sockmap.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* A BPF sock_map is used to store sock objects. This is primarly used
  13. * for doing socket redirect with BPF helper routines.
  14. *
  15. * A sock map may have BPF programs attached to it, currently a program
  16. * used to parse packets and a program to provide a verdict and redirect
  17. * decision on the packet are supported. Any programs attached to a sock
  18. * map are inherited by sock objects when they are added to the map. If
  19. * no BPF programs are attached the sock object may only be used for sock
  20. * redirect.
  21. *
  22. * A sock object may be in multiple maps, but can only inherit a single
  23. * parse or verdict program. If adding a sock object to a map would result
  24. * in having multiple parsing programs the update will return an EBUSY error.
  25. *
  26. * For reference this program is similar to devmap used in XDP context
  27. * reviewing these together may be useful. For an example please review
  28. * ./samples/bpf/sockmap/.
  29. */
  30. #include <linux/bpf.h>
  31. #include <net/sock.h>
  32. #include <linux/filter.h>
  33. #include <linux/errno.h>
  34. #include <linux/file.h>
  35. #include <linux/kernel.h>
  36. #include <linux/net.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/list.h>
  40. #include <linux/mm.h>
  41. #include <net/strparser.h>
  42. #include <net/tcp.h>
  43. #include <linux/ptr_ring.h>
  44. #include <net/inet_common.h>
  45. #include <linux/sched/signal.h>
  46. #define SOCK_CREATE_FLAG_MASK \
  47. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  48. struct bpf_sock_progs {
  49. struct bpf_prog *bpf_tx_msg;
  50. struct bpf_prog *bpf_parse;
  51. struct bpf_prog *bpf_verdict;
  52. };
  53. struct bpf_stab {
  54. struct bpf_map map;
  55. struct sock **sock_map;
  56. struct bpf_sock_progs progs;
  57. raw_spinlock_t lock;
  58. };
  59. struct bucket {
  60. struct hlist_head head;
  61. raw_spinlock_t lock;
  62. };
  63. struct bpf_htab {
  64. struct bpf_map map;
  65. struct bucket *buckets;
  66. atomic_t count;
  67. u32 n_buckets;
  68. u32 elem_size;
  69. struct bpf_sock_progs progs;
  70. struct rcu_head rcu;
  71. };
  72. struct htab_elem {
  73. struct rcu_head rcu;
  74. struct hlist_node hash_node;
  75. u32 hash;
  76. struct sock *sk;
  77. char key[0];
  78. };
  79. enum smap_psock_state {
  80. SMAP_TX_RUNNING,
  81. };
  82. struct smap_psock_map_entry {
  83. struct list_head list;
  84. struct bpf_map *map;
  85. struct sock **entry;
  86. struct htab_elem __rcu *hash_link;
  87. };
  88. struct smap_psock {
  89. struct rcu_head rcu;
  90. refcount_t refcnt;
  91. /* datapath variables */
  92. struct sk_buff_head rxqueue;
  93. bool strp_enabled;
  94. /* datapath error path cache across tx work invocations */
  95. int save_rem;
  96. int save_off;
  97. struct sk_buff *save_skb;
  98. /* datapath variables for tx_msg ULP */
  99. struct sock *sk_redir;
  100. int apply_bytes;
  101. int cork_bytes;
  102. int sg_size;
  103. int eval;
  104. struct sk_msg_buff *cork;
  105. struct list_head ingress;
  106. struct strparser strp;
  107. struct bpf_prog *bpf_tx_msg;
  108. struct bpf_prog *bpf_parse;
  109. struct bpf_prog *bpf_verdict;
  110. struct list_head maps;
  111. spinlock_t maps_lock;
  112. /* Back reference used when sock callback trigger sockmap operations */
  113. struct sock *sock;
  114. unsigned long state;
  115. struct work_struct tx_work;
  116. struct work_struct gc_work;
  117. struct proto *sk_proto;
  118. void (*save_close)(struct sock *sk, long timeout);
  119. void (*save_data_ready)(struct sock *sk);
  120. void (*save_write_space)(struct sock *sk);
  121. };
  122. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  123. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  124. int nonblock, int flags, int *addr_len);
  125. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
  126. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  127. int offset, size_t size, int flags);
  128. static void bpf_tcp_close(struct sock *sk, long timeout);
  129. static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
  130. {
  131. return rcu_dereference_sk_user_data(sk);
  132. }
  133. static bool bpf_tcp_stream_read(const struct sock *sk)
  134. {
  135. struct smap_psock *psock;
  136. bool empty = true;
  137. rcu_read_lock();
  138. psock = smap_psock_sk(sk);
  139. if (unlikely(!psock))
  140. goto out;
  141. empty = list_empty(&psock->ingress);
  142. out:
  143. rcu_read_unlock();
  144. return !empty;
  145. }
  146. enum {
  147. SOCKMAP_IPV4,
  148. SOCKMAP_IPV6,
  149. SOCKMAP_NUM_PROTS,
  150. };
  151. enum {
  152. SOCKMAP_BASE,
  153. SOCKMAP_TX,
  154. SOCKMAP_NUM_CONFIGS,
  155. };
  156. static struct proto *saved_tcpv6_prot __read_mostly;
  157. static DEFINE_SPINLOCK(tcpv6_prot_lock);
  158. static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS];
  159. static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],
  160. struct proto *base)
  161. {
  162. prot[SOCKMAP_BASE] = *base;
  163. prot[SOCKMAP_BASE].close = bpf_tcp_close;
  164. prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg;
  165. prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read;
  166. prot[SOCKMAP_TX] = prot[SOCKMAP_BASE];
  167. prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg;
  168. prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage;
  169. }
  170. static void update_sk_prot(struct sock *sk, struct smap_psock *psock)
  171. {
  172. int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4;
  173. int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE;
  174. sk->sk_prot = &bpf_tcp_prots[family][conf];
  175. }
  176. static int bpf_tcp_init(struct sock *sk)
  177. {
  178. struct smap_psock *psock;
  179. rcu_read_lock();
  180. psock = smap_psock_sk(sk);
  181. if (unlikely(!psock)) {
  182. rcu_read_unlock();
  183. return -EINVAL;
  184. }
  185. if (unlikely(psock->sk_proto)) {
  186. rcu_read_unlock();
  187. return -EBUSY;
  188. }
  189. psock->save_close = sk->sk_prot->close;
  190. psock->sk_proto = sk->sk_prot;
  191. /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */
  192. if (sk->sk_family == AF_INET6 &&
  193. unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
  194. spin_lock_bh(&tcpv6_prot_lock);
  195. if (likely(sk->sk_prot != saved_tcpv6_prot)) {
  196. build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot);
  197. smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
  198. }
  199. spin_unlock_bh(&tcpv6_prot_lock);
  200. }
  201. update_sk_prot(sk, psock);
  202. rcu_read_unlock();
  203. return 0;
  204. }
  205. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  206. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
  207. static void bpf_tcp_release(struct sock *sk)
  208. {
  209. struct smap_psock *psock;
  210. rcu_read_lock();
  211. psock = smap_psock_sk(sk);
  212. if (unlikely(!psock))
  213. goto out;
  214. if (psock->cork) {
  215. free_start_sg(psock->sock, psock->cork);
  216. kfree(psock->cork);
  217. psock->cork = NULL;
  218. }
  219. if (psock->sk_proto) {
  220. sk->sk_prot = psock->sk_proto;
  221. psock->sk_proto = NULL;
  222. }
  223. out:
  224. rcu_read_unlock();
  225. }
  226. static struct htab_elem *lookup_elem_raw(struct hlist_head *head,
  227. u32 hash, void *key, u32 key_size)
  228. {
  229. struct htab_elem *l;
  230. hlist_for_each_entry_rcu(l, head, hash_node) {
  231. if (l->hash == hash && !memcmp(&l->key, key, key_size))
  232. return l;
  233. }
  234. return NULL;
  235. }
  236. static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
  237. {
  238. return &htab->buckets[hash & (htab->n_buckets - 1)];
  239. }
  240. static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
  241. {
  242. return &__select_bucket(htab, hash)->head;
  243. }
  244. static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
  245. {
  246. atomic_dec(&htab->count);
  247. kfree_rcu(l, rcu);
  248. }
  249. static struct smap_psock_map_entry *psock_map_pop(struct sock *sk,
  250. struct smap_psock *psock)
  251. {
  252. struct smap_psock_map_entry *e;
  253. spin_lock_bh(&psock->maps_lock);
  254. e = list_first_entry_or_null(&psock->maps,
  255. struct smap_psock_map_entry,
  256. list);
  257. if (e)
  258. list_del(&e->list);
  259. spin_unlock_bh(&psock->maps_lock);
  260. return e;
  261. }
  262. static void bpf_tcp_close(struct sock *sk, long timeout)
  263. {
  264. void (*close_fun)(struct sock *sk, long timeout);
  265. struct smap_psock_map_entry *e;
  266. struct sk_msg_buff *md, *mtmp;
  267. struct smap_psock *psock;
  268. struct sock *osk;
  269. lock_sock(sk);
  270. rcu_read_lock();
  271. psock = smap_psock_sk(sk);
  272. if (unlikely(!psock)) {
  273. rcu_read_unlock();
  274. release_sock(sk);
  275. return sk->sk_prot->close(sk, timeout);
  276. }
  277. /* The psock may be destroyed anytime after exiting the RCU critial
  278. * section so by the time we use close_fun the psock may no longer
  279. * be valid. However, bpf_tcp_close is called with the sock lock
  280. * held so the close hook and sk are still valid.
  281. */
  282. close_fun = psock->save_close;
  283. if (psock->cork) {
  284. free_start_sg(psock->sock, psock->cork);
  285. kfree(psock->cork);
  286. psock->cork = NULL;
  287. }
  288. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  289. list_del(&md->list);
  290. free_start_sg(psock->sock, md);
  291. kfree(md);
  292. }
  293. e = psock_map_pop(sk, psock);
  294. while (e) {
  295. if (e->entry) {
  296. struct bpf_stab *stab = container_of(e->map, struct bpf_stab, map);
  297. raw_spin_lock_bh(&stab->lock);
  298. osk = *e->entry;
  299. if (osk == sk) {
  300. *e->entry = NULL;
  301. smap_release_sock(psock, sk);
  302. }
  303. raw_spin_unlock_bh(&stab->lock);
  304. } else {
  305. struct htab_elem *link = rcu_dereference(e->hash_link);
  306. struct bpf_htab *htab = container_of(e->map, struct bpf_htab, map);
  307. struct hlist_head *head;
  308. struct htab_elem *l;
  309. struct bucket *b;
  310. b = __select_bucket(htab, link->hash);
  311. head = &b->head;
  312. raw_spin_lock_bh(&b->lock);
  313. l = lookup_elem_raw(head,
  314. link->hash, link->key,
  315. htab->map.key_size);
  316. /* If another thread deleted this object skip deletion.
