = mddev->delta_disks;
  1152. sb->new_layout = mddev->new_layout;
  1153. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1154. }
  1155. mddev->minor_version = sb->minor_version;
  1156. if (mddev->in_sync)
  1157. {
  1158. sb->recovery_cp = mddev->recovery_cp;
  1159. sb->cp_events_hi = (mddev->events>>32);
  1160. sb->cp_events_lo = (u32)mddev->events;
  1161. if (mddev->recovery_cp == MaxSector)
  1162. sb->state = (1<< MD_SB_CLEAN);
  1163. } else
  1164. sb->recovery_cp = 0;
  1165. sb->layout = mddev->layout;
  1166. sb->chunk_size = mddev->chunk_sectors << 9;
  1167. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1168. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1169. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1170. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1171. mdp_disk_t *d;
  1172. int desc_nr;
  1173. int is_active = test_bit(In_sync, &rdev2->flags);
  1174. if (rdev2->raid_disk >= 0 &&
  1175. sb->minor_version >= 91)
  1176. /* we have nowhere to store the recovery_offset,
  1177. * but if it is not below the reshape_position,
  1178. * we can piggy-back on that.
  1179. */
  1180. is_active = 1;
  1181. if (rdev2->raid_disk < 0 ||
  1182. test_bit(Faulty, &rdev2->flags))
  1183. is_active = 0;
  1184. if (is_active)
  1185. desc_nr = rdev2->raid_disk;
  1186. else
  1187. desc_nr = next_spare++;
  1188. rdev2->desc_nr = desc_nr;
  1189. d = &sb->disks[rdev2->desc_nr];
  1190. nr_disks++;
  1191. d->number = rdev2->desc_nr;
  1192. d->major = MAJOR(rdev2->bdev->bd_dev);
  1193. d->minor = MINOR(rdev2->bdev->bd_dev);
  1194. if (is_active)
  1195. d->raid_disk = rdev2->raid_disk;
  1196. else
  1197. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1198. if (test_bit(Faulty, &rdev2->flags))
  1199. d->state = (1<<MD_DISK_FAULTY);
  1200. else if (is_active) {
  1201. d->state = (1<<MD_DISK_ACTIVE);
  1202. if (test_bit(In_sync, &rdev2->flags))
  1203. d->state |= (1<<MD_DISK_SYNC);
  1204. active++;
  1205. working++;
  1206. } else {
  1207. d->state = 0;
  1208. spare++;
  1209. working++;
  1210. }
  1211. if (test_bit(WriteMostly, &rdev2->flags))
  1212. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1213. }
  1214. /* now set the "removed" and "faulty" bits on any missing devices */
  1215. for (i=0 ; i < mddev->raid_disks ; i++) {
  1216. mdp_disk_t *d = &sb->disks[i];
  1217. if (d->state == 0 && d->number == 0) {
  1218. d->number = i;
  1219. d->raid_disk = i;
  1220. d->state = (1<<MD_DISK_REMOVED);
  1221. d->state |= (1<<MD_DISK_FAULTY);
  1222. failed++;
  1223. }
  1224. }
  1225. sb->nr_disks = nr_disks;
  1226. sb->active_disks = active;
  1227. sb->working_disks = working;
  1228. sb->failed_disks = failed;
  1229. sb->spare_disks = spare;
  1230. sb->this_disk = sb->disks[rdev->desc_nr];
  1231. sb->sb_csum = calc_sb_csum(sb);
  1232. }
  1233. /*
  1234. * rdev_size_change for 0.90.0
  1235. */
  1236. static unsigned long long
  1237. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1238. {
  1239. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1240. return 0; /* component must fit device */
  1241. if (rdev->mddev->bitmap_info.offset)
  1242. return 0; /* can't move bitmap */
  1243. rdev->sb_start = calc_dev_sboffset(rdev);
  1244. if (!num_sectors || num_sectors > rdev->sb_start)
  1245. num_sectors = rdev->sb_start;
  1246. /* Limit to 4TB as metadata cannot record more than that.
  1247. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1248. */
  1249. if (num_sectors >= (2ULL << 32))
  1250. num_sectors = (2ULL << 32) - 2;
  1251. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1252. rdev->sb_page);
  1253. md_super_wait(rdev->mddev);
  1254. return num_sectors;
  1255. }
  1256. /*
  1257. * version 1 superblock
  1258. */
  1259. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1260. {
  1261. __le32 disk_csum;
  1262. u32 csum;
  1263. unsigned long long newcsum;
  1264. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1265. __le32 *isuper = (__le32*)sb;
  1266. int i;
  1267. disk_csum = sb->sb_csum;
  1268. sb->sb_csum = 0;
  1269. newcsum = 0;
  1270. for (i=0; size>=4; size -= 4 )
  1271. newcsum += le32_to_cpu(*isuper++);
  1272. if (size == 2)
  1273. newcsum += le16_to_cpu(*(__le16*) isuper);
  1274. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1275. sb->sb_csum = disk_csum;
  1276. return cpu_to_le32(csum);
  1277. }
  1278. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1279. int acknowledged);
  1280. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1281. {
  1282. struct mdp_superblock_1 *sb;
  1283. int ret;
  1284. sector_t sb_start;
  1285. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1286. int bmask;
  1287. /*
  1288. * Calculate the position of the superblock in 512byte sectors.
  1289. * It is always aligned to a 4K boundary and
  1290. * depeding on minor_version, it can be:
  1291. * 0: At least 8K, but less than 12K, from end of device
  1292. * 1: At start of device
  1293. * 2: 4K from start of device.
  1294. */
  1295. switch(minor_version) {
  1296. case 0:
  1297. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1298. sb_start -= 8*2;
  1299. sb_start &= ~(sector_t)(4*2-1);
  1300. break;
  1301. case 1:
  1302. sb_start = 0;
  1303. break;
  1304. case 2:
  1305. sb_start = 8;
  1306. break;
  1307. default:
  1308. return -EINVAL;
  1309. }
  1310. rdev->sb_start = sb_start;
  1311. /* superblock is rarely larger than 1K, but it can be larger,
  1312. * and it is safe to read 4k, so we do that
  1313. */
  1314. ret = read_disk_sb(rdev, 4096);
  1315. if (ret) return ret;
  1316. sb = page_address(rdev->sb_page);
  1317. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1318. sb->major_version != cpu_to_le32(1) ||
  1319. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1320. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1321. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1322. return -EINVAL;
  1323. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1324. printk("md: invalid superblock checksum on %s\n",
  1325. bdevname(rdev->bdev,b));
  1326. return -EINVAL;
  1327. }
  1328. if (le64_to_cpu(sb->data_size) < 10) {
  1329. printk("md: data_size too small on %s\n",
  1330. bdevname(rdev->bdev,b));
  1331. return -EINVAL;
  1332. }
  1333. rdev->preferred_minor = 0xffff;
  1334. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1335. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1336. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1337. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1338. if (rdev->sb_size & bmask)
  1339. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1340. if (minor_version
  1341. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1342. return -EINVAL;
  1343. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1344. rdev->desc_nr = -1;
  1345. else
  1346. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1347. if (!rdev->bb_page) {
  1348. rdev->bb_page = alloc_page(GFP_KERNEL);
  1349. if (!rdev->bb_page)
  1350. return -ENOMEM;
  1351. }
  1352. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1353. rdev->badblocks.count == 0) {
  1354. /* need to load the bad block list.
  1355. * Currently we limit it to one page.
  1356. */
  1357. s32 offset;
  1358. sector_t bb_sector;
  1359. u64 *bbp;
  1360. int i;
  1361. int sectors = le16_to_cpu(sb->bblog_size);
  1362. if (sectors > (PAGE_SIZE / 512))
  1363. return -EINVAL;
  1364. offset = le32_to_cpu(sb->bblog_offset);
  1365. if (offset == 0)
  1366. return -EINVAL;
  1367. bb_sector = (long long)offset;
  1368. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1369. rdev->bb_page, READ, true))
  1370. return -EIO;
  1371. bbp = (u64 *)page_address(rdev->bb_page);
  1372. rdev->badblocks.shift = sb->bblog_shift;
  1373. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1374. u64 bb = le64_to_cpu(*bbp);
  1375. int count = bb & (0x3ff);
  1376. u64 sector = bb >> 10;
  1377. sector <<= sb->bblog_shift;
  1378. count <<= sb->bblog_shift;
  1379. if (bb + 1 == 0)
  1380. break;
  1381. if (md_set_badblocks(&rdev->badblocks,
  1382. sector, count, 1) == 0)
  1383. return -EINVAL;
  1384. }
  1385. } else if (sb->bblog_offset == 0)
  1386. rdev->badblocks.shift = -1;
  1387. if (!refdev) {
  1388. ret = 1;
  1389. } else {
  1390. __u64 ev1, ev2;
  1391. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1392. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1393. sb->level != refsb->level ||
  1394. sb->layout != refsb->layout ||
  1395. sb->chunksize != refsb->chunksize) {
  1396. printk(KERN_WARNING "md: %s has strangely different"
  1397. " superblock to %s\n",
  1398. bdevname(rdev->bdev,b),
  1399. bdevname(refdev->bdev,b2));
  1400. return -EINVAL;
  1401. }
  1402. ev1 = le64_to_cpu(sb->events);
  1403. ev2 = le64_to_cpu(refsb->events);
  1404. if (ev1 > ev2)
  1405. ret = 1;
  1406. else
  1407. ret = 0;
  1408. }
  1409. if (minor_version)
  1410. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1411. le64_to_cpu(sb->data_offset);
  1412. else
  1413. rdev->sectors = rdev->sb_start;
  1414. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1415. return -EINVAL;
  1416. rdev->sectors = le64_to_cpu(sb->data_size);
  1417. if (le64_to_cpu(sb->size) > rdev->sectors)
  1418. return -EINVAL;
  1419. return ret;
  1420. }
  1421. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1422. {
  1423. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1424. __u64 ev1 = le64_to_cpu(sb->events);
  1425. rdev->raid_disk = -1;
  1426. clear_bit(Faulty, &rdev->flags);
  1427. clear_bit(In_sync, &rdev->flags);
  1428. clear_bit(WriteMostly, &rdev->flags);
  1429. if (mddev->raid_disks == 0) {
  1430. mddev->major_version = 1;
  1431. mddev->patch_version = 0;
  1432. mddev->external = 0;
  1433. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1434. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1435. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1436. mddev->level = le32_to_cpu(sb->level);
  1437. mddev->clevel[0] = 0;
  1438. mddev->layout = le32_to_cpu(sb->layout);
  1439. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1440. mddev->dev_sectors = le64_to_cpu(sb->size);
  1441. mddev->events = ev1;
  1442. mddev->bitmap_info.offset = 0;
  1443. mddev->bitmap_info.default_offset = 1024 >> 9;
  1444. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1445. memcpy(mddev->uuid, sb->set_uuid, 16);
  1446. mddev->max_disks = (4096-256)/2;
  1447. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1448. mddev->bitmap_info.file == NULL )
  1449. mddev->bitmap_info.offset =
  1450. (__s32)le32_to_cpu(sb->bitmap_offset);
  1451. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1452. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1453. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1454. mddev->new_level = le32_to_cpu(sb->new_level);
  1455. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1456. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1457. } else {
  1458. mddev->reshape_position = MaxSector;
  1459. mddev->delta_disks = 0;
  1460. mddev->new_level = mddev->level;
  1461. mddev->new_layout = mddev->layout;
  1462. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1463. }
  1464. } else if (mddev->pers == NULL) {
  1465. /* Insist of good event counter while assembling, except for
  1466. * spares (which don't need an event count) */
  1467. ++ev1;
  1468. if (rdev->desc_nr >= 0 &&
  1469. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1470. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1471. if (ev1 < mddev->events)
  1472. return -EINVAL;
  1473. } else if (mddev->bitmap) {
  1474. /* If adding to array with a bitmap, then we can accept an
  1475. * older device, but not too old.
  1476. */
  1477. if (ev1 < mddev->bitmap->events_cleared)
  1478. return 0;
  1479. } else {
  1480. if (ev1 < mddev->events)
  1481. /* just a hot-add of a new device, leave raid_disk at -1 */
  1482. return 0;
  1483. }
  1484. if (mddev->level != LEVEL_MULTIPATH) {
  1485. int role;
  1486. if (rdev->desc_nr < 0 ||
  1487. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1488. role = 0xffff;
  1489. rdev->desc_nr = -1;
  1490. } else
  1491. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1492. switch(role) {
  1493. case 0xffff: /* spare */
  1494. break;
  1495. case 0xfffe: /* faulty */
  1496. set_bit(Faulty, &rdev->flags);
  1497. break;
  1498. default:
  1499. if ((le32_to_cpu(sb->feature_map) &
  1500. MD_FEATURE_RECOVERY_OFFSET))
  1501. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1502. else
  1503. set_bit(In_sync, &rdev->flags);
  1504. rdev->raid_disk = role;
  1505. break;
  1506. }
  1507. if (sb->devflags & WriteMostly1)
  1508. set_bit(WriteMostly, &rdev->flags);
  1509. } else /* MULTIPATH are always insync */
  1510. set_bit(In_sync, &rdev->flags);
  1511. return 0;
  1512. }
  1513. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1514. {
  1515. struct mdp_superblock_1 *sb;
  1516. struct md_rdev *rdev2;
  1517. int max_dev, i;
  1518. /* make rdev->sb match mddev and rdev data. */
  1519. sb = page_address(rdev->sb_page);
  1520. sb->feature_map = 0;
  1521. sb->pad0 = 0;
  1522. sb->recovery_offset = cpu_to_le64(0);
  1523. memset(sb->pad1, 0, sizeof(sb->pad1));
  1524. memset(sb->pad3, 0, sizeof(sb->pad3));
  1525. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1526. sb->events = cpu_to_le64(mddev->events);
  1527. if (mddev->in_sync)
  1528. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1529. else
  1530. sb->resync_offset = cpu_to_le64(0);
  1531. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1532. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1533. sb->size = cpu_to_le64(mddev->dev_sectors);
  1534. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1535. sb->level = cpu_to_le32(mddev->level);
  1536. sb->layout = cpu_to_le32(mddev->layout);
  1537. if (test_bit(WriteMostly, &rdev->flags))
  1538. sb->devflags |= WriteMostly1;
  1539. else
  1540. sb->devflags &= ~WriteMostly1;
  1541. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1542. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1543. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1544. }
  1545. if (rdev->raid_disk >= 0 &&
  1546. !test_bit(In_sync, &rdev->flags)) {
  1547. sb->feature_map |=
  1548. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1549. sb->recovery_offset =
  1550. cpu_to_le64(rdev->recovery_offset);
  1551. }
  1552. if (mddev->reshape_position != MaxSector) {
  1553. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1554. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1555. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1556. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1557. sb->new_level = cpu_to_le32(mddev->new_level);
  1558. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1559. }
  1560. if (rdev->badblocks.count == 0)
  1561. /* Nothing to do for bad blocks*/ ;
  1562. else if (sb->bblog_offset == 0)
  1563. /* Cannot record bad blocks on this device */
  1564. md_error(mddev, rdev);
  1565. else {
  1566. struct badblocks *bb = &rdev->badblocks;
  1567. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1568. u64 *p = bb->page;
  1569. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1570. if (bb->changed) {
  1571. unsigned seq;
  1572. retry:
  1573. seq = read_seqbegin(&bb->lock);
  1574. memset(bbp, 0xff, PAGE_SIZE);
  1575. for (i = 0 ; i < bb->count ; i++) {
  1576. u64 internal_bb = *p++;
  1577. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1578. | BB_LEN(internal_bb));
  1579. *bbp++ = cpu_to_le64(store_bb);
  1580. }
  1581. if (read_seqretry(&bb->lock, seq))
  1582. goto retry;
  1583. bb->sector = (rdev->sb_start +
  1584. (int)le32_to_cpu(sb->bblog_offset));
  1585. bb->size = le16_to_cpu(sb->bblog_size);
  1586. bb->changed = 0;
  1587. }
  1588. }
  1589. max_dev = 0;
  1590. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1591. if (rdev2->desc_nr+1 > max_dev)
  1592. max_dev = rdev2->desc_nr+1;
  1593. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1594. int bmask;
  1595. sb->max_dev = cpu_to_le32(max_dev);
  1596. rdev->sb_size = max_dev * 2 + 256;
  1597. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1598. if (rdev->sb_size & bmask)
  1599. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1600. } else
  1601. max_dev = le32_to_cpu(sb->max_dev);
  1602. for (i=0; i<max_dev;i++)
  1603. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1604. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1605. i = rdev2->desc_nr;
  1606. if (test_bit(Faulty, &rdev2->flags))
  1607. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1608. else if (test_bit(In_sync, &rdev2->flags))
  1609. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1610. else if (rdev2->raid_disk >= 0)
  1611. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1612. else
  1613. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1614. }
  1615. sb->sb_csum = calc_sb_1_csum(sb);
  1616. }
  1617. static unsigned long long
  1618. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1619. {
  1620. struct mdp_superblock_1 *sb;
  1621. sector_t max_sectors;
  1622. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1623. return 0; /* component must fit device */
  1624. if (rdev->sb_start < rdev->data_offset) {
  1625. /* minor versions 1 and 2; superblock before data */
  1626. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1627. max_sectors -= rdev->data_offset;
  1628. if (!num_sectors || num_sectors > max_sectors)
  1629. num_sectors = max_sectors;
  1630. } else if (rdev->mddev->bitmap_info.offset) {
  1631. /* minor version 0 with bitmap we can't move */
  1632. return 0;
  1633. } else {
  1634. /* minor version 0; superblock after data */
  1635. sector_t sb_start;
  1636. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1637. sb_start &= ~(sector_t)(4*2 - 1);
  1638. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1639. if (!num_sectors || num_sectors > max_sectors)
  1640. num_sectors = max_sectors;
  1641. rdev->sb_start = sb_start;
  1642. }
  1643. sb = page_address(rdev->sb_page);
  1644. sb->data_size = cpu_to_le64(num_sectors);
  1645. sb->super_offset = rdev->sb_start;
  1646. sb->sb_csum = calc_sb_1_csum(sb);
  1647. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1648. rdev->sb_page);
  1649. md_super_wait(rdev->mddev);
  1650. return num_sectors;
  1651. }
  1652. static struct super_type super_types[] = {
  1653. [0] = {
  1654. .name = "0.90.0",
  1655. .owner = THIS_MODULE,
  1656. .load_super = super_90_load,
  1657. .validate_super = super_90_validate,
  1658. .sync_super = super_90_sync,
  1659. .rdev_size_change = super_90_rdev_size_change,
  1660. },
  1661. [1] = {
  1662. .name = "md-1",
  1663. .owner = THIS_MODULE,
  1664. .load_super = super_1_load,
  1665. .validate_super = super_1_validate,
  1666. .sync_super = super_1_sync,
  1667. .rdev_size_change = super_1_rdev_size_change,
  1668. },
  1669. };
  1670. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1671. {
  1672. if (mddev->sync_super) {
  1673. mddev->sync_super(mddev, rdev);
  1674. return;
  1675. }
  1676. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1677. super_types[mddev->major_version].sync_super(mddev, rdev);
  1678. }
  1679. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1680. {
  1681. struct md_rdev *rdev, *rdev2;
  1682. rcu_read_lock();
  1683. rdev_for_each_rcu(rdev, mddev1)
  1684. rdev_for_each_rcu(rdev2, mddev2)
  1685. if (rdev->bdev->bd_contains ==
  1686. rdev2->bdev->bd_contains) {
  1687. rcu_read_unlock();
  1688. return 1;
  1689. }
  1690. rcu_read_unlock();
  1691. return 0;
  1692. }
  1693. static LIST_HEAD(pending_raid_disks);
  1694. /*
  1695. * Try to register data integrity profile for an mddev
  1696. *
  1697. * This is called when an array is started and after a disk has been kicked
  1698. * from the array. It only succeeds if all working and active component devices
  1699. * are integrity capable with matching profiles.
  1700. */
  1701. int md_integrity_register(struct mddev *mddev)
  1702. {
  1703. struct md_rdev *rdev, *reference = NULL;
  1704. if (list_empty(&mddev->disks))
  1705. return 0; /* nothing to do */
  1706. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1707. return 0; /* shouldn't register, or already is */
  1708. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1709. /* skip spares and non-functional disks */
  1710. if (test_bit(Faulty, &rdev->flags))
  1711. continue;
  1712. if (rdev->raid_disk < 0)
  1713. continue;
  1714. if (!reference) {
  1715. /* Use the first rdev as the reference */
  1716. reference = rdev;
  1717. continue;
  1718. }
  1719. /* does this rdev's profile match the reference profile? */
  1720. if (blk_integrity_compare(reference->bdev->bd_disk,
  1721. rdev->bdev->bd_disk) < 0)
  1722. return -EINVAL;
  1723. }
  1724. if (!reference || !bdev_get_integrity(reference->bdev))
  1725. return 0;
  1726. /*
  1727. * All component devices are integrity capable and have matching
  1728. * profiles, register the common profile for the md device.
  1729. */
  1730. if (blk_integrity_register(mddev->gendisk,
  1731. bdev_get_integrity(reference->bdev)) != 0) {
  1732. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1733. mdname(mddev));
  1734. return -EINVAL;
  1735. }
  1736. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1737. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1738. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1739. mdname(mddev));
  1740. return -EINVAL;
  1741. }
  1742. return 0;
  1743. }
  1744. EXPORT_SYMBOL(md_integrity_register);
  1745. /* Disable data integrity if non-capable/non-matching disk is being added */
  1746. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1747. {
  1748. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1749. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1750. if (!bi_mddev) /* nothing to do */
  1751. return;
  1752. if (rdev->raid_disk < 0) /* skip spares */
  1753. return;
  1754. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1755. rdev->bdev->bd_disk) >= 0)
  1756. return;
  1757. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1758. blk_integrity_unregister(mddev->gendisk);
  1759. }
  1760. EXPORT_SYMBOL(md_integrity_add_rdev);
  1761. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1762. {
  1763. char b[BDEVNAME_SIZE];
  1764. struct kobject *ko;
  1765. char *s;
  1766. int err;
  1767. if (rdev->mddev) {
  1768. MD_BUG();
  1769. return -EINVAL;
  1770. }
  1771. /* prevent duplicates */
  1772. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1773. return -EEXIST;
  1774. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1775. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1776. rdev->sectors < mddev->dev_sectors)) {
  1777. if (mddev->pers) {
  1778. /* Cannot change size, so fail
  1779. * If mddev->level <= 0, then we don't care
  1780. * about aligning sizes (e.g. linear)
  1781. */
  1782. if (mddev->level > 0)
  1783. return -ENOSPC;
  1784. } else
  1785. mddev->dev_sectors = rdev->sectors;
  1786. }
  1787. /* Verify rdev->desc_nr is unique.
  1788. * If it is -1, assign a free number, else
  1789. * check number is not in use
  1790. */
  1791. if (rdev->desc_nr < 0) {
  1792. int choice = 0;
  1793. if (mddev->pers) choice = mddev->raid_disks;
  1794. while (find_rdev_nr(mddev, choice))
  1795. choice++;
  1796. rdev->desc_nr = choice;
  1797. } else {
  1798. if (find_rdev_nr(mddev, rdev->desc_nr))
  1799. return -EBUSY;
  1800. }
  1801. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1802. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1803. mdname(mddev), mddev->max_disks);
  1804. return -EBUSY;
  1805. }
  1806. bdevname(rdev->bdev,b);
  1807. while ( (s=strchr(b, '/')) != NULL)
  1808. *s = '!';
  1809. rdev->mddev = mddev;
  1810. printk(KERN_INFO "md: bind<%s>\n", b);
  1811. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1812. goto fail;
  1813. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1814. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1815. /* failure here is OK */;
  1816. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1817. list_add_rcu(&rdev->same_set, &mddev->disks);
  1818. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1819. /* May as well allow recovery to be retried once */
  1820. mddev->recovery_disabled++;
  1821. return 0;
  1822. fail:
  1823. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1824. b, mdname(mddev));
  1825. return err;
  1826. }
  1827. static void md_delayed_delete(struct work_struct *ws)
  1828. {
  1829. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1830. kobject_del(&rdev->kobj);
  1831. kobject_put(&rdev->kobj);
  1832. }
  1833. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1834. {
  1835. char b[BDEVNAME_SIZE];
  1836. if (!rdev->mddev) {
  1837. MD_BUG();
  1838. return;
  1839. }
  1840. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1841. list_del_rcu(&rdev->same_set);
  1842. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1843. rdev->mddev = NULL;
  1844. sysfs_remove_link(&rdev->kobj, "block");
  1845. sysfs_put(rdev->sysfs_state);
  1846. rdev->sysfs_state = NULL;
  1847. kfree(rdev->badblocks.page);
  1848. rdev->badblocks.count = 0;
  1849. rdev->badblocks.page = NULL;
  1850. /* We need to delay this, otherwise we can deadlock when
  1851. * writing to 'remove' to "dev/state". We also need
  1852. * to delay it due to rcu usage.
  1853. */
  1854. synchronize_rcu();
  1855. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1856. kobject_get(&rdev->kobj);
  1857. queue_work(md_misc_wq, &rdev->del_work);
  1858. }
  1859. /*
  1860. * prevent the device from being mounted, repartitioned or
  1861. * otherwise reused by a RAID array (or any other kernel
  1862. * subsystem), by bd_claiming the device.
