qlge_main.c 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/bitops.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/if_vlan.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/prefetch.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0664);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int qlge_irq_type = MSIX_IRQ;
  68. module_param(qlge_irq_type, int, 0664);
  69. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static int qlge_mpi_coredump;
  71. module_param(qlge_mpi_coredump, int, 0);
  72. MODULE_PARM_DESC(qlge_mpi_coredump,
  73. "Option to enable MPI firmware dump. "
  74. "Default is OFF - Do Not allocate memory. ");
  75. static int qlge_force_coredump;
  76. module_param(qlge_force_coredump, int, 0);
  77. MODULE_PARM_DESC(qlge_force_coredump,
  78. "Option to allow force of firmware core dump. "
  79. "Default is OFF - Do not allow.");
  80. static const struct pci_device_id qlge_pci_tbl[] = {
  81. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  83. /* required last entry */
  84. {0,}
  85. };
  86. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  87. static int ql_wol(struct ql_adapter *);
  88. static void qlge_set_multicast_list(struct net_device *);
  89. static int ql_adapter_down(struct ql_adapter *);
  90. static int ql_adapter_up(struct ql_adapter *);
  91. /* This hardware semaphore causes exclusive access to
  92. * resources shared between the NIC driver, MPI firmware,
  93. * FCOE firmware and the FC driver.
  94. */
  95. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  96. {
  97. u32 sem_bits = 0;
  98. switch (sem_mask) {
  99. case SEM_XGMAC0_MASK:
  100. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  101. break;
  102. case SEM_XGMAC1_MASK:
  103. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  104. break;
  105. case SEM_ICB_MASK:
  106. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  107. break;
  108. case SEM_MAC_ADDR_MASK:
  109. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  110. break;
  111. case SEM_FLASH_MASK:
  112. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  113. break;
  114. case SEM_PROBE_MASK:
  115. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  116. break;
  117. case SEM_RT_IDX_MASK:
  118. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  119. break;
  120. case SEM_PROC_REG_MASK:
  121. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  122. break;
  123. default:
  124. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  125. return -EINVAL;
  126. }
  127. ql_write32(qdev, SEM, sem_bits | sem_mask);
  128. return !(ql_read32(qdev, SEM) & sem_bits);
  129. }
  130. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  131. {
  132. unsigned int wait_count = 30;
  133. do {
  134. if (!ql_sem_trylock(qdev, sem_mask))
  135. return 0;
  136. udelay(100);
  137. } while (--wait_count);
  138. return -ETIMEDOUT;
  139. }
  140. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  141. {
  142. ql_write32(qdev, SEM, sem_mask);
  143. ql_read32(qdev, SEM); /* flush */
  144. }
  145. /* This function waits for a specific bit to come ready
  146. * in a given register. It is used mostly by the initialize
  147. * process, but is also used in kernel thread API such as
  148. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  149. */
  150. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  151. {
  152. u32 temp;
  153. int count = UDELAY_COUNT;
  154. while (count) {
  155. temp = ql_read32(qdev, reg);
  156. /* check for errors */
  157. if (temp & err_bit) {
  158. netif_alert(qdev, probe, qdev->ndev,
  159. "register 0x%.08x access error, value = 0x%.08x!.\n",
  160. reg, temp);
  161. return -EIO;
  162. } else if (temp & bit)
  163. return 0;
  164. udelay(UDELAY_DELAY);
  165. count--;
  166. }
  167. netif_alert(qdev, probe, qdev->ndev,
  168. "Timed out waiting for reg %x to come ready.\n", reg);
  169. return -ETIMEDOUT;
  170. }
  171. /* The CFG register is used to download TX and RX control blocks
  172. * to the chip. This function waits for an operation to complete.
  173. */
  174. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  175. {
  176. int count = UDELAY_COUNT;
  177. u32 temp;
  178. while (count) {
  179. temp = ql_read32(qdev, CFG);
  180. if (temp & CFG_LE)
  181. return -EIO;
  182. if (!(temp & bit))
  183. return 0;
  184. udelay(UDELAY_DELAY);
  185. count--;
  186. }
  187. return -ETIMEDOUT;
  188. }
  189. /* Used to issue init control blocks to hw. Maps control block,
  190. * sets address, triggers download, waits for completion.
  191. */
  192. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  193. u16 q_id)
  194. {
  195. u64 map;
  196. int status = 0;
  197. int direction;
  198. u32 mask;
  199. u32 value;
  200. direction =
  201. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  202. PCI_DMA_FROMDEVICE;
  203. map = pci_map_single(qdev->pdev, ptr, size, direction);
  204. if (pci_dma_mapping_error(qdev->pdev, map)) {
  205. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  206. return -ENOMEM;
  207. }
  208. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  209. if (status)
  210. return status;
  211. status = ql_wait_cfg(qdev, bit);
  212. if (status) {
  213. netif_err(qdev, ifup, qdev->ndev,
  214. "Timed out waiting for CFG to come ready.\n");
  215. goto exit;
  216. }
  217. ql_write32(qdev, ICB_L, (u32) map);
  218. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  219. mask = CFG_Q_MASK | (bit << 16);
  220. value = bit | (q_id << CFG_Q_SHIFT);
  221. ql_write32(qdev, CFG, (mask | value));
  222. /*
  223. * Wait for the bit to clear after signaling hw.
  224. */
  225. status = ql_wait_cfg(qdev, bit);
  226. exit:
  227. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  228. pci_unmap_single(qdev->pdev, map, size, direction);
  229. return status;
  230. }
  231. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  232. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  233. u32 *value)
  234. {
  235. u32 offset = 0;
  236. int status;
  237. switch (type) {
  238. case MAC_ADDR_TYPE_MULTI_MAC:
  239. case MAC_ADDR_TYPE_CAM_MAC:
  240. {
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev,
  265. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  270. status =
  271. ql_wait_reg_rdy(qdev,
  272. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  273. if (status)
  274. goto exit;
  275. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  276. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  277. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  278. status =
  279. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  280. MAC_ADDR_MR, 0);
  281. if (status)
  282. goto exit;
  283. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  284. }
  285. break;
  286. }
  287. case MAC_ADDR_TYPE_VLAN:
  288. case MAC_ADDR_TYPE_MULTI_FLTR:
  289. default:
  290. netif_crit(qdev, ifup, qdev->ndev,
  291. "Address type %d not yet supported.\n", type);
  292. status = -EPERM;
  293. }
  294. exit:
  295. return status;
  296. }
  297. /* Set up a MAC, multicast or VLAN address for the
  298. * inbound frame matching.
  299. */
  300. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  301. u16 index)
  302. {
  303. u32 offset = 0;
  304. int status = 0;
  305. switch (type) {
  306. case MAC_ADDR_TYPE_MULTI_MAC:
  307. {
  308. u32 upper = (addr[0] << 8) | addr[1];
  309. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  310. (addr[4] << 8) | (addr[5]);
  311. status =
  312. ql_wait_reg_rdy(qdev,
  313. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  314. if (status)
  315. goto exit;
  316. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  317. (index << MAC_ADDR_IDX_SHIFT) |
  318. type | MAC_ADDR_E);
  319. ql_write32(qdev, MAC_ADDR_DATA, lower);
  320. status =
  321. ql_wait_reg_rdy(qdev,
  322. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  323. if (status)
  324. goto exit;
  325. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  326. (index << MAC_ADDR_IDX_SHIFT) |
  327. type | MAC_ADDR_E);
  328. ql_write32(qdev, MAC_ADDR_DATA, upper);
  329. status =
  330. ql_wait_reg_rdy(qdev,
  331. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  332. if (status)
  333. goto exit;
  334. break;
  335. }
  336. case MAC_ADDR_TYPE_CAM_MAC:
  337. {
  338. u32 cam_output;
  339. u32 upper = (addr[0] << 8) | addr[1];
  340. u32 lower =
  341. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  342. (addr[5]);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, lower);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. ql_write32(qdev, MAC_ADDR_DATA, upper);
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type); /* type */
  369. /* This field should also include the queue id
  370. and possibly the function id. Right now we hardcode
  371. the route field to NIC core.
  372. */
  373. cam_output = (CAM_OUT_ROUTE_NIC |
  374. (qdev->
  375. func << CAM_OUT_FUNC_SHIFT) |
  376. (0 << CAM_OUT_CQ_ID_SHIFT));
  377. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  378. cam_output |= CAM_OUT_RV;
  379. /* route to NIC core */
  380. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  381. break;
  382. }
  383. case MAC_ADDR_TYPE_VLAN:
  384. {
  385. u32 enable_bit = *((u32 *) &addr[0]);
  386. /* For VLAN, the addr actually holds a bit that
  387. * either enables or disables the vlan id we are
  388. * addressing. It's either MAC_ADDR_E on or off.
  389. * That's bit-27 we're talking about.
  390. */
  391. status =
  392. ql_wait_reg_rdy(qdev,
  393. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  394. if (status)
  395. goto exit;
  396. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  397. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  398. type | /* type */
  399. enable_bit); /* enable/disable */
  400. break;
  401. }
  402. case MAC_ADDR_TYPE_MULTI_FLTR:
  403. default:
  404. netif_crit(qdev, ifup, qdev->ndev,
  405. "Address type %d not yet supported.\n", type);
  406. status = -EPERM;
  407. }
  408. exit:
  409. return status;
  410. }
  411. /* Set or clear MAC address in hardware. We sometimes
  412. * have to clear it to prevent wrong frame routing
  413. * especially in a bonding environment.