  317. * The refcnt on psock may or may not be zero.
  318. */
  319. if (l) {
  320. hlist_del_rcu(&link->hash_node);
  321. smap_release_sock(psock, link->sk);
  322. free_htab_elem(htab, link);
  323. }
  324. raw_spin_unlock_bh(&b->lock);
  325. }
  326. kfree(e);
  327. e = psock_map_pop(sk, psock);
  328. }
  329. rcu_read_unlock();
  330. release_sock(sk);
  331. close_fun(sk, timeout);
  332. }
  333. enum __sk_action {
  334. __SK_DROP = 0,
  335. __SK_PASS,
  336. __SK_REDIRECT,
  337. __SK_NONE,
  338. };
  339. static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
  340. .name = "bpf_tcp",
  341. .uid = TCP_ULP_BPF,
  342. .user_visible = false,
  343. .owner = NULL,
  344. .init = bpf_tcp_init,
  345. .release = bpf_tcp_release,
  346. };
  347. static int memcopy_from_iter(struct sock *sk,
  348. struct sk_msg_buff *md,
  349. struct iov_iter *from, int bytes)
  350. {
  351. struct scatterlist *sg = md->sg_data;
  352. int i = md->sg_curr, rc = -ENOSPC;
  353. do {
  354. int copy;
  355. char *to;
  356. if (md->sg_copybreak >= sg[i].length) {
  357. md->sg_copybreak = 0;
  358. if (++i == MAX_SKB_FRAGS)
  359. i = 0;
  360. if (i == md->sg_end)
  361. break;
  362. }
  363. copy = sg[i].length - md->sg_copybreak;
  364. to = sg_virt(&sg[i]) + md->sg_copybreak;
  365. md->sg_copybreak += copy;
  366. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  367. rc = copy_from_iter_nocache(to, copy, from);
  368. else
  369. rc = copy_from_iter(to, copy, from);
  370. if (rc != copy) {
  371. rc = -EFAULT;
  372. goto out;
  373. }
  374. bytes -= copy;
  375. if (!bytes)
  376. break;
  377. md->sg_copybreak = 0;
  378. if (++i == MAX_SKB_FRAGS)
  379. i = 0;
  380. } while (i != md->sg_end);
  381. out:
  382. md->sg_curr = i;
  383. return rc;
  384. }
  385. static int bpf_tcp_push(struct sock *sk, int apply_bytes,
  386. struct sk_msg_buff *md,
  387. int flags, bool uncharge)
  388. {
  389. bool apply = apply_bytes;
  390. struct scatterlist *sg;
  391. int offset, ret = 0;
  392. struct page *p;
  393. size_t size;
  394. while (1) {
  395. sg = md->sg_data + md->sg_start;
  396. size = (apply && apply_bytes < sg->length) ?
  397. apply_bytes : sg->length;
  398. offset = sg->offset;
  399. tcp_rate_check_app_limited(sk);
  400. p = sg_page(sg);
  401. retry:
  402. ret = do_tcp_sendpages(sk, p, offset, size, flags);
  403. if (ret != size) {
  404. if (ret > 0) {
  405. if (apply)
  406. apply_bytes -= ret;
  407. sg->offset += ret;
  408. sg->length -= ret;
  409. size -= ret;
  410. offset += ret;
  411. if (uncharge)
  412. sk_mem_uncharge(sk, ret);
  413. goto retry;
  414. }
  415. return ret;
  416. }
  417. if (apply)
  418. apply_bytes -= ret;
  419. sg->offset += ret;
  420. sg->length -= ret;
  421. if (uncharge)
  422. sk_mem_uncharge(sk, ret);
  423. if (!sg->length) {
  424. put_page(p);
  425. md->sg_start++;
  426. if (md->sg_start == MAX_SKB_FRAGS)
  427. md->sg_start = 0;
  428. sg_init_table(sg, 1);
  429. if (md->sg_start == md->sg_end)
  430. break;
  431. }
  432. if (apply && !apply_bytes)
  433. break;
  434. }
  435. return 0;
  436. }
  437. static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
  438. {
  439. struct scatterlist *sg = md->sg_data + md->sg_start;
  440. if (md->sg_copy[md->sg_start]) {
  441. md->data = md->data_end = 0;
  442. } else {
  443. md->data = sg_virt(sg);
  444. md->data_end = md->data + sg->length;
  445. }
  446. }
  447. static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  448. {
  449. struct scatterlist *sg = md->sg_data;
  450. int i = md->sg_start;
  451. do {
  452. int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
  453. sk_mem_uncharge(sk, uncharge);
  454. bytes -= uncharge;
  455. if (!bytes)
  456. break;
  457. i++;
  458. if (i == MAX_SKB_FRAGS)
  459. i = 0;
  460. } while (i != md->sg_end);
  461. }
  462. static void free_bytes_sg(struct sock *sk, int bytes,
  463. struct sk_msg_buff *md, bool charge)
  464. {
  465. struct scatterlist *sg = md->sg_data;
  466. int i = md->sg_start, free;
  467. while (bytes && sg[i].length) {
  468. free = sg[i].length;
  469. if (bytes < free) {
  470. sg[i].length -= bytes;
  471. sg[i].offset += bytes;
  472. if (charge)
  473. sk_mem_uncharge(sk, bytes);
  474. break;
  475. }
  476. if (charge)
  477. sk_mem_uncharge(sk, sg[i].length);
  478. put_page(sg_page(&sg[i]));
  479. bytes -= sg[i].length;
  480. sg[i].length = 0;
  481. sg[i].page_link = 0;
  482. sg[i].offset = 0;
  483. i++;
  484. if (i == MAX_SKB_FRAGS)
  485. i = 0;
  486. }
  487. md->sg_start = i;
  488. }
  489. static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
  490. {
  491. struct scatterlist *sg = md->sg_data;
  492. int i = start, free = 0;
  493. while (sg[i].length) {
  494. free += sg[i].length;
  495. sk_mem_uncharge(sk, sg[i].length);
  496. if (!md->skb)
  497. put_page(sg_page(&sg[i]));
  498. sg[i].length = 0;
  499. sg[i].page_link = 0;
  500. sg[i].offset = 0;
  501. i++;
  502. if (i == MAX_SKB_FRAGS)
  503. i = 0;
  504. }
  505. if (md->skb)
  506. consume_skb(md->skb);
  507. return free;
  508. }
  509. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
  510. {
  511. int free = free_sg(sk, md->sg_start, md);
  512. md->sg_start = md->sg_end;
  513. return free;
  514. }
  515. static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
  516. {
  517. return free_sg(sk, md->sg_curr, md);
  518. }
  519. static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
  520. {
  521. return ((_rc == SK_PASS) ?
  522. (md->sk_redir ? __SK_REDIRECT : __SK_PASS) :
  523. __SK_DROP);
  524. }
  525. static unsigned int smap_do_tx_msg(struct sock *sk,
  526. struct smap_psock *psock,
  527. struct sk_msg_buff *md)
  528. {
  529. struct bpf_prog *prog;
  530. unsigned int rc, _rc;
  531. preempt_disable();
  532. rcu_read_lock();
  533. /* If the policy was removed mid-send then default to 'accept' */
  534. prog = READ_ONCE(psock->bpf_tx_msg);
  535. if (unlikely(!prog)) {
  536. _rc = SK_PASS;
  537. goto verdict;
  538. }
  539. bpf_compute_data_pointers_sg(md);
  540. md->sk = sk;
  541. rc = (*prog->bpf_func)(md, prog->insnsi);
  542. psock->apply_bytes = md->apply_bytes;
  543. /* Moving return codes from UAPI namespace into internal namespace */
  544. _rc = bpf_map_msg_verdict(rc, md);
  545. /* The psock has a refcount on the sock but not on the map and because
  546. * we need to drop rcu read lock here its possible the map could be
  547. * removed between here and when we need it to execute the sock
  548. * redirect. So do the map lookup now for future use.
  549. */
  550. if (_rc == __SK_REDIRECT) {
  551. if (psock->sk_redir)
  552. sock_put(psock->sk_redir);
  553. psock->sk_redir = do_msg_redirect_map(md);
  554. if (!psock->sk_redir) {
  555. _rc = __SK_DROP;
  556. goto verdict;
  557. }
  558. sock_hold(psock->sk_redir);
  559. }
  560. verdict:
  561. rcu_read_unlock();
  562. preempt_enable();
  563. return _rc;
  564. }
  565. static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
  566. struct smap_psock *psock,
  567. struct sk_msg_buff *md, int flags)
  568. {
  569. bool apply = apply_bytes;
  570. size_t size, copied = 0;
  571. struct sk_msg_buff *r;
  572. int err = 0, i;
  573. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
  574. if (unlikely(!r))
  575. return -ENOMEM;
  576. lock_sock(sk);
  577. r->sg_start = md->sg_start;
  578. i = md->sg_start;
  579. do {
  580. size = (apply && apply_bytes < md->sg_data[i].length) ?