  1863. */
  1864. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1865. {
  1866. int err = 0;
  1867. struct block_device *bdev;
  1868. char b[BDEVNAME_SIZE];
  1869. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1870. shared ? (struct md_rdev *)lock_rdev : rdev);
  1871. if (IS_ERR(bdev)) {
  1872. printk(KERN_ERR "md: could not open %s.\n",
  1873. __bdevname(dev, b));
  1874. return PTR_ERR(bdev);
  1875. }
  1876. rdev->bdev = bdev;
  1877. return err;
  1878. }
  1879. static void unlock_rdev(struct md_rdev *rdev)
  1880. {
  1881. struct block_device *bdev = rdev->bdev;
  1882. rdev->bdev = NULL;
  1883. if (!bdev)
  1884. MD_BUG();
  1885. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1886. }
  1887. void md_autodetect_dev(dev_t dev);
  1888. static void export_rdev(struct md_rdev * rdev)
  1889. {
  1890. char b[BDEVNAME_SIZE];
  1891. printk(KERN_INFO "md: export_rdev(%s)\n",
  1892. bdevname(rdev->bdev,b));
  1893. if (rdev->mddev)
  1894. MD_BUG();
  1895. free_disk_sb(rdev);
  1896. #ifndef MODULE
  1897. if (test_bit(AutoDetected, &rdev->flags))
  1898. md_autodetect_dev(rdev->bdev->bd_dev);
  1899. #endif
  1900. unlock_rdev(rdev);
  1901. kobject_put(&rdev->kobj);
  1902. }
  1903. static void kick_rdev_from_array(struct md_rdev * rdev)
  1904. {
  1905. unbind_rdev_from_array(rdev);
  1906. export_rdev(rdev);
  1907. }
  1908. static void export_array(struct mddev *mddev)
  1909. {
  1910. struct md_rdev *rdev, *tmp;
  1911. rdev_for_each(rdev, tmp, mddev) {
  1912. if (!rdev->mddev) {
  1913. MD_BUG();
  1914. continue;
  1915. }
  1916. kick_rdev_from_array(rdev);
  1917. }
  1918. if (!list_empty(&mddev->disks))
  1919. MD_BUG();
  1920. mddev->raid_disks = 0;
  1921. mddev->major_version = 0;
  1922. }
  1923. static void print_desc(mdp_disk_t *desc)
  1924. {
  1925. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1926. desc->major,desc->minor,desc->raid_disk,desc->state);
  1927. }
  1928. static void print_sb_90(mdp_super_t *sb)
  1929. {
  1930. int i;
  1931. printk(KERN_INFO
  1932. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1933. sb->major_version, sb->minor_version, sb->patch_version,
  1934. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1935. sb->ctime);
  1936. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1937. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1938. sb->md_minor, sb->layout, sb->chunk_size);
  1939. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1940. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1941. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1942. sb->failed_disks, sb->spare_disks,
  1943. sb->sb_csum, (unsigned long)sb->events_lo);
  1944. printk(KERN_INFO);
  1945. for (i = 0; i < MD_SB_DISKS; i++) {
  1946. mdp_disk_t *desc;
  1947. desc = sb->disks + i;
  1948. if (desc->number || desc->major || desc->minor ||
  1949. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1950. printk(" D %2d: ", i);
  1951. print_desc(desc);
  1952. }
  1953. }
  1954. printk(KERN_INFO "md: THIS: ");
  1955. print_desc(&sb->this_disk);
  1956. }
  1957. static void print_sb_1(struct mdp_superblock_1 *sb)
  1958. {
  1959. __u8 *uuid;
  1960. uuid = sb->set_uuid;
  1961. printk(KERN_INFO
  1962. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1963. "md: Name: \"%s\" CT:%llu\n",
  1964. le32_to_cpu(sb->major_version),
  1965. le32_to_cpu(sb->feature_map),
  1966. uuid,
  1967. sb->set_name,
  1968. (unsigned long long)le64_to_cpu(sb->ctime)
  1969. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1970. uuid = sb->device_uuid;
  1971. printk(KERN_INFO
  1972. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1973. " RO:%llu\n"
  1974. "md: Dev:%08x UUID: %pU\n"
  1975. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1976. "md: (MaxDev:%u) \n",
  1977. le32_to_cpu(sb->level),
  1978. (unsigned long long)le64_to_cpu(sb->size),
  1979. le32_to_cpu(sb->raid_disks),
  1980. le32_to_cpu(sb->layout),
  1981. le32_to_cpu(sb->chunksize),
  1982. (unsigned long long)le64_to_cpu(sb->data_offset),
  1983. (unsigned long long)le64_to_cpu(sb->data_size),
  1984. (unsigned long long)le64_to_cpu(sb->super_offset),
  1985. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1986. le32_to_cpu(sb->dev_number),
  1987. uuid,
  1988. sb->devflags,
  1989. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1990. (unsigned long long)le64_to_cpu(sb->events),
  1991. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1992. le32_to_cpu(sb->sb_csum),
  1993. le32_to_cpu(sb->max_dev)
  1994. );
  1995. }
  1996. static void print_rdev(struct md_rdev *rdev, int major_version)
  1997. {
  1998. char b[BDEVNAME_SIZE];
  1999. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2000. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2001. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2002. rdev->desc_nr);
  2003. if (rdev->sb_loaded) {
  2004. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2005. switch (major_version) {
  2006. case 0:
  2007. print_sb_90(page_address(rdev->sb_page));
  2008. break;
  2009. case 1:
  2010. print_sb_1(page_address(rdev->sb_page));
  2011. break;
  2012. }
  2013. } else
  2014. printk(KERN_INFO "md: no rdev superblock!\n");
  2015. }
  2016. static void md_print_devices(void)
  2017. {
  2018. struct list_head *tmp;
  2019. struct md_rdev *rdev;
  2020. struct mddev *mddev;
  2021. char b[BDEVNAME_SIZE];
  2022. printk("\n");
  2023. printk("md: **********************************\n");
  2024. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2025. printk("md: **********************************\n");
  2026. for_each_mddev(mddev, tmp) {
  2027. if (mddev->bitmap)
  2028. bitmap_print_sb(mddev->bitmap);
  2029. else
  2030. printk("%s: ", mdname(mddev));
  2031. list_for_each_entry(rdev, &mddev->disks, same_set)
  2032. printk("<%s>", bdevname(rdev->bdev,b));
  2033. printk("\n");
  2034. list_for_each_entry(rdev, &mddev->disks, same_set)
  2035. print_rdev(rdev, mddev->major_version);
  2036. }
  2037. printk("md: **********************************\n");
  2038. printk("\n");
  2039. }
  2040. static void sync_sbs(struct mddev * mddev, int nospares)
  2041. {
  2042. /* Update each superblock (in-memory image), but
  2043. * if we are allowed to, skip spares which already
  2044. * have the right event counter, or have one earlier
  2045. * (which would mean they aren't being marked as dirty
  2046. * with the rest of the array)
  2047. */
  2048. struct md_rdev *rdev;
  2049. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2050. if (rdev->sb_events == mddev->events ||
  2051. (nospares &&
  2052. rdev->raid_disk < 0 &&
  2053. rdev->sb_events+1 == mddev->events)) {
  2054. /* Don't update this superblock */
  2055. rdev->sb_loaded = 2;
  2056. } else {
  2057. sync_super(mddev, rdev);
  2058. rdev->sb_loaded = 1;
  2059. }
  2060. }
  2061. }
  2062. static void md_update_sb(struct mddev * mddev, int force_change)
  2063. {
  2064. struct md_rdev *rdev;
  2065. int sync_req;
  2066. int nospares = 0;
  2067. int any_badblocks_changed = 0;
  2068. repeat:
  2069. /* First make sure individual recovery_offsets are correct */
  2070. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2071. if (rdev->raid_disk >= 0 &&
  2072. mddev->delta_disks >= 0 &&
  2073. !test_bit(In_sync, &rdev->flags) &&
  2074. mddev->curr_resync_completed > rdev->recovery_offset)
  2075. rdev->recovery_offset = mddev->curr_resync_completed;
  2076. }
  2077. if (!mddev->persistent) {
  2078. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2079. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2080. if (!mddev->external) {
  2081. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2082. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2083. if (rdev->badblocks.changed) {
  2084. md_ack_all_badblocks(&rdev->badblocks);
  2085. md_error(mddev, rdev);
  2086. }
  2087. clear_bit(Blocked, &rdev->flags);
  2088. clear_bit(BlockedBadBlocks, &rdev->flags);
  2089. wake_up(&rdev->blocked_wait);
  2090. }
  2091. }
  2092. wake_up(&mddev->sb_wait);
  2093. return;
  2094. }
  2095. spin_lock_irq(&mddev->write_lock);
  2096. mddev->utime = get_seconds();
  2097. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2098. force_change = 1;
  2099. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2100. /* just a clean<-> dirty transition, possibly leave spares alone,
  2101. * though if events isn't the right even/odd, we will have to do
  2102. * spares after all
  2103. */
  2104. nospares = 1;
  2105. if (force_change)
  2106. nospares = 0;
  2107. if (mddev->degraded)
  2108. /* If the array is degraded, then skipping spares is both
  2109. * dangerous and fairly pointless.
  2110. * Dangerous because a device that was removed from the array
  2111. * might have a event_count that still looks up-to-date,
  2112. * so it can be re-added without a resync.
  2113. * Pointless because if there are any spares to skip,
  2114. * then a recovery will happen and soon that array won't
  2115. * be degraded any more and the spare can go back to sleep then.
  2116. */
  2117. nospares = 0;
  2118. sync_req = mddev->in_sync;
  2119. /* If this is just a dirty<->clean transition, and the array is clean
  2120. * and 'events' is odd, we can roll back to the previous clean state */
  2121. if (nospares
  2122. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2123. && mddev->can_decrease_events
  2124. && mddev->events != 1) {
  2125. mddev->events--;
  2126. mddev->can_decrease_events = 0;
  2127. } else {
  2128. /* otherwise we have to go forward and ... */
  2129. mddev->events ++;
  2130. mddev->can_decrease_events = nospares;
  2131. }
  2132. if (!mddev->events) {
  2133. /*
  2134. * oops, this 64-bit counter should never wrap.
  2135. * Either we are in around ~1 trillion A.C., assuming
  2136. * 1 reboot per second, or we have a bug:
  2137. */
  2138. MD_BUG();
  2139. mddev->events --;
  2140. }
  2141. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2142. if (rdev->badblocks.changed)
  2143. any_badblocks_changed++;
  2144. if (test_bit(Faulty, &rdev->flags))
  2145. set_bit(FaultRecorded, &rdev->flags);
  2146. }
  2147. sync_sbs(mddev, nospares);
  2148. spin_unlock_irq(&mddev->write_lock);
  2149. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2150. mdname(mddev), mddev->in_sync);
  2151. bitmap_update_sb(mddev->bitmap);
  2152. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2153. char b[BDEVNAME_SIZE];
  2154. if (rdev->sb_loaded != 1)
  2155. continue; /* no noise on spare devices */
  2156. if (!test_bit(Faulty, &rdev->flags) &&
  2157. rdev->saved_raid_disk == -1) {
  2158. md_super_write(mddev,rdev,
  2159. rdev->sb_start, rdev->sb_size,
  2160. rdev->sb_page);
  2161. pr_debug("md: (write) %s's sb offset: %llu\n",
  2162. bdevname(rdev->bdev, b),
  2163. (unsigned long long)rdev->sb_start);
  2164. rdev->sb_events = mddev->events;
  2165. if (rdev->badblocks.size) {
  2166. md_super_write(mddev, rdev,
  2167. rdev->badblocks.sector,
  2168. rdev->badblocks.size << 9,
  2169. rdev->bb_page);
  2170. rdev->badblocks.size = 0;
  2171. }
  2172. } else if (test_bit(Faulty, &rdev->flags))
  2173. pr_debug("md: %s (skipping faulty)\n",
  2174. bdevname(rdev->bdev, b));
  2175. else
  2176. pr_debug("(skipping incremental s/r ");
  2177. if (mddev->level == LEVEL_MULTIPATH)
  2178. /* only need to write one superblock... */
  2179. break;
  2180. }
  2181. md_super_wait(mddev);
  2182. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2183. spin_lock_irq(&mddev->write_lock);
  2184. if (mddev->in_sync != sync_req ||
  2185. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2186. /* have to write it out again */
  2187. spin_unlock_irq(&mddev->write_lock);
  2188. goto repeat;
  2189. }
  2190. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2191. spin_unlock_irq(&mddev->write_lock);
  2192. wake_up(&mddev->sb_wait);
  2193. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2194. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2195. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2196. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2197. clear_bit(Blocked, &rdev->flags);
  2198. if (any_badblocks_changed)
  2199. md_ack_all_badblocks(&rdev->badblocks);
  2200. clear_bit(BlockedBadBlocks, &rdev->flags);
  2201. wake_up(&rdev->blocked_wait);
  2202. }
  2203. }
  2204. /* words written to sysfs files may, or may not, be \n terminated.
  2205. * We want to accept with case. For this we use cmd_match.
  2206. */
  2207. static int cmd_match(const char *cmd, const char *str)
  2208. {
  2209. /* See if cmd, written into a sysfs file, matches
  2210. * str. They must either be the same, or cmd can
  2211. * have a trailing newline
  2212. */
  2213. while (*cmd && *str && *cmd == *str) {
  2214. cmd++;
  2215. str++;
  2216. }
  2217. if (*cmd == '\n')
  2218. cmd++;
  2219. if (*str || *cmd)
  2220. return 0;
  2221. return 1;
  2222. }
  2223. struct rdev_sysfs_entry {
  2224. struct attribute attr;
  2225. ssize_t (*show)(struct md_rdev *, char *);
  2226. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2227. };
  2228. static ssize_t
  2229. state_show(struct md_rdev *rdev, char *page)
  2230. {
  2231. char *sep = "";
  2232. size_t len = 0;
  2233. if (test_bit(Faulty, &rdev->flags) ||
  2234. rdev->badblocks.unacked_exist) {
  2235. len+= sprintf(page+len, "%sfaulty",sep);
  2236. sep = ",";
  2237. }
  2238. if (test_bit(In_sync, &rdev->flags)) {
  2239. len += sprintf(page+len, "%sin_sync",sep);
  2240. sep = ",";
  2241. }
  2242. if (test_bit(WriteMostly, &rdev->flags)) {
  2243. len += sprintf(page+len, "%swrite_mostly",sep);
  2244. sep = ",";
  2245. }
  2246. if (test_bit(Blocked, &rdev->flags) ||
  2247. rdev->badblocks.unacked_exist) {
  2248. len += sprintf(page+len, "%sblocked", sep);
  2249. sep = ",";
  2250. }
  2251. if (!test_bit(Faulty, &rdev->flags) &&
  2252. !test_bit(In_sync, &rdev->flags)) {
  2253. len += sprintf(page+len, "%sspare", sep);
  2254. sep = ",";
  2255. }
  2256. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2257. len += sprintf(page+len, "%swrite_error", sep);
  2258. sep = ",";
  2259. }
  2260. return len+sprintf(page+len, "\n");
  2261. }
  2262. static ssize_t
  2263. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2264. {
  2265. /* can write
  2266. * faulty - simulates an error
  2267. * remove - disconnects the device
  2268. * writemostly - sets write_mostly
  2269. * -writemostly - clears write_mostly
  2270. * blocked - sets the Blocked flags
  2271. * -blocked - clears the Blocked and possibly simulates an error
  2272. * insync - sets Insync providing device isn't active
  2273. * write_error - sets WriteErrorSeen
  2274. * -write_error - clears WriteErrorSeen
  2275. */
  2276. int err = -EINVAL;
  2277. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2278. md_error(rdev->mddev, rdev);
  2279. if (test_bit(Faulty, &rdev->flags))
  2280. err = 0;
  2281. else
  2282. err = -EBUSY;
  2283. } else if (cmd_match(buf, "remove")) {
  2284. if (rdev->raid_disk >= 0)
  2285. err = -EBUSY;
  2286. else {
  2287. struct mddev *mddev = rdev->mddev;
  2288. kick_rdev_from_array(rdev);
  2289. if (mddev->pers)
  2290. md_update_sb(mddev, 1);
  2291. md_new_event(mddev);
  2292. err = 0;
  2293. }
  2294. } else if (cmd_match(buf, "writemostly")) {
  2295. set_bit(WriteMostly, &rdev->flags);
  2296. err = 0;
  2297. } else if (cmd_match(buf, "-writemostly")) {
  2298. clear_bit(WriteMostly, &rdev->flags);
  2299. err = 0;
  2300. } else if (cmd_match(buf, "blocked")) {
  2301. set_bit(Blocked, &rdev->flags);
  2302. err = 0;
  2303. } else if (cmd_match(buf, "-blocked")) {
  2304. if (!test_bit(Faulty, &rdev->flags) &&
  2305. rdev->badblocks.unacked_exist) {
  2306. /* metadata handler doesn't understand badblocks,
  2307. * so we need to fail the device
  2308. */
  2309. md_error(rdev->mddev, rdev);
  2310. }
  2311. clear_bit(Blocked, &rdev->flags);
  2312. clear_bit(BlockedBadBlocks, &rdev->flags);
  2313. wake_up(&rdev->blocked_wait);
  2314. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2315. md_wakeup_thread(rdev->mddev->thread);
  2316. err = 0;
  2317. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2318. set_bit(In_sync, &rdev->flags);
  2319. err = 0;
  2320. } else if (cmd_match(buf, "write_error")) {
  2321. set_bit(WriteErrorSeen, &rdev->flags);
  2322. err = 0;
  2323. } else if (cmd_match(buf, "-write_error")) {
  2324. clear_bit(WriteErrorSeen, &rdev->flags);
  2325. err = 0;
  2326. }
  2327. if (!err)
  2328. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2329. return err ? err : len;
  2330. }
  2331. static struct rdev_sysfs_entry rdev_state =
  2332. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2333. static ssize_t
  2334. errors_show(struct md_rdev *rdev, char *page)
  2335. {
  2336. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2337. }
  2338. static ssize_t
  2339. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2340. {
  2341. char *e;
  2342. unsigned long n = simple_strtoul(buf, &e, 10);
  2343. if (*buf && (*e == 0 || *e == '\n')) {
  2344. atomic_set(&rdev->corrected_errors, n);
  2345. return len;
  2346. }
  2347. return -EINVAL;
  2348. }
  2349. static struct rdev_sysfs_entry rdev_errors =
  2350. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2351. static ssize_t
  2352. slot_show(struct md_rdev *rdev, char *page)
  2353. {
  2354. if (rdev->raid_disk < 0)
  2355. return sprintf(page, "none\n");
  2356. else
  2357. return sprintf(page, "%d\n", rdev->raid_disk);
  2358. }
  2359. static ssize_t
  2360. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2361. {
  2362. char *e;
  2363. int err;
  2364. int slot = simple_strtoul(buf, &e, 10);
  2365. if (strncmp(buf, "none", 4)==0)
  2366. slot = -1;
  2367. else if (e==buf || (*e && *e!= '\n'))
  2368. return -EINVAL;
  2369. if (rdev->mddev->pers && slot == -1) {
  2370. /* Setting 'slot' on an active array requires also
  2371. * updating the 'rd%d' link, and communicating
  2372. * with the personality with ->hot_*_disk.
  2373. * For now we only support removing
  2374. * failed/spare devices. This normally happens automatically,
  2375. * but not when the metadata is externally managed.
  2376. */
  2377. if (rdev->raid_disk == -1)
  2378. return -EEXIST;
  2379. /* personality does all needed checks */
  2380. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2381. return -EINVAL;
  2382. err = rdev->mddev->pers->
  2383. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2384. if (err)
  2385. return err;
  2386. sysfs_unlink_rdev(rdev->mddev, rdev);
  2387. rdev->raid_disk = -1;
  2388. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2389. md_wakeup_thread(rdev->mddev->thread);
  2390. } else if (rdev->mddev->pers) {
  2391. struct md_rdev *rdev2;
  2392. /* Activating a spare .. or possibly reactivating
  2393. * if we ever get bitmaps working here.
  2394. */
  2395. if (rdev->raid_disk != -1)
  2396. return -EBUSY;
  2397. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2398. return -EBUSY;
  2399. if (rdev->mddev->pers->hot_add_disk == NULL)
  2400. return -EINVAL;
  2401. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2402. if (rdev2->raid_disk == slot)
  2403. return -EEXIST;
  2404. if (slot >= rdev->mddev->raid_disks &&
  2405. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2406. return -ENOSPC;
  2407. rdev->raid_disk = slot;
  2408. if (test_bit(In_sync, &rdev->flags))
  2409. rdev->saved_raid_disk = slot;
  2410. else
  2411. rdev->saved_raid_disk = -1;
  2412. clear_bit(In_sync, &rdev->flags);
  2413. err = rdev->mddev->pers->
  2414. hot_add_disk(rdev->mddev, rdev);
  2415. if (err) {
  2416. rdev->raid_disk = -1;
  2417. return err;
  2418. } else
  2419. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2420. if (sysfs_link_rdev(rdev->mddev, rdev))
  2421. /* failure here is OK */;
  2422. /* don't wakeup anyone, leave that to userspace. */
  2423. } else {
  2424. if (slot >= rdev->mddev->raid_disks &&
  2425. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2426. return -ENOSPC;
  2427. rdev->raid_disk = slot;
  2428. /* assume it is working */
  2429. clear_bit(Faulty, &rdev->flags);
  2430. clear_bit(WriteMostly, &rdev->flags);
  2431. set_bit(In_sync, &rdev->flags);
  2432. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2433. }
  2434. return len;
  2435. }
  2436. static struct rdev_sysfs_entry rdev_slot =
  2437. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2438. static ssize_t
  2439. offset_show(struct md_rdev *rdev, char *page)
  2440. {
  2441. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2442. }
  2443. static ssize_t
  2444. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2445. {
  2446. char *e;
  2447. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2448. if (e==buf || (*e && *e != '\n'))
  2449. return -EINVAL;
  2450. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2451. return -EBUSY;
  2452. if (rdev->sectors && rdev->mddev->external)
  2453. /* Must set offset before size, so overlap checks
  2454. * can be sane */
  2455. return -EBUSY;
  2456. rdev->data_offset = offset;
  2457. return len;
  2458. }
  2459. static struct rdev_sysfs_entry rdev_offset =
  2460. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2461. static ssize_t
  2462. rdev_size_show(struct md_rdev *rdev, char *page)
  2463. {
  2464. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2465. }
  2466. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2467. {
  2468. /* check if two start/length pairs overlap */
  2469. if (s1+l1 <= s2)
  2470. return 0;
  2471. if (s2+l2 <= s1)
  2472. return 0;
  2473. return 1;
  2474. }
  2475. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2476. {
  2477. unsigned long long blocks;
  2478. sector_t new;
  2479. if (strict_strtoull(buf, 10, &blocks) < 0)
  2480. return -EINVAL;
  2481. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2482. return -EINVAL; /* sector conversion overflow */
  2483. new = blocks * 2;
  2484. if (new != blocks * 2)
  2485. return -EINVAL; /* unsigned long long to sector_t overflow */
  2486. *sectors = new;
  2487. return 0;
  2488. }
  2489. static ssize_t
  2490. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2491. {
  2492. struct mddev *my_mddev = rdev->mddev;
  2493. sector_t oldsectors = rdev->sectors;
  2494. sector_t sectors;
  2495. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2496. return -EINVAL;
  2497. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2498. if (my_mddev->persistent) {
  2499. sectors = super_types[my_mddev->major_version].
  2500. rdev_size_change(rdev, sectors);
  2501. if (!sectors)
  2502. return -EBUSY;
  2503. } else if (!sectors)
  2504. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2505. rdev->data_offset;
  2506. }
  2507. if (sectors < my_mddev->dev_sectors)
  2508. return -EINVAL; /* component must fit device */
  2509. rdev->sectors = sectors;
  2510. if (sectors > oldsectors && my_mddev->external) {
  2511. /* need to check that all other rdevs with the same ->bdev
  2512. * do not overlap. We need to unlock the mddev to avoid
  2513. * a deadlock. We have already changed rdev->sectors, and if
  2514. * we have to change it back, we will have the lock again.
  2515. */
  2516. struct mddev *mddev;
  2517. int overlap = 0;
  2518. struct list_head *tmp;
  2519. mddev_unlock(my_mddev);
  2520. for_each_mddev(mddev, tmp) {
  2521. struct md_rdev *rdev2;
  2522. mddev_lock(mddev);
  2523. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2524. if (rdev->bdev == rdev2->bdev &&
  2525. rdev != rdev2 &&
  2526. overlaps(rdev->data_offset, rdev->sectors,
  2527. rdev2->data_offset,
  2528. rdev2->sectors)) {
  2529. overlap = 1;
  2530. break;
  2531. }
  2532. mddev_unlock(mddev);
  2533. if (overlap) {
  2534. mddev_put(mddev);
  2535. break;
  2536. }
  2537. }
  2538. mddev_lock(my_mddev);
  2539. if (overlap) {
  2540. /* Someone else could have slipped in a size
  2541. * change here, but doing so is just silly.
  2542. * We put oldsectors back because we *know* it is
  2543. * safe, and trust userspace not to race with
  2544. * itself
  2545. */
  2546. rdev->sectors = oldsectors;
  2547. return -EBUSY;
  2548. }
  2549. }
  2550. return len;
  2551. }
  2552. static struct rdev_sysfs_entry rdev_size =
  2553. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2554. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2555. {
  2556. unsigned long long recovery_start = rdev->recovery_offset;
  2557. if (test_bit(In_sync, &rdev->flags) ||
  2558. recovery_start == MaxSector)
  2559. return sprintf(page, "none\n");
  2560. return sprintf(page, "%llu\n", recovery_start);
  2561. }
  2562. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2563. {
  2564. unsigned long long recovery_start;
  2565. if (cmd_match(buf, "none"))
  2566. recovery_start = MaxSector;
  2567. else if (strict_strtoull(buf, 10, &recovery_start))
  2568. return -EINVAL;
  2569. if (rdev->mddev->pers &&
  2570. rdev->raid_disk >= 0)
  2571. return -EBUSY;
  2572. rdev->recovery_offset = recovery_start;
  2573. if (recovery_start == MaxSector)
  2574. set_bit(In_sync, &rdev->flags);
  2575. else
  2576. clear_bit(In_sync, &rdev->flags);
  2577. return len;
  2578. }
  2579. static struct rdev_sysfs_entry rdev_recovery_start =
  2580. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2581. static ssize_t
  2582. badblocks_show(struct badblocks *bb, char *page, int unack);
  2583. static ssize_t
  2584. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2585. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2586. {
  2587. return badblocks_show(&rdev->badblocks, page, 0);
  2588. }
  2589. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2590. {
  2591. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2592. /* Maybe that ack was all we needed */
  2593. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2594. wake_up(&rdev->blocked_wait);
  2595. return rv;
  2596. }
  2597. static struct rdev_sysfs_entry rdev_bad_blocks =
  2598. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2599. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2600. {
  2601. return badblocks_show(&rdev->badblocks, page, 1);
  2602. }
  2603. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2604. {
  2605. return badblocks_store(&rdev->badblocks, page, len, 1);
  2606. }
  2607. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2608. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2609. static struct attribute *rdev_default_attrs[] = {
  2610. &rdev_state.attr,
  2611. &rdev_errors.attr,
  2612. &rdev_slot.attr,
  2613. &rdev_offset.attr,
  2614. &rdev_size.attr,
  2615. &rdev_recovery_start.attr,
  2616. &rdev_bad_blocks.attr,
  2617. &rdev_unack_bad_blocks.attr,
  2618. NULL,
  2619. };
  2620. static ssize_t
  2621. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2622. {
  2623. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2624. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2625. struct mddev *mddev = rdev->mddev;
  2626. ssize_t rv;
  2627. if (!entry->show)
  2628. return -EIO;
  2629. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2630. if (!rv) {
  2631. if (rdev->mddev == NULL)
  2632. rv = -EBUSY;
  2633. else
  2634. rv = entry->show(rdev, page);
  2635. mddev_unlock(mddev);
  2636. }
  2637. return rv;
  2638. }
  2639. static ssize_t
  2640. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2641. const char *page, size_t length)
  2642. {
  2643. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2644. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2645. ssize_t rv;
  2646. struct mddev *mddev = rdev->mddev;
  2647. if (!entry->store)
  2648. return -EIO;
  2649. if (!capable(CAP_SYS_ADMIN))
  2650. return -EACCES;
  2651. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2652. if (!rv) {
  2653. if (rdev->mddev == NULL)
  2654. rv = -EBUSY;
  2655. else
  2656. rv = entry->store(rdev, page, length);
  2657. mddev_unlock(mddev);
  2658. }
  2659. return rv;
  2660. }
  2661. static void rdev_free(struct kobject *ko)
  2662. {
  2663. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2664. kfree(rdev);
  2665. }
  2666. static const struct sysfs_ops rdev_sysfs_ops = {
  2667. .show = rdev_attr_show,
  2668. .store = rdev_attr_store,
  2669. };
  2670. static struct kobj_type rdev_ktype = {
  2671. .release = rdev_free,
  2672. .sysfs_ops = &rdev_sysfs_ops,
  2673. .default_attrs = rdev_default_attrs,
  2674. };
  2675. int md_rdev_init(struct md_rdev *rdev)
  2676. {
  2677. rdev->desc_nr = -1;
  2678. rdev->saved_raid_disk = -1;
  2679. rdev->raid_disk = -1;
  2680. rdev->flags = 0;
  2681. rdev->data_offset = 0;
  2682. rdev->sb_events = 0;
  2683. rdev->last_read_error.tv_sec = 0;
  2684. rdev->last_read_error.tv_nsec = 0;
  2685. rdev->sb_loaded = 0;
  2686. rdev->bb_page = NULL;
  2687. atomic_set(&rdev->nr_pending, 0);
  2688. atomic_set(&rdev->read_errors, 0);
  2689. atomic_set(&rdev->corrected_errors, 0);
  2690. INIT_LIST_HEAD(&rdev->same_set);
  2691. init_waitqueue_head(&rdev->blocked_wait);
  2692. /* Add space to store bad block list.