  414. */
  415. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  416. {
  417. int status;
  418. char zero_mac_addr[ETH_ALEN];
  419. char *addr;
  420. if (set) {
  421. addr = &qdev->current_mac_addr[0];
  422. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  423. "Set Mac addr %pM\n", addr);
  424. } else {
  425. eth_zero_addr(zero_mac_addr);
  426. addr = &zero_mac_addr[0];
  427. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  428. "Clearing MAC address\n");
  429. }
  430. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  431. if (status)
  432. return status;
  433. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  434. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  435. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  436. if (status)
  437. netif_err(qdev, ifup, qdev->ndev,
  438. "Failed to init mac address.\n");
  439. return status;
  440. }
  441. void ql_link_on(struct ql_adapter *qdev)
  442. {
  443. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  444. netif_carrier_on(qdev->ndev);
  445. ql_set_mac_addr(qdev, 1);
  446. }
  447. void ql_link_off(struct ql_adapter *qdev)
  448. {
  449. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  450. netif_carrier_off(qdev->ndev);
  451. ql_set_mac_addr(qdev, 0);
  452. }
  453. /* Get a specific frame routing value from the CAM.
  454. * Used for debug and reg dump.
  455. */
  456. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  457. {
  458. int status = 0;
  459. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  460. if (status)
  461. goto exit;
  462. ql_write32(qdev, RT_IDX,
  463. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  464. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  465. if (status)
  466. goto exit;
  467. *value = ql_read32(qdev, RT_DATA);
  468. exit:
  469. return status;
  470. }
  471. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  472. * to route different frame types to various inbound queues. We send broadcast/
  473. * multicast/error frames to the default queue for slow handling,
  474. * and CAM hit/RSS frames to the fast handling queues.
  475. */
  476. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  477. int enable)
  478. {
  479. int status = -EINVAL; /* Return error if no mask match. */
  480. u32 value = 0;
  481. switch (mask) {
  482. case RT_IDX_CAM_HIT:
  483. {
  484. value = RT_IDX_DST_CAM_Q | /* dest */
  485. RT_IDX_TYPE_NICQ | /* type */
  486. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  487. break;
  488. }
  489. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  490. {
  491. value = RT_IDX_DST_DFLT_Q | /* dest */
  492. RT_IDX_TYPE_NICQ | /* type */
  493. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  494. break;
  495. }
  496. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  497. {
  498. value = RT_IDX_DST_DFLT_Q | /* dest */
  499. RT_IDX_TYPE_NICQ | /* type */
  500. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  501. break;
  502. }
  503. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  504. {
  505. value = RT_IDX_DST_DFLT_Q | /* dest */
  506. RT_IDX_TYPE_NICQ | /* type */
  507. (RT_IDX_IP_CSUM_ERR_SLOT <<
  508. RT_IDX_IDX_SHIFT); /* index */
  509. break;
  510. }
  511. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  512. {
  513. value = RT_IDX_DST_DFLT_Q | /* dest */
  514. RT_IDX_TYPE_NICQ | /* type */
  515. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  516. RT_IDX_IDX_SHIFT); /* index */
  517. break;
  518. }
  519. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  520. {
  521. value = RT_IDX_DST_DFLT_Q | /* dest */
  522. RT_IDX_TYPE_NICQ | /* type */
  523. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  524. break;
  525. }
  526. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  527. {
  528. value = RT_IDX_DST_DFLT_Q | /* dest */
  529. RT_IDX_TYPE_NICQ | /* type */
  530. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  531. break;
  532. }
  533. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  534. {
  535. value = RT_IDX_DST_DFLT_Q | /* dest */
  536. RT_IDX_TYPE_NICQ | /* type */
  537. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  538. break;
  539. }
  540. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  541. {
  542. value = RT_IDX_DST_RSS | /* dest */
  543. RT_IDX_TYPE_NICQ | /* type */
  544. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  545. break;
  546. }
  547. case 0: /* Clear the E-bit on an entry. */
  548. {
  549. value = RT_IDX_DST_DFLT_Q | /* dest */
  550. RT_IDX_TYPE_NICQ | /* type */
  551. (index << RT_IDX_IDX_SHIFT);/* index */
  552. break;
  553. }
  554. default:
  555. netif_err(qdev, ifup, qdev->ndev,
  556. "Mask type %d not yet supported.\n", mask);
  557. status = -EPERM;
  558. goto exit;
  559. }
  560. if (value) {
  561. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  562. if (status)
  563. goto exit;
  564. value |= (enable ? RT_IDX_E : 0);
  565. ql_write32(qdev, RT_IDX, value);
  566. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  567. }
  568. exit:
  569. return status;
  570. }
  571. static void ql_enable_interrupts(struct ql_adapter *qdev)
  572. {
  573. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  574. }
  575. static void ql_disable_interrupts(struct ql_adapter *qdev)
  576. {
  577. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  578. }
  579. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  580. * Otherwise, we may have multiple outstanding workers and don't want to
  581. * enable until the last one finishes. In this case, the irq_cnt gets
  582. * incremented every time we queue a worker and decremented every time
  583. * a worker finishes. Once it hits zero we enable the interrupt.
  584. */
  585. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  586. {
  587. u32 var = 0;
  588. unsigned long hw_flags = 0;
  589. struct intr_context *ctx = qdev->intr_context + intr;
  590. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  591. /* Always enable if we're MSIX multi interrupts and
  592. * it's not the default (zeroeth) interrupt.
  593. */
  594. ql_write32(qdev, INTR_EN,
  595. ctx->intr_en_mask);
  596. var = ql_read32(qdev, STS);
  597. return var;
  598. }
  599. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  600. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  601. ql_write32(qdev, INTR_EN,
  602. ctx->intr_en_mask);
  603. var = ql_read32(qdev, STS);
  604. }
  605. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  606. return var;
  607. }
  608. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  609. {
  610. u32 var = 0;
  611. struct intr_context *ctx;
  612. /* HW disables for us if we're MSIX multi interrupts and
  613. * it's not the default (zeroeth) interrupt.
  614. */
  615. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  616. return 0;
  617. ctx = qdev->intr_context + intr;
  618. spin_lock(&qdev->hw_lock);
  619. if (!atomic_read(&ctx->irq_cnt)) {
  620. ql_write32(qdev, INTR_EN,
  621. ctx->intr_dis_mask);
  622. var = ql_read32(qdev, STS);
  623. }
  624. atomic_inc(&ctx->irq_cnt);
  625. spin_unlock(&qdev->hw_lock);
  626. return var;
  627. }
  628. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  629. {
  630. int i;
  631. for (i = 0; i < qdev->intr_count; i++) {
  632. /* The enable call does a atomic_dec_and_test
  633. * and enables only if the result is zero.
  634. * So we precharge it here.
  635. */
  636. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  637. i == 0))
  638. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  639. ql_enable_completion_interrupt(qdev, i);
  640. }
  641. }
  642. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  643. {
  644. int status, i;
  645. u16 csum = 0;
  646. __le16 *flash = (__le16 *)&qdev->flash;
  647. status = strncmp((char *)&qdev->flash, str, 4);
  648. if (status) {
  649. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  650. return status;
  651. }
  652. for (i = 0; i < size; i++)
  653. csum += le16_to_cpu(*flash++);
  654. if (csum)
  655. netif_err(qdev, ifup, qdev->ndev,
  656. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  657. return csum;
  658. }
  659. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  660. {
  661. int status = 0;
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  665. if (status)
  666. goto exit;
  667. /* set up for reg read */
  668. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  669. /* wait for reg to come ready */
  670. status = ql_wait_reg_rdy(qdev,
  671. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  672. if (status)
  673. goto exit;
  674. /* This data is stored on flash as an array of
  675. * __le32. Since ql_read32() returns cpu endian
  676. * we need to swap it back.
  677. */
  678. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  679. exit:
  680. return status;
  681. }
  682. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  683. {
  684. u32 i, size;
  685. int status;
  686. __le32 *p = (__le32 *)&qdev->flash;
  687. u32 offset;
  688. u8 mac_addr[6];
  689. /* Get flash offset for function and adjust
  690. * for dword access.
  691. */
  692. if (!qdev->port)
  693. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  694. else
  695. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  696. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  697. return -ETIMEDOUT;
  698. size = sizeof(struct flash_params_8000) / sizeof(u32);
  699. for (i = 0; i < size; i++, p++) {
  700. status = ql_read_flash_word(qdev, i+offset, p);
  701. if (status) {
  702. netif_err(qdev, ifup, qdev->ndev,
  703. "Error reading flash.\n");
  704. goto exit;
  705. }
  706. }
  707. status = ql_validate_flash(qdev,
  708. sizeof(struct flash_params_8000) / sizeof(u16),
  709. "8000");
  710. if (status) {
  711. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  712. status = -EINVAL;
  713. goto exit;
  714. }
  715. /* Extract either manufacturer or BOFM modified
  716. * MAC address.
  717. */
  718. if (qdev->flash.flash_params_8000.data_type1 == 2)
  719. memcpy(mac_addr,
  720. qdev->flash.flash_params_8000.mac_addr1,
  721. qdev->ndev->addr_len);
  722. else
  723. memcpy(mac_addr,
  724. qdev->flash.flash_params_8000.mac_addr,
  725. qdev->ndev->addr_len);
  726. if (!is_valid_ether_addr(mac_addr)) {
  727. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  728. status = -EINVAL;
  729. goto exit;
  730. }
  731. memcpy(qdev->ndev->dev_addr,
  732. mac_addr,
  733. qdev->ndev->addr_len);
  734. exit:
  735. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  736. return status;
  737. }
  738. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  739. {
  740. int i;
  741. int status;
  742. __le32 *p = (__le32 *)&qdev->flash;
  743. u32 offset = 0;
  744. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  745. /* Second function's parameters follow the first
  746. * function's.