  581. apply_bytes : md->sg_data[i].length;
  582. if (!sk_wmem_schedule(sk, size)) {
  583. if (!copied)
  584. err = -ENOMEM;
  585. break;
  586. }
  587. sk_mem_charge(sk, size);
  588. r->sg_data[i] = md->sg_data[i];
  589. r->sg_data[i].length = size;
  590. md->sg_data[i].length -= size;
  591. md->sg_data[i].offset += size;
  592. copied += size;
  593. if (md->sg_data[i].length) {
  594. get_page(sg_page(&r->sg_data[i]));
  595. r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
  596. } else {
  597. i++;
  598. if (i == MAX_SKB_FRAGS)
  599. i = 0;
  600. r->sg_end = i;
  601. }
  602. if (apply) {
  603. apply_bytes -= size;
  604. if (!apply_bytes)
  605. break;
  606. }
  607. } while (i != md->sg_end);
  608. md->sg_start = i;
  609. if (!err) {
  610. list_add_tail(&r->list, &psock->ingress);
  611. sk->sk_data_ready(sk);
  612. } else {
  613. free_start_sg(sk, r);
  614. kfree(r);
  615. }
  616. release_sock(sk);
  617. return err;
  618. }
  619. static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
  620. struct sk_msg_buff *md,
  621. int flags)
  622. {
  623. bool ingress = !!(md->flags & BPF_F_INGRESS);
  624. struct smap_psock *psock;
  625. int err = 0;
  626. rcu_read_lock();
  627. psock = smap_psock_sk(sk);
  628. if (unlikely(!psock))
  629. goto out_rcu;
  630. if (!refcount_inc_not_zero(&psock->refcnt))
  631. goto out_rcu;
  632. rcu_read_unlock();
  633. if (ingress) {
  634. err = bpf_tcp_ingress(sk, send, psock, md, flags);
  635. } else {
  636. lock_sock(sk);
  637. err = bpf_tcp_push(sk, send, md, flags, false);
  638. release_sock(sk);
  639. }
  640. smap_release_sock(psock, sk);
  641. if (unlikely(err))
  642. goto out;
  643. return 0;
  644. out_rcu:
  645. rcu_read_unlock();
  646. out:
  647. free_bytes_sg(NULL, send, md, false);
  648. return err;
  649. }
  650. static inline void bpf_md_init(struct smap_psock *psock)
  651. {
  652. if (!psock->apply_bytes) {
  653. psock->eval = __SK_NONE;
  654. if (psock->sk_redir) {
  655. sock_put(psock->sk_redir);
  656. psock->sk_redir = NULL;
  657. }
  658. }
  659. }
  660. static void apply_bytes_dec(struct smap_psock *psock, int i)
  661. {
  662. if (psock->apply_bytes) {
  663. if (psock->apply_bytes < i)
  664. psock->apply_bytes = 0;
  665. else
  666. psock->apply_bytes -= i;
  667. }
  668. }
  669. static int bpf_exec_tx_verdict(struct smap_psock *psock,
  670. struct sk_msg_buff *m,
  671. struct sock *sk,
  672. int *copied, int flags)
  673. {
  674. bool cork = false, enospc = (m->sg_start == m->sg_end);
  675. struct sock *redir;
  676. int err = 0;
  677. int send;
  678. more_data:
  679. if (psock->eval == __SK_NONE)
  680. psock->eval = smap_do_tx_msg(sk, psock, m);
  681. if (m->cork_bytes &&
  682. m->cork_bytes > psock->sg_size && !enospc) {
  683. psock->cork_bytes = m->cork_bytes - psock->sg_size;
  684. if (!psock->cork) {
  685. psock->cork = kcalloc(1,
  686. sizeof(struct sk_msg_buff),
  687. GFP_ATOMIC | __GFP_NOWARN);
  688. if (!psock->cork) {
  689. err = -ENOMEM;
  690. goto out_err;
  691. }
  692. }
  693. memcpy(psock->cork, m, sizeof(*m));
  694. goto out_err;
  695. }
  696. send = psock->sg_size;
  697. if (psock->apply_bytes && psock->apply_bytes < send)
  698. send = psock->apply_bytes;
  699. switch (psock->eval) {
  700. case __SK_PASS:
  701. err = bpf_tcp_push(sk, send, m, flags, true);
  702. if (unlikely(err)) {
  703. *copied -= free_start_sg(sk, m);
  704. break;
  705. }
  706. apply_bytes_dec(psock, send);
  707. psock->sg_size -= send;
  708. break;
  709. case __SK_REDIRECT:
  710. redir = psock->sk_redir;
  711. apply_bytes_dec(psock, send);
  712. if (psock->cork) {
  713. cork = true;
  714. psock->cork = NULL;
  715. }
  716. return_mem_sg(sk, send, m);
  717. release_sock(sk);
  718. err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
  719. lock_sock(sk);
  720. if (unlikely(err < 0)) {
  721. free_start_sg(sk, m);
  722. psock->sg_size = 0;
  723. if (!cork)
  724. *copied -= send;
  725. } else {
  726. psock->sg_size -= send;
  727. }
  728. if (cork) {
  729. free_start_sg(sk, m);
  730. psock->sg_size = 0;
  731. kfree(m);
  732. m = NULL;
  733. err = 0;
  734. }
  735. break;
  736. case __SK_DROP:
  737. default:
  738. free_bytes_sg(sk, send, m, true);
  739. apply_bytes_dec(psock, send);
  740. *copied -= send;
  741. psock->sg_size -= send;
  742. err = -EACCES;
  743. break;
  744. }
  745. if (likely(!err)) {
  746. bpf_md_init(psock);
  747. if (m &&
  748. m->sg_data[m->sg_start].page_link &&
  749. m->sg_data[m->sg_start].length)
  750. goto more_data;
  751. }
  752. out_err:
  753. return err;
  754. }
  755. static int bpf_wait_data(struct sock *sk,
  756. struct smap_psock *psk, int flags,
  757. long timeo, int *err)
  758. {
  759. int rc;
  760. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  761. add_wait_queue(sk_sleep(sk), &wait);
  762. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  763. rc = sk_wait_event(sk, &timeo,
  764. !list_empty(&psk->ingress) ||
  765. !skb_queue_empty(&sk->sk_receive_queue),
  766. &wait);
  767. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  768. remove_wait_queue(sk_sleep(sk), &wait);
  769. return rc;
  770. }
  771. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  772. int nonblock, int flags, int *addr_len)
  773. {
  774. struct iov_iter *iter = &msg->msg_iter;
  775. struct smap_psock *psock;
  776. int copied = 0;
  777. if (unlikely(flags & MSG_ERRQUEUE))
  778. return inet_recv_error(sk, msg, len, addr_len);
  779. rcu_read_lock();
  780. psock = smap_psock_sk(sk);
  781. if (unlikely(!psock))
  782. goto out;
  783. if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
  784. goto out;
  785. rcu_read_unlock();
  786. if (!skb_queue_empty(&sk->sk_receive_queue))
  787. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  788. lock_sock(sk);
  789. bytes_ready:
  790. while (copied != len) {
  791. struct scatterlist *sg;
  792. struct sk_msg_buff *md;
  793. int i;
  794. md = list_first_entry_or_null(&psock->ingress,
  795. struct sk_msg_buff, list);
  796. if (unlikely(!md))
  797. break;
  798. i = md->sg_start;
  799. do {
  800. struct page *page;
  801. int n, copy;
  802. sg = &md->sg_data[i];
  803. copy = sg->length;
  804. page = sg_page(sg);
  805. if (copied + copy > len)
  806. copy = len - copied;
  807. n = copy_page_to_iter(page, sg->offset, copy, iter);
  808. if (n != copy) {
  809. md->sg_start = i;
  810. release_sock(sk);
  811. smap_release_sock(psock, sk);
  812. return -EFAULT;
  813. }
  814. copied += copy;
  815. sg->offset += copy;
  816. sg->length -= copy;
  817. sk_mem_uncharge(sk, copy);
  818. if (!sg->length) {
  819. i++;
  820. if (i == MAX_SKB_FRAGS)
  821. i = 0;
  822. if (!md->skb)
  823. put_page(page);
  824. }
  825. if (copied == len)
  826. break;
  827. } while (i != md->sg_end);
  828. md->sg_start = i;
  829. if (!sg->length && md->sg_start == md->sg_end) {
  830. list_del(&md->list);
  831. if (md->skb)
  832. consume_skb(md->skb);
  833. kfree(md);
  834. }
  835. }
  836. if (!copied) {
  837. long timeo;
  838. int data;
  839. int err = 0;
  840. timeo = sock_rcvtimeo(sk, nonblock);
  841. data = bpf_wait_data(sk, psock, flags, timeo, &err);
  842. if (data) {
  843. if (!skb_queue_empty(&sk->sk_receive_queue)) {
  844. release_sock(sk);
  845. smap_release_sock(psock, sk);
  846. copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  847. return copied;
  848. }
  849. goto bytes_ready;
  850. }
  851. if (err)
  852. copied = err;
  853. }
  854. release_sock(sk);
  855. smap_release_sock(psock, sk);
  856. return copied;
  857. out:
  858. rcu_read_unlock();
  859. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  860. }
  861. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  862. {
  863. int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
  864. struct sk_msg_buff md = {0};
  865. unsigned int sg_copy = 0;
  866. struct smap_psock *psock;
  867. int copied = 0, err = 0;
  868. struct scatterlist *sg;
  869. long timeo;
  870. /* Its possible a sock event or user removed the psock _but_ the ops
  871. * have not been reprogrammed yet so we get here. In this case fallback
  872. * to tcp_sendmsg. Note this only works because we _only_ ever allow
  873. * a single ULP there is no hierarchy here.
  874. */
  875. rcu_read_lock();
  876. psock = smap_psock_sk(sk);
  877. if (unlikely(!psock)) {
  878. rcu_read_unlock();
  879. return tcp_sendmsg(sk, msg, size);
  880. }
  881. /* Increment the psock refcnt to ensure its not released while sending a
  882. * message. Required because sk lookup and bpf programs are used in
  883. * separate rcu critical sections. Its OK if we lose the map entry
  884. * but we can't lose the sock reference.