  2693. * This reserves the space even on arrays where it cannot
  2694. * be used - I wonder if that matters
  2695. */
  2696. rdev->badblocks.count = 0;
  2697. rdev->badblocks.shift = 0;
  2698. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2699. seqlock_init(&rdev->badblocks.lock);
  2700. if (rdev->badblocks.page == NULL)
  2701. return -ENOMEM;
  2702. return 0;
  2703. }
  2704. EXPORT_SYMBOL_GPL(md_rdev_init);
  2705. /*
  2706. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2707. *
  2708. * mark the device faulty if:
  2709. *
  2710. * - the device is nonexistent (zero size)
  2711. * - the device has no valid superblock
  2712. *
  2713. * a faulty rdev _never_ has rdev->sb set.
  2714. */
  2715. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2716. {
  2717. char b[BDEVNAME_SIZE];
  2718. int err;
  2719. struct md_rdev *rdev;
  2720. sector_t size;
  2721. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2722. if (!rdev) {
  2723. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2724. return ERR_PTR(-ENOMEM);
  2725. }
  2726. err = md_rdev_init(rdev);
  2727. if (err)
  2728. goto abort_free;
  2729. err = alloc_disk_sb(rdev);
  2730. if (err)
  2731. goto abort_free;
  2732. err = lock_rdev(rdev, newdev, super_format == -2);
  2733. if (err)
  2734. goto abort_free;
  2735. kobject_init(&rdev->kobj, &rdev_ktype);
  2736. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2737. if (!size) {
  2738. printk(KERN_WARNING
  2739. "md: %s has zero or unknown size, marking faulty!\n",
  2740. bdevname(rdev->bdev,b));
  2741. err = -EINVAL;
  2742. goto abort_free;
  2743. }
  2744. if (super_format >= 0) {
  2745. err = super_types[super_format].
  2746. load_super(rdev, NULL, super_minor);
  2747. if (err == -EINVAL) {
  2748. printk(KERN_WARNING
  2749. "md: %s does not have a valid v%d.%d "
  2750. "superblock, not importing!\n",
  2751. bdevname(rdev->bdev,b),
  2752. super_format, super_minor);
  2753. goto abort_free;
  2754. }
  2755. if (err < 0) {
  2756. printk(KERN_WARNING
  2757. "md: could not read %s's sb, not importing!\n",
  2758. bdevname(rdev->bdev,b));
  2759. goto abort_free;
  2760. }
  2761. }
  2762. if (super_format == -1)
  2763. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2764. rdev->badblocks.shift = -1;
  2765. return rdev;
  2766. abort_free:
  2767. if (rdev->bdev)
  2768. unlock_rdev(rdev);
  2769. free_disk_sb(rdev);
  2770. kfree(rdev->badblocks.page);
  2771. kfree(rdev);
  2772. return ERR_PTR(err);
  2773. }
  2774. /*
  2775. * Check a full RAID array for plausibility
  2776. */
  2777. static void analyze_sbs(struct mddev * mddev)
  2778. {
  2779. int i;
  2780. struct md_rdev *rdev, *freshest, *tmp;
  2781. char b[BDEVNAME_SIZE];
  2782. freshest = NULL;
  2783. rdev_for_each(rdev, tmp, mddev)
  2784. switch (super_types[mddev->major_version].
  2785. load_super(rdev, freshest, mddev->minor_version)) {
  2786. case 1:
  2787. freshest = rdev;
  2788. break;
  2789. case 0:
  2790. break;
  2791. default:
  2792. printk( KERN_ERR \
  2793. "md: fatal superblock inconsistency in %s"
  2794. " -- removing from array\n",
  2795. bdevname(rdev->bdev,b));
  2796. kick_rdev_from_array(rdev);
  2797. }
  2798. super_types[mddev->major_version].
  2799. validate_super(mddev, freshest);
  2800. i = 0;
  2801. rdev_for_each(rdev, tmp, mddev) {
  2802. if (mddev->max_disks &&
  2803. (rdev->desc_nr >= mddev->max_disks ||
  2804. i > mddev->max_disks)) {
  2805. printk(KERN_WARNING
  2806. "md: %s: %s: only %d devices permitted\n",
  2807. mdname(mddev), bdevname(rdev->bdev, b),
  2808. mddev->max_disks);
  2809. kick_rdev_from_array(rdev);
  2810. continue;
  2811. }
  2812. if (rdev != freshest)
  2813. if (super_types[mddev->major_version].
  2814. validate_super(mddev, rdev)) {
  2815. printk(KERN_WARNING "md: kicking non-fresh %s"
  2816. " from array!\n",
  2817. bdevname(rdev->bdev,b));
  2818. kick_rdev_from_array(rdev);
  2819. continue;
  2820. }
  2821. if (mddev->level == LEVEL_MULTIPATH) {
  2822. rdev->desc_nr = i++;
  2823. rdev->raid_disk = rdev->desc_nr;
  2824. set_bit(In_sync, &rdev->flags);
  2825. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2826. rdev->raid_disk = -1;
  2827. clear_bit(In_sync, &rdev->flags);
  2828. }
  2829. }
  2830. }
  2831. /* Read a fixed-point number.
  2832. * Numbers in sysfs attributes should be in "standard" units where
  2833. * possible, so time should be in seconds.
  2834. * However we internally use a a much smaller unit such as
  2835. * milliseconds or jiffies.
  2836. * This function takes a decimal number with a possible fractional
  2837. * component, and produces an integer which is the result of
  2838. * multiplying that number by 10^'scale'.
  2839. * all without any floating-point arithmetic.
  2840. */
  2841. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2842. {
  2843. unsigned long result = 0;
  2844. long decimals = -1;
  2845. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2846. if (*cp == '.')
  2847. decimals = 0;
  2848. else if (decimals < scale) {
  2849. unsigned int value;
  2850. value = *cp - '0';
  2851. result = result * 10 + value;
  2852. if (decimals >= 0)
  2853. decimals++;
  2854. }
  2855. cp++;
  2856. }
  2857. if (*cp == '\n')
  2858. cp++;
  2859. if (*cp)
  2860. return -EINVAL;
  2861. if (decimals < 0)
  2862. decimals = 0;
  2863. while (decimals < scale) {
  2864. result *= 10;
  2865. decimals ++;
  2866. }
  2867. *res = result;
  2868. return 0;
  2869. }
  2870. static void md_safemode_timeout(unsigned long data);
  2871. static ssize_t
  2872. safe_delay_show(struct mddev *mddev, char *page)
  2873. {
  2874. int msec = (mddev->safemode_delay*1000)/HZ;
  2875. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2876. }
  2877. static ssize_t
  2878. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2879. {
  2880. unsigned long msec;
  2881. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2882. return -EINVAL;
  2883. if (msec == 0)
  2884. mddev->safemode_delay = 0;
  2885. else {
  2886. unsigned long old_delay = mddev->safemode_delay;
  2887. mddev->safemode_delay = (msec*HZ)/1000;
  2888. if (mddev->safemode_delay == 0)
  2889. mddev->safemode_delay = 1;
  2890. if (mddev->safemode_delay < old_delay)
  2891. md_safemode_timeout((unsigned long)mddev);
  2892. }
  2893. return len;
  2894. }
  2895. static struct md_sysfs_entry md_safe_delay =
  2896. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2897. static ssize_t
  2898. level_show(struct mddev *mddev, char *page)
  2899. {
  2900. struct md_personality *p = mddev->pers;
  2901. if (p)
  2902. return sprintf(page, "%s\n", p->name);
  2903. else if (mddev->clevel[0])
  2904. return sprintf(page, "%s\n", mddev->clevel);
  2905. else if (mddev->level != LEVEL_NONE)
  2906. return sprintf(page, "%d\n", mddev->level);
  2907. else
  2908. return 0;
  2909. }
  2910. static ssize_t
  2911. level_store(struct mddev *mddev, const char *buf, size_t len)
  2912. {
  2913. char clevel[16];
  2914. ssize_t rv = len;
  2915. struct md_personality *pers;
  2916. long level;
  2917. void *priv;
  2918. struct md_rdev *rdev;
  2919. if (mddev->pers == NULL) {
  2920. if (len == 0)
  2921. return 0;
  2922. if (len >= sizeof(mddev->clevel))
  2923. return -ENOSPC;
  2924. strncpy(mddev->clevel, buf, len);
  2925. if (mddev->clevel[len-1] == '\n')
  2926. len--;
  2927. mddev->clevel[len] = 0;
  2928. mddev->level = LEVEL_NONE;
  2929. return rv;
  2930. }
  2931. /* request to change the personality. Need to ensure:
  2932. * - array is not engaged in resync/recovery/reshape
  2933. * - old personality can be suspended
  2934. * - new personality will access other array.
  2935. */
  2936. if (mddev->sync_thread ||
  2937. mddev->reshape_position != MaxSector ||
  2938. mddev->sysfs_active)
  2939. return -EBUSY;
  2940. if (!mddev->pers->quiesce) {
  2941. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2942. mdname(mddev), mddev->pers->name);
  2943. return -EINVAL;
  2944. }
  2945. /* Now find the new personality */
  2946. if (len == 0 || len >= sizeof(clevel))
  2947. return -EINVAL;
  2948. strncpy(clevel, buf, len);
  2949. if (clevel[len-1] == '\n')
  2950. len--;
  2951. clevel[len] = 0;
  2952. if (strict_strtol(clevel, 10, &level))
  2953. level = LEVEL_NONE;
  2954. if (request_module("md-%s", clevel) != 0)
  2955. request_module("md-level-%s", clevel);
  2956. spin_lock(&pers_lock);
  2957. pers = find_pers(level, clevel);
  2958. if (!pers || !try_module_get(pers->owner)) {
  2959. spin_unlock(&pers_lock);
  2960. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2961. return -EINVAL;
  2962. }
  2963. spin_unlock(&pers_lock);
  2964. if (pers == mddev->pers) {
  2965. /* Nothing to do! */
  2966. module_put(pers->owner);
  2967. return rv;
  2968. }
  2969. if (!pers->takeover) {
  2970. module_put(pers->owner);
  2971. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2972. mdname(mddev), clevel);
  2973. return -EINVAL;
  2974. }
  2975. list_for_each_entry(rdev, &mddev->disks, same_set)
  2976. rdev->new_raid_disk = rdev->raid_disk;
  2977. /* ->takeover must set new_* and/or delta_disks
  2978. * if it succeeds, and may set them when it fails.
  2979. */
  2980. priv = pers->takeover(mddev);
  2981. if (IS_ERR(priv)) {
  2982. mddev->new_level = mddev->level;
  2983. mddev->new_layout = mddev->layout;
  2984. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2985. mddev->raid_disks -= mddev->delta_disks;
  2986. mddev->delta_disks = 0;
  2987. module_put(pers->owner);
  2988. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2989. mdname(mddev), clevel);
  2990. return PTR_ERR(priv);
  2991. }
  2992. /* Looks like we have a winner */
  2993. mddev_suspend(mddev);
  2994. mddev->pers->stop(mddev);
  2995. if (mddev->pers->sync_request == NULL &&
  2996. pers->sync_request != NULL) {
  2997. /* need to add the md_redundancy_group */
  2998. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2999. printk(KERN_WARNING
  3000. "md: cannot register extra attributes for %s\n",
  3001. mdname(mddev));
  3002. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3003. }
  3004. if (mddev->pers->sync_request != NULL &&
  3005. pers->sync_request == NULL) {
  3006. /* need to remove the md_redundancy_group */
  3007. if (mddev->to_remove == NULL)
  3008. mddev->to_remove = &md_redundancy_group;
  3009. }
  3010. if (mddev->pers->sync_request == NULL &&
  3011. mddev->external) {
  3012. /* We are converting from a no-redundancy array
  3013. * to a redundancy array and metadata is managed
  3014. * externally so we need to be sure that writes
  3015. * won't block due to a need to transition
  3016. * clean->dirty
  3017. * until external management is started.
  3018. */
  3019. mddev->in_sync = 0;
  3020. mddev->safemode_delay = 0;
  3021. mddev->safemode = 0;
  3022. }
  3023. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3024. if (rdev->raid_disk < 0)
  3025. continue;
  3026. if (rdev->new_raid_disk >= mddev->raid_disks)
  3027. rdev->new_raid_disk = -1;
  3028. if (rdev->new_raid_disk == rdev->raid_disk)
  3029. continue;
  3030. sysfs_unlink_rdev(mddev, rdev);
  3031. }
  3032. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3033. if (rdev->raid_disk < 0)
  3034. continue;
  3035. if (rdev->new_raid_disk == rdev->raid_disk)
  3036. continue;
  3037. rdev->raid_disk = rdev->new_raid_disk;
  3038. if (rdev->raid_disk < 0)
  3039. clear_bit(In_sync, &rdev->flags);
  3040. else {
  3041. if (sysfs_link_rdev(mddev, rdev))
  3042. printk(KERN_WARNING "md: cannot register rd%d"
  3043. " for %s after level change\n",
  3044. rdev->raid_disk, mdname(mddev));
  3045. }
  3046. }
  3047. module_put(mddev->pers->owner);
  3048. mddev->pers = pers;
  3049. mddev->private = priv;
  3050. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3051. mddev->level = mddev->new_level;
  3052. mddev->layout = mddev->new_layout;
  3053. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3054. mddev->delta_disks = 0;
  3055. mddev->degraded = 0;
  3056. if (mddev->pers->sync_request == NULL) {
  3057. /* this is now an array without redundancy, so
  3058. * it must always be in_sync
  3059. */
  3060. mddev->in_sync = 1;
  3061. del_timer_sync(&mddev->safemode_timer);
  3062. }
  3063. pers->run(mddev);
  3064. mddev_resume(mddev);
  3065. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3066. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3067. md_wakeup_thread(mddev->thread);
  3068. sysfs_notify(&mddev->kobj, NULL, "level");
  3069. md_new_event(mddev);
  3070. return rv;
  3071. }
  3072. static struct md_sysfs_entry md_level =
  3073. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3074. static ssize_t
  3075. layout_show(struct mddev *mddev, char *page)
  3076. {
  3077. /* just a number, not meaningful for all levels */
  3078. if (mddev->reshape_position != MaxSector &&
  3079. mddev->layout != mddev->new_layout)
  3080. return sprintf(page, "%d (%d)\n",
  3081. mddev->new_layout, mddev->layout);
  3082. return sprintf(page, "%d\n", mddev->layout);
  3083. }
  3084. static ssize_t
  3085. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3086. {
  3087. char *e;
  3088. unsigned long n = simple_strtoul(buf, &e, 10);
  3089. if (!*buf || (*e && *e != '\n'))
  3090. return -EINVAL;
  3091. if (mddev->pers) {
  3092. int err;
  3093. if (mddev->pers->check_reshape == NULL)
  3094. return -EBUSY;
  3095. mddev->new_layout = n;
  3096. err = mddev->pers->check_reshape(mddev);
  3097. if (err) {
  3098. mddev->new_layout = mddev->layout;
  3099. return err;
  3100. }
  3101. } else {
  3102. mddev->new_layout = n;
  3103. if (mddev->reshape_position == MaxSector)
  3104. mddev->layout = n;
  3105. }
  3106. return len;
  3107. }
  3108. static struct md_sysfs_entry md_layout =
  3109. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3110. static ssize_t
  3111. raid_disks_show(struct mddev *mddev, char *page)
  3112. {
  3113. if (mddev->raid_disks == 0)
  3114. return 0;
  3115. if (mddev->reshape_position != MaxSector &&
  3116. mddev->delta_disks != 0)
  3117. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3118. mddev->raid_disks - mddev->delta_disks);
  3119. return sprintf(page, "%d\n", mddev->raid_disks);
  3120. }
  3121. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3122. static ssize_t
  3123. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3124. {
  3125. char *e;
  3126. int rv = 0;
  3127. unsigned long n = simple_strtoul(buf, &e, 10);
  3128. if (!*buf || (*e && *e != '\n'))
  3129. return -EINVAL;
  3130. if (mddev->pers)
  3131. rv = update_raid_disks(mddev, n);
  3132. else if (mddev->reshape_position != MaxSector) {
  3133. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3134. mddev->delta_disks = n - olddisks;
  3135. mddev->raid_disks = n;
  3136. } else
  3137. mddev->raid_disks = n;
  3138. return rv ? rv : len;
  3139. }
  3140. static struct md_sysfs_entry md_raid_disks =
  3141. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3142. static ssize_t
  3143. chunk_size_show(struct mddev *mddev, char *page)
  3144. {
  3145. if (mddev->reshape_position != MaxSector &&
  3146. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3147. return sprintf(page, "%d (%d)\n",
  3148. mddev->new_chunk_sectors << 9,
  3149. mddev->chunk_sectors << 9);
  3150. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3151. }
  3152. static ssize_t
  3153. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3154. {
  3155. char *e;
  3156. unsigned long n = simple_strtoul(buf, &e, 10);
  3157. if (!*buf || (*e && *e != '\n'))
  3158. return -EINVAL;
  3159. if (mddev->pers) {
  3160. int err;
  3161. if (mddev->pers->check_reshape == NULL)
  3162. return -EBUSY;
  3163. mddev->new_chunk_sectors = n >> 9;
  3164. err = mddev->pers->check_reshape(mddev);
  3165. if (err) {
  3166. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3167. return err;
  3168. }
  3169. } else {
  3170. mddev->new_chunk_sectors = n >> 9;
  3171. if (mddev->reshape_position == MaxSector)
  3172. mddev->chunk_sectors = n >> 9;
  3173. }
  3174. return len;
  3175. }
  3176. static struct md_sysfs_entry md_chunk_size =
  3177. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3178. static ssize_t
  3179. resync_start_show(struct mddev *mddev, char *page)
  3180. {
  3181. if (mddev->recovery_cp == MaxSector)
  3182. return sprintf(page, "none\n");
  3183. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3184. }
  3185. static ssize_t
  3186. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3187. {
  3188. char *e;
  3189. unsigned long long n = simple_strtoull(buf, &e, 10);
  3190. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3191. return -EBUSY;
  3192. if (cmd_match(buf, "none"))
  3193. n = MaxSector;
  3194. else if (!*buf || (*e && *e != '\n'))
  3195. return -EINVAL;
  3196. mddev->recovery_cp = n;
  3197. return len;
  3198. }
  3199. static struct md_sysfs_entry md_resync_start =
  3200. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3201. /*
  3202. * The array state can be:
  3203. *
  3204. * clear
  3205. * No devices, no size, no level
  3206. * Equivalent to STOP_ARRAY ioctl
  3207. * inactive
  3208. * May have some settings, but array is not active
  3209. * all IO results in error
  3210. * When written, doesn't tear down array, but just stops it
  3211. * suspended (not supported yet)
  3212. * All IO requests will block. The array can be reconfigured.
  3213. * Writing this, if accepted, will block until array is quiescent
  3214. * readonly
  3215. * no resync can happen. no superblocks get written.
  3216. * write requests fail
  3217. * read-auto
  3218. * like readonly, but behaves like 'clean' on a write request.
  3219. *
  3220. * clean - no pending writes, but otherwise active.
  3221. * When written to inactive array, starts without resync
  3222. * If a write request arrives then
  3223. * if metadata is known, mark 'dirty' and switch to 'active'.
  3224. * if not known, block and switch to write-pending
  3225. * If written to an active array that has pending writes, then fails.
  3226. * active
  3227. * fully active: IO and resync can be happening.
  3228. * When written to inactive array, starts with resync
  3229. *
  3230. * write-pending
  3231. * clean, but writes are blocked waiting for 'active' to be written.
  3232. *
  3233. * active-idle
  3234. * like active, but no writes have been seen for a while (100msec).
  3235. *
  3236. */
  3237. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3238. write_pending, active_idle, bad_word};
  3239. static char *array_states[] = {
  3240. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3241. "write-pending", "active-idle", NULL };
  3242. static int match_word(const char *word, char **list)
  3243. {
  3244. int n;
  3245. for (n=0; list[n]; n++)
  3246. if (cmd_match(word, list[n]))
  3247. break;
  3248. return n;
  3249. }
  3250. static ssize_t
  3251. array_state_show(struct mddev *mddev, char *page)
  3252. {
  3253. enum array_state st = inactive;
  3254. if (mddev->pers)
  3255. switch(mddev->ro) {
  3256. case 1:
  3257. st = readonly;
  3258. break;
  3259. case 2:
  3260. st = read_auto;
  3261. break;
  3262. case 0:
  3263. if (mddev->in_sync)
  3264. st = clean;
  3265. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3266. st = write_pending;
  3267. else if (mddev->safemode)
  3268. st = active_idle;
  3269. else
  3270. st = active;
  3271. }
  3272. else {
  3273. if (list_empty(&mddev->disks) &&
  3274. mddev->raid_disks == 0 &&
  3275. mddev->dev_sectors == 0)
  3276. st = clear;
  3277. else
  3278. st = inactive;
  3279. }
  3280. return sprintf(page, "%s\n", array_states[st]);
  3281. }
  3282. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3283. static int md_set_readonly(struct mddev * mddev, int is_open);
  3284. static int do_md_run(struct mddev * mddev);
  3285. static int restart_array(struct mddev *mddev);
  3286. static ssize_t
  3287. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3288. {
  3289. int err = -EINVAL;
  3290. enum array_state st = match_word(buf, array_states);
  3291. switch(st) {
  3292. case bad_word:
  3293. break;
  3294. case clear:
  3295. /* stopping an active array */
  3296. if (atomic_read(&mddev->openers) > 0)
  3297. return -EBUSY;
  3298. err = do_md_stop(mddev, 0, 0);
  3299. break;
  3300. case inactive:
  3301. /* stopping an active array */
  3302. if (mddev->pers) {
  3303. if (atomic_read(&mddev->openers) > 0)
  3304. return -EBUSY;
  3305. err = do_md_stop(mddev, 2, 0);
  3306. } else
  3307. err = 0; /* already inactive */
  3308. break;
  3309. case suspended:
  3310. break; /* not supported yet */
  3311. case readonly:
  3312. if (mddev->pers)
  3313. err = md_set_readonly(mddev, 0);
  3314. else {
  3315. mddev->ro = 1;
  3316. set_disk_ro(mddev->gendisk, 1);
  3317. err = do_md_run(mddev);
  3318. }
  3319. break;
  3320. case read_auto:
  3321. if (mddev->pers) {
  3322. if (mddev->ro == 0)
  3323. err = md_set_readonly(mddev, 0);
  3324. else if (mddev->ro == 1)
  3325. err = restart_array(mddev);
  3326. if (err == 0) {
  3327. mddev->ro = 2;
  3328. set_disk_ro(mddev->gendisk, 0);
  3329. }
  3330. } else {
  3331. mddev->ro = 2;
  3332. err = do_md_run(mddev);
  3333. }
  3334. break;
  3335. case clean:
  3336. if (mddev->pers) {
  3337. restart_array(mddev);
  3338. spin_lock_irq(&mddev->write_lock);
  3339. if (atomic_read(&mddev->writes_pending) == 0) {
  3340. if (mddev->in_sync == 0) {
  3341. mddev->in_sync = 1;
  3342. if (mddev->safemode == 1)
  3343. mddev->safemode = 0;
  3344. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3345. }
  3346. err = 0;
  3347. } else
  3348. err = -EBUSY;
  3349. spin_unlock_irq(&mddev->write_lock);
  3350. } else
  3351. err = -EINVAL;
  3352. break;
  3353. case active:
  3354. if (mddev->pers) {
  3355. restart_array(mddev);
  3356. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3357. wake_up(&mddev->sb_wait);
  3358. err = 0;
  3359. } else {
  3360. mddev->ro = 0;
  3361. set_disk_ro(mddev->gendisk, 0);
  3362. err = do_md_run(mddev);
  3363. }
  3364. break;
  3365. case write_pending:
  3366. case active_idle:
  3367. /* these cannot be set */
  3368. break;
  3369. }
  3370. if (err)
  3371. return err;
  3372. else {
  3373. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3374. return len;
  3375. }
  3376. }
  3377. static struct md_sysfs_entry md_array_state =
  3378. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3379. static ssize_t
  3380. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3381. return sprintf(page, "%d\n",
  3382. atomic_read(&mddev->max_corr_read_errors));
  3383. }
  3384. static ssize_t
  3385. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3386. {
  3387. char *e;
  3388. unsigned long n = simple_strtoul(buf, &e, 10);
  3389. if (*buf && (*e == 0 || *e == '\n')) {
  3390. atomic_set(&mddev->max_corr_read_errors, n);
  3391. return len;
  3392. }
  3393. return -EINVAL;
  3394. }
  3395. static struct md_sysfs_entry max_corr_read_errors =
  3396. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3397. max_corrected_read_errors_store);
  3398. static ssize_t
  3399. null_show(struct mddev *mddev, char *page)
  3400. {
  3401. return -EINVAL;
  3402. }
  3403. static ssize_t
  3404. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3405. {
  3406. /* buf must be %d:%d\n? giving major and minor numbers */
  3407. /* The new device is added to the array.
  3408. * If the array has a persistent superblock, we read the
  3409. * superblock to initialise info and check validity.
  3410. * Otherwise, only checking done is that in bind_rdev_to_array,
  3411. * which mainly checks size.
  3412. */
  3413. char *e;
  3414. int major = simple_strtoul(buf, &e, 10);
  3415. int minor;
  3416. dev_t dev;
  3417. struct md_rdev *rdev;
  3418. int err;
  3419. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3420. return -EINVAL;
  3421. minor = simple_strtoul(e+1, &e, 10);
  3422. if (*e && *e != '\n')
  3423. return -EINVAL;
  3424. dev = MKDEV(major, minor);
  3425. if (major != MAJOR(dev) ||
  3426. minor != MINOR(dev))
  3427. return -EOVERFLOW;
  3428. if (mddev->persistent) {
  3429. rdev = md_import_device(dev, mddev->major_version,
  3430. mddev->minor_version);
  3431. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3432. struct md_rdev *rdev0
  3433. = list_entry(mddev->disks.next,
  3434. struct md_rdev, same_set);
  3435. err = super_types[mddev->major_version]
  3436. .load_super(rdev, rdev0, mddev->minor_version);
  3437. if (err < 0)
  3438. goto out;
  3439. }
  3440. } else if (mddev->external)
  3441. rdev = md_import_device(dev, -2, -1);
  3442. else
  3443. rdev = md_import_device(dev, -1, -1);
  3444. if (IS_ERR(rdev))
  3445. return PTR_ERR(rdev);
  3446. err = bind_rdev_to_array(rdev, mddev);
  3447. out:
  3448. if (err)
  3449. export_rdev(rdev);
  3450. return err ? err : len;
  3451. }
  3452. static struct md_sysfs_entry md_new_device =
  3453. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3454. static ssize_t
  3455. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3456. {
  3457. char *end;
  3458. unsigned long chunk, end_chunk;
  3459. if (!mddev->bitmap)
  3460. goto out;
  3461. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3462. while (*buf) {
  3463. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3464. if (buf == end) break;
  3465. if (*end == '-') { /* range */
  3466. buf = end + 1;
  3467. end_chunk = simple_strtoul(buf, &end, 0);
  3468. if (buf == end) break;
  3469. }
  3470. if (*end && !isspace(*end)) break;
  3471. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3472. buf = skip_spaces(end);
  3473. }
  3474. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3475. out:
  3476. return len;
  3477. }
  3478. static struct md_sysfs_entry md_bitmap =
  3479. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3480. static ssize_t
  3481. size_show(struct mddev *mddev, char *page)
  3482. {
  3483. return sprintf(page, "%llu\n",
  3484. (unsigned long long)mddev->dev_sectors / 2);
  3485. }
  3486. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3487. static ssize_t
  3488. size_store(struct mddev *mddev, const char *buf, size_t len)
  3489. {
  3490. /* If array is inactive, we can reduce the component size, but
  3491. * not increase it (except from 0).