  747. */
  748. if (qdev->port)
  749. offset = size;
  750. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  751. return -ETIMEDOUT;
  752. for (i = 0; i < size; i++, p++) {
  753. status = ql_read_flash_word(qdev, i+offset, p);
  754. if (status) {
  755. netif_err(qdev, ifup, qdev->ndev,
  756. "Error reading flash.\n");
  757. goto exit;
  758. }
  759. }
  760. status = ql_validate_flash(qdev,
  761. sizeof(struct flash_params_8012) / sizeof(u16),
  762. "8012");
  763. if (status) {
  764. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  765. status = -EINVAL;
  766. goto exit;
  767. }
  768. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  769. status = -EINVAL;
  770. goto exit;
  771. }
  772. memcpy(qdev->ndev->dev_addr,
  773. qdev->flash.flash_params_8012.mac_addr,
  774. qdev->ndev->addr_len);
  775. exit:
  776. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  777. return status;
  778. }
  779. /* xgmac register are located behind the xgmac_addr and xgmac_data
  780. * register pair. Each read/write requires us to wait for the ready
  781. * bit before reading/writing the data.
  782. */
  783. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  784. {
  785. int status;
  786. /* wait for reg to come ready */
  787. status = ql_wait_reg_rdy(qdev,
  788. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  789. if (status)
  790. return status;
  791. /* write the data to the data reg */
  792. ql_write32(qdev, XGMAC_DATA, data);
  793. /* trigger the write */
  794. ql_write32(qdev, XGMAC_ADDR, reg);
  795. return status;
  796. }
  797. /* xgmac register are located behind the xgmac_addr and xgmac_data
  798. * register pair. Each read/write requires us to wait for the ready
  799. * bit before reading/writing the data.
  800. */
  801. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  802. {
  803. int status = 0;
  804. /* wait for reg to come ready */
  805. status = ql_wait_reg_rdy(qdev,
  806. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  807. if (status)
  808. goto exit;
  809. /* set up for reg read */
  810. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  811. /* wait for reg to come ready */
  812. status = ql_wait_reg_rdy(qdev,
  813. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  814. if (status)
  815. goto exit;
  816. /* get the data */
  817. *data = ql_read32(qdev, XGMAC_DATA);
  818. exit:
  819. return status;
  820. }
  821. /* This is used for reading the 64-bit statistics regs. */
  822. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  823. {
  824. int status = 0;
  825. u32 hi = 0;
  826. u32 lo = 0;
  827. status = ql_read_xgmac_reg(qdev, reg, &lo);
  828. if (status)
  829. goto exit;
  830. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  831. if (status)
  832. goto exit;
  833. *data = (u64) lo | ((u64) hi << 32);
  834. exit:
  835. return status;
  836. }
  837. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  838. {
  839. int status;
  840. /*
  841. * Get MPI firmware version for driver banner
  842. * and ethool info.
  843. */
  844. status = ql_mb_about_fw(qdev);
  845. if (status)
  846. goto exit;
  847. status = ql_mb_get_fw_state(qdev);
  848. if (status)
  849. goto exit;
  850. /* Wake up a worker to get/set the TX/RX frame sizes. */
  851. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  852. exit:
  853. return status;
  854. }
  855. /* Take the MAC Core out of reset.
  856. * Enable statistics counting.
  857. * Take the transmitter/receiver out of reset.
  858. * This functionality may be done in the MPI firmware at a
  859. * later date.
  860. */
  861. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  862. {
  863. int status = 0;
  864. u32 data;
  865. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  866. /* Another function has the semaphore, so
  867. * wait for the port init bit to come ready.
  868. */
  869. netif_info(qdev, link, qdev->ndev,
  870. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  871. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  872. if (status) {
  873. netif_crit(qdev, link, qdev->ndev,
  874. "Port initialize timed out.\n");
  875. }
  876. return status;
  877. }
  878. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  879. /* Set the core reset. */
  880. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  881. if (status)
  882. goto end;
  883. data |= GLOBAL_CFG_RESET;
  884. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  885. if (status)
  886. goto end;
  887. /* Clear the core reset and turn on jumbo for receiver. */
  888. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  889. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  890. data |= GLOBAL_CFG_TX_STAT_EN;
  891. data |= GLOBAL_CFG_RX_STAT_EN;
  892. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  893. if (status)
  894. goto end;
  895. /* Enable transmitter, and clear it's reset. */
  896. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  897. if (status)
  898. goto end;
  899. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  900. data |= TX_CFG_EN; /* Enable the transmitter. */
  901. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  902. if (status)
  903. goto end;
  904. /* Enable receiver and clear it's reset. */
  905. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  906. if (status)
  907. goto end;
  908. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  909. data |= RX_CFG_EN; /* Enable the receiver. */
  910. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  911. if (status)
  912. goto end;
  913. /* Turn on jumbo. */
  914. status =
  915. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  916. if (status)
  917. goto end;
  918. status =
  919. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  920. if (status)
  921. goto end;
  922. /* Signal to the world that the port is enabled. */
  923. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  924. end:
  925. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  926. return status;
  927. }
  928. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  929. {
  930. return PAGE_SIZE << qdev->lbq_buf_order;
  931. }
  932. /* Get the next large buffer. */
  933. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  934. {
  935. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  936. rx_ring->lbq_curr_idx++;
  937. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  938. rx_ring->lbq_curr_idx = 0;
  939. rx_ring->lbq_free_cnt++;
  940. return lbq_desc;
  941. }
  942. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  943. struct rx_ring *rx_ring)
  944. {
  945. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  946. pci_dma_sync_single_for_cpu(qdev->pdev,
  947. dma_unmap_addr(lbq_desc, mapaddr),
  948. rx_ring->lbq_buf_size,
  949. PCI_DMA_FROMDEVICE);
  950. /* If it's the last chunk of our master page then
  951. * we unmap it.
  952. */
  953. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  954. == ql_lbq_block_size(qdev))
  955. pci_unmap_page(qdev->pdev,
  956. lbq_desc->p.pg_chunk.map,
  957. ql_lbq_block_size(qdev),
  958. PCI_DMA_FROMDEVICE);
  959. return lbq_desc;
  960. }
  961. /* Get the next small buffer. */
  962. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  963. {
  964. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  965. rx_ring->sbq_curr_idx++;
  966. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  967. rx_ring->sbq_curr_idx = 0;
  968. rx_ring->sbq_free_cnt++;
  969. return sbq_desc;
  970. }
  971. /* Update an rx ring index. */
  972. static void ql_update_cq(struct rx_ring *rx_ring)
  973. {
  974. rx_ring->cnsmr_idx++;
  975. rx_ring->curr_entry++;
  976. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  977. rx_ring->cnsmr_idx = 0;
  978. rx_ring->curr_entry = rx_ring->cq_base;
  979. }
  980. }
  981. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  982. {
  983. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  984. }
  985. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  986. struct bq_desc *lbq_desc)
  987. {
  988. if (!rx_ring->pg_chunk.page) {
  989. u64 map;
  990. rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
  991. qdev->lbq_buf_order);
  992. if (unlikely(!rx_ring->pg_chunk.page)) {
  993. netif_err(qdev, drv, qdev->ndev,
  994. "page allocation failed.\n");
  995. return -ENOMEM;
  996. }
  997. rx_ring->pg_chunk.offset = 0;
  998. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  999. 0, ql_lbq_block_size(qdev),
  1000. PCI_DMA_FROMDEVICE);
  1001. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1002. __free_pages(rx_ring->pg_chunk.page,
  1003. qdev->lbq_buf_order);
  1004. rx_ring->pg_chunk.page = NULL;
  1005. netif_err(qdev, drv, qdev->ndev,
  1006. "PCI mapping failed.\n");
  1007. return -ENOMEM;
  1008. }
  1009. rx_ring->pg_chunk.map = map;
  1010. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1011. }
  1012. /* Copy the current master pg_chunk info
  1013. * to the current descriptor.
  1014. */
  1015. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1016. /* Adjust the master page chunk for next
  1017. * buffer get.