  885. */
  886. if (!refcount_inc_not_zero(&psock->refcnt)) {
  887. rcu_read_unlock();
  888. return tcp_sendmsg(sk, msg, size);
  889. }
  890. sg = md.sg_data;
  891. sg_init_marker(sg, MAX_SKB_FRAGS);
  892. rcu_read_unlock();
  893. lock_sock(sk);
  894. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  895. while (msg_data_left(msg)) {
  896. struct sk_msg_buff *m = NULL;
  897. bool enospc = false;
  898. int copy;
  899. if (sk->sk_err) {
  900. err = -sk->sk_err;
  901. goto out_err;
  902. }
  903. copy = msg_data_left(msg);
  904. if (!sk_stream_memory_free(sk))
  905. goto wait_for_sndbuf;
  906. m = psock->cork_bytes ? psock->cork : &md;
  907. m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
  908. err = sk_alloc_sg(sk, copy, m->sg_data,
  909. m->sg_start, &m->sg_end, &sg_copy,
  910. m->sg_end - 1);
  911. if (err) {
  912. if (err != -ENOSPC)
  913. goto wait_for_memory;
  914. enospc = true;
  915. copy = sg_copy;
  916. }
  917. err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
  918. if (err < 0) {
  919. free_curr_sg(sk, m);
  920. goto out_err;
  921. }
  922. psock->sg_size += copy;
  923. copied += copy;
  924. sg_copy = 0;
  925. /* When bytes are being corked skip running BPF program and
  926. * applying verdict unless there is no more buffer space. In
  927. * the ENOSPC case simply run BPF prorgram with currently
  928. * accumulated data. We don't have much choice at this point
  929. * we could try extending the page frags or chaining complex
  930. * frags but even in these cases _eventually_ we will hit an
  931. * OOM scenario. More complex recovery schemes may be
  932. * implemented in the future, but BPF programs must handle
  933. * the case where apply_cork requests are not honored. The
  934. * canonical method to verify this is to check data length.
  935. */
  936. if (psock->cork_bytes) {
  937. if (copy > psock->cork_bytes)
  938. psock->cork_bytes = 0;
  939. else
  940. psock->cork_bytes -= copy;
  941. if (psock->cork_bytes && !enospc)
  942. goto out_cork;
  943. /* All cork bytes accounted for re-run filter */
  944. psock->eval = __SK_NONE;
  945. psock->cork_bytes = 0;
  946. }
  947. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  948. if (unlikely(err < 0))
  949. goto out_err;
  950. continue;
  951. wait_for_sndbuf:
  952. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  953. wait_for_memory:
  954. err = sk_stream_wait_memory(sk, &timeo);
  955. if (err) {
  956. if (m && m != psock->cork)
  957. free_start_sg(sk, m);
  958. goto out_err;
  959. }
  960. }
  961. out_err:
  962. if (err < 0)
  963. err = sk_stream_error(sk, msg->msg_flags, err);
  964. out_cork:
  965. release_sock(sk);
  966. smap_release_sock(psock, sk);
  967. return copied ? copied : err;
  968. }
  969. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  970. int offset, size_t size, int flags)
  971. {
  972. struct sk_msg_buff md = {0}, *m = NULL;
  973. int err = 0, copied = 0;
  974. struct smap_psock *psock;
  975. struct scatterlist *sg;
  976. bool enospc = false;
  977. rcu_read_lock();
  978. psock = smap_psock_sk(sk);
  979. if (unlikely(!psock))
  980. goto accept;
  981. if (!refcount_inc_not_zero(&psock->refcnt))
  982. goto accept;
  983. rcu_read_unlock();
  984. lock_sock(sk);
  985. if (psock->cork_bytes) {
  986. m = psock->cork;
  987. sg = &m->sg_data[m->sg_end];
  988. } else {
  989. m = &md;
  990. sg = m->sg_data;
  991. sg_init_marker(sg, MAX_SKB_FRAGS);
  992. }
  993. /* Catch case where ring is full and sendpage is stalled. */
  994. if (unlikely(m->sg_end == m->sg_start &&
  995. m->sg_data[m->sg_end].length))
  996. goto out_err;
  997. psock->sg_size += size;
  998. sg_set_page(sg, page, size, offset);
  999. get_page(page);
  1000. m->sg_copy[m->sg_end] = true;
  1001. sk_mem_charge(sk, size);
  1002. m->sg_end++;
  1003. copied = size;
  1004. if (m->sg_end == MAX_SKB_FRAGS)
  1005. m->sg_end = 0;
  1006. if (m->sg_end == m->sg_start)
  1007. enospc = true;
  1008. if (psock->cork_bytes) {
  1009. if (size > psock->cork_bytes)
  1010. psock->cork_bytes = 0;
  1011. else
  1012. psock->cork_bytes -= size;
  1013. if (psock->cork_bytes && !enospc)
  1014. goto out_err;
  1015. /* All cork bytes accounted for re-run filter */
  1016. psock->eval = __SK_NONE;
  1017. psock->cork_bytes = 0;
  1018. }
  1019. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  1020. out_err:
  1021. release_sock(sk);
  1022. smap_release_sock(psock, sk);
  1023. return copied ? copied : err;
  1024. accept:
  1025. rcu_read_unlock();
  1026. return tcp_sendpage(sk, page, offset, size, flags);
  1027. }
  1028. static void bpf_tcp_msg_add(struct smap_psock *psock,
  1029. struct sock *sk,
  1030. struct bpf_prog *tx_msg)
  1031. {
  1032. struct bpf_prog *orig_tx_msg;
  1033. orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
  1034. if (orig_tx_msg)
  1035. bpf_prog_put(orig_tx_msg);
  1036. }
  1037. static int bpf_tcp_ulp_register(void)
  1038. {
  1039. build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot);
  1040. /* Once BPF TX ULP is registered it is never unregistered. It
  1041. * will be in the ULP list for the lifetime of the system. Doing
  1042. * duplicate registers is not a problem.
  1043. */
  1044. return tcp_register_ulp(&bpf_tcp_ulp_ops);
  1045. }
  1046. static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
  1047. {
  1048. struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
  1049. int rc;
  1050. if (unlikely(!prog))
  1051. return __SK_DROP;
  1052. skb_orphan(skb);
  1053. /* We need to ensure that BPF metadata for maps is also cleared
  1054. * when we orphan the skb so that we don't have the possibility
  1055. * to reference a stale map.
  1056. */
  1057. TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
  1058. skb->sk = psock->sock;
  1059. bpf_compute_data_end_sk_skb(skb);
  1060. preempt_disable();
  1061. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1062. preempt_enable();
  1063. skb->sk = NULL;
  1064. /* Moving return codes from UAPI namespace into internal namespace */
  1065. return rc == SK_PASS ?
  1066. (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) :
  1067. __SK_DROP;
  1068. }
  1069. static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
  1070. {
  1071. struct sock *sk = psock->sock;
  1072. int copied = 0, num_sg;
  1073. struct sk_msg_buff *r;
  1074. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
  1075. if (unlikely(!r))
  1076. return -EAGAIN;
  1077. if (!sk_rmem_schedule(sk, skb, skb->len)) {
  1078. kfree(r);
  1079. return -EAGAIN;
  1080. }
  1081. sg_init_table(r->sg_data, MAX_SKB_FRAGS);
  1082. num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
  1083. if (unlikely(num_sg < 0)) {
  1084. kfree(r);
  1085. return num_sg;
  1086. }
  1087. sk_mem_charge(sk, skb->len);
  1088. copied = skb->len;
  1089. r->sg_start = 0;
  1090. r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
  1091. r->skb = skb;
  1092. list_add_tail(&r->list, &psock->ingress);
  1093. sk->sk_data_ready(sk);
  1094. return copied;
  1095. }
  1096. static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
  1097. {
  1098. struct smap_psock *peer;
  1099. struct sock *sk;
  1100. __u32 in;
  1101. int rc;
  1102. rc = smap_verdict_func(psock, skb);
  1103. switch (rc) {
  1104. case __SK_REDIRECT:
  1105. sk = do_sk_redirect_map(skb);
  1106. if (!sk) {
  1107. kfree_skb(skb);
  1108. break;
  1109. }
  1110. peer = smap_psock_sk(sk);
  1111. in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1112. if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
  1113. !test_bit(SMAP_TX_RUNNING, &peer->state))) {
  1114. kfree_skb(skb);
  1115. break;
  1116. }
  1117. if (!in && sock_writeable(sk)) {
  1118. skb_set_owner_w(skb, sk);
  1119. skb_queue_tail(&peer->rxqueue, skb);
  1120. schedule_work(&peer->tx_work);
  1121. break;
  1122. } else if (in &&
  1123. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  1124. skb_queue_tail(&peer->rxqueue, skb);
  1125. schedule_work(&peer->tx_work);
  1126. break;
  1127. }
  1128. /* Fall through and free skb otherwise */
  1129. case __SK_DROP:
  1130. default:
  1131. kfree_skb(skb);
  1132. }
  1133. }
  1134. static void smap_report_sk_error(struct smap_psock *psock, int err)
  1135. {
  1136. struct sock *sk = psock->sock;
  1137. sk->sk_err = err;
  1138. sk->sk_error_report(sk);
  1139. }
  1140. static void smap_read_sock_strparser(struct strparser *strp,
  1141. struct sk_buff *skb)
  1142. {
  1143. struct smap_psock *psock;
  1144. rcu_read_lock();
  1145. psock = container_of(strp, struct smap_psock, strp);
  1146. smap_do_verdict(psock, skb);
  1147. rcu_read_unlock();
  1148. }
  1149. /* Called with lock held on socket */
  1150. static void smap_data_ready(struct sock *sk)
  1151. {
  1152. struct smap_psock *psock;
  1153. rcu_read_lock();
  1154. psock = smap_psock_sk(sk);
  1155. if (likely(psock)) {
  1156. write_lock_bh(&sk->sk_callback_lock);
  1157. strp_data_ready(&psock->strp);
  1158. write_unlock_bh(&sk->sk_callback_lock);
  1159. }
  1160. rcu_read_unlock();
  1161. }
  1162. static void smap_tx_work(struct work_struct *w)
  1163. {
  1164. struct smap_psock *psock;
  1165. struct sk_buff *skb;
  1166. int rem, off, n;
  1167. psock = container_of(w, struct smap_psock, tx_work);
  1168. /* lock sock to avoid losing sk_socket at some point during loop */
  1169. lock_sock(psock->sock);
  1170. if (psock->save_skb) {
  1171. skb = psock->save_skb;
  1172. rem = psock->save_rem;
  1173. off = psock->save_off;
  1174. psock->save_skb = NULL;
  1175. goto start;
  1176. }
  1177. while ((skb = skb_dequeue(&psock->rxqueue))) {
  1178. __u32 flags;
  1179. rem = skb->len;