  3492. * If array is active, we can try an on-line resize
  3493. */
  3494. sector_t sectors;
  3495. int err = strict_blocks_to_sectors(buf, &sectors);
  3496. if (err < 0)
  3497. return err;
  3498. if (mddev->pers) {
  3499. err = update_size(mddev, sectors);
  3500. md_update_sb(mddev, 1);
  3501. } else {
  3502. if (mddev->dev_sectors == 0 ||
  3503. mddev->dev_sectors > sectors)
  3504. mddev->dev_sectors = sectors;
  3505. else
  3506. err = -ENOSPC;
  3507. }
  3508. return err ? err : len;
  3509. }
  3510. static struct md_sysfs_entry md_size =
  3511. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3512. /* Metdata version.
  3513. * This is one of
  3514. * 'none' for arrays with no metadata (good luck...)
  3515. * 'external' for arrays with externally managed metadata,
  3516. * or N.M for internally known formats
  3517. */
  3518. static ssize_t
  3519. metadata_show(struct mddev *mddev, char *page)
  3520. {
  3521. if (mddev->persistent)
  3522. return sprintf(page, "%d.%d\n",
  3523. mddev->major_version, mddev->minor_version);
  3524. else if (mddev->external)
  3525. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3526. else
  3527. return sprintf(page, "none\n");
  3528. }
  3529. static ssize_t
  3530. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3531. {
  3532. int major, minor;
  3533. char *e;
  3534. /* Changing the details of 'external' metadata is
  3535. * always permitted. Otherwise there must be
  3536. * no devices attached to the array.
  3537. */
  3538. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3539. ;
  3540. else if (!list_empty(&mddev->disks))
  3541. return -EBUSY;
  3542. if (cmd_match(buf, "none")) {
  3543. mddev->persistent = 0;
  3544. mddev->external = 0;
  3545. mddev->major_version = 0;
  3546. mddev->minor_version = 90;
  3547. return len;
  3548. }
  3549. if (strncmp(buf, "external:", 9) == 0) {
  3550. size_t namelen = len-9;
  3551. if (namelen >= sizeof(mddev->metadata_type))
  3552. namelen = sizeof(mddev->metadata_type)-1;
  3553. strncpy(mddev->metadata_type, buf+9, namelen);
  3554. mddev->metadata_type[namelen] = 0;
  3555. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3556. mddev->metadata_type[--namelen] = 0;
  3557. mddev->persistent = 0;
  3558. mddev->external = 1;
  3559. mddev->major_version = 0;
  3560. mddev->minor_version = 90;
  3561. return len;
  3562. }
  3563. major = simple_strtoul(buf, &e, 10);
  3564. if (e==buf || *e != '.')
  3565. return -EINVAL;
  3566. buf = e+1;
  3567. minor = simple_strtoul(buf, &e, 10);
  3568. if (e==buf || (*e && *e != '\n') )
  3569. return -EINVAL;
  3570. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3571. return -ENOENT;
  3572. mddev->major_version = major;
  3573. mddev->minor_version = minor;
  3574. mddev->persistent = 1;
  3575. mddev->external = 0;
  3576. return len;
  3577. }
  3578. static struct md_sysfs_entry md_metadata =
  3579. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3580. static ssize_t
  3581. action_show(struct mddev *mddev, char *page)
  3582. {
  3583. char *type = "idle";
  3584. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3585. type = "frozen";
  3586. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3587. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3588. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3589. type = "reshape";
  3590. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3591. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3592. type = "resync";
  3593. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3594. type = "check";
  3595. else
  3596. type = "repair";
  3597. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3598. type = "recover";
  3599. }
  3600. return sprintf(page, "%s\n", type);
  3601. }
  3602. static void reap_sync_thread(struct mddev *mddev);
  3603. static ssize_t
  3604. action_store(struct mddev *mddev, const char *page, size_t len)
  3605. {
  3606. if (!mddev->pers || !mddev->pers->sync_request)
  3607. return -EINVAL;
  3608. if (cmd_match(page, "frozen"))
  3609. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3610. else
  3611. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3612. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3613. if (mddev->sync_thread) {
  3614. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3615. reap_sync_thread(mddev);
  3616. }
  3617. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3618. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3619. return -EBUSY;
  3620. else if (cmd_match(page, "resync"))
  3621. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3622. else if (cmd_match(page, "recover")) {
  3623. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3624. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3625. } else if (cmd_match(page, "reshape")) {
  3626. int err;
  3627. if (mddev->pers->start_reshape == NULL)
  3628. return -EINVAL;
  3629. err = mddev->pers->start_reshape(mddev);
  3630. if (err)
  3631. return err;
  3632. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3633. } else {
  3634. if (cmd_match(page, "check"))
  3635. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3636. else if (!cmd_match(page, "repair"))
  3637. return -EINVAL;
  3638. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3639. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3640. }
  3641. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3642. md_wakeup_thread(mddev->thread);
  3643. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3644. return len;
  3645. }
  3646. static ssize_t
  3647. mismatch_cnt_show(struct mddev *mddev, char *page)
  3648. {
  3649. return sprintf(page, "%llu\n",
  3650. (unsigned long long) mddev->resync_mismatches);
  3651. }
  3652. static struct md_sysfs_entry md_scan_mode =
  3653. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3654. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3655. static ssize_t
  3656. sync_min_show(struct mddev *mddev, char *page)
  3657. {
  3658. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3659. mddev->sync_speed_min ? "local": "system");
  3660. }
  3661. static ssize_t
  3662. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3663. {
  3664. int min;
  3665. char *e;
  3666. if (strncmp(buf, "system", 6)==0) {
  3667. mddev->sync_speed_min = 0;
  3668. return len;
  3669. }
  3670. min = simple_strtoul(buf, &e, 10);
  3671. if (buf == e || (*e && *e != '\n') || min <= 0)
  3672. return -EINVAL;
  3673. mddev->sync_speed_min = min;
  3674. return len;
  3675. }
  3676. static struct md_sysfs_entry md_sync_min =
  3677. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3678. static ssize_t
  3679. sync_max_show(struct mddev *mddev, char *page)
  3680. {
  3681. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3682. mddev->sync_speed_max ? "local": "system");
  3683. }
  3684. static ssize_t
  3685. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3686. {
  3687. int max;
  3688. char *e;
  3689. if (strncmp(buf, "system", 6)==0) {
  3690. mddev->sync_speed_max = 0;
  3691. return len;
  3692. }
  3693. max = simple_strtoul(buf, &e, 10);
  3694. if (buf == e || (*e && *e != '\n') || max <= 0)
  3695. return -EINVAL;
  3696. mddev->sync_speed_max = max;
  3697. return len;
  3698. }
  3699. static struct md_sysfs_entry md_sync_max =
  3700. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3701. static ssize_t
  3702. degraded_show(struct mddev *mddev, char *page)
  3703. {
  3704. return sprintf(page, "%d\n", mddev->degraded);
  3705. }
  3706. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3707. static ssize_t
  3708. sync_force_parallel_show(struct mddev *mddev, char *page)
  3709. {
  3710. return sprintf(page, "%d\n", mddev->parallel_resync);
  3711. }
  3712. static ssize_t
  3713. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3714. {
  3715. long n;
  3716. if (strict_strtol(buf, 10, &n))
  3717. return -EINVAL;
  3718. if (n != 0 && n != 1)
  3719. return -EINVAL;
  3720. mddev->parallel_resync = n;
  3721. if (mddev->sync_thread)
  3722. wake_up(&resync_wait);
  3723. return len;
  3724. }
  3725. /* force parallel resync, even with shared block devices */
  3726. static struct md_sysfs_entry md_sync_force_parallel =
  3727. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3728. sync_force_parallel_show, sync_force_parallel_store);
  3729. static ssize_t
  3730. sync_speed_show(struct mddev *mddev, char *page)
  3731. {
  3732. unsigned long resync, dt, db;
  3733. if (mddev->curr_resync == 0)
  3734. return sprintf(page, "none\n");
  3735. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3736. dt = (jiffies - mddev->resync_mark) / HZ;
  3737. if (!dt) dt++;
  3738. db = resync - mddev->resync_mark_cnt;
  3739. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3740. }
  3741. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3742. static ssize_t
  3743. sync_completed_show(struct mddev *mddev, char *page)
  3744. {
  3745. unsigned long long max_sectors, resync;
  3746. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3747. return sprintf(page, "none\n");
  3748. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3749. max_sectors = mddev->resync_max_sectors;
  3750. else
  3751. max_sectors = mddev->dev_sectors;
  3752. resync = mddev->curr_resync_completed;
  3753. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3754. }
  3755. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3756. static ssize_t
  3757. min_sync_show(struct mddev *mddev, char *page)
  3758. {
  3759. return sprintf(page, "%llu\n",
  3760. (unsigned long long)mddev->resync_min);
  3761. }
  3762. static ssize_t
  3763. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3764. {
  3765. unsigned long long min;
  3766. if (strict_strtoull(buf, 10, &min))
  3767. return -EINVAL;
  3768. if (min > mddev->resync_max)
  3769. return -EINVAL;
  3770. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3771. return -EBUSY;
  3772. /* Must be a multiple of chunk_size */
  3773. if (mddev->chunk_sectors) {
  3774. sector_t temp = min;
  3775. if (sector_div(temp, mddev->chunk_sectors))
  3776. return -EINVAL;
  3777. }
  3778. mddev->resync_min = min;
  3779. return len;
  3780. }
  3781. static struct md_sysfs_entry md_min_sync =
  3782. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3783. static ssize_t
  3784. max_sync_show(struct mddev *mddev, char *page)
  3785. {
  3786. if (mddev->resync_max == MaxSector)
  3787. return sprintf(page, "max\n");
  3788. else
  3789. return sprintf(page, "%llu\n",
  3790. (unsigned long long)mddev->resync_max);
  3791. }
  3792. static ssize_t
  3793. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3794. {
  3795. if (strncmp(buf, "max", 3) == 0)
  3796. mddev->resync_max = MaxSector;
  3797. else {
  3798. unsigned long long max;
  3799. if (strict_strtoull(buf, 10, &max))
  3800. return -EINVAL;
  3801. if (max < mddev->resync_min)
  3802. return -EINVAL;
  3803. if (max < mddev->resync_max &&
  3804. mddev->ro == 0 &&
  3805. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3806. return -EBUSY;
  3807. /* Must be a multiple of chunk_size */
  3808. if (mddev->chunk_sectors) {
  3809. sector_t temp = max;
  3810. if (sector_div(temp, mddev->chunk_sectors))
  3811. return -EINVAL;
  3812. }
  3813. mddev->resync_max = max;
  3814. }
  3815. wake_up(&mddev->recovery_wait);
  3816. return len;
  3817. }
  3818. static struct md_sysfs_entry md_max_sync =
  3819. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3820. static ssize_t
  3821. suspend_lo_show(struct mddev *mddev, char *page)
  3822. {
  3823. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3824. }
  3825. static ssize_t
  3826. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3827. {
  3828. char *e;
  3829. unsigned long long new = simple_strtoull(buf, &e, 10);
  3830. unsigned long long old = mddev->suspend_lo;
  3831. if (mddev->pers == NULL ||
  3832. mddev->pers->quiesce == NULL)
  3833. return -EINVAL;
  3834. if (buf == e || (*e && *e != '\n'))
  3835. return -EINVAL;
  3836. mddev->suspend_lo = new;
  3837. if (new >= old)
  3838. /* Shrinking suspended region */
  3839. mddev->pers->quiesce(mddev, 2);
  3840. else {
  3841. /* Expanding suspended region - need to wait */
  3842. mddev->pers->quiesce(mddev, 1);
  3843. mddev->pers->quiesce(mddev, 0);
  3844. }
  3845. return len;
  3846. }
  3847. static struct md_sysfs_entry md_suspend_lo =
  3848. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3849. static ssize_t
  3850. suspend_hi_show(struct mddev *mddev, char *page)
  3851. {
  3852. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3853. }
  3854. static ssize_t
  3855. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3856. {
  3857. char *e;
  3858. unsigned long long new = simple_strtoull(buf, &e, 10);
  3859. unsigned long long old = mddev->suspend_hi;
  3860. if (mddev->pers == NULL ||
  3861. mddev->pers->quiesce == NULL)
  3862. return -EINVAL;
  3863. if (buf == e || (*e && *e != '\n'))
  3864. return -EINVAL;
  3865. mddev->suspend_hi = new;
  3866. if (new <= old)
  3867. /* Shrinking suspended region */
  3868. mddev->pers->quiesce(mddev, 2);
  3869. else {
  3870. /* Expanding suspended region - need to wait */
  3871. mddev->pers->quiesce(mddev, 1);
  3872. mddev->pers->quiesce(mddev, 0);
  3873. }
  3874. return len;
  3875. }
  3876. static struct md_sysfs_entry md_suspend_hi =
  3877. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3878. static ssize_t
  3879. reshape_position_show(struct mddev *mddev, char *page)
  3880. {
  3881. if (mddev->reshape_position != MaxSector)
  3882. return sprintf(page, "%llu\n",
  3883. (unsigned long long)mddev->reshape_position);
  3884. strcpy(page, "none\n");
  3885. return 5;
  3886. }
  3887. static ssize_t
  3888. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3889. {
  3890. char *e;
  3891. unsigned long long new = simple_strtoull(buf, &e, 10);
  3892. if (mddev->pers)
  3893. return -EBUSY;
  3894. if (buf == e || (*e && *e != '\n'))
  3895. return -EINVAL;
  3896. mddev->reshape_position = new;
  3897. mddev->delta_disks = 0;
  3898. mddev->new_level = mddev->level;
  3899. mddev->new_layout = mddev->layout;
  3900. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3901. return len;
  3902. }
  3903. static struct md_sysfs_entry md_reshape_position =
  3904. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3905. reshape_position_store);
  3906. static ssize_t
  3907. array_size_show(struct mddev *mddev, char *page)
  3908. {
  3909. if (mddev->external_size)
  3910. return sprintf(page, "%llu\n",
  3911. (unsigned long long)mddev->array_sectors/2);
  3912. else
  3913. return sprintf(page, "default\n");
  3914. }
  3915. static ssize_t
  3916. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3917. {
  3918. sector_t sectors;
  3919. if (strncmp(buf, "default", 7) == 0) {
  3920. if (mddev->pers)
  3921. sectors = mddev->pers->size(mddev, 0, 0);
  3922. else
  3923. sectors = mddev->array_sectors;
  3924. mddev->external_size = 0;
  3925. } else {
  3926. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3927. return -EINVAL;
  3928. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3929. return -E2BIG;
  3930. mddev->external_size = 1;
  3931. }
  3932. mddev->array_sectors = sectors;
  3933. if (mddev->pers) {
  3934. set_capacity(mddev->gendisk, mddev->array_sectors);
  3935. revalidate_disk(mddev->gendisk);
  3936. }
  3937. return len;
  3938. }
  3939. static struct md_sysfs_entry md_array_size =
  3940. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3941. array_size_store);
  3942. static struct attribute *md_default_attrs[] = {
  3943. &md_level.attr,
  3944. &md_layout.attr,
  3945. &md_raid_disks.attr,
  3946. &md_chunk_size.attr,
  3947. &md_size.attr,
  3948. &md_resync_start.attr,
  3949. &md_metadata.attr,
  3950. &md_new_device.attr,
  3951. &md_safe_delay.attr,
  3952. &md_array_state.attr,
  3953. &md_reshape_position.attr,
  3954. &md_array_size.attr,
  3955. &max_corr_read_errors.attr,
  3956. NULL,
  3957. };
  3958. static struct attribute *md_redundancy_attrs[] = {
  3959. &md_scan_mode.attr,
  3960. &md_mismatches.attr,
  3961. &md_sync_min.attr,
  3962. &md_sync_max.attr,
  3963. &md_sync_speed.attr,
  3964. &md_sync_force_parallel.attr,
  3965. &md_sync_completed.attr,
  3966. &md_min_sync.attr,
  3967. &md_max_sync.attr,
  3968. &md_suspend_lo.attr,
  3969. &md_suspend_hi.attr,
  3970. &md_bitmap.attr,
  3971. &md_degraded.attr,
  3972. NULL,
  3973. };
  3974. static struct attribute_group md_redundancy_group = {
  3975. .name = NULL,
  3976. .attrs = md_redundancy_attrs,
  3977. };
  3978. static ssize_t
  3979. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3980. {
  3981. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3982. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3983. ssize_t rv;
  3984. if (!entry->show)
  3985. return -EIO;
  3986. rv = mddev_lock(mddev);
  3987. if (!rv) {
  3988. rv = entry->show(mddev, page);
  3989. mddev_unlock(mddev);
  3990. }
  3991. return rv;
  3992. }
  3993. static ssize_t
  3994. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3995. const char *page, size_t length)
  3996. {
  3997. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3998. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3999. ssize_t rv;
  4000. if (!entry->store)
  4001. return -EIO;
  4002. if (!capable(CAP_SYS_ADMIN))
  4003. return -EACCES;
  4004. rv = mddev_lock(mddev);
  4005. if (mddev->hold_active == UNTIL_IOCTL)
  4006. mddev->hold_active = 0;
  4007. if (!rv) {
  4008. rv = entry->store(mddev, page, length);
  4009. mddev_unlock(mddev);
  4010. }
  4011. return rv;
  4012. }
  4013. static void md_free(struct kobject *ko)
  4014. {
  4015. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4016. if (mddev->sysfs_state)
  4017. sysfs_put(mddev->sysfs_state);
  4018. if (mddev->gendisk) {
  4019. del_gendisk(mddev->gendisk);
  4020. put_disk(mddev->gendisk);
  4021. }
  4022. if (mddev->queue)
  4023. blk_cleanup_queue(mddev->queue);
  4024. kfree(mddev);
  4025. }
  4026. static const struct sysfs_ops md_sysfs_ops = {
  4027. .show = md_attr_show,
  4028. .store = md_attr_store,
  4029. };
  4030. static struct kobj_type md_ktype = {
  4031. .release = md_free,
  4032. .sysfs_ops = &md_sysfs_ops,
  4033. .default_attrs = md_default_attrs,
  4034. };
  4035. int mdp_major = 0;
  4036. static void mddev_delayed_delete(struct work_struct *ws)
  4037. {
  4038. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4039. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4040. kobject_del(&mddev->kobj);
  4041. kobject_put(&mddev->kobj);
  4042. }
  4043. static int md_alloc(dev_t dev, char *name)
  4044. {
  4045. static DEFINE_MUTEX(disks_mutex);
  4046. struct mddev *mddev = mddev_find(dev);
  4047. struct gendisk *disk;
  4048. int partitioned;
  4049. int shift;
  4050. int unit;
  4051. int error;
  4052. if (!mddev)
  4053. return -ENODEV;
  4054. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4055. shift = partitioned ? MdpMinorShift : 0;
  4056. unit = MINOR(mddev->unit) >> shift;
  4057. /* wait for any previous instance of this device to be
  4058. * completely removed (mddev_delayed_delete).
  4059. */
  4060. flush_workqueue(md_misc_wq);
  4061. mutex_lock(&disks_mutex);
  4062. error = -EEXIST;
  4063. if (mddev->gendisk)
  4064. goto abort;
  4065. if (name) {
  4066. /* Need to ensure that 'name' is not a duplicate.
  4067. */
  4068. struct mddev *mddev2;
  4069. spin_lock(&all_mddevs_lock);
  4070. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4071. if (mddev2->gendisk &&
  4072. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4073. spin_unlock(&all_mddevs_lock);
  4074. goto abort;
  4075. }
  4076. spin_unlock(&all_mddevs_lock);
  4077. }
  4078. error = -ENOMEM;
  4079. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4080. if (!mddev->queue)
  4081. goto abort;
  4082. mddev->queue->queuedata = mddev;
  4083. blk_queue_make_request(mddev->queue, md_make_request);
  4084. disk = alloc_disk(1 << shift);
  4085. if (!disk) {
  4086. blk_cleanup_queue(mddev->queue);
  4087. mddev->queue = NULL;
  4088. goto abort;
  4089. }
  4090. disk->major = MAJOR(mddev->unit);
  4091. disk->first_minor = unit << shift;
  4092. if (name)
  4093. strcpy(disk->disk_name, name);
  4094. else if (partitioned)
  4095. sprintf(disk->disk_name, "md_d%d", unit);
  4096. else
  4097. sprintf(disk->disk_name, "md%d", unit);
  4098. disk->fops = &md_fops;
  4099. disk->private_data = mddev;
  4100. disk->queue = mddev->queue;
  4101. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4102. /* Allow extended partitions. This makes the
  4103. * 'mdp' device redundant, but we can't really
  4104. * remove it now.
  4105. */
  4106. disk->flags |= GENHD_FL_EXT_DEVT;
  4107. mddev->gendisk = disk;
  4108. /* As soon as we call add_disk(), another thread could get
  4109. * through to md_open, so make sure it doesn't get too far
  4110. */
  4111. mutex_lock(&mddev->open_mutex);
  4112. add_disk(disk);
  4113. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4114. &disk_to_dev(disk)->kobj, "%s", "md");
  4115. if (error) {
  4116. /* This isn't possible, but as kobject_init_and_add is marked
  4117. * __must_check, we must do something with the result
  4118. */
  4119. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4120. disk->disk_name);
  4121. error = 0;
  4122. }
  4123. if (mddev->kobj.sd &&
  4124. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4125. printk(KERN_DEBUG "pointless warning\n");
  4126. mutex_unlock(&mddev->open_mutex);
  4127. abort:
  4128. mutex_unlock(&disks_mutex);
  4129. if (!error && mddev->kobj.sd) {
  4130. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4131. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4132. }
  4133. mddev_put(mddev);
  4134. return error;
  4135. }
  4136. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4137. {
  4138. md_alloc(dev, NULL);
  4139. return NULL;
  4140. }
  4141. static int add_named_array(const char *val, struct kernel_param *kp)
  4142. {
  4143. /* val must be "md_*" where * is not all digits.
  4144. * We allocate an array with a large free minor number, and
  4145. * set the name to val. val must not already be an active name.
  4146. */
  4147. int len = strlen(val);
  4148. char buf[DISK_NAME_LEN];
  4149. while (len && val[len-1] == '\n')
  4150. len--;
  4151. if (len >= DISK_NAME_LEN)
  4152. return -E2BIG;
  4153. strlcpy(buf, val, len+1);
  4154. if (strncmp(buf, "md_", 3) != 0)
  4155. return -EINVAL;
  4156. return md_alloc(0, buf);
  4157. }
  4158. static void md_safemode_timeout(unsigned long data)
  4159. {
  4160. struct mddev *mddev = (struct mddev *) data;
  4161. if (!atomic_read(&mddev->writes_pending)) {
  4162. mddev->safemode = 1;
  4163. if (mddev->external)
  4164. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4165. }
  4166. md_wakeup_thread(mddev->thread);
  4167. }
  4168. static int start_dirty_degraded;
  4169. int md_run(struct mddev *mddev)
  4170. {
  4171. int err;
  4172. struct md_rdev *rdev;
  4173. struct md_personality *pers;
  4174. if (list_empty(&mddev->disks))
  4175. /* cannot run an array with no devices.. */
  4176. return -EINVAL;
  4177. if (mddev->pers)
  4178. return -EBUSY;
  4179. /* Cannot run until previous stop completes properly */
  4180. if (mddev->sysfs_active)
  4181. return -EBUSY;
  4182. /*
  4183. * Analyze all RAID superblock(s)
  4184. */
  4185. if (!mddev->raid_disks) {
  4186. if (!mddev->persistent)
  4187. return -EINVAL;
  4188. analyze_sbs(mddev);
  4189. }
  4190. if (mddev->level != LEVEL_NONE)
  4191. request_module("md-level-%d", mddev->level);
  4192. else if (mddev->clevel[0])
  4193. request_module("md-%s", mddev->clevel);
  4194. /*
  4195. * Drop all container device buffers, from now on
  4196. * the only valid external interface is through the md
  4197. * device.
  4198. */
  4199. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4200. if (test_bit(Faulty, &rdev->flags))
  4201. continue;
  4202. sync_blockdev(rdev->bdev);
  4203. invalidate_bdev(rdev->bdev);
  4204. /* perform some consistency tests on the device.
  4205. * We don't want the data to overlap the metadata,
  4206. * Internal Bitmap issues have been handled elsewhere.
  4207. */
  4208. if (rdev->meta_bdev) {
  4209. /* Nothing to check */;
  4210. } else if (rdev->data_offset < rdev->sb_start) {
  4211. if (mddev->dev_sectors &&
  4212. rdev->data_offset + mddev->dev_sectors
  4213. > rdev->sb_start) {
  4214. printk("md: %s: data overlaps metadata\n",
  4215. mdname(mddev));
  4216. return -EINVAL;
  4217. }
  4218. } else {
  4219. if (rdev->sb_start + rdev->sb_size/512
  4220. > rdev->data_offset) {
  4221. printk("md: %s: metadata overlaps data\n",
  4222. mdname(mddev));
  4223. return -EINVAL;
  4224. }
  4225. }
  4226. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4227. }
  4228. if (mddev->bio_set == NULL)
  4229. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4230. sizeof(struct mddev *));
  4231. spin_lock(&pers_lock);
  4232. pers = find_pers(mddev->level, mddev->clevel);
  4233. if (!pers || !try_module_get(pers->owner)) {
  4234. spin_unlock(&pers_lock);
  4235. if (mddev->level != LEVEL_NONE)
  4236. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4237. mddev->level);
  4238. else
  4239. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4240. mddev->clevel);
  4241. return -EINVAL;
  4242. }
  4243. mddev->pers = pers;
  4244. spin_unlock(&pers_lock);
  4245. if (mddev->level != pers->level) {
  4246. mddev->level = pers->level;
  4247. mddev->new_level = pers->level;
  4248. }
  4249. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4250. if (mddev->reshape_position != MaxSector &&
  4251. pers->start_reshape == NULL) {
  4252. /* This personality cannot handle reshaping... */
  4253. mddev->pers = NULL;
  4254. module_put(pers->owner);
  4255. return -EINVAL;
  4256. }
  4257. if (pers->sync_request) {
  4258. /* Warn if this is a potentially silly
  4259. * configuration.