  1018. */
  1019. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1020. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1021. rx_ring->pg_chunk.page = NULL;
  1022. lbq_desc->p.pg_chunk.last_flag = 1;
  1023. } else {
  1024. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1025. get_page(rx_ring->pg_chunk.page);
  1026. lbq_desc->p.pg_chunk.last_flag = 0;
  1027. }
  1028. return 0;
  1029. }
  1030. /* Process (refill) a large buffer queue. */
  1031. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1032. {
  1033. u32 clean_idx = rx_ring->lbq_clean_idx;
  1034. u32 start_idx = clean_idx;
  1035. struct bq_desc *lbq_desc;
  1036. u64 map;
  1037. int i;
  1038. while (rx_ring->lbq_free_cnt > 32) {
  1039. for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
  1040. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1041. "lbq: try cleaning clean_idx = %d.\n",
  1042. clean_idx);
  1043. lbq_desc = &rx_ring->lbq[clean_idx];
  1044. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1045. rx_ring->lbq_clean_idx = clean_idx;
  1046. netif_err(qdev, ifup, qdev->ndev,
  1047. "Could not get a page chunk, i=%d, clean_idx =%d .\n",
  1048. i, clean_idx);
  1049. return;
  1050. }
  1051. map = lbq_desc->p.pg_chunk.map +
  1052. lbq_desc->p.pg_chunk.offset;
  1053. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1054. dma_unmap_len_set(lbq_desc, maplen,
  1055. rx_ring->lbq_buf_size);
  1056. *lbq_desc->addr = cpu_to_le64(map);
  1057. pci_dma_sync_single_for_device(qdev->pdev, map,
  1058. rx_ring->lbq_buf_size,
  1059. PCI_DMA_FROMDEVICE);
  1060. clean_idx++;
  1061. if (clean_idx == rx_ring->lbq_len)
  1062. clean_idx = 0;
  1063. }
  1064. rx_ring->lbq_clean_idx = clean_idx;
  1065. rx_ring->lbq_prod_idx += 16;
  1066. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1067. rx_ring->lbq_prod_idx = 0;
  1068. rx_ring->lbq_free_cnt -= 16;
  1069. }
  1070. if (start_idx != clean_idx) {
  1071. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1072. "lbq: updating prod idx = %d.\n",
  1073. rx_ring->lbq_prod_idx);
  1074. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1075. rx_ring->lbq_prod_idx_db_reg);
  1076. }
  1077. }
  1078. /* Process (refill) a small buffer queue. */
  1079. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1080. {
  1081. u32 clean_idx = rx_ring->sbq_clean_idx;
  1082. u32 start_idx = clean_idx;
  1083. struct bq_desc *sbq_desc;
  1084. u64 map;
  1085. int i;
  1086. while (rx_ring->sbq_free_cnt > 16) {
  1087. for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
  1088. sbq_desc = &rx_ring->sbq[clean_idx];
  1089. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1090. "sbq: try cleaning clean_idx = %d.\n",
  1091. clean_idx);
  1092. if (sbq_desc->p.skb == NULL) {
  1093. netif_printk(qdev, rx_status, KERN_DEBUG,
  1094. qdev->ndev,
  1095. "sbq: getting new skb for index %d.\n",
  1096. sbq_desc->index);
  1097. sbq_desc->p.skb =
  1098. netdev_alloc_skb(qdev->ndev,
  1099. SMALL_BUFFER_SIZE);
  1100. if (sbq_desc->p.skb == NULL) {
  1101. rx_ring->sbq_clean_idx = clean_idx;
  1102. return;
  1103. }
  1104. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1105. map = pci_map_single(qdev->pdev,
  1106. sbq_desc->p.skb->data,
  1107. rx_ring->sbq_buf_size,
  1108. PCI_DMA_FROMDEVICE);
  1109. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1110. netif_err(qdev, ifup, qdev->ndev,
  1111. "PCI mapping failed.\n");
  1112. rx_ring->sbq_clean_idx = clean_idx;
  1113. dev_kfree_skb_any(sbq_desc->p.skb);
  1114. sbq_desc->p.skb = NULL;
  1115. return;
  1116. }
  1117. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1118. dma_unmap_len_set(sbq_desc, maplen,
  1119. rx_ring->sbq_buf_size);
  1120. *sbq_desc->addr = cpu_to_le64(map);
  1121. }
  1122. clean_idx++;
  1123. if (clean_idx == rx_ring->sbq_len)
  1124. clean_idx = 0;
  1125. }
  1126. rx_ring->sbq_clean_idx = clean_idx;
  1127. rx_ring->sbq_prod_idx += 16;
  1128. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1129. rx_ring->sbq_prod_idx = 0;
  1130. rx_ring->sbq_free_cnt -= 16;
  1131. }
  1132. if (start_idx != clean_idx) {
  1133. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1134. "sbq: updating prod idx = %d.\n",
  1135. rx_ring->sbq_prod_idx);
  1136. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1137. rx_ring->sbq_prod_idx_db_reg);
  1138. }
  1139. }
  1140. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1141. struct rx_ring *rx_ring)
  1142. {
  1143. ql_update_sbq(qdev, rx_ring);
  1144. ql_update_lbq(qdev, rx_ring);
  1145. }
  1146. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1147. * fails at some stage, or from the interrupt when a tx completes.
  1148. */
  1149. static void ql_unmap_send(struct ql_adapter *qdev,
  1150. struct tx_ring_desc *tx_ring_desc, int mapped)
  1151. {
  1152. int i;
  1153. for (i = 0; i < mapped; i++) {
  1154. if (i == 0 || (i == 7 && mapped > 7)) {
  1155. /*
  1156. * Unmap the skb->data area, or the
  1157. * external sglist (AKA the Outbound
  1158. * Address List (OAL)).
  1159. * If its the zeroeth element, then it's
  1160. * the skb->data area. If it's the 7th
  1161. * element and there is more than 6 frags,
  1162. * then its an OAL.
  1163. */
  1164. if (i == 7) {
  1165. netif_printk(qdev, tx_done, KERN_DEBUG,
  1166. qdev->ndev,
  1167. "unmapping OAL area.\n");
  1168. }
  1169. pci_unmap_single(qdev->pdev,
  1170. dma_unmap_addr(&tx_ring_desc->map[i],
  1171. mapaddr),
  1172. dma_unmap_len(&tx_ring_desc->map[i],
  1173. maplen),
  1174. PCI_DMA_TODEVICE);
  1175. } else {
  1176. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1177. "unmapping frag %d.\n", i);
  1178. pci_unmap_page(qdev->pdev,
  1179. dma_unmap_addr(&tx_ring_desc->map[i],
  1180. mapaddr),
  1181. dma_unmap_len(&tx_ring_desc->map[i],
  1182. maplen), PCI_DMA_TODEVICE);
  1183. }
  1184. }
  1185. }
  1186. /* Map the buffers for this transmit. This will return
  1187. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1188. */
  1189. static int ql_map_send(struct ql_adapter *qdev,
  1190. struct ob_mac_iocb_req *mac_iocb_ptr,
  1191. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1192. {
  1193. int len = skb_headlen(skb);
  1194. dma_addr_t map;
  1195. int frag_idx, err, map_idx = 0;
  1196. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1197. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1198. if (frag_cnt) {
  1199. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1200. "frag_cnt = %d.\n", frag_cnt);
  1201. }
  1202. /*
  1203. * Map the skb buffer first.
  1204. */
  1205. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1206. err = pci_dma_mapping_error(qdev->pdev, map);
  1207. if (err) {
  1208. netif_err(qdev, tx_queued, qdev->ndev,
  1209. "PCI mapping failed with error: %d\n", err);
  1210. return NETDEV_TX_BUSY;
  1211. }
  1212. tbd->len = cpu_to_le32(len);
  1213. tbd->addr = cpu_to_le64(map);
  1214. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1215. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1216. map_idx++;
  1217. /*
  1218. * This loop fills the remainder of the 8 address descriptors
  1219. * in the IOCB. If there are more than 7 fragments, then the
  1220. * eighth address desc will point to an external list (OAL).
  1221. * When this happens, the remainder of the frags will be stored
  1222. * in this list.
  1223. */
  1224. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1225. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1226. tbd++;
  1227. if (frag_idx == 6 && frag_cnt > 7) {
  1228. /* Let's tack on an sglist.
  1229. * Our control block will now
  1230. * look like this:
  1231. * iocb->seg[0] = skb->data
  1232. * iocb->seg[1] = frag[0]
  1233. * iocb->seg[2] = frag[1]
  1234. * iocb->seg[3] = frag[2]
  1235. * iocb->seg[4] = frag[3]
  1236. * iocb->seg[5] = frag[4]
  1237. * iocb->seg[6] = frag[5]
  1238. * iocb->seg[7] = ptr to OAL (external sglist)
  1239. * oal->seg[0] = frag[6]
  1240. * oal->seg[1] = frag[7]
  1241. * oal->seg[2] = frag[8]
  1242. * oal->seg[3] = frag[9]
  1243. * oal->seg[4] = frag[10]
  1244. * etc...
  1245. */
  1246. /* Tack on the OAL in the eighth segment of IOCB. */
  1247. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1248. sizeof(struct oal),
  1249. PCI_DMA_TODEVICE);
  1250. err = pci_dma_mapping_error(qdev->pdev, map);
  1251. if (err) {
  1252. netif_err(qdev, tx_queued, qdev->ndev,
  1253. "PCI mapping outbound address list with error: %d\n",
  1254. err);
  1255. goto map_error;
  1256. }
  1257. tbd->addr = cpu_to_le64(map);
  1258. /*
  1259. * The length is the number of fragments
  1260. * that remain to be mapped times the length
  1261. * of our sglist (OAL).
  1262. */
  1263. tbd->len =
  1264. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1265. (frag_cnt - frag_idx)) | TX_DESC_C);
  1266. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1267. map);
  1268. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1269. sizeof(struct oal));
  1270. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1271. map_idx++;
  1272. }
  1273. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1274. DMA_TO_DEVICE);
  1275. err = dma_mapping_error(&qdev->pdev->dev, map);
  1276. if (err) {
  1277. netif_err(qdev, tx_queued, qdev->ndev,
  1278. "PCI mapping frags failed with error: %d.\n",
  1279. err);
  1280. goto map_error;
  1281. }
  1282. tbd->addr = cpu_to_le64(map);
  1283. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1284. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1285. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1286. skb_frag_size(frag));
  1287. }
  1288. /* Save the number of segments we've mapped. */
  1289. tx_ring_desc->map_cnt = map_idx;
  1290. /* Terminate the last segment. */
  1291. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1292. return NETDEV_TX_OK;
  1293. map_error:
  1294. /*
  1295. * If the first frag mapping failed, then i will be zero.
  1296. * This causes the unmap of the skb->data area. Otherwise
  1297. * we pass in the number of frags that mapped successfully
  1298. * so they can be umapped.