  1180. off = 0;
  1181. start:
  1182. flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1183. do {
  1184. if (likely(psock->sock->sk_socket)) {
  1185. if (flags)
  1186. n = smap_do_ingress(psock, skb);
  1187. else
  1188. n = skb_send_sock_locked(psock->sock,
  1189. skb, off, rem);
  1190. } else {
  1191. n = -EINVAL;
  1192. }
  1193. if (n <= 0) {
  1194. if (n == -EAGAIN) {
  1195. /* Retry when space is available */
  1196. psock->save_skb = skb;
  1197. psock->save_rem = rem;
  1198. psock->save_off = off;
  1199. goto out;
  1200. }
  1201. /* Hard errors break pipe and stop xmit */
  1202. smap_report_sk_error(psock, n ? -n : EPIPE);
  1203. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1204. kfree_skb(skb);
  1205. goto out;
  1206. }
  1207. rem -= n;
  1208. off += n;
  1209. } while (rem);
  1210. if (!flags)
  1211. kfree_skb(skb);
  1212. }
  1213. out:
  1214. release_sock(psock->sock);
  1215. }
  1216. static void smap_write_space(struct sock *sk)
  1217. {
  1218. struct smap_psock *psock;
  1219. void (*write_space)(struct sock *sk);
  1220. rcu_read_lock();
  1221. psock = smap_psock_sk(sk);
  1222. if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
  1223. schedule_work(&psock->tx_work);
  1224. write_space = psock->save_write_space;
  1225. rcu_read_unlock();
  1226. write_space(sk);
  1227. }
  1228. static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
  1229. {
  1230. if (!psock->strp_enabled)
  1231. return;
  1232. sk->sk_data_ready = psock->save_data_ready;
  1233. sk->sk_write_space = psock->save_write_space;
  1234. psock->save_data_ready = NULL;
  1235. psock->save_write_space = NULL;
  1236. strp_stop(&psock->strp);
  1237. psock->strp_enabled = false;
  1238. }
  1239. static void smap_destroy_psock(struct rcu_head *rcu)
  1240. {
  1241. struct smap_psock *psock = container_of(rcu,
  1242. struct smap_psock, rcu);
  1243. /* Now that a grace period has passed there is no longer
  1244. * any reference to this sock in the sockmap so we can
  1245. * destroy the psock, strparser, and bpf programs. But,
  1246. * because we use workqueue sync operations we can not
  1247. * do it in rcu context
  1248. */
  1249. schedule_work(&psock->gc_work);
  1250. }
  1251. static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
  1252. {
  1253. if (refcount_dec_and_test(&psock->refcnt)) {
  1254. tcp_cleanup_ulp(sock);
  1255. write_lock_bh(&sock->sk_callback_lock);
  1256. smap_stop_sock(psock, sock);
  1257. write_unlock_bh(&sock->sk_callback_lock);
  1258. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1259. rcu_assign_sk_user_data(sock, NULL);
  1260. call_rcu_sched(&psock->rcu, smap_destroy_psock);
  1261. }
  1262. }
  1263. static int smap_parse_func_strparser(struct strparser *strp,
  1264. struct sk_buff *skb)
  1265. {
  1266. struct smap_psock *psock;
  1267. struct bpf_prog *prog;
  1268. int rc;
  1269. rcu_read_lock();
  1270. psock = container_of(strp, struct smap_psock, strp);
  1271. prog = READ_ONCE(psock->bpf_parse);
  1272. if (unlikely(!prog)) {
  1273. rcu_read_unlock();
  1274. return skb->len;
  1275. }
  1276. /* Attach socket for bpf program to use if needed we can do this
  1277. * because strparser clones the skb before handing it to a upper
  1278. * layer, meaning skb_orphan has been called. We NULL sk on the
  1279. * way out to ensure we don't trigger a BUG_ON in skb/sk operations
  1280. * later and because we are not charging the memory of this skb to
  1281. * any socket yet.
  1282. */
  1283. skb->sk = psock->sock;
  1284. bpf_compute_data_end_sk_skb(skb);
  1285. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1286. skb->sk = NULL;
  1287. rcu_read_unlock();
  1288. return rc;
  1289. }
  1290. static int smap_read_sock_done(struct strparser *strp, int err)
  1291. {
  1292. return err;
  1293. }
  1294. static int smap_init_sock(struct smap_psock *psock,
  1295. struct sock *sk)
  1296. {
  1297. static const struct strp_callbacks cb = {
  1298. .rcv_msg = smap_read_sock_strparser,
  1299. .parse_msg = smap_parse_func_strparser,
  1300. .read_sock_done = smap_read_sock_done,
  1301. };
  1302. return strp_init(&psock->strp, sk, &cb);
  1303. }
  1304. static void smap_init_progs(struct smap_psock *psock,
  1305. struct bpf_prog *verdict,
  1306. struct bpf_prog *parse)
  1307. {
  1308. struct bpf_prog *orig_parse, *orig_verdict;
  1309. orig_parse = xchg(&psock->bpf_parse, parse);
  1310. orig_verdict = xchg(&psock->bpf_verdict, verdict);
  1311. if (orig_verdict)
  1312. bpf_prog_put(orig_verdict);
  1313. if (orig_parse)
  1314. bpf_prog_put(orig_parse);
  1315. }
  1316. static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
  1317. {
  1318. if (sk->sk_data_ready == smap_data_ready)
  1319. return;
  1320. psock->save_data_ready = sk->sk_data_ready;
  1321. psock->save_write_space = sk->sk_write_space;
  1322. sk->sk_data_ready = smap_data_ready;
  1323. sk->sk_write_space = smap_write_space;
  1324. psock->strp_enabled = true;
  1325. }
  1326. static void sock_map_remove_complete(struct bpf_stab *stab)
  1327. {
  1328. bpf_map_area_free(stab->sock_map);
  1329. kfree(stab);
  1330. }
  1331. static void smap_gc_work(struct work_struct *w)
  1332. {
  1333. struct smap_psock_map_entry *e, *tmp;
  1334. struct sk_msg_buff *md, *mtmp;
  1335. struct smap_psock *psock;
  1336. psock = container_of(w, struct smap_psock, gc_work);
  1337. /* no callback lock needed because we already detached sockmap ops */
  1338. if (psock->strp_enabled)
  1339. strp_done(&psock->strp);
  1340. cancel_work_sync(&psock->tx_work);
  1341. __skb_queue_purge(&psock->rxqueue);
  1342. /* At this point all strparser and xmit work must be complete */
  1343. if (psock->bpf_parse)
  1344. bpf_prog_put(psock->bpf_parse);
  1345. if (psock->bpf_verdict)
  1346. bpf_prog_put(psock->bpf_verdict);
  1347. if (psock->bpf_tx_msg)
  1348. bpf_prog_put(psock->bpf_tx_msg);
  1349. if (psock->cork) {
  1350. free_start_sg(psock->sock, psock->cork);
  1351. kfree(psock->cork);
  1352. }
  1353. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  1354. list_del(&md->list);
  1355. free_start_sg(psock->sock, md);
  1356. kfree(md);
  1357. }
  1358. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1359. list_del(&e->list);
  1360. kfree(e);
  1361. }
  1362. if (psock->sk_redir)
  1363. sock_put(psock->sk_redir);
  1364. sock_put(psock->sock);
  1365. kfree(psock);
  1366. }
  1367. static struct smap_psock *smap_init_psock(struct sock *sock, int node)
  1368. {
  1369. struct smap_psock *psock;
  1370. psock = kzalloc_node(sizeof(struct smap_psock),
  1371. GFP_ATOMIC | __GFP_NOWARN,
  1372. node);
  1373. if (!psock)
  1374. return ERR_PTR(-ENOMEM);
  1375. psock->eval = __SK_NONE;
  1376. psock->sock = sock;
  1377. skb_queue_head_init(&psock->rxqueue);
  1378. INIT_WORK(&psock->tx_work, smap_tx_work);
  1379. INIT_WORK(&psock->gc_work, smap_gc_work);
  1380. INIT_LIST_HEAD(&psock->maps);
  1381. INIT_LIST_HEAD(&psock->ingress);
  1382. refcount_set(&psock->refcnt, 1);
  1383. spin_lock_init(&psock->maps_lock);
  1384. rcu_assign_sk_user_data(sock, psock);
  1385. sock_hold(sock);
  1386. return psock;
  1387. }
  1388. static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
  1389. {
  1390. struct bpf_stab *stab;
  1391. u64 cost;
  1392. int err;
  1393. if (!capable(CAP_NET_ADMIN))
  1394. return ERR_PTR(-EPERM);
  1395. /* check sanity of attributes */
  1396. if (attr->max_entries == 0 || attr->key_size != 4 ||
  1397. attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1398. return ERR_PTR(-EINVAL);
  1399. err = bpf_tcp_ulp_register();
  1400. if (err && err != -EEXIST)
  1401. return ERR_PTR(err);
  1402. stab = kzalloc(sizeof(*stab), GFP_USER);
  1403. if (!stab)
  1404. return ERR_PTR(-ENOMEM);
  1405. bpf_map_init_from_attr(&stab->map, attr);
  1406. raw_spin_lock_init(&stab->lock);
  1407. /* make sure page count doesn't overflow */
  1408. cost = (u64) stab->map.max_entries * sizeof(struct sock *);
  1409. err = -EINVAL;
  1410. if (cost >= U32_MAX - PAGE_SIZE)
  1411. goto free_stab;
  1412. stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1413. /* if map size is larger than memlock limit, reject it early */
  1414. err = bpf_map_precharge_memlock(stab->map.pages);
  1415. if (err)
  1416. goto free_stab;
  1417. err = -ENOMEM;
  1418. stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
  1419. sizeof(struct sock *),
  1420. stab->map.numa_node);
  1421. if (!stab->sock_map)
  1422. goto free_stab;
  1423. return &stab->map;
  1424. free_stab:
  1425. kfree(stab);
  1426. return ERR_PTR(err);
  1427. }
  1428. static void smap_list_map_remove(struct smap_psock *psock,
  1429. struct sock **entry)
  1430. {
  1431. struct smap_psock_map_entry *e, *tmp;
  1432. spin_lock_bh(&psock->maps_lock);
  1433. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1434. if (e->entry == entry) {
  1435. list_del(&e->list);
  1436. kfree(e);
  1437. }
  1438. }
  1439. spin_unlock_bh(&psock->maps_lock);
  1440. }
  1441. static void smap_list_hash_remove(struct smap_psock *psock,
  1442. struct htab_elem *hash_link)
  1443. {
  1444. struct smap_psock_map_entry *e, *tmp;
  1445. spin_lock_bh(&psock->maps_lock);
  1446. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1447. struct htab_elem *c = rcu_dereference(e->hash_link);
  1448. if (c == hash_link) {
  1449. list_del(&e->list);
  1450. kfree(e);
  1451. }
  1452. }
  1453. spin_unlock_bh(&psock->maps_lock);
  1454. }
  1455. static void sock_map_free(struct bpf_map *map)
  1456. {
  1457. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1458. int i;
  1459. synchronize_rcu();
  1460. /* At this point no update, lookup or delete operations can happen.