  4260. */
  4261. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4262. struct md_rdev *rdev2;
  4263. int warned = 0;
  4264. list_for_each_entry(rdev, &mddev->disks, same_set)
  4265. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4266. if (rdev < rdev2 &&
  4267. rdev->bdev->bd_contains ==
  4268. rdev2->bdev->bd_contains) {
  4269. printk(KERN_WARNING
  4270. "%s: WARNING: %s appears to be"
  4271. " on the same physical disk as"
  4272. " %s.\n",
  4273. mdname(mddev),
  4274. bdevname(rdev->bdev,b),
  4275. bdevname(rdev2->bdev,b2));
  4276. warned = 1;
  4277. }
  4278. }
  4279. if (warned)
  4280. printk(KERN_WARNING
  4281. "True protection against single-disk"
  4282. " failure might be compromised.\n");
  4283. }
  4284. mddev->recovery = 0;
  4285. /* may be over-ridden by personality */
  4286. mddev->resync_max_sectors = mddev->dev_sectors;
  4287. mddev->ok_start_degraded = start_dirty_degraded;
  4288. if (start_readonly && mddev->ro == 0)
  4289. mddev->ro = 2; /* read-only, but switch on first write */
  4290. err = mddev->pers->run(mddev);
  4291. if (err)
  4292. printk(KERN_ERR "md: pers->run() failed ...\n");
  4293. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4294. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4295. " but 'external_size' not in effect?\n", __func__);
  4296. printk(KERN_ERR
  4297. "md: invalid array_size %llu > default size %llu\n",
  4298. (unsigned long long)mddev->array_sectors / 2,
  4299. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4300. err = -EINVAL;
  4301. mddev->pers->stop(mddev);
  4302. }
  4303. if (err == 0 && mddev->pers->sync_request) {
  4304. err = bitmap_create(mddev);
  4305. if (err) {
  4306. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4307. mdname(mddev), err);
  4308. mddev->pers->stop(mddev);
  4309. }
  4310. }
  4311. if (err) {
  4312. module_put(mddev->pers->owner);
  4313. mddev->pers = NULL;
  4314. bitmap_destroy(mddev);
  4315. return err;
  4316. }
  4317. if (mddev->pers->sync_request) {
  4318. if (mddev->kobj.sd &&
  4319. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4320. printk(KERN_WARNING
  4321. "md: cannot register extra attributes for %s\n",
  4322. mdname(mddev));
  4323. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4324. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4325. mddev->ro = 0;
  4326. atomic_set(&mddev->writes_pending,0);
  4327. atomic_set(&mddev->max_corr_read_errors,
  4328. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4329. mddev->safemode = 0;
  4330. mddev->safemode_timer.function = md_safemode_timeout;
  4331. mddev->safemode_timer.data = (unsigned long) mddev;
  4332. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4333. mddev->in_sync = 1;
  4334. smp_wmb();
  4335. mddev->ready = 1;
  4336. list_for_each_entry(rdev, &mddev->disks, same_set)
  4337. if (rdev->raid_disk >= 0)
  4338. if (sysfs_link_rdev(mddev, rdev))
  4339. /* failure here is OK */;
  4340. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4341. if (mddev->flags)
  4342. md_update_sb(mddev, 0);
  4343. md_new_event(mddev);
  4344. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4345. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4346. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4347. return 0;
  4348. }
  4349. EXPORT_SYMBOL_GPL(md_run);
  4350. static int do_md_run(struct mddev *mddev)
  4351. {
  4352. int err;
  4353. err = md_run(mddev);
  4354. if (err)
  4355. goto out;
  4356. err = bitmap_load(mddev);
  4357. if (err) {
  4358. bitmap_destroy(mddev);
  4359. goto out;
  4360. }
  4361. md_wakeup_thread(mddev->thread);
  4362. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4363. set_capacity(mddev->gendisk, mddev->array_sectors);
  4364. revalidate_disk(mddev->gendisk);
  4365. mddev->changed = 1;
  4366. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4367. out:
  4368. return err;
  4369. }
  4370. static int restart_array(struct mddev *mddev)
  4371. {
  4372. struct gendisk *disk = mddev->gendisk;
  4373. /* Complain if it has no devices */
  4374. if (list_empty(&mddev->disks))
  4375. return -ENXIO;
  4376. if (!mddev->pers)
  4377. return -EINVAL;
  4378. if (!mddev->ro)
  4379. return -EBUSY;
  4380. mddev->safemode = 0;
  4381. mddev->ro = 0;
  4382. set_disk_ro(disk, 0);
  4383. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4384. mdname(mddev));
  4385. /* Kick recovery or resync if necessary */
  4386. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4387. md_wakeup_thread(mddev->thread);
  4388. md_wakeup_thread(mddev->sync_thread);
  4389. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4390. return 0;
  4391. }
  4392. /* similar to deny_write_access, but accounts for our holding a reference
  4393. * to the file ourselves */
  4394. static int deny_bitmap_write_access(struct file * file)
  4395. {
  4396. struct inode *inode = file->f_mapping->host;
  4397. spin_lock(&inode->i_lock);
  4398. if (atomic_read(&inode->i_writecount) > 1) {
  4399. spin_unlock(&inode->i_lock);
  4400. return -ETXTBSY;
  4401. }
  4402. atomic_set(&inode->i_writecount, -1);
  4403. spin_unlock(&inode->i_lock);
  4404. return 0;
  4405. }
  4406. void restore_bitmap_write_access(struct file *file)
  4407. {
  4408. struct inode *inode = file->f_mapping->host;
  4409. spin_lock(&inode->i_lock);
  4410. atomic_set(&inode->i_writecount, 1);
  4411. spin_unlock(&inode->i_lock);
  4412. }
  4413. static void md_clean(struct mddev *mddev)
  4414. {
  4415. mddev->array_sectors = 0;
  4416. mddev->external_size = 0;
  4417. mddev->dev_sectors = 0;
  4418. mddev->raid_disks = 0;
  4419. mddev->recovery_cp = 0;
  4420. mddev->resync_min = 0;
  4421. mddev->resync_max = MaxSector;
  4422. mddev->reshape_position = MaxSector;
  4423. mddev->external = 0;
  4424. mddev->persistent = 0;
  4425. mddev->level = LEVEL_NONE;
  4426. mddev->clevel[0] = 0;
  4427. mddev->flags = 0;
  4428. mddev->ro = 0;
  4429. mddev->metadata_type[0] = 0;
  4430. mddev->chunk_sectors = 0;
  4431. mddev->ctime = mddev->utime = 0;
  4432. mddev->layout = 0;
  4433. mddev->max_disks = 0;
  4434. mddev->events = 0;
  4435. mddev->can_decrease_events = 0;
  4436. mddev->delta_disks = 0;
  4437. mddev->new_level = LEVEL_NONE;
  4438. mddev->new_layout = 0;
  4439. mddev->new_chunk_sectors = 0;
  4440. mddev->curr_resync = 0;
  4441. mddev->resync_mismatches = 0;
  4442. mddev->suspend_lo = mddev->suspend_hi = 0;
  4443. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4444. mddev->recovery = 0;
  4445. mddev->in_sync = 0;
  4446. mddev->changed = 0;
  4447. mddev->degraded = 0;
  4448. mddev->safemode = 0;
  4449. mddev->bitmap_info.offset = 0;
  4450. mddev->bitmap_info.default_offset = 0;
  4451. mddev->bitmap_info.chunksize = 0;
  4452. mddev->bitmap_info.daemon_sleep = 0;
  4453. mddev->bitmap_info.max_write_behind = 0;
  4454. }
  4455. static void __md_stop_writes(struct mddev *mddev)
  4456. {
  4457. if (mddev->sync_thread) {
  4458. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4459. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4460. reap_sync_thread(mddev);
  4461. }
  4462. del_timer_sync(&mddev->safemode_timer);
  4463. bitmap_flush(mddev);
  4464. md_super_wait(mddev);
  4465. if (!mddev->in_sync || mddev->flags) {
  4466. /* mark array as shutdown cleanly */
  4467. mddev->in_sync = 1;
  4468. md_update_sb(mddev, 1);
  4469. }
  4470. }
  4471. void md_stop_writes(struct mddev *mddev)
  4472. {
  4473. mddev_lock(mddev);
  4474. __md_stop_writes(mddev);
  4475. mddev_unlock(mddev);
  4476. }
  4477. EXPORT_SYMBOL_GPL(md_stop_writes);
  4478. void md_stop(struct mddev *mddev)
  4479. {
  4480. mddev->ready = 0;
  4481. mddev->pers->stop(mddev);
  4482. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4483. mddev->to_remove = &md_redundancy_group;
  4484. module_put(mddev->pers->owner);
  4485. mddev->pers = NULL;
  4486. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4487. }
  4488. EXPORT_SYMBOL_GPL(md_stop);
  4489. static int md_set_readonly(struct mddev *mddev, int is_open)
  4490. {
  4491. int err = 0;
  4492. mutex_lock(&mddev->open_mutex);
  4493. if (atomic_read(&mddev->openers) > is_open) {
  4494. printk("md: %s still in use.\n",mdname(mddev));
  4495. err = -EBUSY;
  4496. goto out;
  4497. }
  4498. if (mddev->pers) {
  4499. __md_stop_writes(mddev);
  4500. err = -ENXIO;
  4501. if (mddev->ro==1)
  4502. goto out;
  4503. mddev->ro = 1;
  4504. set_disk_ro(mddev->gendisk, 1);
  4505. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4506. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4507. err = 0;
  4508. }
  4509. out:
  4510. mutex_unlock(&mddev->open_mutex);
  4511. return err;
  4512. }
  4513. /* mode:
  4514. * 0 - completely stop and dis-assemble array
  4515. * 2 - stop but do not disassemble array
  4516. */
  4517. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4518. {
  4519. struct gendisk *disk = mddev->gendisk;
  4520. struct md_rdev *rdev;
  4521. mutex_lock(&mddev->open_mutex);
  4522. if (atomic_read(&mddev->openers) > is_open ||
  4523. mddev->sysfs_active) {
  4524. printk("md: %s still in use.\n",mdname(mddev));
  4525. mutex_unlock(&mddev->open_mutex);
  4526. return -EBUSY;
  4527. }
  4528. if (mddev->pers) {
  4529. if (mddev->ro)
  4530. set_disk_ro(disk, 0);
  4531. __md_stop_writes(mddev);
  4532. md_stop(mddev);
  4533. mddev->queue->merge_bvec_fn = NULL;
  4534. mddev->queue->backing_dev_info.congested_fn = NULL;
  4535. /* tell userspace to handle 'inactive' */
  4536. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4537. list_for_each_entry(rdev, &mddev->disks, same_set)
  4538. if (rdev->raid_disk >= 0)
  4539. sysfs_unlink_rdev(mddev, rdev);
  4540. set_capacity(disk, 0);
  4541. mutex_unlock(&mddev->open_mutex);
  4542. mddev->changed = 1;
  4543. revalidate_disk(disk);
  4544. if (mddev->ro)
  4545. mddev->ro = 0;
  4546. } else
  4547. mutex_unlock(&mddev->open_mutex);
  4548. /*
  4549. * Free resources if final stop
  4550. */
  4551. if (mode == 0) {
  4552. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4553. bitmap_destroy(mddev);
  4554. if (mddev->bitmap_info.file) {
  4555. restore_bitmap_write_access(mddev->bitmap_info.file);
  4556. fput(mddev->bitmap_info.file);
  4557. mddev->bitmap_info.file = NULL;
  4558. }
  4559. mddev->bitmap_info.offset = 0;
  4560. export_array(mddev);
  4561. md_clean(mddev);
  4562. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4563. if (mddev->hold_active == UNTIL_STOP)
  4564. mddev->hold_active = 0;
  4565. }
  4566. blk_integrity_unregister(disk);
  4567. md_new_event(mddev);
  4568. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4569. return 0;
  4570. }
  4571. #ifndef MODULE
  4572. static void autorun_array(struct mddev *mddev)
  4573. {
  4574. struct md_rdev *rdev;
  4575. int err;
  4576. if (list_empty(&mddev->disks))
  4577. return;
  4578. printk(KERN_INFO "md: running: ");
  4579. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4580. char b[BDEVNAME_SIZE];
  4581. printk("<%s>", bdevname(rdev->bdev,b));
  4582. }
  4583. printk("\n");
  4584. err = do_md_run(mddev);
  4585. if (err) {
  4586. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4587. do_md_stop(mddev, 0, 0);
  4588. }
  4589. }
  4590. /*
  4591. * lets try to run arrays based on all disks that have arrived
  4592. * until now. (those are in pending_raid_disks)
  4593. *
  4594. * the method: pick the first pending disk, collect all disks with
  4595. * the same UUID, remove all from the pending list and put them into
  4596. * the 'same_array' list. Then order this list based on superblock
  4597. * update time (freshest comes first), kick out 'old' disks and
  4598. * compare superblocks. If everything's fine then run it.
  4599. *
  4600. * If "unit" is allocated, then bump its reference count
  4601. */
  4602. static void autorun_devices(int part)
  4603. {
  4604. struct md_rdev *rdev0, *rdev, *tmp;
  4605. struct mddev *mddev;
  4606. char b[BDEVNAME_SIZE];
  4607. printk(KERN_INFO "md: autorun ...\n");
  4608. while (!list_empty(&pending_raid_disks)) {
  4609. int unit;
  4610. dev_t dev;
  4611. LIST_HEAD(candidates);
  4612. rdev0 = list_entry(pending_raid_disks.next,
  4613. struct md_rdev, same_set);
  4614. printk(KERN_INFO "md: considering %s ...\n",
  4615. bdevname(rdev0->bdev,b));
  4616. INIT_LIST_HEAD(&candidates);
  4617. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4618. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4619. printk(KERN_INFO "md: adding %s ...\n",
  4620. bdevname(rdev->bdev,b));
  4621. list_move(&rdev->same_set, &candidates);
  4622. }
  4623. /*
  4624. * now we have a set of devices, with all of them having
  4625. * mostly sane superblocks. It's time to allocate the
  4626. * mddev.
  4627. */
  4628. if (part) {
  4629. dev = MKDEV(mdp_major,
  4630. rdev0->preferred_minor << MdpMinorShift);
  4631. unit = MINOR(dev) >> MdpMinorShift;
  4632. } else {
  4633. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4634. unit = MINOR(dev);
  4635. }
  4636. if (rdev0->preferred_minor != unit) {
  4637. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4638. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4639. break;
  4640. }
  4641. md_probe(dev, NULL, NULL);
  4642. mddev = mddev_find(dev);
  4643. if (!mddev || !mddev->gendisk) {
  4644. if (mddev)
  4645. mddev_put(mddev);
  4646. printk(KERN_ERR
  4647. "md: cannot allocate memory for md drive.\n");
  4648. break;
  4649. }
  4650. if (mddev_lock(mddev))
  4651. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4652. mdname(mddev));
  4653. else if (mddev->raid_disks || mddev->major_version
  4654. || !list_empty(&mddev->disks)) {
  4655. printk(KERN_WARNING
  4656. "md: %s already running, cannot run %s\n",
  4657. mdname(mddev), bdevname(rdev0->bdev,b));
  4658. mddev_unlock(mddev);
  4659. } else {
  4660. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4661. mddev->persistent = 1;
  4662. rdev_for_each_list(rdev, tmp, &candidates) {
  4663. list_del_init(&rdev->same_set);
  4664. if (bind_rdev_to_array(rdev, mddev))
  4665. export_rdev(rdev);
  4666. }
  4667. autorun_array(mddev);
  4668. mddev_unlock(mddev);
  4669. }
  4670. /* on success, candidates will be empty, on error
  4671. * it won't...
  4672. */
  4673. rdev_for_each_list(rdev, tmp, &candidates) {
  4674. list_del_init(&rdev->same_set);
  4675. export_rdev(rdev);
  4676. }
  4677. mddev_put(mddev);
  4678. }
  4679. printk(KERN_INFO "md: ... autorun DONE.\n");
  4680. }
  4681. #endif /* !MODULE */
  4682. static int get_version(void __user * arg)
  4683. {
  4684. mdu_version_t ver;
  4685. ver.major = MD_MAJOR_VERSION;
  4686. ver.minor = MD_MINOR_VERSION;
  4687. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4688. if (copy_to_user(arg, &ver, sizeof(ver)))
  4689. return -EFAULT;
  4690. return 0;
  4691. }
  4692. static int get_array_info(struct mddev * mddev, void __user * arg)
  4693. {
  4694. mdu_array_info_t info;
  4695. int nr,working,insync,failed,spare;
  4696. struct md_rdev *rdev;
  4697. nr=working=insync=failed=spare=0;
  4698. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4699. nr++;
  4700. if (test_bit(Faulty, &rdev->flags))
  4701. failed++;
  4702. else {
  4703. working++;
  4704. if (test_bit(In_sync, &rdev->flags))
  4705. insync++;
  4706. else
  4707. spare++;
  4708. }
  4709. }
  4710. info.major_version = mddev->major_version;
  4711. info.minor_version = mddev->minor_version;
  4712. info.patch_version = MD_PATCHLEVEL_VERSION;
  4713. info.ctime = mddev->ctime;
  4714. info.level = mddev->level;
  4715. info.size = mddev->dev_sectors / 2;
  4716. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4717. info.size = -1;
  4718. info.nr_disks = nr;
  4719. info.raid_disks = mddev->raid_disks;
  4720. info.md_minor = mddev->md_minor;
  4721. info.not_persistent= !mddev->persistent;
  4722. info.utime = mddev->utime;
  4723. info.state = 0;
  4724. if (mddev->in_sync)
  4725. info.state = (1<<MD_SB_CLEAN);
  4726. if (mddev->bitmap && mddev->bitmap_info.offset)
  4727. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4728. info.active_disks = insync;
  4729. info.working_disks = working;
  4730. info.failed_disks = failed;
  4731. info.spare_disks = spare;
  4732. info.layout = mddev->layout;
  4733. info.chunk_size = mddev->chunk_sectors << 9;
  4734. if (copy_to_user(arg, &info, sizeof(info)))
  4735. return -EFAULT;
  4736. return 0;
  4737. }
  4738. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4739. {
  4740. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4741. char *ptr, *buf = NULL;
  4742. int err = -ENOMEM;
  4743. if (md_allow_write(mddev))
  4744. file = kmalloc(sizeof(*file), GFP_NOIO);
  4745. else
  4746. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4747. if (!file)
  4748. goto out;
  4749. /* bitmap disabled, zero the first byte and copy out */
  4750. if (!mddev->bitmap || !mddev->bitmap->file) {
  4751. file->pathname[0] = '\0';
  4752. goto copy_out;
  4753. }
  4754. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4755. if (!buf)
  4756. goto out;
  4757. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4758. if (IS_ERR(ptr))
  4759. goto out;
  4760. strcpy(file->pathname, ptr);
  4761. copy_out:
  4762. err = 0;
  4763. if (copy_to_user(arg, file, sizeof(*file)))
  4764. err = -EFAULT;
  4765. out:
  4766. kfree(buf);
  4767. kfree(file);
  4768. return err;
  4769. }
  4770. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4771. {
  4772. mdu_disk_info_t info;
  4773. struct md_rdev *rdev;
  4774. if (copy_from_user(&info, arg, sizeof(info)))
  4775. return -EFAULT;
  4776. rdev = find_rdev_nr(mddev, info.number);
  4777. if (rdev) {
  4778. info.major = MAJOR(rdev->bdev->bd_dev);
  4779. info.minor = MINOR(rdev->bdev->bd_dev);
  4780. info.raid_disk = rdev->raid_disk;
  4781. info.state = 0;
  4782. if (test_bit(Faulty, &rdev->flags))
  4783. info.state |= (1<<MD_DISK_FAULTY);
  4784. else if (test_bit(In_sync, &rdev->flags)) {
  4785. info.state |= (1<<MD_DISK_ACTIVE);
  4786. info.state |= (1<<MD_DISK_SYNC);
  4787. }
  4788. if (test_bit(WriteMostly, &rdev->flags))
  4789. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4790. } else {
  4791. info.major = info.minor = 0;
  4792. info.raid_disk = -1;
  4793. info.state = (1<<MD_DISK_REMOVED);
  4794. }
  4795. if (copy_to_user(arg, &info, sizeof(info)))
  4796. return -EFAULT;
  4797. return 0;
  4798. }
  4799. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4800. {
  4801. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4802. struct md_rdev *rdev;
  4803. dev_t dev = MKDEV(info->major,info->minor);
  4804. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4805. return -EOVERFLOW;
  4806. if (!mddev->raid_disks) {
  4807. int err;
  4808. /* expecting a device which has a superblock */
  4809. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4810. if (IS_ERR(rdev)) {
  4811. printk(KERN_WARNING
  4812. "md: md_import_device returned %ld\n",
  4813. PTR_ERR(rdev));
  4814. return PTR_ERR(rdev);
  4815. }
  4816. if (!list_empty(&mddev->disks)) {
  4817. struct md_rdev *rdev0
  4818. = list_entry(mddev->disks.next,
  4819. struct md_rdev, same_set);
  4820. err = super_types[mddev->major_version]
  4821. .load_super(rdev, rdev0, mddev->minor_version);
  4822. if (err < 0) {
  4823. printk(KERN_WARNING
  4824. "md: %s has different UUID to %s\n",
  4825. bdevname(rdev->bdev,b),
  4826. bdevname(rdev0->bdev,b2));
  4827. export_rdev(rdev);
  4828. return -EINVAL;
  4829. }
  4830. }
  4831. err = bind_rdev_to_array(rdev, mddev);
  4832. if (err)
  4833. export_rdev(rdev);
  4834. return err;
  4835. }
  4836. /*
  4837. * add_new_disk can be used once the array is assembled
  4838. * to add "hot spares". They must already have a superblock
  4839. * written
  4840. */
  4841. if (mddev->pers) {
  4842. int err;
  4843. if (!mddev->pers->hot_add_disk) {
  4844. printk(KERN_WARNING
  4845. "%s: personality does not support diskops!\n",
  4846. mdname(mddev));
  4847. return -EINVAL;
  4848. }
  4849. if (mddev->persistent)
  4850. rdev = md_import_device(dev, mddev->major_version,
  4851. mddev->minor_version);
  4852. else
  4853. rdev = md_import_device(dev, -1, -1);
  4854. if (IS_ERR(rdev)) {
  4855. printk(KERN_WARNING
  4856. "md: md_import_device returned %ld\n",
  4857. PTR_ERR(rdev));
  4858. return PTR_ERR(rdev);
  4859. }
  4860. /* set saved_raid_disk if appropriate */
  4861. if (!mddev->persistent) {
  4862. if (info->state & (1<<MD_DISK_SYNC) &&
  4863. info->raid_disk < mddev->raid_disks) {
  4864. rdev->raid_disk = info->raid_disk;
  4865. set_bit(In_sync, &rdev->flags);
  4866. } else
  4867. rdev->raid_disk = -1;
  4868. } else
  4869. super_types[mddev->major_version].
  4870. validate_super(mddev, rdev);
  4871. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4872. (!test_bit(In_sync, &rdev->flags) ||
  4873. rdev->raid_disk != info->raid_disk)) {
  4874. /* This was a hot-add request, but events doesn't
  4875. * match, so reject it.
  4876. */
  4877. export_rdev(rdev);
  4878. return -EINVAL;
  4879. }
  4880. if (test_bit(In_sync, &rdev->flags))
  4881. rdev->saved_raid_disk = rdev->raid_disk;
  4882. else
  4883. rdev->saved_raid_disk = -1;
  4884. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4885. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4886. set_bit(WriteMostly, &rdev->flags);
  4887. else
  4888. clear_bit(WriteMostly, &rdev->flags);
  4889. rdev->raid_disk = -1;
  4890. err = bind_rdev_to_array(rdev, mddev);
  4891. if (!err && !mddev->pers->hot_remove_disk) {
  4892. /* If there is hot_add_disk but no hot_remove_disk
  4893. * then added disks for geometry changes,
  4894. * and should be added immediately.
  4895. */
  4896. super_types[mddev->major_version].
  4897. validate_super(mddev, rdev);
  4898. err = mddev->pers->hot_add_disk(mddev, rdev);
  4899. if (err)
  4900. unbind_rdev_from_array(rdev);
  4901. }
  4902. if (err)
  4903. export_rdev(rdev);
  4904. else
  4905. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4906. md_update_sb(mddev, 1);
  4907. if (mddev->degraded)
  4908. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4909. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4910. if (!err)
  4911. md_new_event(mddev);
  4912. md_wakeup_thread(mddev->thread);
  4913. return err;
  4914. }
  4915. /* otherwise, add_new_disk is only allowed
  4916. * for major_version==0 superblocks
  4917. */
  4918. if (mddev->major_version != 0) {
  4919. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4920. mdname(mddev));
  4921. return -EINVAL;
  4922. }
  4923. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4924. int err;
  4925. rdev = md_import_device(dev, -1, 0);
  4926. if (IS_ERR(rdev)) {
  4927. printk(KERN_WARNING
  4928. "md: error, md_import_device() returned %ld\n",
  4929. PTR_ERR(rdev));
  4930. return PTR_ERR(rdev);
  4931. }
  4932. rdev->desc_nr = info->number;
  4933. if (info->raid_disk < mddev->raid_disks)
  4934. rdev->raid_disk = info->raid_disk;
  4935. else
  4936. rdev->raid_disk = -1;
  4937. if (rdev->raid_disk < mddev->raid_disks)
  4938. if (info->state & (1<<MD_DISK_SYNC))
  4939. set_bit(In_sync, &rdev->flags);
  4940. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4941. set_bit(WriteMostly, &rdev->flags);
  4942. if (!mddev->persistent) {
  4943. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4944. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4945. } else
  4946. rdev->sb_start = calc_dev_sboffset(rdev);
  4947. rdev->sectors = rdev->sb_start;
  4948. err = bind_rdev_to_array(rdev, mddev);
  4949. if (err) {
  4950. export_rdev(rdev);
  4951. return err;
  4952. }
  4953. }
  4954. return 0;
  4955. }
  4956. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  4957. {
  4958. char b[BDEVNAME_SIZE];
  4959. struct md_rdev *rdev;
  4960. rdev = find_rdev(mddev, dev);
  4961. if (!rdev)
  4962. return -ENXIO;
  4963. if (rdev->raid_disk >= 0)
  4964. goto busy;
  4965. kick_rdev_from_array(rdev);
  4966. md_update_sb(mddev, 1);
  4967. md_new_event(mddev);
  4968. return 0;
  4969. busy:
  4970. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4971. bdevname(rdev->bdev,b), mdname(mddev));
  4972. return -EBUSY;
  4973. }
  4974. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  4975. {
  4976. char b[BDEVNAME_SIZE];
  4977. int err;
  4978. struct md_rdev *rdev;
  4979. if (!mddev->pers)
  4980. return -ENODEV;
  4981. if (mddev->major_version != 0) {
  4982. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4983. " version-0 superblocks.\n",
  4984. mdname(mddev));
  4985. return -EINVAL;
  4986. }
  4987. if (!mddev->pers->hot_add_disk) {
  4988. printk(KERN_WARNING
  4989. "%s: personality does not support diskops!\n",
  4990. mdname(mddev));
  4991. return -EINVAL;
  4992. }
  4993. rdev = md_import_device(dev, -1, 0);
  4994. if (IS_ERR(rdev)) {
  4995. printk(KERN_WARNING
  4996. "md: error, md_import_device() returned %ld\n",
  4997. PTR_ERR(rdev));
  4998. return -EINVAL;
  4999. }
  5000. if (mddev->persistent)
  5001. rdev->sb_start = calc_dev_sboffset(rdev);
  5002. else
  5003. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5004. rdev->sectors = rdev->sb_start;
  5005. if (test_bit(Faulty, &rdev->flags)) {
  5006. printk(KERN_WARNING
  5007. "md: can not hot-add faulty %s disk to %s!\n",
  5008. bdevname(rdev->bdev,b), mdname(mddev));
  5009. err = -EINVAL;
  5010. goto abort_export;
  5011. }
  5012. clear_bit(In_sync, &rdev->flags);
  5013. rdev->desc_nr = -1;
  5014. rdev->saved_raid_disk = -1;
  5015. err = bind_rdev_to_array(rdev, mddev);
  5016. if (err)
  5017. goto abort_export;
  5018. /*
  5019. * The rest should better be atomic, we can have disk failures
  5020. * noticed in interrupt contexts ...