  1299. */
  1300. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1301. return NETDEV_TX_BUSY;
  1302. }
  1303. /* Categorizing receive firmware frame errors */
  1304. static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
  1305. struct rx_ring *rx_ring)
  1306. {
  1307. struct nic_stats *stats = &qdev->nic_stats;
  1308. stats->rx_err_count++;
  1309. rx_ring->rx_errors++;
  1310. switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
  1311. case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
  1312. stats->rx_code_err++;
  1313. break;
  1314. case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
  1315. stats->rx_oversize_err++;
  1316. break;
  1317. case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
  1318. stats->rx_undersize_err++;
  1319. break;
  1320. case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
  1321. stats->rx_preamble_err++;
  1322. break;
  1323. case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
  1324. stats->rx_frame_len_err++;
  1325. break;
  1326. case IB_MAC_IOCB_RSP_ERR_CRC:
  1327. stats->rx_crc_err++;
  1328. default:
  1329. break;
  1330. }
  1331. }
  1332. /**
  1333. * ql_update_mac_hdr_len - helper routine to update the mac header length
  1334. * based on vlan tags if present
  1335. */
  1336. static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
  1337. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1338. void *page, size_t *len)
  1339. {
  1340. u16 *tags;
  1341. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
  1342. return;
  1343. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
  1344. tags = (u16 *)page;
  1345. /* Look for stacked vlan tags in ethertype field */
  1346. if (tags[6] == ETH_P_8021Q &&
  1347. tags[8] == ETH_P_8021Q)
  1348. *len += 2 * VLAN_HLEN;
  1349. else
  1350. *len += VLAN_HLEN;
  1351. }
  1352. }
  1353. /* Process an inbound completion from an rx ring. */
  1354. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1355. struct rx_ring *rx_ring,
  1356. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1357. u32 length,
  1358. u16 vlan_id)
  1359. {
  1360. struct sk_buff *skb;
  1361. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1362. struct napi_struct *napi = &rx_ring->napi;
  1363. /* Frame error, so drop the packet. */
  1364. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1365. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1366. put_page(lbq_desc->p.pg_chunk.page);
  1367. return;
  1368. }
  1369. napi->dev = qdev->ndev;
  1370. skb = napi_get_frags(napi);
  1371. if (!skb) {
  1372. netif_err(qdev, drv, qdev->ndev,
  1373. "Couldn't get an skb, exiting.\n");
  1374. rx_ring->rx_dropped++;
  1375. put_page(lbq_desc->p.pg_chunk.page);
  1376. return;
  1377. }
  1378. prefetch(lbq_desc->p.pg_chunk.va);
  1379. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1380. lbq_desc->p.pg_chunk.page,
  1381. lbq_desc->p.pg_chunk.offset,
  1382. length);
  1383. skb->len += length;
  1384. skb->data_len += length;
  1385. skb->truesize += length;
  1386. skb_shinfo(skb)->nr_frags++;
  1387. rx_ring->rx_packets++;
  1388. rx_ring->rx_bytes += length;
  1389. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1390. skb_record_rx_queue(skb, rx_ring->cq_id);
  1391. if (vlan_id != 0xffff)
  1392. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1393. napi_gro_frags(napi);
  1394. }
  1395. /* Process an inbound completion from an rx ring. */
  1396. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1397. struct rx_ring *rx_ring,
  1398. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1399. u32 length,
  1400. u16 vlan_id)
  1401. {
  1402. struct net_device *ndev = qdev->ndev;
  1403. struct sk_buff *skb = NULL;
  1404. void *addr;
  1405. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1406. struct napi_struct *napi = &rx_ring->napi;
  1407. size_t hlen = ETH_HLEN;
  1408. skb = netdev_alloc_skb(ndev, length);
  1409. if (!skb) {
  1410. rx_ring->rx_dropped++;
  1411. put_page(lbq_desc->p.pg_chunk.page);
  1412. return;
  1413. }
  1414. addr = lbq_desc->p.pg_chunk.va;
  1415. prefetch(addr);
  1416. /* Frame error, so drop the packet. */
  1417. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1418. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1419. goto err_out;
  1420. }
  1421. /* Update the MAC header length*/
  1422. ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
  1423. /* The max framesize filter on this chip is set higher than
  1424. * MTU since FCoE uses 2k frames.
  1425. */
  1426. if (skb->len > ndev->mtu + hlen) {
  1427. netif_err(qdev, drv, qdev->ndev,
  1428. "Segment too small, dropping.\n");
  1429. rx_ring->rx_dropped++;
  1430. goto err_out;
  1431. }
  1432. skb_put_data(skb, addr, hlen);
  1433. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1434. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1435. length);
  1436. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1437. lbq_desc->p.pg_chunk.offset + hlen,
  1438. length - hlen);
  1439. skb->len += length - hlen;
  1440. skb->data_len += length - hlen;
  1441. skb->truesize += length - hlen;
  1442. rx_ring->rx_packets++;
  1443. rx_ring->rx_bytes += skb->len;
  1444. skb->protocol = eth_type_trans(skb, ndev);
  1445. skb_checksum_none_assert(skb);
  1446. if ((ndev->features & NETIF_F_RXCSUM) &&
  1447. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1448. /* TCP frame. */
  1449. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1450. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1451. "TCP checksum done!\n");
  1452. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1453. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1454. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1455. /* Unfragmented ipv4 UDP frame. */
  1456. struct iphdr *iph =
  1457. (struct iphdr *)((u8 *)addr + hlen);
  1458. if (!(iph->frag_off &
  1459. htons(IP_MF|IP_OFFSET))) {
  1460. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1461. netif_printk(qdev, rx_status, KERN_DEBUG,
  1462. qdev->ndev,
  1463. "UDP checksum done!\n");
  1464. }
  1465. }
  1466. }
  1467. skb_record_rx_queue(skb, rx_ring->cq_id);
  1468. if (vlan_id != 0xffff)
  1469. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1470. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1471. napi_gro_receive(napi, skb);
  1472. else
  1473. netif_receive_skb(skb);
  1474. return;
  1475. err_out:
  1476. dev_kfree_skb_any(skb);
  1477. put_page(lbq_desc->p.pg_chunk.page);
  1478. }
  1479. /* Process an inbound completion from an rx ring. */
  1480. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1481. struct rx_ring *rx_ring,
  1482. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1483. u32 length,
  1484. u16 vlan_id)
  1485. {
  1486. struct net_device *ndev = qdev->ndev;
  1487. struct sk_buff *skb = NULL;
  1488. struct sk_buff *new_skb = NULL;
  1489. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1490. skb = sbq_desc->p.skb;
  1491. /* Allocate new_skb and copy */
  1492. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1493. if (new_skb == NULL) {
  1494. rx_ring->rx_dropped++;
  1495. return;
  1496. }
  1497. skb_reserve(new_skb, NET_IP_ALIGN);
  1498. pci_dma_sync_single_for_cpu(qdev->pdev,
  1499. dma_unmap_addr(sbq_desc, mapaddr),
  1500. dma_unmap_len(sbq_desc, maplen),
  1501. PCI_DMA_FROMDEVICE);
  1502. skb_put_data(new_skb, skb->data, length);
  1503. pci_dma_sync_single_for_device(qdev->pdev,
  1504. dma_unmap_addr(sbq_desc, mapaddr),
  1505. dma_unmap_len(sbq_desc, maplen),
  1506. PCI_DMA_FROMDEVICE);
  1507. skb = new_skb;
  1508. /* Frame error, so drop the packet. */
  1509. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1510. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1511. dev_kfree_skb_any(skb);
  1512. return;
  1513. }
  1514. /* loopback self test for ethtool */
  1515. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1516. ql_check_lb_frame(qdev, skb);
  1517. dev_kfree_skb_any(skb);
  1518. return;
  1519. }
  1520. /* The max framesize filter on this chip is set higher than
  1521. * MTU since FCoE uses 2k frames.
  1522. */
  1523. if (skb->len > ndev->mtu + ETH_HLEN) {
  1524. dev_kfree_skb_any(skb);
  1525. rx_ring->rx_dropped++;
  1526. return;
  1527. }
  1528. prefetch(skb->data);
  1529. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1530. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1531. "%s Multicast.\n",
  1532. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1533. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1534. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1535. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1536. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1537. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1538. }
  1539. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1540. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1541. "Promiscuous Packet.\n");
  1542. rx_ring->rx_packets++;
  1543. rx_ring->rx_bytes += skb->len;
  1544. skb->protocol = eth_type_trans(skb, ndev);
  1545. skb_checksum_none_assert(skb);
  1546. /* If rx checksum is on, and there are no
  1547. * csum or frame errors.
  1548. */
  1549. if ((ndev->features & NETIF_F_RXCSUM) &&
  1550. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1551. /* TCP frame. */
  1552. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1553. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1554. "TCP checksum done!\n");
  1555. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1556. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1557. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1558. /* Unfragmented ipv4 UDP frame. */
  1559. struct iphdr *iph = (struct iphdr *) skb->data;
  1560. if (!(iph->frag_off &
  1561. htons(IP_MF|IP_OFFSET))) {
  1562. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1563. netif_printk(qdev, rx_status, KERN_DEBUG,
  1564. qdev->ndev,
  1565. "UDP checksum done!\n");
  1566. }
  1567. }
  1568. }
  1569. skb_record_rx_queue(skb, rx_ring->cq_id);
  1570. if (vlan_id != 0xffff)
  1571. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1572. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1573. napi_gro_receive(&rx_ring->napi, skb);
  1574. else
  1575. netif_receive_skb(skb);
  1576. }
  1577. static void ql_realign_skb(struct sk_buff *skb, int len)
  1578. {
  1579. void *temp_addr = skb->data;
  1580. /* Undo the skb_reserve(skb,32) we did before
  1581. * giving to hardware, and realign data on
  1582. * a 2-byte boundary.