  1461. * However, be aware we can still get a socket state event updates,
  1462. * and data ready callabacks that reference the psock from sk_user_data
  1463. * Also psock worker threads are still in-flight. So smap_release_sock
  1464. * will only free the psock after cancel_sync on the worker threads
  1465. * and a grace period expire to ensure psock is really safe to remove.
  1466. */
  1467. rcu_read_lock();
  1468. raw_spin_lock_bh(&stab->lock);
  1469. for (i = 0; i < stab->map.max_entries; i++) {
  1470. struct smap_psock *psock;
  1471. struct sock *sock;
  1472. sock = stab->sock_map[i];
  1473. if (!sock)
  1474. continue;
  1475. stab->sock_map[i] = NULL;
  1476. psock = smap_psock_sk(sock);
  1477. /* This check handles a racing sock event that can get the
  1478. * sk_callback_lock before this case but after xchg happens
  1479. * causing the refcnt to hit zero and sock user data (psock)
  1480. * to be null and queued for garbage collection.
  1481. */
  1482. if (likely(psock)) {
  1483. smap_list_map_remove(psock, &stab->sock_map[i]);
  1484. smap_release_sock(psock, sock);
  1485. }
  1486. }
  1487. raw_spin_unlock_bh(&stab->lock);
  1488. rcu_read_unlock();
  1489. sock_map_remove_complete(stab);
  1490. }
  1491. static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  1492. {
  1493. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1494. u32 i = key ? *(u32 *)key : U32_MAX;
  1495. u32 *next = (u32 *)next_key;
  1496. if (i >= stab->map.max_entries) {
  1497. *next = 0;
  1498. return 0;
  1499. }
  1500. if (i == stab->map.max_entries - 1)
  1501. return -ENOENT;
  1502. *next = i + 1;
  1503. return 0;
  1504. }
  1505. struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
  1506. {
  1507. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1508. if (key >= map->max_entries)
  1509. return NULL;
  1510. return READ_ONCE(stab->sock_map[key]);
  1511. }
  1512. static int sock_map_delete_elem(struct bpf_map *map, void *key)
  1513. {
  1514. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1515. struct smap_psock *psock;
  1516. int k = *(u32 *)key;
  1517. struct sock *sock;
  1518. if (k >= map->max_entries)
  1519. return -EINVAL;
  1520. raw_spin_lock_bh(&stab->lock);
  1521. sock = stab->sock_map[k];
  1522. stab->sock_map[k] = NULL;
  1523. raw_spin_unlock_bh(&stab->lock);
  1524. if (!sock)
  1525. return -EINVAL;
  1526. psock = smap_psock_sk(sock);
  1527. if (!psock)
  1528. return 0;
  1529. if (psock->bpf_parse) {
  1530. write_lock_bh(&sock->sk_callback_lock);
  1531. smap_stop_sock(psock, sock);
  1532. write_unlock_bh(&sock->sk_callback_lock);
  1533. }
  1534. smap_list_map_remove(psock, &stab->sock_map[k]);
  1535. smap_release_sock(psock, sock);
  1536. return 0;
  1537. }
  1538. /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
  1539. * done inside rcu critical sections. This ensures on updates that the psock
  1540. * will not be released via smap_release_sock() until concurrent updates/deletes
  1541. * complete. All operations operate on sock_map using cmpxchg and xchg
  1542. * operations to ensure we do not get stale references. Any reads into the
  1543. * map must be done with READ_ONCE() because of this.
  1544. *
  1545. * A psock is destroyed via call_rcu and after any worker threads are cancelled
  1546. * and syncd so we are certain all references from the update/lookup/delete
  1547. * operations as well as references in the data path are no longer in use.
  1548. *
  1549. * Psocks may exist in multiple maps, but only a single set of parse/verdict
  1550. * programs may be inherited from the maps it belongs to. A reference count
  1551. * is kept with the total number of references to the psock from all maps. The
  1552. * psock will not be released until this reaches zero. The psock and sock
  1553. * user data data use the sk_callback_lock to protect critical data structures
  1554. * from concurrent access. This allows us to avoid two updates from modifying
  1555. * the user data in sock and the lock is required anyways for modifying
  1556. * callbacks, we simply increase its scope slightly.
  1557. *
  1558. * Rules to follow,
  1559. * - psock must always be read inside RCU critical section
  1560. * - sk_user_data must only be modified inside sk_callback_lock and read
  1561. * inside RCU critical section.
  1562. * - psock->maps list must only be read & modified inside sk_callback_lock
  1563. * - sock_map must use READ_ONCE and (cmp)xchg operations
  1564. * - BPF verdict/parse programs must use READ_ONCE and xchg operations
  1565. */
  1566. static int __sock_map_ctx_update_elem(struct bpf_map *map,
  1567. struct bpf_sock_progs *progs,
  1568. struct sock *sock,
  1569. void *key)
  1570. {
  1571. struct bpf_prog *verdict, *parse, *tx_msg;
  1572. struct smap_psock *psock;
  1573. bool new = false;
  1574. int err = 0;
  1575. /* 1. If sock map has BPF programs those will be inherited by the
  1576. * sock being added. If the sock is already attached to BPF programs
  1577. * this results in an error.
  1578. */
  1579. verdict = READ_ONCE(progs->bpf_verdict);
  1580. parse = READ_ONCE(progs->bpf_parse);
  1581. tx_msg = READ_ONCE(progs->bpf_tx_msg);
  1582. if (parse && verdict) {
  1583. /* bpf prog refcnt may be zero if a concurrent attach operation
  1584. * removes the program after the above READ_ONCE() but before
  1585. * we increment the refcnt. If this is the case abort with an
  1586. * error.
  1587. */
  1588. verdict = bpf_prog_inc_not_zero(verdict);
  1589. if (IS_ERR(verdict))
  1590. return PTR_ERR(verdict);
  1591. parse = bpf_prog_inc_not_zero(parse);
  1592. if (IS_ERR(parse)) {
  1593. bpf_prog_put(verdict);
  1594. return PTR_ERR(parse);
  1595. }
  1596. }
  1597. if (tx_msg) {
  1598. tx_msg = bpf_prog_inc_not_zero(tx_msg);
  1599. if (IS_ERR(tx_msg)) {
  1600. if (parse && verdict) {
  1601. bpf_prog_put(parse);
  1602. bpf_prog_put(verdict);
  1603. }
  1604. return PTR_ERR(tx_msg);
  1605. }
  1606. }
  1607. psock = smap_psock_sk(sock);
  1608. /* 2. Do not allow inheriting programs if psock exists and has
  1609. * already inherited programs. This would create confusion on
  1610. * which parser/verdict program is running. If no psock exists
  1611. * create one. Inside sk_callback_lock to ensure concurrent create
  1612. * doesn't update user data.
  1613. */
  1614. if (psock) {
  1615. if (READ_ONCE(psock->bpf_parse) && parse) {
  1616. err = -EBUSY;
  1617. goto out_progs;
  1618. }
  1619. if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
  1620. err = -EBUSY;
  1621. goto out_progs;
  1622. }
  1623. if (!refcount_inc_not_zero(&psock->refcnt)) {
  1624. err = -EAGAIN;
  1625. goto out_progs;
  1626. }
  1627. } else {
  1628. psock = smap_init_psock(sock, map->numa_node);
  1629. if (IS_ERR(psock)) {
  1630. err = PTR_ERR(psock);
  1631. goto out_progs;
  1632. }
  1633. set_bit(SMAP_TX_RUNNING, &psock->state);
  1634. new = true;
  1635. }
  1636. /* 3. At this point we have a reference to a valid psock that is
  1637. * running. Attach any BPF programs needed.