  5021. */
  5022. rdev->raid_disk = -1;
  5023. md_update_sb(mddev, 1);
  5024. /*
  5025. * Kick recovery, maybe this spare has to be added to the
  5026. * array immediately.
  5027. */
  5028. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5029. md_wakeup_thread(mddev->thread);
  5030. md_new_event(mddev);
  5031. return 0;
  5032. abort_export:
  5033. export_rdev(rdev);
  5034. return err;
  5035. }
  5036. static int set_bitmap_file(struct mddev *mddev, int fd)
  5037. {
  5038. int err;
  5039. if (mddev->pers) {
  5040. if (!mddev->pers->quiesce)
  5041. return -EBUSY;
  5042. if (mddev->recovery || mddev->sync_thread)
  5043. return -EBUSY;
  5044. /* we should be able to change the bitmap.. */
  5045. }
  5046. if (fd >= 0) {
  5047. if (mddev->bitmap)
  5048. return -EEXIST; /* cannot add when bitmap is present */
  5049. mddev->bitmap_info.file = fget(fd);
  5050. if (mddev->bitmap_info.file == NULL) {
  5051. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5052. mdname(mddev));
  5053. return -EBADF;
  5054. }
  5055. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5056. if (err) {
  5057. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5058. mdname(mddev));
  5059. fput(mddev->bitmap_info.file);
  5060. mddev->bitmap_info.file = NULL;
  5061. return err;
  5062. }
  5063. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5064. } else if (mddev->bitmap == NULL)
  5065. return -ENOENT; /* cannot remove what isn't there */
  5066. err = 0;
  5067. if (mddev->pers) {
  5068. mddev->pers->quiesce(mddev, 1);
  5069. if (fd >= 0) {
  5070. err = bitmap_create(mddev);
  5071. if (!err)
  5072. err = bitmap_load(mddev);
  5073. }
  5074. if (fd < 0 || err) {
  5075. bitmap_destroy(mddev);
  5076. fd = -1; /* make sure to put the file */
  5077. }
  5078. mddev->pers->quiesce(mddev, 0);
  5079. }
  5080. if (fd < 0) {
  5081. if (mddev->bitmap_info.file) {
  5082. restore_bitmap_write_access(mddev->bitmap_info.file);
  5083. fput(mddev->bitmap_info.file);
  5084. }
  5085. mddev->bitmap_info.file = NULL;
  5086. }
  5087. return err;
  5088. }
  5089. /*
  5090. * set_array_info is used two different ways
  5091. * The original usage is when creating a new array.
  5092. * In this usage, raid_disks is > 0 and it together with
  5093. * level, size, not_persistent,layout,chunksize determine the
  5094. * shape of the array.
  5095. * This will always create an array with a type-0.90.0 superblock.
  5096. * The newer usage is when assembling an array.
  5097. * In this case raid_disks will be 0, and the major_version field is
  5098. * use to determine which style super-blocks are to be found on the devices.
  5099. * The minor and patch _version numbers are also kept incase the
  5100. * super_block handler wishes to interpret them.
  5101. */
  5102. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5103. {
  5104. if (info->raid_disks == 0) {
  5105. /* just setting version number for superblock loading */
  5106. if (info->major_version < 0 ||
  5107. info->major_version >= ARRAY_SIZE(super_types) ||
  5108. super_types[info->major_version].name == NULL) {
  5109. /* maybe try to auto-load a module? */
  5110. printk(KERN_INFO
  5111. "md: superblock version %d not known\n",
  5112. info->major_version);
  5113. return -EINVAL;
  5114. }
  5115. mddev->major_version = info->major_version;
  5116. mddev->minor_version = info->minor_version;
  5117. mddev->patch_version = info->patch_version;
  5118. mddev->persistent = !info->not_persistent;
  5119. /* ensure mddev_put doesn't delete this now that there
  5120. * is some minimal configuration.
  5121. */
  5122. mddev->ctime = get_seconds();
  5123. return 0;
  5124. }
  5125. mddev->major_version = MD_MAJOR_VERSION;
  5126. mddev->minor_version = MD_MINOR_VERSION;
  5127. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5128. mddev->ctime = get_seconds();
  5129. mddev->level = info->level;
  5130. mddev->clevel[0] = 0;
  5131. mddev->dev_sectors = 2 * (sector_t)info->size;
  5132. mddev->raid_disks = info->raid_disks;
  5133. /* don't set md_minor, it is determined by which /dev/md* was
  5134. * openned
  5135. */
  5136. if (info->state & (1<<MD_SB_CLEAN))
  5137. mddev->recovery_cp = MaxSector;
  5138. else
  5139. mddev->recovery_cp = 0;
  5140. mddev->persistent = ! info->not_persistent;
  5141. mddev->external = 0;
  5142. mddev->layout = info->layout;
  5143. mddev->chunk_sectors = info->chunk_size >> 9;
  5144. mddev->max_disks = MD_SB_DISKS;
  5145. if (mddev->persistent)
  5146. mddev->flags = 0;
  5147. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5148. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5149. mddev->bitmap_info.offset = 0;
  5150. mddev->reshape_position = MaxSector;
  5151. /*
  5152. * Generate a 128 bit UUID
  5153. */
  5154. get_random_bytes(mddev->uuid, 16);
  5155. mddev->new_level = mddev->level;
  5156. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5157. mddev->new_layout = mddev->layout;
  5158. mddev->delta_disks = 0;
  5159. return 0;
  5160. }
  5161. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5162. {
  5163. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5164. if (mddev->external_size)
  5165. return;
  5166. mddev->array_sectors = array_sectors;
  5167. }
  5168. EXPORT_SYMBOL(md_set_array_sectors);
  5169. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5170. {
  5171. struct md_rdev *rdev;
  5172. int rv;
  5173. int fit = (num_sectors == 0);
  5174. if (mddev->pers->resize == NULL)
  5175. return -EINVAL;
  5176. /* The "num_sectors" is the number of sectors of each device that
  5177. * is used. This can only make sense for arrays with redundancy.
  5178. * linear and raid0 always use whatever space is available. We can only
  5179. * consider changing this number if no resync or reconstruction is
  5180. * happening, and if the new size is acceptable. It must fit before the
  5181. * sb_start or, if that is <data_offset, it must fit before the size
  5182. * of each device. If num_sectors is zero, we find the largest size
  5183. * that fits.
  5184. */
  5185. if (mddev->sync_thread)
  5186. return -EBUSY;
  5187. if (mddev->bitmap)
  5188. /* Sorry, cannot grow a bitmap yet, just remove it,
  5189. * grow, and re-add.
  5190. */
  5191. return -EBUSY;
  5192. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5193. sector_t avail = rdev->sectors;
  5194. if (fit && (num_sectors == 0 || num_sectors > avail))
  5195. num_sectors = avail;
  5196. if (avail < num_sectors)
  5197. return -ENOSPC;
  5198. }
  5199. rv = mddev->pers->resize(mddev, num_sectors);
  5200. if (!rv)
  5201. revalidate_disk(mddev->gendisk);
  5202. return rv;
  5203. }
  5204. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5205. {
  5206. int rv;
  5207. /* change the number of raid disks */
  5208. if (mddev->pers->check_reshape == NULL)
  5209. return -EINVAL;
  5210. if (raid_disks <= 0 ||
  5211. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5212. return -EINVAL;
  5213. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5214. return -EBUSY;
  5215. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5216. rv = mddev->pers->check_reshape(mddev);
  5217. if (rv < 0)
  5218. mddev->delta_disks = 0;
  5219. return rv;
  5220. }
  5221. /*
  5222. * update_array_info is used to change the configuration of an
  5223. * on-line array.
  5224. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5225. * fields in the info are checked against the array.
  5226. * Any differences that cannot be handled will cause an error.
  5227. * Normally, only one change can be managed at a time.
  5228. */
  5229. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5230. {
  5231. int rv = 0;
  5232. int cnt = 0;
  5233. int state = 0;
  5234. /* calculate expected state,ignoring low bits */
  5235. if (mddev->bitmap && mddev->bitmap_info.offset)
  5236. state |= (1 << MD_SB_BITMAP_PRESENT);
  5237. if (mddev->major_version != info->major_version ||
  5238. mddev->minor_version != info->minor_version ||
  5239. /* mddev->patch_version != info->patch_version || */
  5240. mddev->ctime != info->ctime ||
  5241. mddev->level != info->level ||
  5242. /* mddev->layout != info->layout || */
  5243. !mddev->persistent != info->not_persistent||
  5244. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5245. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5246. ((state^info->state) & 0xfffffe00)
  5247. )
  5248. return -EINVAL;
  5249. /* Check there is only one change */
  5250. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5251. cnt++;
  5252. if (mddev->raid_disks != info->raid_disks)
  5253. cnt++;
  5254. if (mddev->layout != info->layout)
  5255. cnt++;
  5256. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5257. cnt++;
  5258. if (cnt == 0)
  5259. return 0;
  5260. if (cnt > 1)
  5261. return -EINVAL;
  5262. if (mddev->layout != info->layout) {
  5263. /* Change layout
  5264. * we don't need to do anything at the md level, the
  5265. * personality will take care of it all.
  5266. */
  5267. if (mddev->pers->check_reshape == NULL)
  5268. return -EINVAL;
  5269. else {
  5270. mddev->new_layout = info->layout;
  5271. rv = mddev->pers->check_reshape(mddev);
  5272. if (rv)
  5273. mddev->new_layout = mddev->layout;
  5274. return rv;
  5275. }
  5276. }
  5277. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5278. rv = update_size(mddev, (sector_t)info->size * 2);
  5279. if (mddev->raid_disks != info->raid_disks)
  5280. rv = update_raid_disks(mddev, info->raid_disks);
  5281. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5282. if (mddev->pers->quiesce == NULL)
  5283. return -EINVAL;
  5284. if (mddev->recovery || mddev->sync_thread)
  5285. return -EBUSY;
  5286. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5287. /* add the bitmap */
  5288. if (mddev->bitmap)
  5289. return -EEXIST;
  5290. if (mddev->bitmap_info.default_offset == 0)
  5291. return -EINVAL;
  5292. mddev->bitmap_info.offset =
  5293. mddev->bitmap_info.default_offset;
  5294. mddev->pers->quiesce(mddev, 1);
  5295. rv = bitmap_create(mddev);
  5296. if (!rv)
  5297. rv = bitmap_load(mddev);
  5298. if (rv)
  5299. bitmap_destroy(mddev);
  5300. mddev->pers->quiesce(mddev, 0);
  5301. } else {
  5302. /* remove the bitmap */
  5303. if (!mddev->bitmap)
  5304. return -ENOENT;
  5305. if (mddev->bitmap->file)
  5306. return -EINVAL;
  5307. mddev->pers->quiesce(mddev, 1);
  5308. bitmap_destroy(mddev);
  5309. mddev->pers->quiesce(mddev, 0);
  5310. mddev->bitmap_info.offset = 0;
  5311. }
  5312. }
  5313. md_update_sb(mddev, 1);
  5314. return rv;
  5315. }
  5316. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5317. {
  5318. struct md_rdev *rdev;
  5319. if (mddev->pers == NULL)
  5320. return -ENODEV;
  5321. rdev = find_rdev(mddev, dev);
  5322. if (!rdev)
  5323. return -ENODEV;
  5324. md_error(mddev, rdev);
  5325. if (!test_bit(Faulty, &rdev->flags))
  5326. return -EBUSY;
  5327. return 0;
  5328. }
  5329. /*
  5330. * We have a problem here : there is no easy way to give a CHS
  5331. * virtual geometry. We currently pretend that we have a 2 heads
  5332. * 4 sectors (with a BIG number of cylinders...). This drives
  5333. * dosfs just mad... ;-)
  5334. */
  5335. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5336. {
  5337. struct mddev *mddev = bdev->bd_disk->private_data;
  5338. geo->heads = 2;
  5339. geo->sectors = 4;
  5340. geo->cylinders = mddev->array_sectors / 8;
  5341. return 0;
  5342. }
  5343. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5344. unsigned int cmd, unsigned long arg)
  5345. {
  5346. int err = 0;
  5347. void __user *argp = (void __user *)arg;
  5348. struct mddev *mddev = NULL;
  5349. int ro;
  5350. if (!capable(CAP_SYS_ADMIN))
  5351. return -EACCES;
  5352. /*
  5353. * Commands dealing with the RAID driver but not any
  5354. * particular array:
  5355. */
  5356. switch (cmd)
  5357. {
  5358. case RAID_VERSION:
  5359. err = get_version(argp);
  5360. goto done;
  5361. case PRINT_RAID_DEBUG:
  5362. err = 0;
  5363. md_print_devices();
  5364. goto done;
  5365. #ifndef MODULE
  5366. case RAID_AUTORUN:
  5367. err = 0;
  5368. autostart_arrays(arg);
  5369. goto done;
  5370. #endif
  5371. default:;
  5372. }
  5373. /*
  5374. * Commands creating/starting a new array:
  5375. */
  5376. mddev = bdev->bd_disk->private_data;
  5377. if (!mddev) {
  5378. BUG();
  5379. goto abort;
  5380. }
  5381. err = mddev_lock(mddev);
  5382. if (err) {
  5383. printk(KERN_INFO
  5384. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5385. err, cmd);
  5386. goto abort;
  5387. }
  5388. switch (cmd)
  5389. {
  5390. case SET_ARRAY_INFO:
  5391. {
  5392. mdu_array_info_t info;
  5393. if (!arg)
  5394. memset(&info, 0, sizeof(info));
  5395. else if (copy_from_user(&info, argp, sizeof(info))) {
  5396. err = -EFAULT;
  5397. goto abort_unlock;
  5398. }
  5399. if (mddev->pers) {
  5400. err = update_array_info(mddev, &info);
  5401. if (err) {
  5402. printk(KERN_WARNING "md: couldn't update"
  5403. " array info. %d\n", err);
  5404. goto abort_unlock;
  5405. }
  5406. goto done_unlock;
  5407. }
  5408. if (!list_empty(&mddev->disks)) {
  5409. printk(KERN_WARNING
  5410. "md: array %s already has disks!\n",
  5411. mdname(mddev));
  5412. err = -EBUSY;
  5413. goto abort_unlock;
  5414. }
  5415. if (mddev->raid_disks) {
  5416. printk(KERN_WARNING
  5417. "md: array %s already initialised!\n",
  5418. mdname(mddev));
  5419. err = -EBUSY;
  5420. goto abort_unlock;
  5421. }
  5422. err = set_array_info(mddev, &info);
  5423. if (err) {
  5424. printk(KERN_WARNING "md: couldn't set"
  5425. " array info. %d\n", err);
  5426. goto abort_unlock;
  5427. }
  5428. }
  5429. goto done_unlock;
  5430. default:;
  5431. }
  5432. /*
  5433. * Commands querying/configuring an existing array:
  5434. */
  5435. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5436. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5437. if ((!mddev->raid_disks && !mddev->external)
  5438. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5439. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5440. && cmd != GET_BITMAP_FILE) {
  5441. err = -ENODEV;
  5442. goto abort_unlock;
  5443. }
  5444. /*
  5445. * Commands even a read-only array can execute:
  5446. */
  5447. switch (cmd)
  5448. {
  5449. case GET_ARRAY_INFO:
  5450. err = get_array_info(mddev, argp);
  5451. goto done_unlock;
  5452. case GET_BITMAP_FILE:
  5453. err = get_bitmap_file(mddev, argp);
  5454. goto done_unlock;
  5455. case GET_DISK_INFO:
  5456. err = get_disk_info(mddev, argp);
  5457. goto done_unlock;
  5458. case RESTART_ARRAY_RW:
  5459. err = restart_array(mddev);
  5460. goto done_unlock;
  5461. case STOP_ARRAY:
  5462. err = do_md_stop(mddev, 0, 1);
  5463. goto done_unlock;
  5464. case STOP_ARRAY_RO:
  5465. err = md_set_readonly(mddev, 1);
  5466. goto done_unlock;
  5467. case BLKROSET:
  5468. if (get_user(ro, (int __user *)(arg))) {
  5469. err = -EFAULT;
  5470. goto done_unlock;
  5471. }
  5472. err = -EINVAL;
  5473. /* if the bdev is going readonly the value of mddev->ro
  5474. * does not matter, no writes are coming
  5475. */
  5476. if (ro)
  5477. goto done_unlock;
  5478. /* are we are already prepared for writes? */
  5479. if (mddev->ro != 1)
  5480. goto done_unlock;
  5481. /* transitioning to readauto need only happen for
  5482. * arrays that call md_write_start
  5483. */
  5484. if (mddev->pers) {
  5485. err = restart_array(mddev);
  5486. if (err == 0) {
  5487. mddev->ro = 2;
  5488. set_disk_ro(mddev->gendisk, 0);
  5489. }
  5490. }
  5491. goto done_unlock;
  5492. }
  5493. /*
  5494. * The remaining ioctls are changing the state of the
  5495. * superblock, so we do not allow them on read-only arrays.
  5496. * However non-MD ioctls (e.g. get-size) will still come through
  5497. * here and hit the 'default' below, so only disallow
  5498. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5499. */
  5500. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5501. if (mddev->ro == 2) {
  5502. mddev->ro = 0;
  5503. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5504. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5505. md_wakeup_thread(mddev->thread);
  5506. } else {
  5507. err = -EROFS;
  5508. goto abort_unlock;
  5509. }
  5510. }
  5511. switch (cmd)
  5512. {
  5513. case ADD_NEW_DISK:
  5514. {
  5515. mdu_disk_info_t info;
  5516. if (copy_from_user(&info, argp, sizeof(info)))
  5517. err = -EFAULT;
  5518. else
  5519. err = add_new_disk(mddev, &info);
  5520. goto done_unlock;
  5521. }
  5522. case HOT_REMOVE_DISK:
  5523. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5524. goto done_unlock;
  5525. case HOT_ADD_DISK:
  5526. err = hot_add_disk(mddev, new_decode_dev(arg));
  5527. goto done_unlock;
  5528. case SET_DISK_FAULTY:
  5529. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5530. goto done_unlock;
  5531. case RUN_ARRAY:
  5532. err = do_md_run(mddev);
  5533. goto done_unlock;
  5534. case SET_BITMAP_FILE:
  5535. err = set_bitmap_file(mddev, (int)arg);
  5536. goto done_unlock;
  5537. default:
  5538. err = -EINVAL;
  5539. goto abort_unlock;
  5540. }
  5541. done_unlock:
  5542. abort_unlock:
  5543. if (mddev->hold_active == UNTIL_IOCTL &&
  5544. err != -EINVAL)
  5545. mddev->hold_active = 0;
  5546. mddev_unlock(mddev);
  5547. return err;
  5548. done:
  5549. if (err)
  5550. MD_BUG();
  5551. abort:
  5552. return err;
  5553. }
  5554. #ifdef CONFIG_COMPAT
  5555. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5556. unsigned int cmd, unsigned long arg)
  5557. {
  5558. switch (cmd) {
  5559. case HOT_REMOVE_DISK:
  5560. case HOT_ADD_DISK:
  5561. case SET_DISK_FAULTY:
  5562. case SET_BITMAP_FILE:
  5563. /* These take in integer arg, do not convert */
  5564. break;
  5565. default:
  5566. arg = (unsigned long)compat_ptr(arg);
  5567. break;
  5568. }
  5569. return md_ioctl(bdev, mode, cmd, arg);
  5570. }
  5571. #endif /* CONFIG_COMPAT */
  5572. static int md_open(struct block_device *bdev, fmode_t mode)
  5573. {
  5574. /*
  5575. * Succeed if we can lock the mddev, which confirms that
  5576. * it isn't being stopped right now.
  5577. */
  5578. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5579. int err;
  5580. if (mddev->gendisk != bdev->bd_disk) {
  5581. /* we are racing with mddev_put which is discarding this
  5582. * bd_disk.
  5583. */
  5584. mddev_put(mddev);
  5585. /* Wait until bdev->bd_disk is definitely gone */
  5586. flush_workqueue(md_misc_wq);
  5587. /* Then retry the open from the top */
  5588. return -ERESTARTSYS;
  5589. }
  5590. BUG_ON(mddev != bdev->bd_disk->private_data);
  5591. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5592. goto out;
  5593. err = 0;
  5594. atomic_inc(&mddev->openers);
  5595. mutex_unlock(&mddev->open_mutex);
  5596. check_disk_change(bdev);
  5597. out:
  5598. return err;
  5599. }
  5600. static int md_release(struct gendisk *disk, fmode_t mode)
  5601. {
  5602. struct mddev *mddev = disk->private_data;
  5603. BUG_ON(!mddev);
  5604. atomic_dec(&mddev->openers);
  5605. mddev_put(mddev);
  5606. return 0;
  5607. }
  5608. static int md_media_changed(struct gendisk *disk)
  5609. {
  5610. struct mddev *mddev = disk->private_data;
  5611. return mddev->changed;
  5612. }
  5613. static int md_revalidate(struct gendisk *disk)
  5614. {
  5615. struct mddev *mddev = disk->private_data;
  5616. mddev->changed = 0;
  5617. return 0;
  5618. }
  5619. static const struct block_device_operations md_fops =
  5620. {
  5621. .owner = THIS_MODULE,
  5622. .open = md_open,
  5623. .release = md_release,
  5624. .ioctl = md_ioctl,
  5625. #ifdef CONFIG_COMPAT
  5626. .compat_ioctl = md_compat_ioctl,
  5627. #endif
  5628. .getgeo = md_getgeo,
  5629. .media_changed = md_media_changed,
  5630. .revalidate_disk= md_revalidate,
  5631. };
  5632. static int md_thread(void * arg)
  5633. {
  5634. struct md_thread *thread = arg;
  5635. /*
  5636. * md_thread is a 'system-thread', it's priority should be very
  5637. * high. We avoid resource deadlocks individually in each
  5638. * raid personality. (RAID5 does preallocation) We also use RR and
  5639. * the very same RT priority as kswapd, thus we will never get
  5640. * into a priority inversion deadlock.
  5641. *
  5642. * we definitely have to have equal or higher priority than
  5643. * bdflush, otherwise bdflush will deadlock if there are too
  5644. * many dirty RAID5 blocks.
  5645. */
  5646. allow_signal(SIGKILL);
  5647. while (!kthread_should_stop()) {
  5648. /* We need to wait INTERRUPTIBLE so that
  5649. * we don't add to the load-average.
  5650. * That means we need to be sure no signals are
  5651. * pending
  5652. */
  5653. if (signal_pending(current))
  5654. flush_signals(current);
  5655. wait_event_interruptible_timeout
  5656. (thread->wqueue,
  5657. test_bit(THREAD_WAKEUP, &thread->flags)
  5658. || kthread_should_stop(),
  5659. thread->timeout);
  5660. clear_bit(THREAD_WAKEUP, &thread->flags);
  5661. if (!kthread_should_stop())
  5662. thread->run(thread->mddev);
  5663. }
  5664. return 0;
  5665. }
  5666. void md_wakeup_thread(struct md_thread *thread)
  5667. {
  5668. if (thread) {
  5669. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5670. set_bit(THREAD_WAKEUP, &thread->flags);
  5671. wake_up(&thread->wqueue);
  5672. }
  5673. }
  5674. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5675. const char *name)
  5676. {
  5677. struct md_thread *thread;
  5678. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5679. if (!thread)
  5680. return NULL;
  5681. init_waitqueue_head(&thread->wqueue);
  5682. thread->run = run;
  5683. thread->mddev = mddev;
  5684. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5685. thread->tsk = kthread_run(md_thread, thread,
  5686. "%s_%s",
  5687. mdname(thread->mddev),
  5688. name ?: mddev->pers->name);
  5689. if (IS_ERR(thread->tsk)) {
  5690. kfree(thread);
  5691. return NULL;
  5692. }
  5693. return thread;
  5694. }
  5695. void md_unregister_thread(struct md_thread **threadp)
  5696. {
  5697. struct md_thread *thread = *threadp;
  5698. if (!thread)
  5699. return;
  5700. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5701. /* Locking ensures that mddev_unlock does not wake_up a
  5702. * non-existent thread
  5703. */
  5704. spin_lock(&pers_lock);
  5705. *threadp = NULL;
  5706. spin_unlock(&pers_lock);
  5707. kthread_stop(thread->tsk);
  5708. kfree(thread);
  5709. }
  5710. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5711. {
  5712. if (!mddev) {
  5713. MD_BUG();
  5714. return;
  5715. }
  5716. if (!rdev || test_bit(Faulty, &rdev->flags))
  5717. return;
  5718. if (!mddev->pers || !mddev->pers->error_handler)
  5719. return;
  5720. mddev->pers->error_handler(mddev,rdev);
  5721. if (mddev->degraded)
  5722. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5723. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5724. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5725. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5726. md_wakeup_thread(mddev->thread);
  5727. if (mddev->event_work.func)
  5728. queue_work(md_misc_wq, &mddev->event_work);
  5729. md_new_event_inintr(mddev);
  5730. }
  5731. /* seq_file implementation /proc/mdstat */
  5732. static void status_unused(struct seq_file *seq)
  5733. {
  5734. int i = 0;
  5735. struct md_rdev *rdev;
  5736. seq_printf(seq, "unused devices: ");
  5737. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5738. char b[BDEVNAME_SIZE];
  5739. i++;
  5740. seq_printf(seq, "%s ",
  5741. bdevname(rdev->bdev,b));
  5742. }
  5743. if (!i)
  5744. seq_printf(seq, "<none>");
  5745. seq_printf(seq, "\n");
  5746. }
  5747. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5748. {
  5749. sector_t max_sectors, resync, res;
  5750. unsigned long dt, db;
  5751. sector_t rt;
  5752. int scale;
  5753. unsigned int per_milli;
  5754. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5755. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5756. max_sectors = mddev->resync_max_sectors;
  5757. else
  5758. max_sectors = mddev->dev_sectors;
  5759. /*
  5760. * Should not happen.
  5761. */
  5762. if (!max_sectors) {
  5763. MD_BUG();
  5764. return;
  5765. }
  5766. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5767. * in a sector_t, and (max_sectors>>scale) will fit in a
  5768. * u32, as those are the requirements for sector_div.