  1583. */
  1584. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1585. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1586. memmove(skb->data, temp_addr, len);
  1587. }
  1588. /*
  1589. * This function builds an skb for the given inbound
  1590. * completion. It will be rewritten for readability in the near
  1591. * future, but for not it works well.
  1592. */
  1593. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1594. struct rx_ring *rx_ring,
  1595. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1596. {
  1597. struct bq_desc *lbq_desc;
  1598. struct bq_desc *sbq_desc;
  1599. struct sk_buff *skb = NULL;
  1600. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1601. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1602. size_t hlen = ETH_HLEN;
  1603. /*
  1604. * Handle the header buffer if present.
  1605. */
  1606. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1607. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1608. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1609. "Header of %d bytes in small buffer.\n", hdr_len);
  1610. /*
  1611. * Headers fit nicely into a small buffer.
  1612. */
  1613. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1614. pci_unmap_single(qdev->pdev,
  1615. dma_unmap_addr(sbq_desc, mapaddr),
  1616. dma_unmap_len(sbq_desc, maplen),
  1617. PCI_DMA_FROMDEVICE);
  1618. skb = sbq_desc->p.skb;
  1619. ql_realign_skb(skb, hdr_len);
  1620. skb_put(skb, hdr_len);
  1621. sbq_desc->p.skb = NULL;
  1622. }
  1623. /*
  1624. * Handle the data buffer(s).
  1625. */
  1626. if (unlikely(!length)) { /* Is there data too? */
  1627. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1628. "No Data buffer in this packet.\n");
  1629. return skb;
  1630. }
  1631. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1632. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1633. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1634. "Headers in small, data of %d bytes in small, combine them.\n",
  1635. length);
  1636. /*
  1637. * Data is less than small buffer size so it's
  1638. * stuffed in a small buffer.
  1639. * For this case we append the data
  1640. * from the "data" small buffer to the "header" small
  1641. * buffer.
  1642. */
  1643. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1644. pci_dma_sync_single_for_cpu(qdev->pdev,
  1645. dma_unmap_addr
  1646. (sbq_desc, mapaddr),
  1647. dma_unmap_len
  1648. (sbq_desc, maplen),
  1649. PCI_DMA_FROMDEVICE);
  1650. skb_put_data(skb, sbq_desc->p.skb->data, length);
  1651. pci_dma_sync_single_for_device(qdev->pdev,
  1652. dma_unmap_addr
  1653. (sbq_desc,
  1654. mapaddr),
  1655. dma_unmap_len
  1656. (sbq_desc,
  1657. maplen),
  1658. PCI_DMA_FROMDEVICE);
  1659. } else {
  1660. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1661. "%d bytes in a single small buffer.\n",
  1662. length);
  1663. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1664. skb = sbq_desc->p.skb;
  1665. ql_realign_skb(skb, length);
  1666. skb_put(skb, length);
  1667. pci_unmap_single(qdev->pdev,
  1668. dma_unmap_addr(sbq_desc,
  1669. mapaddr),
  1670. dma_unmap_len(sbq_desc,
  1671. maplen),
  1672. PCI_DMA_FROMDEVICE);
  1673. sbq_desc->p.skb = NULL;
  1674. }
  1675. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1676. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1677. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1678. "Header in small, %d bytes in large. Chain large to small!\n",
  1679. length);
  1680. /*
  1681. * The data is in a single large buffer. We
  1682. * chain it to the header buffer's skb and let
  1683. * it rip.
  1684. */
  1685. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1686. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1687. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1688. lbq_desc->p.pg_chunk.offset, length);
  1689. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1690. lbq_desc->p.pg_chunk.offset,
  1691. length);
  1692. skb->len += length;
  1693. skb->data_len += length;
  1694. skb->truesize += length;
  1695. } else {
  1696. /*
  1697. * The headers and data are in a single large buffer. We
  1698. * copy it to a new skb and let it go. This can happen with
  1699. * jumbo mtu on a non-TCP/UDP frame.
  1700. */
  1701. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1702. skb = netdev_alloc_skb(qdev->ndev, length);
  1703. if (skb == NULL) {
  1704. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1705. "No skb available, drop the packet.\n");
  1706. return NULL;
  1707. }
  1708. pci_unmap_page(qdev->pdev,
  1709. dma_unmap_addr(lbq_desc,
  1710. mapaddr),
  1711. dma_unmap_len(lbq_desc, maplen),
  1712. PCI_DMA_FROMDEVICE);
  1713. skb_reserve(skb, NET_IP_ALIGN);
  1714. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1715. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1716. length);
  1717. skb_fill_page_desc(skb, 0,
  1718. lbq_desc->p.pg_chunk.page,
  1719. lbq_desc->p.pg_chunk.offset,
  1720. length);
  1721. skb->len += length;
  1722. skb->data_len += length;
  1723. skb->truesize += length;
  1724. ql_update_mac_hdr_len(qdev, ib_mac_rsp,
  1725. lbq_desc->p.pg_chunk.va,
  1726. &hlen);
  1727. __pskb_pull_tail(skb, hlen);
  1728. }
  1729. } else {
  1730. /*
  1731. * The data is in a chain of large buffers
  1732. * pointed to by a small buffer. We loop
  1733. * thru and chain them to the our small header
  1734. * buffer's skb.
  1735. * frags: There are 18 max frags and our small
  1736. * buffer will hold 32 of them. The thing is,
  1737. * we'll use 3 max for our 9000 byte jumbo
  1738. * frames. If the MTU goes up we could
  1739. * eventually be in trouble.
  1740. */
  1741. int size, i = 0;
  1742. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1743. pci_unmap_single(qdev->pdev,
  1744. dma_unmap_addr(sbq_desc, mapaddr),
  1745. dma_unmap_len(sbq_desc, maplen),
  1746. PCI_DMA_FROMDEVICE);
  1747. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1748. /*
  1749. * This is an non TCP/UDP IP frame, so
  1750. * the headers aren't split into a small
  1751. * buffer. We have to use the small buffer
  1752. * that contains our sg list as our skb to
  1753. * send upstairs. Copy the sg list here to
  1754. * a local buffer and use it to find the
  1755. * pages to chain.
  1756. */
  1757. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1758. "%d bytes of headers & data in chain of large.\n",
  1759. length);
  1760. skb = sbq_desc->p.skb;
  1761. sbq_desc->p.skb = NULL;
  1762. skb_reserve(skb, NET_IP_ALIGN);
  1763. }
  1764. do {
  1765. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1766. size = (length < rx_ring->lbq_buf_size) ? length :
  1767. rx_ring->lbq_buf_size;
  1768. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1769. "Adding page %d to skb for %d bytes.\n",
  1770. i, size);
  1771. skb_fill_page_desc(skb, i,
  1772. lbq_desc->p.pg_chunk.page,
  1773. lbq_desc->p.pg_chunk.offset,
  1774. size);
  1775. skb->len += size;
  1776. skb->data_len += size;
  1777. skb->truesize += size;
  1778. length -= size;
  1779. i++;
  1780. } while (length > 0);
  1781. ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
  1782. &hlen);
  1783. __pskb_pull_tail(skb, hlen);
  1784. }
  1785. return skb;
  1786. }
  1787. /* Process an inbound completion from an rx ring. */
  1788. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1789. struct rx_ring *rx_ring,
  1790. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1791. u16 vlan_id)
  1792. {
  1793. struct net_device *ndev = qdev->ndev;
  1794. struct sk_buff *skb = NULL;
  1795. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1796. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1797. if (unlikely(!skb)) {
  1798. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1799. "No skb available, drop packet.\n");
  1800. rx_ring->rx_dropped++;
  1801. return;
  1802. }
  1803. /* Frame error, so drop the packet. */
  1804. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1805. ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
  1806. dev_kfree_skb_any(skb);
  1807. return;
  1808. }
  1809. /* The max framesize filter on this chip is set higher than
  1810. * MTU since FCoE uses 2k frames.
  1811. */
  1812. if (skb->len > ndev->mtu + ETH_HLEN) {
  1813. dev_kfree_skb_any(skb);
  1814. rx_ring->rx_dropped++;
  1815. return;
  1816. }
  1817. /* loopback self test for ethtool */
  1818. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1819. ql_check_lb_frame(qdev, skb);
  1820. dev_kfree_skb_any(skb);
  1821. return;
  1822. }
  1823. prefetch(skb->data);
  1824. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1825. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1826. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1827. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1828. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1829. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1830. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1831. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1832. rx_ring->rx_multicast++;
  1833. }
  1834. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1835. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1836. "Promiscuous Packet.\n");
  1837. }
  1838. skb->protocol = eth_type_trans(skb, ndev);
  1839. skb_checksum_none_assert(skb);
  1840. /* If rx checksum is on, and there are no
  1841. * csum or frame errors.
  1842. */
  1843. if ((ndev->features & NETIF_F_RXCSUM) &&
  1844. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1845. /* TCP frame. */
  1846. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1847. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1848. "TCP checksum done!\n");
  1849. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1850. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1851. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1852. /* Unfragmented ipv4 UDP frame. */
  1853. struct iphdr *iph = (struct iphdr *) skb->data;
  1854. if (!(iph->frag_off &
  1855. htons(IP_MF|IP_OFFSET))) {
  1856. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1857. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1858. "TCP checksum done!\n");
  1859. }
  1860. }
  1861. }
  1862. rx_ring->rx_packets++;
  1863. rx_ring->rx_bytes += skb->len;
  1864. skb_record_rx_queue(skb, rx_ring->cq_id);
  1865. if (vlan_id != 0xffff)
  1866. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
  1867. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1868. napi_gro_receive(&rx_ring->napi, skb);
  1869. else
  1870. netif_receive_skb(skb);
  1871. }
  1872. /* Process an inbound completion from an rx ring. */
  1873. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1874. struct rx_ring *rx_ring,
  1875. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1876. {
  1877. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1878. u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1879. (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
  1880. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1881. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1882. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1883. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1884. /* The data and headers are split into
  1885. * separate buffers.