  1638. */
  1639. if (tx_msg)
  1640. bpf_tcp_msg_add(psock, sock, tx_msg);
  1641. if (new) {
  1642. err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
  1643. if (err)
  1644. goto out_free;
  1645. }
  1646. if (parse && verdict && !psock->strp_enabled) {
  1647. err = smap_init_sock(psock, sock);
  1648. if (err)
  1649. goto out_free;
  1650. smap_init_progs(psock, verdict, parse);
  1651. write_lock_bh(&sock->sk_callback_lock);
  1652. smap_start_sock(psock, sock);
  1653. write_unlock_bh(&sock->sk_callback_lock);
  1654. }
  1655. return err;
  1656. out_free:
  1657. smap_release_sock(psock, sock);
  1658. out_progs:
  1659. if (parse && verdict) {
  1660. bpf_prog_put(parse);
  1661. bpf_prog_put(verdict);
  1662. }
  1663. if (tx_msg)
  1664. bpf_prog_put(tx_msg);
  1665. return err;
  1666. }
  1667. static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1668. struct bpf_map *map,
  1669. void *key, u64 flags)
  1670. {
  1671. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1672. struct bpf_sock_progs *progs = &stab->progs;
  1673. struct sock *osock, *sock = skops->sk;
  1674. struct smap_psock_map_entry *e;
  1675. struct smap_psock *psock;
  1676. u32 i = *(u32 *)key;
  1677. int err;
  1678. if (unlikely(flags > BPF_EXIST))
  1679. return -EINVAL;
  1680. if (unlikely(i >= stab->map.max_entries))
  1681. return -E2BIG;
  1682. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1683. if (!e)
  1684. return -ENOMEM;
  1685. err = __sock_map_ctx_update_elem(map, progs, sock, key);
  1686. if (err)
  1687. goto out;
  1688. /* psock guaranteed to be present. */
  1689. psock = smap_psock_sk(sock);
  1690. raw_spin_lock_bh(&stab->lock);
  1691. osock = stab->sock_map[i];
  1692. if (osock && flags == BPF_NOEXIST) {
  1693. err = -EEXIST;
  1694. goto out_unlock;
  1695. }
  1696. if (!osock && flags == BPF_EXIST) {
  1697. err = -ENOENT;
  1698. goto out_unlock;
  1699. }
  1700. e->entry = &stab->sock_map[i];
  1701. e->map = map;
  1702. spin_lock_bh(&psock->maps_lock);
  1703. list_add_tail(&e->list, &psock->maps);
  1704. spin_unlock_bh(&psock->maps_lock);
  1705. stab->sock_map[i] = sock;
  1706. if (osock) {
  1707. psock = smap_psock_sk(osock);
  1708. smap_list_map_remove(psock, &stab->sock_map[i]);
  1709. smap_release_sock(psock, osock);
  1710. }
  1711. raw_spin_unlock_bh(&stab->lock);
  1712. return 0;
  1713. out_unlock:
  1714. smap_release_sock(psock, sock);
  1715. raw_spin_unlock_bh(&stab->lock);
  1716. out:
  1717. kfree(e);
  1718. return err;
  1719. }
  1720. int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
  1721. {
  1722. struct bpf_sock_progs *progs;
  1723. struct bpf_prog *orig;
  1724. if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
  1725. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1726. progs = &stab->progs;
  1727. } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) {
  1728. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1729. progs = &htab->progs;
  1730. } else {
  1731. return -EINVAL;
  1732. }
  1733. switch (type) {
  1734. case BPF_SK_MSG_VERDICT:
  1735. orig = xchg(&progs->bpf_tx_msg, prog);
  1736. break;
  1737. case BPF_SK_SKB_STREAM_PARSER:
  1738. orig = xchg(&progs->bpf_parse, prog);
  1739. break;
  1740. case BPF_SK_SKB_STREAM_VERDICT:
  1741. orig = xchg(&progs->bpf_verdict, prog);
  1742. break;
  1743. default:
  1744. return -EOPNOTSUPP;
  1745. }
  1746. if (orig)
  1747. bpf_prog_put(orig);
  1748. return 0;
  1749. }
  1750. int sockmap_get_from_fd(const union bpf_attr *attr, int type,
  1751. struct bpf_prog *prog)
  1752. {
  1753. int ufd = attr->target_fd;
  1754. struct bpf_map *map;
  1755. struct fd f;
  1756. int err;
  1757. f = fdget(ufd);
  1758. map = __bpf_map_get(f);
  1759. if (IS_ERR(map))
  1760. return PTR_ERR(map);
  1761. err = sock_map_prog(map, prog, attr->attach_type);
  1762. fdput(f);
  1763. return err;
  1764. }
  1765. static void *sock_map_lookup(struct bpf_map *map, void *key)
  1766. {
  1767. return NULL;
  1768. }
  1769. static int sock_map_update_elem(struct bpf_map *map,
  1770. void *key, void *value, u64 flags)
  1771. {
  1772. struct bpf_sock_ops_kern skops;
  1773. u32 fd = *(u32 *)value;
  1774. struct socket *socket;
  1775. int err;
  1776. socket = sockfd_lookup(fd, &err);
  1777. if (!socket)
  1778. return err;
  1779. skops.sk = socket->sk;
  1780. if (!skops.sk) {
  1781. fput(socket->file);
  1782. return -EINVAL;
  1783. }
  1784. if (skops.sk->sk_type != SOCK_STREAM ||
  1785. skops.sk->sk_protocol != IPPROTO_TCP) {
  1786. fput(socket->file);
  1787. return -EOPNOTSUPP;
  1788. }
  1789. lock_sock(skops.sk);
  1790. preempt_disable();
  1791. rcu_read_lock();
  1792. err = sock_map_ctx_update_elem(&skops, map, key, flags);
  1793. rcu_read_unlock();
  1794. preempt_enable();
  1795. release_sock(skops.sk);
  1796. fput(socket->file);
  1797. return err;
  1798. }
  1799. static void sock_map_release(struct bpf_map *map)
  1800. {
  1801. struct bpf_sock_progs *progs;
  1802. struct bpf_prog *orig;
  1803. if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
  1804. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1805. progs = &stab->progs;
  1806. } else {
  1807. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1808. progs = &htab->progs;
  1809. }
  1810. orig = xchg(&progs->bpf_parse, NULL);
  1811. if (orig)
  1812. bpf_prog_put(orig);
  1813. orig = xchg(&progs->bpf_verdict, NULL);
  1814. if (orig)
  1815. bpf_prog_put(orig);
  1816. orig = xchg(&progs->bpf_tx_msg, NULL);
  1817. if (orig)
  1818. bpf_prog_put(orig);
  1819. }
  1820. static struct bpf_map *sock_hash_alloc(union bpf_attr *attr)
  1821. {
  1822. struct bpf_htab *htab;
  1823. int i, err;
  1824. u64 cost;
  1825. if (!capable(CAP_NET_ADMIN))
  1826. return ERR_PTR(-EPERM);
  1827. /* check sanity of attributes */
  1828. if (attr->max_entries == 0 ||
  1829. attr->key_size == 0 ||
  1830. attr->value_size != 4 ||
  1831. attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1832. return ERR_PTR(-EINVAL);
  1833. if (attr->key_size > MAX_BPF_STACK)
  1834. /* eBPF programs initialize keys on stack, so they cannot be
  1835. * larger than max stack size
  1836. */
  1837. return ERR_PTR(-E2BIG);
  1838. err = bpf_tcp_ulp_register();
  1839. if (err && err != -EEXIST)
  1840. return ERR_PTR(err);
  1841. htab = kzalloc(sizeof(*htab), GFP_USER);
  1842. if (!htab)
  1843. return ERR_PTR(-ENOMEM);
  1844. bpf_map_init_from_attr(&htab->map, attr);
  1845. htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
  1846. htab->elem_size = sizeof(struct htab_elem) +
  1847. round_up(htab->map.key_size, 8);
  1848. err = -EINVAL;
  1849. if (htab->n_buckets == 0 ||
  1850. htab->n_buckets > U32_MAX / sizeof(struct bucket))
  1851. goto free_htab;
  1852. cost = (u64) htab->n_buckets * sizeof(struct bucket) +
  1853. (u64) htab->elem_size * htab->map.max_entries;
  1854. if (cost >= U32_MAX - PAGE_SIZE)
  1855. goto free_htab;
  1856. htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1857. err = bpf_map_precharge_memlock(htab->map.pages);
  1858. if (err)
  1859. goto free_htab;
  1860. err = -ENOMEM;
  1861. htab->buckets = bpf_map_area_alloc(
  1862. htab->n_buckets * sizeof(struct bucket),
  1863. htab->map.numa_node);
  1864. if (!htab->buckets)
  1865. goto free_htab;
  1866. for (i = 0; i < htab->n_buckets; i++) {
  1867. INIT_HLIST_HEAD(&htab->buckets[i].head);
  1868. raw_spin_lock_init(&htab->buckets[i].lock);
  1869. }
  1870. return &htab->map;
  1871. free_htab:
  1872. kfree(htab);
  1873. return ERR_PTR(err);
  1874. }
  1875. static void __bpf_htab_free(struct rcu_head *rcu)
  1876. {
  1877. struct bpf_htab *htab;
  1878. htab = container_of(rcu, struct bpf_htab, rcu);
  1879. bpf_map_area_free(htab->buckets);
  1880. kfree(htab);
  1881. }
  1882. static void sock_hash_free(struct bpf_map *map)
  1883. {
  1884. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1885. int i;
  1886. synchronize_rcu();
  1887. /* At this point no update, lookup or delete operations can happen.
  1888. * However, be aware we can still get a socket state event updates,
  1889. * and data ready callabacks that reference the psock from sk_user_data
  1890. * Also psock worker threads are still in-flight. So smap_release_sock
  1891. * will only free the psock after cancel_sync on the worker threads
  1892. * and a grace period expire to ensure psock is really safe to remove.
  1893. */
  1894. rcu_read_lock();
  1895. for (i = 0; i < htab->n_buckets; i++) {
  1896. struct bucket *b = __select_bucket(htab, i);
  1897. struct hlist_head *head;
  1898. struct hlist_node *n;
  1899. struct htab_elem *l;
  1900. raw_spin_lock_bh(&b->lock);
  1901. head = &b->head;
  1902. hlist_for_each_entry_safe(l, n, head, hash_node) {
  1903. struct sock *sock = l->sk;
  1904. struct smap_psock *psock;
  1905. hlist_del_rcu(&l->hash_node);
  1906. psock = smap_psock_sk(sock);
  1907. /* This check handles a racing sock event that can get
  1908. * the sk_callback_lock before this case but after xchg
  1909. * causing the refcnt to hit zero and sock user data
  1910. * (psock) to be null and queued for garbage collection.