  5769. * Thus 'scale' must be at least 10
  5770. */
  5771. scale = 10;
  5772. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5773. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5774. scale++;
  5775. }
  5776. res = (resync>>scale)*1000;
  5777. sector_div(res, (u32)((max_sectors>>scale)+1));
  5778. per_milli = res;
  5779. {
  5780. int i, x = per_milli/50, y = 20-x;
  5781. seq_printf(seq, "[");
  5782. for (i = 0; i < x; i++)
  5783. seq_printf(seq, "=");
  5784. seq_printf(seq, ">");
  5785. for (i = 0; i < y; i++)
  5786. seq_printf(seq, ".");
  5787. seq_printf(seq, "] ");
  5788. }
  5789. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5790. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5791. "reshape" :
  5792. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5793. "check" :
  5794. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5795. "resync" : "recovery"))),
  5796. per_milli/10, per_milli % 10,
  5797. (unsigned long long) resync/2,
  5798. (unsigned long long) max_sectors/2);
  5799. /*
  5800. * dt: time from mark until now
  5801. * db: blocks written from mark until now
  5802. * rt: remaining time
  5803. *
  5804. * rt is a sector_t, so could be 32bit or 64bit.
  5805. * So we divide before multiply in case it is 32bit and close
  5806. * to the limit.
  5807. * We scale the divisor (db) by 32 to avoid losing precision
  5808. * near the end of resync when the number of remaining sectors
  5809. * is close to 'db'.
  5810. * We then divide rt by 32 after multiplying by db to compensate.
  5811. * The '+1' avoids division by zero if db is very small.
  5812. */
  5813. dt = ((jiffies - mddev->resync_mark) / HZ);
  5814. if (!dt) dt++;
  5815. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5816. - mddev->resync_mark_cnt;
  5817. rt = max_sectors - resync; /* number of remaining sectors */
  5818. sector_div(rt, db/32+1);
  5819. rt *= dt;
  5820. rt >>= 5;
  5821. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5822. ((unsigned long)rt % 60)/6);
  5823. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5824. }
  5825. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5826. {
  5827. struct list_head *tmp;
  5828. loff_t l = *pos;
  5829. struct mddev *mddev;
  5830. if (l >= 0x10000)
  5831. return NULL;
  5832. if (!l--)
  5833. /* header */
  5834. return (void*)1;
  5835. spin_lock(&all_mddevs_lock);
  5836. list_for_each(tmp,&all_mddevs)
  5837. if (!l--) {
  5838. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5839. mddev_get(mddev);
  5840. spin_unlock(&all_mddevs_lock);
  5841. return mddev;
  5842. }
  5843. spin_unlock(&all_mddevs_lock);
  5844. if (!l--)
  5845. return (void*)2;/* tail */
  5846. return NULL;
  5847. }
  5848. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5849. {
  5850. struct list_head *tmp;
  5851. struct mddev *next_mddev, *mddev = v;
  5852. ++*pos;
  5853. if (v == (void*)2)
  5854. return NULL;
  5855. spin_lock(&all_mddevs_lock);
  5856. if (v == (void*)1)
  5857. tmp = all_mddevs.next;
  5858. else
  5859. tmp = mddev->all_mddevs.next;
  5860. if (tmp != &all_mddevs)
  5861. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5862. else {
  5863. next_mddev = (void*)2;
  5864. *pos = 0x10000;
  5865. }
  5866. spin_unlock(&all_mddevs_lock);
  5867. if (v != (void*)1)
  5868. mddev_put(mddev);
  5869. return next_mddev;
  5870. }
  5871. static void md_seq_stop(struct seq_file *seq, void *v)
  5872. {
  5873. struct mddev *mddev = v;
  5874. if (mddev && v != (void*)1 && v != (void*)2)
  5875. mddev_put(mddev);
  5876. }
  5877. static int md_seq_show(struct seq_file *seq, void *v)
  5878. {
  5879. struct mddev *mddev = v;
  5880. sector_t sectors;
  5881. struct md_rdev *rdev;
  5882. struct bitmap *bitmap;
  5883. if (v == (void*)1) {
  5884. struct md_personality *pers;
  5885. seq_printf(seq, "Personalities : ");
  5886. spin_lock(&pers_lock);
  5887. list_for_each_entry(pers, &pers_list, list)
  5888. seq_printf(seq, "[%s] ", pers->name);
  5889. spin_unlock(&pers_lock);
  5890. seq_printf(seq, "\n");
  5891. seq->poll_event = atomic_read(&md_event_count);
  5892. return 0;
  5893. }
  5894. if (v == (void*)2) {
  5895. status_unused(seq);
  5896. return 0;
  5897. }
  5898. if (mddev_lock(mddev) < 0)
  5899. return -EINTR;
  5900. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5901. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5902. mddev->pers ? "" : "in");
  5903. if (mddev->pers) {
  5904. if (mddev->ro==1)
  5905. seq_printf(seq, " (read-only)");
  5906. if (mddev->ro==2)
  5907. seq_printf(seq, " (auto-read-only)");
  5908. seq_printf(seq, " %s", mddev->pers->name);
  5909. }
  5910. sectors = 0;
  5911. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5912. char b[BDEVNAME_SIZE];
  5913. seq_printf(seq, " %s[%d]",
  5914. bdevname(rdev->bdev,b), rdev->desc_nr);
  5915. if (test_bit(WriteMostly, &rdev->flags))
  5916. seq_printf(seq, "(W)");
  5917. if (test_bit(Faulty, &rdev->flags)) {
  5918. seq_printf(seq, "(F)");
  5919. continue;
  5920. } else if (rdev->raid_disk < 0)
  5921. seq_printf(seq, "(S)"); /* spare */
  5922. sectors += rdev->sectors;
  5923. }
  5924. if (!list_empty(&mddev->disks)) {
  5925. if (mddev->pers)
  5926. seq_printf(seq, "\n %llu blocks",
  5927. (unsigned long long)
  5928. mddev->array_sectors / 2);
  5929. else
  5930. seq_printf(seq, "\n %llu blocks",
  5931. (unsigned long long)sectors / 2);
  5932. }
  5933. if (mddev->persistent) {
  5934. if (mddev->major_version != 0 ||
  5935. mddev->minor_version != 90) {
  5936. seq_printf(seq," super %d.%d",
  5937. mddev->major_version,
  5938. mddev->minor_version);
  5939. }
  5940. } else if (mddev->external)
  5941. seq_printf(seq, " super external:%s",
  5942. mddev->metadata_type);
  5943. else
  5944. seq_printf(seq, " super non-persistent");
  5945. if (mddev->pers) {
  5946. mddev->pers->status(seq, mddev);
  5947. seq_printf(seq, "\n ");
  5948. if (mddev->pers->sync_request) {
  5949. if (mddev->curr_resync > 2) {
  5950. status_resync(seq, mddev);
  5951. seq_printf(seq, "\n ");
  5952. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5953. seq_printf(seq, "\tresync=DELAYED\n ");
  5954. else if (mddev->recovery_cp < MaxSector)
  5955. seq_printf(seq, "\tresync=PENDING\n ");
  5956. }
  5957. } else
  5958. seq_printf(seq, "\n ");
  5959. if ((bitmap = mddev->bitmap)) {
  5960. unsigned long chunk_kb;
  5961. unsigned long flags;
  5962. spin_lock_irqsave(&bitmap->lock, flags);
  5963. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5964. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5965. "%lu%s chunk",
  5966. bitmap->pages - bitmap->missing_pages,
  5967. bitmap->pages,
  5968. (bitmap->pages - bitmap->missing_pages)
  5969. << (PAGE_SHIFT - 10),
  5970. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5971. chunk_kb ? "KB" : "B");
  5972. if (bitmap->file) {
  5973. seq_printf(seq, ", file: ");
  5974. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5975. }
  5976. seq_printf(seq, "\n");
  5977. spin_unlock_irqrestore(&bitmap->lock, flags);
  5978. }
  5979. seq_printf(seq, "\n");
  5980. }
  5981. mddev_unlock(mddev);
  5982. return 0;
  5983. }
  5984. static const struct seq_operations md_seq_ops = {
  5985. .start = md_seq_start,
  5986. .next = md_seq_next,
  5987. .stop = md_seq_stop,
  5988. .show = md_seq_show,
  5989. };
  5990. static int md_seq_open(struct inode *inode, struct file *file)
  5991. {
  5992. struct seq_file *seq;
  5993. int error;
  5994. error = seq_open(file, &md_seq_ops);
  5995. if (error)
  5996. return error;
  5997. seq = file->private_data;
  5998. seq->poll_event = atomic_read(&md_event_count);
  5999. return error;
  6000. }
  6001. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6002. {
  6003. struct seq_file *seq = filp->private_data;
  6004. int mask;
  6005. poll_wait(filp, &md_event_waiters, wait);
  6006. /* always allow read */
  6007. mask = POLLIN | POLLRDNORM;
  6008. if (seq->poll_event != atomic_read(&md_event_count))
  6009. mask |= POLLERR | POLLPRI;
  6010. return mask;
  6011. }
  6012. static const struct file_operations md_seq_fops = {
  6013. .owner = THIS_MODULE,
  6014. .open = md_seq_open,
  6015. .read = seq_read,
  6016. .llseek = seq_lseek,
  6017. .release = seq_release_private,
  6018. .poll = mdstat_poll,
  6019. };
  6020. int register_md_personality(struct md_personality *p)
  6021. {
  6022. spin_lock(&pers_lock);
  6023. list_add_tail(&p->list, &pers_list);
  6024. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6025. spin_unlock(&pers_lock);
  6026. return 0;
  6027. }
  6028. int unregister_md_personality(struct md_personality *p)
  6029. {
  6030. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6031. spin_lock(&pers_lock);
  6032. list_del_init(&p->list);
  6033. spin_unlock(&pers_lock);
  6034. return 0;
  6035. }
  6036. static int is_mddev_idle(struct mddev *mddev, int init)
  6037. {
  6038. struct md_rdev * rdev;
  6039. int idle;
  6040. int curr_events;
  6041. idle = 1;
  6042. rcu_read_lock();
  6043. rdev_for_each_rcu(rdev, mddev) {
  6044. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6045. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6046. (int)part_stat_read(&disk->part0, sectors[1]) -
  6047. atomic_read(&disk->sync_io);
  6048. /* sync IO will cause sync_io to increase before the disk_stats
  6049. * as sync_io is counted when a request starts, and
  6050. * disk_stats is counted when it completes.
  6051. * So resync activity will cause curr_events to be smaller than
  6052. * when there was no such activity.
  6053. * non-sync IO will cause disk_stat to increase without
  6054. * increasing sync_io so curr_events will (eventually)
  6055. * be larger than it was before. Once it becomes
  6056. * substantially larger, the test below will cause
  6057. * the array to appear non-idle, and resync will slow
  6058. * down.
  6059. * If there is a lot of outstanding resync activity when
  6060. * we set last_event to curr_events, then all that activity
  6061. * completing might cause the array to appear non-idle
  6062. * and resync will be slowed down even though there might
  6063. * not have been non-resync activity. This will only
  6064. * happen once though. 'last_events' will soon reflect
  6065. * the state where there is little or no outstanding
  6066. * resync requests, and further resync activity will
  6067. * always make curr_events less than last_events.
  6068. *
  6069. */
  6070. if (init || curr_events - rdev->last_events > 64) {
  6071. rdev->last_events = curr_events;
  6072. idle = 0;
  6073. }
  6074. }
  6075. rcu_read_unlock();
  6076. return idle;
  6077. }
  6078. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6079. {
  6080. /* another "blocks" (512byte) blocks have been synced */
  6081. atomic_sub(blocks, &mddev->recovery_active);
  6082. wake_up(&mddev->recovery_wait);
  6083. if (!ok) {
  6084. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6085. md_wakeup_thread(mddev->thread);
  6086. // stop recovery, signal do_sync ....
  6087. }
  6088. }
  6089. /* md_write_start(mddev, bi)
  6090. * If we need to update some array metadata (e.g. 'active' flag
  6091. * in superblock) before writing, schedule a superblock update
  6092. * and wait for it to complete.
  6093. */
  6094. void md_write_start(struct mddev *mddev, struct bio *bi)
  6095. {
  6096. int did_change = 0;
  6097. if (bio_data_dir(bi) != WRITE)
  6098. return;
  6099. BUG_ON(mddev->ro == 1);
  6100. if (mddev->ro == 2) {
  6101. /* need to switch to read/write */
  6102. mddev->ro = 0;
  6103. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6104. md_wakeup_thread(mddev->thread);
  6105. md_wakeup_thread(mddev->sync_thread);
  6106. did_change = 1;
  6107. }
  6108. atomic_inc(&mddev->writes_pending);
  6109. if (mddev->safemode == 1)
  6110. mddev->safemode = 0;
  6111. if (mddev->in_sync) {
  6112. spin_lock_irq(&mddev->write_lock);
  6113. if (mddev->in_sync) {
  6114. mddev->in_sync = 0;
  6115. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6116. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6117. md_wakeup_thread(mddev->thread);
  6118. did_change = 1;
  6119. }
  6120. spin_unlock_irq(&mddev->write_lock);
  6121. }
  6122. if (did_change)
  6123. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6124. wait_event(mddev->sb_wait,
  6125. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6126. }
  6127. void md_write_end(struct mddev *mddev)
  6128. {
  6129. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6130. if (mddev->safemode == 2)
  6131. md_wakeup_thread(mddev->thread);
  6132. else if (mddev->safemode_delay)
  6133. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6134. }
  6135. }
  6136. /* md_allow_write(mddev)
  6137. * Calling this ensures that the array is marked 'active' so that writes
  6138. * may proceed without blocking. It is important to call this before
  6139. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6140. * Must be called with mddev_lock held.
  6141. *
  6142. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6143. * is dropped, so return -EAGAIN after notifying userspace.
  6144. */
  6145. int md_allow_write(struct mddev *mddev)
  6146. {
  6147. if (!mddev->pers)
  6148. return 0;
  6149. if (mddev->ro)
  6150. return 0;
  6151. if (!mddev->pers->sync_request)
  6152. return 0;
  6153. spin_lock_irq(&mddev->write_lock);
  6154. if (mddev->in_sync) {
  6155. mddev->in_sync = 0;
  6156. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6157. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6158. if (mddev->safemode_delay &&
  6159. mddev->safemode == 0)
  6160. mddev->safemode = 1;
  6161. spin_unlock_irq(&mddev->write_lock);
  6162. md_update_sb(mddev, 0);
  6163. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6164. } else
  6165. spin_unlock_irq(&mddev->write_lock);
  6166. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6167. return -EAGAIN;
  6168. else
  6169. return 0;
  6170. }
  6171. EXPORT_SYMBOL_GPL(md_allow_write);
  6172. #define SYNC_MARKS 10
  6173. #define SYNC_MARK_STEP (3*HZ)
  6174. void md_do_sync(struct mddev *mddev)
  6175. {
  6176. struct mddev *mddev2;
  6177. unsigned int currspeed = 0,
  6178. window;
  6179. sector_t max_sectors,j, io_sectors;
  6180. unsigned long mark[SYNC_MARKS];
  6181. sector_t mark_cnt[SYNC_MARKS];
  6182. int last_mark,m;
  6183. struct list_head *tmp;
  6184. sector_t last_check;
  6185. int skipped = 0;
  6186. struct md_rdev *rdev;
  6187. char *desc;
  6188. /* just incase thread restarts... */
  6189. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6190. return;
  6191. if (mddev->ro) /* never try to sync a read-only array */
  6192. return;
  6193. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6194. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6195. desc = "data-check";
  6196. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6197. desc = "requested-resync";
  6198. else
  6199. desc = "resync";
  6200. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6201. desc = "reshape";
  6202. else
  6203. desc = "recovery";
  6204. /* we overload curr_resync somewhat here.
  6205. * 0 == not engaged in resync at all
  6206. * 2 == checking that there is no conflict with another sync
  6207. * 1 == like 2, but have yielded to allow conflicting resync to
  6208. * commense
  6209. * other == active in resync - this many blocks
  6210. *
  6211. * Before starting a resync we must have set curr_resync to
  6212. * 2, and then checked that every "conflicting" array has curr_resync
  6213. * less than ours. When we find one that is the same or higher
  6214. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6215. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6216. * This will mean we have to start checking from the beginning again.
  6217. *
  6218. */
  6219. do {
  6220. mddev->curr_resync = 2;
  6221. try_again:
  6222. if (kthread_should_stop())
  6223. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6224. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6225. goto skip;
  6226. for_each_mddev(mddev2, tmp) {
  6227. if (mddev2 == mddev)
  6228. continue;
  6229. if (!mddev->parallel_resync
  6230. && mddev2->curr_resync
  6231. && match_mddev_units(mddev, mddev2)) {
  6232. DEFINE_WAIT(wq);
  6233. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6234. /* arbitrarily yield */
  6235. mddev->curr_resync = 1;
  6236. wake_up(&resync_wait);
  6237. }
  6238. if (mddev > mddev2 && mddev->curr_resync == 1)
  6239. /* no need to wait here, we can wait the next
  6240. * time 'round when curr_resync == 2
  6241. */
  6242. continue;
  6243. /* We need to wait 'interruptible' so as not to
  6244. * contribute to the load average, and not to
  6245. * be caught by 'softlockup'
  6246. */
  6247. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6248. if (!kthread_should_stop() &&
  6249. mddev2->curr_resync >= mddev->curr_resync) {
  6250. printk(KERN_INFO "md: delaying %s of %s"
  6251. " until %s has finished (they"
  6252. " share one or more physical units)\n",
  6253. desc, mdname(mddev), mdname(mddev2));
  6254. mddev_put(mddev2);
  6255. if (signal_pending(current))
  6256. flush_signals(current);
  6257. schedule();
  6258. finish_wait(&resync_wait, &wq);
  6259. goto try_again;
  6260. }
  6261. finish_wait(&resync_wait, &wq);
  6262. }
  6263. }
  6264. } while (mddev->curr_resync < 2);
  6265. j = 0;
  6266. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6267. /* resync follows the size requested by the personality,
  6268. * which defaults to physical size, but can be virtual size
  6269. */
  6270. max_sectors = mddev->resync_max_sectors;
  6271. mddev->resync_mismatches = 0;
  6272. /* we don't use the checkpoint if there's a bitmap */
  6273. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6274. j = mddev->resync_min;
  6275. else if (!mddev->bitmap)
  6276. j = mddev->recovery_cp;
  6277. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6278. max_sectors = mddev->dev_sectors;
  6279. else {
  6280. /* recovery follows the physical size of devices */
  6281. max_sectors = mddev->dev_sectors;
  6282. j = MaxSector;
  6283. rcu_read_lock();
  6284. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6285. if (rdev->raid_disk >= 0 &&
  6286. !test_bit(Faulty, &rdev->flags) &&
  6287. !test_bit(In_sync, &rdev->flags) &&
  6288. rdev->recovery_offset < j)
  6289. j = rdev->recovery_offset;
  6290. rcu_read_unlock();
  6291. }
  6292. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6293. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6294. " %d KB/sec/disk.\n", speed_min(mddev));
  6295. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6296. "(but not more than %d KB/sec) for %s.\n",
  6297. speed_max(mddev), desc);
  6298. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6299. io_sectors = 0;
  6300. for (m = 0; m < SYNC_MARKS; m++) {
  6301. mark[m] = jiffies;
  6302. mark_cnt[m] = io_sectors;
  6303. }
  6304. last_mark = 0;
  6305. mddev->resync_mark = mark[last_mark];
  6306. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6307. /*
  6308. * Tune reconstruction:
  6309. */
  6310. window = 32*(PAGE_SIZE/512);
  6311. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6312. window/2, (unsigned long long)max_sectors/2);
  6313. atomic_set(&mddev->recovery_active, 0);
  6314. last_check = 0;
  6315. if (j>2) {
  6316. printk(KERN_INFO
  6317. "md: resuming %s of %s from checkpoint.\n",
  6318. desc, mdname(mddev));
  6319. mddev->curr_resync = j;
  6320. }
  6321. mddev->curr_resync_completed = j;
  6322. while (j < max_sectors) {
  6323. sector_t sectors;
  6324. skipped = 0;
  6325. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6326. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6327. (mddev->curr_resync - mddev->curr_resync_completed)
  6328. > (max_sectors >> 4)) ||
  6329. (j - mddev->curr_resync_completed)*2
  6330. >= mddev->resync_max - mddev->curr_resync_completed
  6331. )) {
  6332. /* time to update curr_resync_completed */
  6333. wait_event(mddev->recovery_wait,
  6334. atomic_read(&mddev->recovery_active) == 0);
  6335. mddev->curr_resync_completed = j;
  6336. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6337. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6338. }
  6339. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6340. /* As this condition is controlled by user-space,
  6341. * we can block indefinitely, so use '_interruptible'
  6342. * to avoid triggering warnings.
  6343. */
  6344. flush_signals(current); /* just in case */
  6345. wait_event_interruptible(mddev->recovery_wait,
  6346. mddev->resync_max > j
  6347. || kthread_should_stop());
  6348. }
  6349. if (kthread_should_stop())
  6350. goto interrupted;
  6351. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6352. currspeed < speed_min(mddev));
  6353. if (sectors == 0) {
  6354. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6355. goto out;
  6356. }
  6357. if (!skipped) { /* actual IO requested */
  6358. io_sectors += sectors;
  6359. atomic_add(sectors, &mddev->recovery_active);
  6360. }
  6361. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6362. break;
  6363. j += sectors;
  6364. if (j>1) mddev->curr_resync = j;
  6365. mddev->curr_mark_cnt = io_sectors;
  6366. if (last_check == 0)
  6367. /* this is the earliest that rebuild will be
  6368. * visible in /proc/mdstat
  6369. */
  6370. md_new_event(mddev);
  6371. if (last_check + window > io_sectors || j == max_sectors)
  6372. continue;
  6373. last_check = io_sectors;
  6374. repeat:
  6375. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6376. /* step marks */
  6377. int next = (last_mark+1) % SYNC_MARKS;
  6378. mddev->resync_mark = mark[next];
  6379. mddev->resync_mark_cnt = mark_cnt[next];
  6380. mark[next] = jiffies;
  6381. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6382. last_mark = next;
  6383. }
  6384. if (kthread_should_stop())
  6385. goto interrupted;
  6386. /*
  6387. * this loop exits only if either when we are slower than
  6388. * the 'hard' speed limit, or the system was IO-idle for
  6389. * a jiffy.
  6390. * the system might be non-idle CPU-wise, but we only care
  6391. * about not overloading the IO subsystem. (things like an
  6392. * e2fsck being done on the RAID array should execute fast)
  6393. */
  6394. cond_resched();
  6395. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6396. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6397. if (currspeed > speed_min(mddev)) {
  6398. if ((currspeed > speed_max(mddev)) ||
  6399. !is_mddev_idle(mddev, 0)) {
  6400. msleep(500);
  6401. goto repeat;
  6402. }
  6403. }
  6404. }
  6405. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6406. /*
  6407. * this also signals 'finished resyncing' to md_stop
  6408. */
  6409. out:
  6410. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6411. /* tell personality that we are finished */
  6412. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6413. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6414. mddev->curr_resync > 2) {
  6415. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6416. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6417. if (mddev->curr_resync >= mddev->recovery_cp) {
  6418. printk(KERN_INFO
  6419. "md: checkpointing %s of %s.\n",
  6420. desc, mdname(mddev));
  6421. mddev->recovery_cp = mddev->curr_resync;
  6422. }
  6423. } else
  6424. mddev->recovery_cp = MaxSector;
  6425. } else {
  6426. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6427. mddev->curr_resync = MaxSector;
  6428. rcu_read_lock();
  6429. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6430. if (rdev->raid_disk >= 0 &&
  6431. mddev->delta_disks >= 0 &&
  6432. !test_bit(Faulty, &rdev->flags) &&
  6433. !test_bit(In_sync, &rdev->flags) &&
  6434. rdev->recovery_offset < mddev->curr_resync)
  6435. rdev->recovery_offset = mddev->curr_resync;
  6436. rcu_read_unlock();
  6437. }
  6438. }
  6439. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6440. skip:
  6441. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6442. /* We completed so min/max setting can be forgotten if used. */
  6443. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6444. mddev->resync_min = 0;
  6445. mddev->resync_max = MaxSector;
  6446. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6447. mddev->resync_min = mddev->curr_resync_completed;
  6448. mddev->curr_resync = 0;
  6449. wake_up(&resync_wait);
  6450. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6451. md_wakeup_thread(mddev->thread);
  6452. return;
  6453. interrupted:
  6454. /*
  6455. * got a signal, exit.
  6456. */
  6457. printk(KERN_INFO
  6458. "md: md_do_sync() got signal ... exiting\n");
  6459. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6460. goto out;
  6461. }
  6462. EXPORT_SYMBOL_GPL(md_do_sync);
  6463. static int remove_and_add_spares(struct mddev *mddev)
  6464. {
  6465. struct md_rdev *rdev;
  6466. int spares = 0;
  6467. mddev->curr_resync_completed = 0;
  6468. list_for_each_entry(rdev, &mddev->disks, same_set)
  6469. if (rdev->raid_disk >= 0 &&
  6470. !test_bit(Blocked, &rdev->flags) &&
  6471. (test_bit(Faulty, &rdev->flags) ||
  6472. ! test_bit(In_sync, &rdev->flags)) &&
  6473. atomic_read(&rdev->nr_pending)==0) {
  6474. if (mddev->pers->hot_remove_disk(
  6475. mddev, rdev->raid_disk)==0) {
  6476. sysfs_unlink_rdev(mddev, rdev);
  6477. rdev->raid_disk = -1;
  6478. }
  6479. }
  6480. if (mddev->degraded) {
  6481. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6482. if (rdev->raid_disk >= 0 &&
  6483. !test_bit(In_sync, &rdev->flags) &&
  6484. !test_bit(Faulty, &rdev->flags))
  6485. spares++;
  6486. if (rdev->raid_disk < 0
  6487. && !test_bit(Faulty, &rdev->flags)) {
  6488. rdev->recovery_offset = 0;
  6489. if (mddev->pers->
  6490. hot_add_disk(mddev, rdev) == 0) {
  6491. if (sysfs_link_rdev(mddev, rdev))
  6492. /* failure here is OK */;
  6493. spares++;
  6494. md_new_event(mddev);
  6495. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6496. } else
  6497. break;
  6498. }
  6499. }
  6500. }
  6501. return spares;
  6502. }
  6503. static void reap_sync_thread(struct mddev *mddev)
  6504. {
  6505. struct md_rdev *rdev;
  6506. /* resync has finished, collect result */
  6507. md_unregister_thread(&mddev->sync_thread);
  6508. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6509. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6510. /* success...*/
  6511. /* activate any spares */
  6512. if (mddev->pers->spare_active(mddev))
  6513. sysfs_notify(&mddev->kobj, NULL,
  6514. "degraded");
  6515. }
  6516. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6517. mddev->pers->finish_reshape)
  6518. mddev->pers->finish_reshape(mddev);
  6519. /* If array is no-longer degraded, then any saved_raid_disk
  6520. * information must be scrapped. Also if any device is now
  6521. * In_sync we must scrape the saved_raid_disk for that device
  6522. * do the superblock for an incrementally recovered device
  6523. * written out.
  6524. */
  6525. list_for_each_entry(rdev, &mddev->disks, same_set)
  6526. if (!mddev->degraded ||
  6527. test_bit(In_sync, &rdev->flags))
  6528. rdev->saved_raid_disk = -1;
  6529. md_update_sb(mddev, 1);
  6530. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6531. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6532. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6533. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6534. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6535. /* flag recovery needed just to double check */
  6536. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6537. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6538. md_new_event(mddev);
  6539. if (mddev->event_work.func)
  6540. queue_work(md_misc_wq, &mddev->event_work);
  6541. }
  6542. /*
  6543. * This routine is regularly called by all per-raid-array threads to
  6544. * deal with generic issues like resync and super-block update.