  1886. */
  1887. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1888. vlan_id);
  1889. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1890. /* The data fit in a single small buffer.
  1891. * Allocate a new skb, copy the data and
  1892. * return the buffer to the free pool.
  1893. */
  1894. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1895. length, vlan_id);
  1896. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1897. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1898. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1899. /* TCP packet in a page chunk that's been checksummed.
  1900. * Tack it on to our GRO skb and let it go.
  1901. */
  1902. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1903. length, vlan_id);
  1904. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1905. /* Non-TCP packet in a page chunk. Allocate an
  1906. * skb, tack it on frags, and send it up.
  1907. */
  1908. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1909. length, vlan_id);
  1910. } else {
  1911. /* Non-TCP/UDP large frames that span multiple buffers
  1912. * can be processed corrrectly by the split frame logic.
  1913. */
  1914. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1915. vlan_id);
  1916. }
  1917. return (unsigned long)length;
  1918. }
  1919. /* Process an outbound completion from an rx ring. */
  1920. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1921. struct ob_mac_iocb_rsp *mac_rsp)
  1922. {
  1923. struct tx_ring *tx_ring;
  1924. struct tx_ring_desc *tx_ring_desc;
  1925. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1926. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1927. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1928. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1929. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1930. tx_ring->tx_packets++;
  1931. dev_kfree_skb(tx_ring_desc->skb);
  1932. tx_ring_desc->skb = NULL;
  1933. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1934. OB_MAC_IOCB_RSP_S |
  1935. OB_MAC_IOCB_RSP_L |
  1936. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1937. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1938. netif_warn(qdev, tx_done, qdev->ndev,
  1939. "Total descriptor length did not match transfer length.\n");
  1940. }
  1941. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1942. netif_warn(qdev, tx_done, qdev->ndev,
  1943. "Frame too short to be valid, not sent.\n");
  1944. }
  1945. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1946. netif_warn(qdev, tx_done, qdev->ndev,
  1947. "Frame too long, but sent anyway.\n");
  1948. }
  1949. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1950. netif_warn(qdev, tx_done, qdev->ndev,
  1951. "PCI backplane error. Frame not sent.\n");
  1952. }
  1953. }
  1954. atomic_inc(&tx_ring->tx_count);
  1955. }
  1956. /* Fire up a handler to reset the MPI processor. */
  1957. void ql_queue_fw_error(struct ql_adapter *qdev)
  1958. {
  1959. ql_link_off(qdev);
  1960. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1961. }
  1962. void ql_queue_asic_error(struct ql_adapter *qdev)
  1963. {
  1964. ql_link_off(qdev);
  1965. ql_disable_interrupts(qdev);
  1966. /* Clear adapter up bit to signal the recovery
  1967. * process that it shouldn't kill the reset worker
  1968. * thread
  1969. */
  1970. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1971. /* Set asic recovery bit to indicate reset process that we are
  1972. * in fatal error recovery process rather than normal close
  1973. */
  1974. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1975. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1976. }
  1977. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1978. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1979. {
  1980. switch (ib_ae_rsp->event) {
  1981. case MGMT_ERR_EVENT:
  1982. netif_err(qdev, rx_err, qdev->ndev,
  1983. "Management Processor Fatal Error.\n");
  1984. ql_queue_fw_error(qdev);
  1985. return;
  1986. case CAM_LOOKUP_ERR_EVENT:
  1987. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1988. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1989. ql_queue_asic_error(qdev);
  1990. return;
  1991. case SOFT_ECC_ERROR_EVENT:
  1992. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1993. ql_queue_asic_error(qdev);
  1994. break;
  1995. case PCI_ERR_ANON_BUF_RD:
  1996. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1997. "anonymous buffers from rx_ring %d.\n",
  1998. ib_ae_rsp->q_id);
  1999. ql_queue_asic_error(qdev);
  2000. break;
  2001. default:
  2002. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  2003. ib_ae_rsp->event);
  2004. ql_queue_asic_error(qdev);
  2005. break;
  2006. }
  2007. }
  2008. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  2009. {
  2010. struct ql_adapter *qdev = rx_ring->qdev;
  2011. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2012. struct ob_mac_iocb_rsp *net_rsp = NULL;
  2013. int count = 0;
  2014. struct tx_ring *tx_ring;
  2015. /* While there are entries in the completion queue. */
  2016. while (prod != rx_ring->cnsmr_idx) {
  2017. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2018. "cq_id = %d, prod = %d, cnsmr = %d\n",
  2019. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2020. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  2021. rmb();
  2022. switch (net_rsp->opcode) {
  2023. case OPCODE_OB_MAC_TSO_IOCB:
  2024. case OPCODE_OB_MAC_IOCB:
  2025. ql_process_mac_tx_intr(qdev, net_rsp);
  2026. break;
  2027. default:
  2028. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2029. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2030. net_rsp->opcode);
  2031. }
  2032. count++;
  2033. ql_update_cq(rx_ring);
  2034. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2035. }
  2036. if (!net_rsp)
  2037. return 0;
  2038. ql_write_cq_idx(rx_ring);
  2039. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2040. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2041. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2042. /*
  2043. * The queue got stopped because the tx_ring was full.
  2044. * Wake it up, because it's now at least 25% empty.
  2045. */
  2046. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2047. }
  2048. return count;
  2049. }
  2050. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2051. {
  2052. struct ql_adapter *qdev = rx_ring->qdev;
  2053. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2054. struct ql_net_rsp_iocb *net_rsp;
  2055. int count = 0;
  2056. /* While there are entries in the completion queue. */
  2057. while (prod != rx_ring->cnsmr_idx) {
  2058. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2059. "cq_id = %d, prod = %d, cnsmr = %d\n",
  2060. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2061. net_rsp = rx_ring->curr_entry;
  2062. rmb();
  2063. switch (net_rsp->opcode) {
  2064. case OPCODE_IB_MAC_IOCB:
  2065. ql_process_mac_rx_intr(qdev, rx_ring,
  2066. (struct ib_mac_iocb_rsp *)
  2067. net_rsp);
  2068. break;
  2069. case OPCODE_IB_AE_IOCB:
  2070. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2071. net_rsp);
  2072. break;
  2073. default:
  2074. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2075. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2076. net_rsp->opcode);
  2077. break;
  2078. }
  2079. count++;
  2080. ql_update_cq(rx_ring);
  2081. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2082. if (count == budget)
  2083. break;
  2084. }
  2085. ql_update_buffer_queues(qdev, rx_ring);
  2086. ql_write_cq_idx(rx_ring);
  2087. return count;
  2088. }
  2089. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2090. {
  2091. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2092. struct ql_adapter *qdev = rx_ring->qdev;
  2093. struct rx_ring *trx_ring;
  2094. int i, work_done = 0;
  2095. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2096. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2097. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2098. /* Service the TX rings first. They start
  2099. * right after the RSS rings. */
  2100. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2101. trx_ring = &qdev->rx_ring[i];
  2102. /* If this TX completion ring belongs to this vector and
  2103. * it's not empty then service it.
  2104. */
  2105. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2106. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2107. trx_ring->cnsmr_idx)) {
  2108. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2109. "%s: Servicing TX completion ring %d.\n",
  2110. __func__, trx_ring->cq_id);
  2111. ql_clean_outbound_rx_ring(trx_ring);
  2112. }
  2113. }
  2114. /*
  2115. * Now service the RSS ring if it's active.