  1911. */
  1912. if (likely(psock)) {
  1913. smap_list_hash_remove(psock, l);
  1914. smap_release_sock(psock, sock);
  1915. }
  1916. free_htab_elem(htab, l);
  1917. }
  1918. raw_spin_unlock_bh(&b->lock);
  1919. }
  1920. rcu_read_unlock();
  1921. call_rcu(&htab->rcu, __bpf_htab_free);
  1922. }
  1923. static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab,
  1924. void *key, u32 key_size, u32 hash,
  1925. struct sock *sk,
  1926. struct htab_elem *old_elem)
  1927. {
  1928. struct htab_elem *l_new;
  1929. if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
  1930. if (!old_elem) {
  1931. atomic_dec(&htab->count);
  1932. return ERR_PTR(-E2BIG);
  1933. }
  1934. }
  1935. l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
  1936. htab->map.numa_node);
  1937. if (!l_new) {
  1938. atomic_dec(&htab->count);
  1939. return ERR_PTR(-ENOMEM);
  1940. }
  1941. memcpy(l_new->key, key, key_size);
  1942. l_new->sk = sk;
  1943. l_new->hash = hash;
  1944. return l_new;
  1945. }
  1946. static inline u32 htab_map_hash(const void *key, u32 key_len)
  1947. {
  1948. return jhash(key, key_len, 0);
  1949. }
  1950. static int sock_hash_get_next_key(struct bpf_map *map,
  1951. void *key, void *next_key)
  1952. {
  1953. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1954. struct htab_elem *l, *next_l;
  1955. struct hlist_head *h;
  1956. u32 hash, key_size;
  1957. int i = 0;
  1958. WARN_ON_ONCE(!rcu_read_lock_held());
  1959. key_size = map->key_size;
  1960. if (!key)
  1961. goto find_first_elem;
  1962. hash = htab_map_hash(key, key_size);
  1963. h = select_bucket(htab, hash);
  1964. l = lookup_elem_raw(h, hash, key, key_size);
  1965. if (!l)
  1966. goto find_first_elem;
  1967. next_l = hlist_entry_safe(
  1968. rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
  1969. struct htab_elem, hash_node);
  1970. if (next_l) {
  1971. memcpy(next_key, next_l->key, key_size);
  1972. return 0;
  1973. }
  1974. /* no more elements in this hash list, go to the next bucket */
  1975. i = hash & (htab->n_buckets - 1);
  1976. i++;
  1977. find_first_elem:
  1978. /* iterate over buckets */
  1979. for (; i < htab->n_buckets; i++) {
  1980. h = select_bucket(htab, i);
  1981. /* pick first element in the bucket */
  1982. next_l = hlist_entry_safe(
  1983. rcu_dereference_raw(hlist_first_rcu(h)),
  1984. struct htab_elem, hash_node);
  1985. if (next_l) {
  1986. /* if it's not empty, just return it */
  1987. memcpy(next_key, next_l->key, key_size);
  1988. return 0;
  1989. }
  1990. }
  1991. /* iterated over all buckets and all elements */
  1992. return -ENOENT;
  1993. }
  1994. static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1995. struct bpf_map *map,
  1996. void *key, u64 map_flags)
  1997. {
  1998. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1999. struct bpf_sock_progs *progs = &htab->progs;
  2000. struct htab_elem *l_new = NULL, *l_old;
  2001. struct smap_psock_map_entry *e = NULL;
  2002. struct hlist_head *head;
  2003. struct smap_psock *psock;
  2004. u32 key_size, hash;
  2005. struct sock *sock;
  2006. struct bucket *b;
  2007. int err;
  2008. sock = skops->sk;
  2009. if (sock->sk_type != SOCK_STREAM ||
  2010. sock->sk_protocol != IPPROTO_TCP)
  2011. return -EOPNOTSUPP;
  2012. if (unlikely(map_flags > BPF_EXIST))
  2013. return -EINVAL;
  2014. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  2015. if (!e)
  2016. return -ENOMEM;
  2017. WARN_ON_ONCE(!rcu_read_lock_held());
  2018. key_size = map->key_size;
  2019. hash = htab_map_hash(key, key_size);
  2020. b = __select_bucket(htab, hash);
  2021. head = &b->head;
  2022. err = __sock_map_ctx_update_elem(map, progs, sock, key);
  2023. if (err)
  2024. goto err;
  2025. /* psock is valid here because otherwise above *ctx_update_elem would
  2026. * have thrown an error. It is safe to skip error check.
  2027. */
  2028. psock = smap_psock_sk(sock);
  2029. raw_spin_lock_bh(&b->lock);
  2030. l_old = lookup_elem_raw(head, hash, key, key_size);
  2031. if (l_old && map_flags == BPF_NOEXIST) {
  2032. err = -EEXIST;
  2033. goto bucket_err;
  2034. }
  2035. if (!l_old && map_flags == BPF_EXIST) {
  2036. err = -ENOENT;
  2037. goto bucket_err;
  2038. }
  2039. l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old);
  2040. if (IS_ERR(l_new)) {
  2041. err = PTR_ERR(l_new);
  2042. goto bucket_err;
  2043. }
  2044. rcu_assign_pointer(e->hash_link, l_new);
  2045. e->map = map;
  2046. spin_lock_bh(&psock->maps_lock);
  2047. list_add_tail(&e->list, &psock->maps);
  2048. spin_unlock_bh(&psock->maps_lock);
  2049. /* add new element to the head of the list, so that
  2050. * concurrent search will find it before old elem
  2051. */
  2052. hlist_add_head_rcu(&l_new->hash_node, head);
  2053. if (l_old) {
  2054. psock = smap_psock_sk(l_old->sk);
  2055. hlist_del_rcu(&l_old->hash_node);
  2056. smap_list_hash_remove(psock, l_old);
  2057. smap_release_sock(psock, l_old->sk);
  2058. free_htab_elem(htab, l_old);
  2059. }
  2060. raw_spin_unlock_bh(&b->lock);
  2061. return 0;
  2062. bucket_err:
  2063. smap_release_sock(psock, sock);
  2064. raw_spin_unlock_bh(&b->lock);
  2065. err:
  2066. kfree(e);
  2067. return err;
  2068. }
  2069. static int sock_hash_update_elem(struct bpf_map *map,
  2070. void *key, void *value, u64 flags)
  2071. {
  2072. struct bpf_sock_ops_kern skops;
  2073. u32 fd = *(u32 *)value;
  2074. struct socket *socket;
  2075. int err;
  2076. socket = sockfd_lookup(fd, &err);
  2077. if (!socket)
  2078. return err;
  2079. skops.sk = socket->sk;
  2080. if (!skops.sk) {
  2081. fput(socket->file);
  2082. return -EINVAL;
  2083. }
  2084. lock_sock(skops.sk);
  2085. preempt_disable();
  2086. rcu_read_lock();
  2087. err = sock_hash_ctx_update_elem(&skops, map, key, flags);
  2088. rcu_read_unlock();
  2089. preempt_enable();
  2090. release_sock(skops.sk);
  2091. fput(socket->file);
  2092. return err;
  2093. }
  2094. static int sock_hash_delete_elem(struct bpf_map *map, void *key)
  2095. {
  2096. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  2097. struct hlist_head *head;
  2098. struct bucket *b;
  2099. struct htab_elem *l;
  2100. u32 hash, key_size;
  2101. int ret = -ENOENT;
  2102. key_size = map->key_size;
  2103. hash = htab_map_hash(key, key_size);
  2104. b = __select_bucket(htab, hash);
  2105. head = &b->head;
  2106. raw_spin_lock_bh(&b->lock);
  2107. l = lookup_elem_raw(head, hash, key, key_size);
  2108. if (l) {
  2109. struct sock *sock = l->sk;
  2110. struct smap_psock *psock;
  2111. hlist_del_rcu(&l->hash_node);
  2112. psock = smap_psock_sk(sock);
  2113. /* This check handles a racing sock event that can get the
  2114. * sk_callback_lock before this case but after xchg happens
  2115. * causing the refcnt to hit zero and sock user data (psock)
  2116. * to be null and queued for garbage collection.
  2117. */
  2118. if (likely(psock)) {
  2119. smap_list_hash_remove(psock, l);
  2120. smap_release_sock(psock, sock);
  2121. }
  2122. free_htab_elem(htab, l);
  2123. ret = 0;
  2124. }
  2125. raw_spin_unlock_bh(&b->lock);
  2126. return ret;
  2127. }
  2128. struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key)
  2129. {
  2130. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  2131. struct hlist_head *head;
  2132. struct htab_elem *l;
  2133. u32 key_size, hash;
  2134. struct bucket *b;
  2135. struct sock *sk;
  2136. key_size = map->key_size;
  2137. hash = htab_map_hash(key, key_size);
  2138. b = __select_bucket(htab, hash);
  2139. head = &b->head;
  2140. l = lookup_elem_raw(head, hash, key, key_size);
  2141. sk = l ? l->sk : NULL;
  2142. return sk;
  2143. }
  2144. const struct bpf_map_ops sock_map_ops = {
  2145. .map_alloc = sock_map_alloc,
  2146. .map_free = sock_map_free,
  2147. .map_lookup_elem = sock_map_lookup,
  2148. .map_get_next_key = sock_map_get_next_key,
  2149. .map_update_elem = sock_map_update_elem,
  2150. .map_delete_elem = sock_map_delete_elem,
  2151. .map_release_uref = sock_map_release,
  2152. .map_check_btf = map_check_no_btf,
  2153. };
  2154. const struct bpf_map_ops sock_hash_ops = {
  2155. .map_alloc = sock_hash_alloc,
  2156. .map_free = sock_hash_free,
  2157. .map_lookup_elem = sock_map_lookup,
  2158. .map_get_next_key = sock_hash_get_next_key,
  2159. .map_update_elem = sock_hash_update_elem,
  2160. .map_delete_elem = sock_hash_delete_elem,
  2161. .map_release_uref = sock_map_release,
  2162. .map_check_btf = map_check_no_btf,
  2163. };
  2164. BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
  2165. struct bpf_map *, map, void *, key, u64, flags)
  2166. {
  2167. WARN_ON_ONCE(!rcu_read_lock_held());
  2168. return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
  2169. }
  2170. const struct bpf_func_proto bpf_sock_map_update_proto = {
  2171. .func = bpf_sock_map_update,
  2172. .gpl_only = false,
  2173. .pkt_access = true,
  2174. .ret_type = RET_INTEGER,
  2175. .arg1_type = ARG_PTR_TO_CTX,
  2176. .arg2_type = ARG_CONST_MAP_PTR,
  2177. .arg3_type = ARG_PTR_TO_MAP_KEY,
  2178. .arg4_type = ARG_ANYTHING,
  2179. };
  2180. BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock,
  2181. struct bpf_map *, map, void *, key, u64, flags)
  2182. {
  2183. WARN_ON_ONCE(!rcu_read_lock_held());
  2184. return sock_hash_ctx_update_elem(bpf_sock, map, key, flags);
  2185. }
  2186. const struct bpf_func_proto bpf_sock_hash_update_proto = {
  2187. .func = bpf_sock_hash_update,
  2188. .gpl_only = false,
  2189. .pkt_access = true,
  2190. .ret_type = RET_INTEGER,
  2191. .arg1_type = ARG_PTR_TO_CTX,
  2192. .arg2_type = ARG_CONST_MAP_PTR,
  2193. .arg3_type = ARG_PTR_TO_MAP_KEY,
  2194. .arg4_type = ARG_ANYTHING,
  2195. };