  6545. * Raid personalities that don't have a thread (linear/raid0) do not
  6546. * need this as they never do any recovery or update the superblock.
  6547. *
  6548. * It does not do any resync itself, but rather "forks" off other threads
  6549. * to do that as needed.
  6550. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6551. * "->recovery" and create a thread at ->sync_thread.
  6552. * When the thread finishes it sets MD_RECOVERY_DONE
  6553. * and wakeups up this thread which will reap the thread and finish up.
  6554. * This thread also removes any faulty devices (with nr_pending == 0).
  6555. *
  6556. * The overall approach is:
  6557. * 1/ if the superblock needs updating, update it.
  6558. * 2/ If a recovery thread is running, don't do anything else.
  6559. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6560. * 4/ If there are any faulty devices, remove them.
  6561. * 5/ If array is degraded, try to add spares devices
  6562. * 6/ If array has spares or is not in-sync, start a resync thread.
  6563. */
  6564. void md_check_recovery(struct mddev *mddev)
  6565. {
  6566. if (mddev->suspended)
  6567. return;
  6568. if (mddev->bitmap)
  6569. bitmap_daemon_work(mddev);
  6570. if (signal_pending(current)) {
  6571. if (mddev->pers->sync_request && !mddev->external) {
  6572. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6573. mdname(mddev));
  6574. mddev->safemode = 2;
  6575. }
  6576. flush_signals(current);
  6577. }
  6578. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6579. return;
  6580. if ( ! (
  6581. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6582. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6583. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6584. (mddev->external == 0 && mddev->safemode == 1) ||
  6585. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6586. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6587. ))
  6588. return;
  6589. if (mddev_trylock(mddev)) {
  6590. int spares = 0;
  6591. if (mddev->ro) {
  6592. /* Only thing we do on a ro array is remove
  6593. * failed devices.
  6594. */
  6595. struct md_rdev *rdev;
  6596. list_for_each_entry(rdev, &mddev->disks, same_set)
  6597. if (rdev->raid_disk >= 0 &&
  6598. !test_bit(Blocked, &rdev->flags) &&
  6599. test_bit(Faulty, &rdev->flags) &&
  6600. atomic_read(&rdev->nr_pending)==0) {
  6601. if (mddev->pers->hot_remove_disk(
  6602. mddev, rdev->raid_disk)==0) {
  6603. sysfs_unlink_rdev(mddev, rdev);
  6604. rdev->raid_disk = -1;
  6605. }
  6606. }
  6607. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6608. goto unlock;
  6609. }
  6610. if (!mddev->external) {
  6611. int did_change = 0;
  6612. spin_lock_irq(&mddev->write_lock);
  6613. if (mddev->safemode &&
  6614. !atomic_read(&mddev->writes_pending) &&
  6615. !mddev->in_sync &&
  6616. mddev->recovery_cp == MaxSector) {
  6617. mddev->in_sync = 1;
  6618. did_change = 1;
  6619. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6620. }
  6621. if (mddev->safemode == 1)
  6622. mddev->safemode = 0;
  6623. spin_unlock_irq(&mddev->write_lock);
  6624. if (did_change)
  6625. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6626. }
  6627. if (mddev->flags)
  6628. md_update_sb(mddev, 0);
  6629. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6630. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6631. /* resync/recovery still happening */
  6632. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6633. goto unlock;
  6634. }
  6635. if (mddev->sync_thread) {
  6636. reap_sync_thread(mddev);
  6637. goto unlock;
  6638. }
  6639. /* Set RUNNING before clearing NEEDED to avoid
  6640. * any transients in the value of "sync_action".
  6641. */
  6642. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6643. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6644. /* Clear some bits that don't mean anything, but
  6645. * might be left set
  6646. */
  6647. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6648. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6649. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6650. goto unlock;
  6651. /* no recovery is running.
  6652. * remove any failed drives, then
  6653. * add spares if possible.
  6654. * Spare are also removed and re-added, to allow
  6655. * the personality to fail the re-add.
  6656. */
  6657. if (mddev->reshape_position != MaxSector) {
  6658. if (mddev->pers->check_reshape == NULL ||
  6659. mddev->pers->check_reshape(mddev) != 0)
  6660. /* Cannot proceed */
  6661. goto unlock;
  6662. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6663. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6664. } else if ((spares = remove_and_add_spares(mddev))) {
  6665. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6666. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6667. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6668. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6669. } else if (mddev->recovery_cp < MaxSector) {
  6670. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6671. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6672. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6673. /* nothing to be done ... */
  6674. goto unlock;
  6675. if (mddev->pers->sync_request) {
  6676. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6677. /* We are adding a device or devices to an array
  6678. * which has the bitmap stored on all devices.
  6679. * So make sure all bitmap pages get written
  6680. */
  6681. bitmap_write_all(mddev->bitmap);
  6682. }
  6683. mddev->sync_thread = md_register_thread(md_do_sync,
  6684. mddev,
  6685. "resync");
  6686. if (!mddev->sync_thread) {
  6687. printk(KERN_ERR "%s: could not start resync"
  6688. " thread...\n",
  6689. mdname(mddev));
  6690. /* leave the spares where they are, it shouldn't hurt */
  6691. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6692. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6693. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6694. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6695. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6696. } else
  6697. md_wakeup_thread(mddev->sync_thread);
  6698. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6699. md_new_event(mddev);
  6700. }
  6701. unlock:
  6702. if (!mddev->sync_thread) {
  6703. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6704. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6705. &mddev->recovery))
  6706. if (mddev->sysfs_action)
  6707. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6708. }
  6709. mddev_unlock(mddev);
  6710. }
  6711. }
  6712. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6713. {
  6714. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6715. wait_event_timeout(rdev->blocked_wait,
  6716. !test_bit(Blocked, &rdev->flags) &&
  6717. !test_bit(BlockedBadBlocks, &rdev->flags),
  6718. msecs_to_jiffies(5000));
  6719. rdev_dec_pending(rdev, mddev);
  6720. }
  6721. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6722. /* Bad block management.
  6723. * We can record which blocks on each device are 'bad' and so just
  6724. * fail those blocks, or that stripe, rather than the whole device.
  6725. * Entries in the bad-block table are 64bits wide. This comprises:
  6726. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6727. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6728. * A 'shift' can be set so that larger blocks are tracked and
  6729. * consequently larger devices can be covered.
  6730. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6731. *
  6732. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6733. * might need to retry if it is very unlucky.
  6734. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6735. * so we use the write_seqlock_irq variant.
  6736. *
  6737. * When looking for a bad block we specify a range and want to
  6738. * know if any block in the range is bad. So we binary-search
  6739. * to the last range that starts at-or-before the given endpoint,
  6740. * (or "before the sector after the target range")
  6741. * then see if it ends after the given start.
  6742. * We return
  6743. * 0 if there are no known bad blocks in the range
  6744. * 1 if there are known bad block which are all acknowledged
  6745. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6746. * plus the start/length of the first bad section we overlap.
  6747. */
  6748. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6749. sector_t *first_bad, int *bad_sectors)
  6750. {
  6751. int hi;
  6752. int lo = 0;
  6753. u64 *p = bb->page;
  6754. int rv = 0;
  6755. sector_t target = s + sectors;
  6756. unsigned seq;
  6757. if (bb->shift > 0) {
  6758. /* round the start down, and the end up */
  6759. s >>= bb->shift;
  6760. target += (1<<bb->shift) - 1;
  6761. target >>= bb->shift;
  6762. sectors = target - s;
  6763. }
  6764. /* 'target' is now the first block after the bad range */
  6765. retry:
  6766. seq = read_seqbegin(&bb->lock);
  6767. hi = bb->count;
  6768. /* Binary search between lo and hi for 'target'
  6769. * i.e. for the last range that starts before 'target'
  6770. */
  6771. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6772. * are known not to be the last range before target.
  6773. * VARIANT: hi-lo is the number of possible
  6774. * ranges, and decreases until it reaches 1
  6775. */
  6776. while (hi - lo > 1) {
  6777. int mid = (lo + hi) / 2;
  6778. sector_t a = BB_OFFSET(p[mid]);
  6779. if (a < target)
  6780. /* This could still be the one, earlier ranges
  6781. * could not. */
  6782. lo = mid;
  6783. else
  6784. /* This and later ranges are definitely out. */
  6785. hi = mid;
  6786. }
  6787. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6788. if (hi > lo) {
  6789. /* need to check all range that end after 's' to see if
  6790. * any are unacknowledged.
  6791. */
  6792. while (lo >= 0 &&
  6793. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6794. if (BB_OFFSET(p[lo]) < target) {
  6795. /* starts before the end, and finishes after
  6796. * the start, so they must overlap
  6797. */
  6798. if (rv != -1 && BB_ACK(p[lo]))
  6799. rv = 1;
  6800. else
  6801. rv = -1;
  6802. *first_bad = BB_OFFSET(p[lo]);
  6803. *bad_sectors = BB_LEN(p[lo]);
  6804. }
  6805. lo--;
  6806. }
  6807. }
  6808. if (read_seqretry(&bb->lock, seq))
  6809. goto retry;
  6810. return rv;
  6811. }
  6812. EXPORT_SYMBOL_GPL(md_is_badblock);
  6813. /*
  6814. * Add a range of bad blocks to the table.
  6815. * This might extend the table, or might contract it
  6816. * if two adjacent ranges can be merged.
  6817. * We binary-search to find the 'insertion' point, then
  6818. * decide how best to handle it.
  6819. */
  6820. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6821. int acknowledged)
  6822. {
  6823. u64 *p;
  6824. int lo, hi;
  6825. int rv = 1;
  6826. if (bb->shift < 0)
  6827. /* badblocks are disabled */
  6828. return 0;
  6829. if (bb->shift) {
  6830. /* round the start down, and the end up */
  6831. sector_t next = s + sectors;
  6832. s >>= bb->shift;
  6833. next += (1<<bb->shift) - 1;
  6834. next >>= bb->shift;
  6835. sectors = next - s;
  6836. }
  6837. write_seqlock_irq(&bb->lock);
  6838. p = bb->page;
  6839. lo = 0;
  6840. hi = bb->count;
  6841. /* Find the last range that starts at-or-before 's' */
  6842. while (hi - lo > 1) {
  6843. int mid = (lo + hi) / 2;
  6844. sector_t a = BB_OFFSET(p[mid]);
  6845. if (a <= s)
  6846. lo = mid;
  6847. else
  6848. hi = mid;
  6849. }
  6850. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6851. hi = lo;
  6852. if (hi > lo) {
  6853. /* we found a range that might merge with the start
  6854. * of our new range
  6855. */
  6856. sector_t a = BB_OFFSET(p[lo]);
  6857. sector_t e = a + BB_LEN(p[lo]);
  6858. int ack = BB_ACK(p[lo]);
  6859. if (e >= s) {
  6860. /* Yes, we can merge with a previous range */
  6861. if (s == a && s + sectors >= e)
  6862. /* new range covers old */
  6863. ack = acknowledged;
  6864. else
  6865. ack = ack && acknowledged;
  6866. if (e < s + sectors)
  6867. e = s + sectors;
  6868. if (e - a <= BB_MAX_LEN) {
  6869. p[lo] = BB_MAKE(a, e-a, ack);
  6870. s = e;
  6871. } else {
  6872. /* does not all fit in one range,
  6873. * make p[lo] maximal
  6874. */
  6875. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6876. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6877. s = a + BB_MAX_LEN;
  6878. }
  6879. sectors = e - s;
  6880. }
  6881. }
  6882. if (sectors && hi < bb->count) {
  6883. /* 'hi' points to the first range that starts after 's'.
  6884. * Maybe we can merge with the start of that range */
  6885. sector_t a = BB_OFFSET(p[hi]);
  6886. sector_t e = a + BB_LEN(p[hi]);
  6887. int ack = BB_ACK(p[hi]);
  6888. if (a <= s + sectors) {
  6889. /* merging is possible */
  6890. if (e <= s + sectors) {
  6891. /* full overlap */
  6892. e = s + sectors;
  6893. ack = acknowledged;
  6894. } else
  6895. ack = ack && acknowledged;
  6896. a = s;
  6897. if (e - a <= BB_MAX_LEN) {
  6898. p[hi] = BB_MAKE(a, e-a, ack);
  6899. s = e;
  6900. } else {
  6901. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6902. s = a + BB_MAX_LEN;
  6903. }
  6904. sectors = e - s;
  6905. lo = hi;
  6906. hi++;
  6907. }
  6908. }
  6909. if (sectors == 0 && hi < bb->count) {
  6910. /* we might be able to combine lo and hi */
  6911. /* Note: 's' is at the end of 'lo' */
  6912. sector_t a = BB_OFFSET(p[hi]);
  6913. int lolen = BB_LEN(p[lo]);
  6914. int hilen = BB_LEN(p[hi]);
  6915. int newlen = lolen + hilen - (s - a);
  6916. if (s >= a && newlen < BB_MAX_LEN) {
  6917. /* yes, we can combine them */
  6918. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6919. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6920. memmove(p + hi, p + hi + 1,
  6921. (bb->count - hi - 1) * 8);
  6922. bb->count--;
  6923. }
  6924. }
  6925. while (sectors) {
  6926. /* didn't merge (it all).
  6927. * Need to add a range just before 'hi' */
  6928. if (bb->count >= MD_MAX_BADBLOCKS) {
  6929. /* No room for more */
  6930. rv = 0;
  6931. break;
  6932. } else {
  6933. int this_sectors = sectors;
  6934. memmove(p + hi + 1, p + hi,
  6935. (bb->count - hi) * 8);
  6936. bb->count++;
  6937. if (this_sectors > BB_MAX_LEN)
  6938. this_sectors = BB_MAX_LEN;
  6939. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6940. sectors -= this_sectors;
  6941. s += this_sectors;
  6942. }
  6943. }
  6944. bb->changed = 1;
  6945. if (!acknowledged)
  6946. bb->unacked_exist = 1;
  6947. write_sequnlock_irq(&bb->lock);
  6948. return rv;
  6949. }
  6950. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  6951. int acknowledged)
  6952. {
  6953. int rv = md_set_badblocks(&rdev->badblocks,
  6954. s + rdev->data_offset, sectors, acknowledged);
  6955. if (rv) {
  6956. /* Make sure they get written out promptly */
  6957. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6958. md_wakeup_thread(rdev->mddev->thread);
  6959. }
  6960. return rv;
  6961. }
  6962. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6963. /*
  6964. * Remove a range of bad blocks from the table.
  6965. * This may involve extending the table if we spilt a region,
  6966. * but it must not fail. So if the table becomes full, we just
  6967. * drop the remove request.
  6968. */
  6969. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6970. {
  6971. u64 *p;
  6972. int lo, hi;
  6973. sector_t target = s + sectors;
  6974. int rv = 0;
  6975. if (bb->shift > 0) {
  6976. /* When clearing we round the start up and the end down.
  6977. * This should not matter as the shift should align with
  6978. * the block size and no rounding should ever be needed.
  6979. * However it is better the think a block is bad when it
  6980. * isn't than to think a block is not bad when it is.
  6981. */
  6982. s += (1<<bb->shift) - 1;
  6983. s >>= bb->shift;
  6984. target >>= bb->shift;
  6985. sectors = target - s;
  6986. }
  6987. write_seqlock_irq(&bb->lock);
  6988. p = bb->page;
  6989. lo = 0;
  6990. hi = bb->count;
  6991. /* Find the last range that starts before 'target' */
  6992. while (hi - lo > 1) {
  6993. int mid = (lo + hi) / 2;
  6994. sector_t a = BB_OFFSET(p[mid]);
  6995. if (a < target)
  6996. lo = mid;
  6997. else
  6998. hi = mid;
  6999. }
  7000. if (hi > lo) {
  7001. /* p[lo] is the last range that could overlap the
  7002. * current range. Earlier ranges could also overlap,
  7003. * but only this one can overlap the end of the range.
  7004. */
  7005. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7006. /* Partial overlap, leave the tail of this range */
  7007. int ack = BB_ACK(p[lo]);
  7008. sector_t a = BB_OFFSET(p[lo]);
  7009. sector_t end = a + BB_LEN(p[lo]);
  7010. if (a < s) {
  7011. /* we need to split this range */
  7012. if (bb->count >= MD_MAX_BADBLOCKS) {
  7013. rv = 0;
  7014. goto out;
  7015. }
  7016. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7017. bb->count++;
  7018. p[lo] = BB_MAKE(a, s-a, ack);
  7019. lo++;
  7020. }
  7021. p[lo] = BB_MAKE(target, end - target, ack);
  7022. /* there is no longer an overlap */
  7023. hi = lo;
  7024. lo--;
  7025. }
  7026. while (lo >= 0 &&
  7027. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7028. /* This range does overlap */
  7029. if (BB_OFFSET(p[lo]) < s) {
  7030. /* Keep the early parts of this range. */
  7031. int ack = BB_ACK(p[lo]);
  7032. sector_t start = BB_OFFSET(p[lo]);
  7033. p[lo] = BB_MAKE(start, s - start, ack);
  7034. /* now low doesn't overlap, so.. */
  7035. break;
  7036. }
  7037. lo--;
  7038. }
  7039. /* 'lo' is strictly before, 'hi' is strictly after,
  7040. * anything between needs to be discarded
  7041. */
  7042. if (hi - lo > 1) {
  7043. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7044. bb->count -= (hi - lo - 1);
  7045. }
  7046. }
  7047. bb->changed = 1;
  7048. out:
  7049. write_sequnlock_irq(&bb->lock);
  7050. return rv;
  7051. }
  7052. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7053. {
  7054. return md_clear_badblocks(&rdev->badblocks,
  7055. s + rdev->data_offset,
  7056. sectors);
  7057. }
  7058. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7059. /*
  7060. * Acknowledge all bad blocks in a list.
  7061. * This only succeeds if ->changed is clear. It is used by
  7062. * in-kernel metadata updates
  7063. */
  7064. void md_ack_all_badblocks(struct badblocks *bb)
  7065. {
  7066. if (bb->page == NULL || bb->changed)
  7067. /* no point even trying */
  7068. return;
  7069. write_seqlock_irq(&bb->lock);
  7070. if (bb->changed == 0) {
  7071. u64 *p = bb->page;
  7072. int i;
  7073. for (i = 0; i < bb->count ; i++) {
  7074. if (!BB_ACK(p[i])) {
  7075. sector_t start = BB_OFFSET(p[i]);
  7076. int len = BB_LEN(p[i]);
  7077. p[i] = BB_MAKE(start, len, 1);
  7078. }
  7079. }
  7080. bb->unacked_exist = 0;
  7081. }
  7082. write_sequnlock_irq(&bb->lock);
  7083. }
  7084. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7085. /* sysfs access to bad-blocks list.
  7086. * We present two files.
  7087. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7088. * are recorded as bad. The list is truncated to fit within
  7089. * the one-page limit of sysfs.
  7090. * Writing "sector length" to this file adds an acknowledged
  7091. * bad block list.
  7092. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7093. * been acknowledged. Writing to this file adds bad blocks
  7094. * without acknowledging them. This is largely for testing.
  7095. */
  7096. static ssize_t
  7097. badblocks_show(struct badblocks *bb, char *page, int unack)
  7098. {
  7099. size_t len;
  7100. int i;
  7101. u64 *p = bb->page;
  7102. unsigned seq;
  7103. if (bb->shift < 0)
  7104. return 0;
  7105. retry:
  7106. seq = read_seqbegin(&bb->lock);
  7107. len = 0;
  7108. i = 0;
  7109. while (len < PAGE_SIZE && i < bb->count) {
  7110. sector_t s = BB_OFFSET(p[i]);
  7111. unsigned int length = BB_LEN(p[i]);
  7112. int ack = BB_ACK(p[i]);
  7113. i++;
  7114. if (unack && ack)
  7115. continue;
  7116. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7117. (unsigned long long)s << bb->shift,
  7118. length << bb->shift);
  7119. }
  7120. if (unack && len == 0)
  7121. bb->unacked_exist = 0;
  7122. if (read_seqretry(&bb->lock, seq))
  7123. goto retry;
  7124. return len;
  7125. }
  7126. #define DO_DEBUG 1
  7127. static ssize_t
  7128. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7129. {
  7130. unsigned long long sector;
  7131. int length;
  7132. char newline;
  7133. #ifdef DO_DEBUG
  7134. /* Allow clearing via sysfs *only* for testing/debugging.
  7135. * Normally only a successful write may clear a badblock
  7136. */
  7137. int clear = 0;
  7138. if (page[0] == '-') {
  7139. clear = 1;
  7140. page++;
  7141. }
  7142. #endif /* DO_DEBUG */
  7143. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7144. case 3:
  7145. if (newline != '\n')
  7146. return -EINVAL;
  7147. case 2:
  7148. if (length <= 0)
  7149. return -EINVAL;
  7150. break;
  7151. default:
  7152. return -EINVAL;
  7153. }
  7154. #ifdef DO_DEBUG
  7155. if (clear) {
  7156. md_clear_badblocks(bb, sector, length);
  7157. return len;
  7158. }
  7159. #endif /* DO_DEBUG */
  7160. if (md_set_badblocks(bb, sector, length, !unack))
  7161. return len;
  7162. else
  7163. return -ENOSPC;
  7164. }
  7165. static int md_notify_reboot(struct notifier_block *this,
  7166. unsigned long code, void *x)
  7167. {
  7168. struct list_head *tmp;
  7169. struct mddev *mddev;
  7170. int need_delay = 0;
  7171. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7172. printk(KERN_INFO "md: stopping all md devices.\n");
  7173. for_each_mddev(mddev, tmp) {
  7174. if (mddev_trylock(mddev)) {
  7175. /* Force a switch to readonly even array
  7176. * appears to still be in use. Hence
  7177. * the '100'.
  7178. */
  7179. md_set_readonly(mddev, 100);
  7180. mddev_unlock(mddev);
  7181. }
  7182. need_delay = 1;
  7183. }
  7184. /*
  7185. * certain more exotic SCSI devices are known to be
  7186. * volatile wrt too early system reboots. While the
  7187. * right place to handle this issue is the given
  7188. * driver, we do want to have a safe RAID driver ...
  7189. */
  7190. if (need_delay)
  7191. mdelay(1000*1);
  7192. }
  7193. return NOTIFY_DONE;
  7194. }
  7195. static struct notifier_block md_notifier = {
  7196. .notifier_call = md_notify_reboot,
  7197. .next = NULL,
  7198. .priority = INT_MAX, /* before any real devices */
  7199. };
  7200. static void md_geninit(void)
  7201. {
  7202. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7203. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7204. }
  7205. static int __init md_init(void)
  7206. {
  7207. int ret = -ENOMEM;
  7208. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7209. if (!md_wq)
  7210. goto err_wq;
  7211. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7212. if (!md_misc_wq)
  7213. goto err_misc_wq;
  7214. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7215. goto err_md;
  7216. if ((ret = register_blkdev(0, "mdp")) < 0)
  7217. goto err_mdp;
  7218. mdp_major = ret;
  7219. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7220. md_probe, NULL, NULL);
  7221. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7222. md_probe, NULL, NULL);
  7223. register_reboot_notifier(&md_notifier);
  7224. raid_table_header = register_sysctl_table(raid_root_table);
  7225. md_geninit();
  7226. return 0;
  7227. err_mdp:
  7228. unregister_blkdev(MD_MAJOR, "md");
  7229. err_md:
  7230. destroy_workqueue(md_misc_wq);
  7231. err_misc_wq:
  7232. destroy_workqueue(md_wq);
  7233. err_wq:
  7234. return ret;
  7235. }
  7236. #ifndef MODULE
  7237. /*
  7238. * Searches all registered partitions for autorun RAID arrays
  7239. * at boot time.
  7240. */
  7241. static LIST_HEAD(all_detected_devices);
  7242. struct detected_devices_node {
  7243. struct list_head list;
  7244. dev_t dev;
  7245. };
  7246. void md_autodetect_dev(dev_t dev)
  7247. {
  7248. struct detected_devices_node *node_detected_dev;
  7249. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7250. if (node_detected_dev) {
  7251. node_detected_dev->dev = dev;
  7252. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7253. } else {
  7254. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7255. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7256. }
  7257. }
  7258. static void autostart_arrays(int part)
  7259. {
  7260. struct md_rdev *rdev;
  7261. struct detected_devices_node *node_detected_dev;
  7262. dev_t dev;
  7263. int i_scanned, i_passed;
  7264. i_scanned = 0;
  7265. i_passed = 0;
  7266. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7267. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7268. i_scanned++;
  7269. node_detected_dev = list_entry(all_detected_devices.next,
  7270. struct detected_devices_node, list);
  7271. list_del(&node_detected_dev->list);
  7272. dev = node_detected_dev->dev;
  7273. kfree(node_detected_dev);
  7274. rdev = md_import_device(dev,0, 90);
  7275. if (IS_ERR(rdev))
  7276. continue;
  7277. if (test_bit(Faulty, &rdev->flags)) {
  7278. MD_BUG();
  7279. continue;
  7280. }
  7281. set_bit(AutoDetected, &rdev->flags);
  7282. list_add(&rdev->same_set, &pending_raid_disks);
  7283. i_passed++;
  7284. }
  7285. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7286. i_scanned, i_passed);
  7287. autorun_devices(part);
  7288. }
  7289. #endif /* !MODULE */
  7290. static __exit void md_exit(void)
  7291. {
  7292. struct mddev *mddev;
  7293. struct list_head *tmp;
  7294. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7295. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7296. unregister_blkdev(MD_MAJOR,"md");
  7297. unregister_blkdev(mdp_major, "mdp");
  7298. unregister_reboot_notifier(&md_notifier);
  7299. unregister_sysctl_table(raid_table_header);
  7300. remove_proc_entry("mdstat", NULL);
  7301. for_each_mddev(mddev, tmp) {
  7302. export_array(mddev);
  7303. mddev->hold_active = 0;
  7304. }
  7305. destroy_workqueue(md_misc_wq);
  7306. destroy_workqueue(md_wq);
  7307. }
  7308. subsys_initcall(md_init);
  7309. module_exit(md_exit)
  7310. static int get_ro(char *buffer, struct kernel_param *kp)
  7311. {
  7312. return sprintf(buffer, "%d", start_readonly);
  7313. }
  7314. static int set_ro(const char *val, struct kernel_param *kp)
  7315. {
  7316. char *e;
  7317. int num = simple_strtoul(val, &e, 10);
  7318. if (*val && (*e == '\0' || *e == '\n')) {
  7319. start_readonly = num;
  7320. return 0;
  7321. }
  7322. return -EINVAL;
  7323. }
  7324. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7325. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7326. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7327. EXPORT_SYMBOL(register_md_personality);
  7328. EXPORT_SYMBOL(unregister_md_personality);
  7329. EXPORT_SYMBOL(md_error);
  7330. EXPORT_SYMBOL(md_done_sync);
  7331. EXPORT_SYMBOL(md_write_start);
  7332. EXPORT_SYMBOL(md_write_end);
  7333. EXPORT_SYMBOL(md_register_thread);
  7334. EXPORT_SYMBOL(md_unregister_thread);
  7335. EXPORT_SYMBOL(md_wakeup_thread);
  7336. EXPORT_SYMBOL(md_check_recovery);
  7337. MODULE_LICENSE("GPL");
  7338. MODULE_DESCRIPTION("MD RAID framework");
  7339. MODULE_ALIAS("md");
  7340. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);