  2116. */
  2117. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2118. rx_ring->cnsmr_idx) {
  2119. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2120. "%s: Servicing RX completion ring %d.\n",
  2121. __func__, rx_ring->cq_id);
  2122. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2123. }
  2124. if (work_done < budget) {
  2125. napi_complete_done(napi, work_done);
  2126. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2127. }
  2128. return work_done;
  2129. }
  2130. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2131. {
  2132. struct ql_adapter *qdev = netdev_priv(ndev);
  2133. if (features & NETIF_F_HW_VLAN_CTAG_RX) {
  2134. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2135. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2136. } else {
  2137. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2138. }
  2139. }
  2140. /**
  2141. * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
  2142. * based on the features to enable/disable hardware vlan accel
  2143. */
  2144. static int qlge_update_hw_vlan_features(struct net_device *ndev,
  2145. netdev_features_t features)
  2146. {
  2147. struct ql_adapter *qdev = netdev_priv(ndev);
  2148. int status = 0;
  2149. bool need_restart = netif_running(ndev);
  2150. if (need_restart) {
  2151. status = ql_adapter_down(qdev);
  2152. if (status) {
  2153. netif_err(qdev, link, qdev->ndev,
  2154. "Failed to bring down the adapter\n");
  2155. return status;
  2156. }
  2157. }
  2158. /* update the features with resent change */
  2159. ndev->features = features;
  2160. if (need_restart) {
  2161. status = ql_adapter_up(qdev);
  2162. if (status) {
  2163. netif_err(qdev, link, qdev->ndev,
  2164. "Failed to bring up the adapter\n");
  2165. return status;
  2166. }
  2167. }
  2168. return status;
  2169. }
  2170. static int qlge_set_features(struct net_device *ndev,
  2171. netdev_features_t features)
  2172. {
  2173. netdev_features_t changed = ndev->features ^ features;
  2174. int err;
  2175. if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
  2176. /* Update the behavior of vlan accel in the adapter */
  2177. err = qlge_update_hw_vlan_features(ndev, features);
  2178. if (err)
  2179. return err;
  2180. qlge_vlan_mode(ndev, features);
  2181. }
  2182. return 0;
  2183. }
  2184. static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2185. {
  2186. u32 enable_bit = MAC_ADDR_E;
  2187. int err;
  2188. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2189. MAC_ADDR_TYPE_VLAN, vid);
  2190. if (err)
  2191. netif_err(qdev, ifup, qdev->ndev,
  2192. "Failed to init vlan address.\n");
  2193. return err;
  2194. }
  2195. static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2196. {
  2197. struct ql_adapter *qdev = netdev_priv(ndev);
  2198. int status;
  2199. int err;
  2200. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2201. if (status)
  2202. return status;
  2203. err = __qlge_vlan_rx_add_vid(qdev, vid);
  2204. set_bit(vid, qdev->active_vlans);
  2205. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2206. return err;
  2207. }
  2208. static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2209. {
  2210. u32 enable_bit = 0;
  2211. int err;
  2212. err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
  2213. MAC_ADDR_TYPE_VLAN, vid);
  2214. if (err)
  2215. netif_err(qdev, ifup, qdev->ndev,
  2216. "Failed to clear vlan address.\n");
  2217. return err;
  2218. }
  2219. static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
  2220. {
  2221. struct ql_adapter *qdev = netdev_priv(ndev);
  2222. int status;
  2223. int err;
  2224. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2225. if (status)
  2226. return status;
  2227. err = __qlge_vlan_rx_kill_vid(qdev, vid);
  2228. clear_bit(vid, qdev->active_vlans);
  2229. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2230. return err;
  2231. }
  2232. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2233. {
  2234. int status;
  2235. u16 vid;
  2236. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2237. if (status)
  2238. return;
  2239. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2240. __qlge_vlan_rx_add_vid(qdev, vid);
  2241. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2242. }
  2243. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2244. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2245. {
  2246. struct rx_ring *rx_ring = dev_id;
  2247. napi_schedule(&rx_ring->napi);
  2248. return IRQ_HANDLED;
  2249. }
  2250. /* This handles a fatal error, MPI activity, and the default
  2251. * rx_ring in an MSI-X multiple vector environment.
  2252. * In MSI/Legacy environment it also process the rest of
  2253. * the rx_rings.
  2254. */
  2255. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2256. {
  2257. struct rx_ring *rx_ring = dev_id;
  2258. struct ql_adapter *qdev = rx_ring->qdev;
  2259. struct intr_context *intr_context = &qdev->intr_context[0];
  2260. u32 var;
  2261. int work_done = 0;
  2262. spin_lock(&qdev->hw_lock);
  2263. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2264. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2265. "Shared Interrupt, Not ours!\n");
  2266. spin_unlock(&qdev->hw_lock);
  2267. return IRQ_NONE;
  2268. }
  2269. spin_unlock(&qdev->hw_lock);
  2270. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2271. /*
  2272. * Check for fatal error.
  2273. */
  2274. if (var & STS_FE) {
  2275. ql_queue_asic_error(qdev);
  2276. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2277. var = ql_read32(qdev, ERR_STS);
  2278. netdev_err(qdev->ndev, "Resetting chip. "
  2279. "Error Status Register = 0x%x\n", var);
  2280. return IRQ_HANDLED;
  2281. }
  2282. /*
  2283. * Check MPI processor activity.
  2284. */
  2285. if ((var & STS_PI) &&
  2286. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2287. /*
  2288. * We've got an async event or mailbox completion.
  2289. * Handle it and clear the source of the interrupt.
  2290. */
  2291. netif_err(qdev, intr, qdev->ndev,
  2292. "Got MPI processor interrupt.\n");
  2293. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2294. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2295. queue_delayed_work_on(smp_processor_id(),
  2296. qdev->workqueue, &qdev->mpi_work, 0);
  2297. work_done++;
  2298. }
  2299. /*
  2300. * Get the bit-mask that shows the active queues for this
  2301. * pass. Compare it to the queues that this irq services
  2302. * and call napi if there's a match.
  2303. */
  2304. var = ql_read32(qdev, ISR1);
  2305. if (var & intr_context->irq_mask) {
  2306. netif_info(qdev, intr, qdev->ndev,
  2307. "Waking handler for rx_ring[0].\n");
  2308. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2309. napi_schedule(&rx_ring->napi);
  2310. work_done++;
  2311. }
  2312. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2313. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2314. }
  2315. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2316. {
  2317. if (skb_is_gso(skb)) {
  2318. int err;
  2319. __be16 l3_proto = vlan_get_protocol(skb);
  2320. err = skb_cow_head(skb, 0);
  2321. if (err < 0)
  2322. return err;
  2323. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2324. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2325. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2326. mac_iocb_ptr->total_hdrs_len =
  2327. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2328. mac_iocb_ptr->net_trans_offset =
  2329. cpu_to_le16(skb_network_offset(skb) |
  2330. skb_transport_offset(skb)
  2331. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2332. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2333. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2334. if (likely(l3_proto == htons(ETH_P_IP))) {
  2335. struct iphdr *iph = ip_hdr(skb);
  2336. iph->check = 0;
  2337. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2338. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2339. iph->daddr, 0,
  2340. IPPROTO_TCP,
  2341. 0);
  2342. } else if (l3_proto == htons(ETH_P_IPV6)) {
  2343. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2344. tcp_hdr(skb)->check =
  2345. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2346. &ipv6_hdr(skb)->daddr,
  2347. 0, IPPROTO_TCP, 0);
  2348. }
  2349. return 1;
  2350. }
  2351. return 0;
  2352. }
  2353. static void ql_hw_csum_setup(struct sk_buff *skb,
  2354. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2355. {
  2356. int len;
  2357. struct iphdr *iph = ip_hdr(skb);
  2358. __sum16 *check;
  2359. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2360. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2361. mac_iocb_ptr->net_trans_offset =
  2362. cpu_to_le16(skb_network_offset(skb) |
  2363. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2364. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2365. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2366. if (likely(iph->protocol == IPPROTO_TCP)) {
  2367. check = &(tcp_hdr(skb)->check);
  2368. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2369. mac_iocb_ptr->total_hdrs_len =
  2370. cpu_to_le16(skb_transport_offset(skb) +
  2371. (tcp_hdr(skb)->doff << 2));
  2372. } else {
  2373. check = &(udp_hdr(skb)->check);
  2374. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2375. mac_iocb_ptr->total_hdrs_len =
  2376. cpu_to_le16(skb_transport_offset(skb) +
  2377. sizeof(struct udphdr));
  2378. }
  2379. *check = ~csum_tcpudp_magic(iph->saddr,
  2380. iph->daddr, len, iph->protocol, 0);
  2381. }
  2382. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2383. {
  2384. struct tx_ring_desc *tx_ring_desc;
  2385. struct ob_mac_iocb_req *mac_iocb_ptr;
  2386. struct ql_adapter *qdev = netdev_priv(ndev);
  2387. int tso;
  2388. struct tx_ring *tx_ring;
  2389. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2390. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2391. if (skb_padto(skb, ETH_ZLEN))
  2392. return NETDEV_TX_OK;
  2393. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2394. netif_info(qdev, tx_queued, qdev->ndev,
  2395. "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
  2396. __func__, tx_ring_idx);
  2397. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2398. tx_ring->tx_errors++;
  2399. return NETDEV_TX_BUSY;
  2400. }
  2401. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2402. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2403. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2404. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2405. mac_iocb_ptr->tid = tx_ring_desc->index;
  2406. /* We use the upper 32-bits to store the tx queue for this IO.
  2407. * When we get the completion we can use it to establish the context.
  2408. */
  2409. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2410. tx_ring_desc->skb = skb;
  2411. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2412. if (skb_vlan_tag_present(skb)) {
  2413. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2414. "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
  2415. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2416. mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
  2417. }
  2418. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2419. if (tso < 0) {
  2420. dev_kfree_skb_any(skb);
  2421. return NETDEV_TX_OK;
  2422. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2423. ql_hw_csum_setup(skb,
  2424. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2425. }
  2426. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2427. NETDEV_TX_OK) {
  2428. netif_err(qdev, tx_queued, qdev->ndev,
  2429. "Could not map the segments.\n");
  2430. tx_ring->tx_errors++;
  2431. return NETDEV_TX_BUSY;
  2432. }
  2433. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2434. tx_ring->prod_idx++;
  2435. if (tx_ring->prod_idx == tx_ring->wq_len)
  2436. tx_ring->prod_idx = 0;
  2437. wmb();
  2438. ql_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2439. mmiowb();
  2440. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2441. "tx queued, slot %d, len %d\n",
  2442. tx_ring->prod_idx, skb->len);
  2443. atomic_dec(&tx_ring->tx_count);
  2444. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2445. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2446. if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2447. /*
  2448. * The queue got stopped because the tx_ring was full.
  2449. * Wake it up, because it's now at least 25% empty.
  2450. */
  2451. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2452. }
  2453. return NETDEV_TX_OK;
  2454. }
  2455. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2456. {
  2457. if (qdev->rx_ring_shadow_reg_area) {
  2458. pci_free_consistent(qdev->pdev,
  2459. PAGE_SIZE,
  2460. qdev->rx_ring_shadow_reg_area,
  2461. qdev->rx_ring_shadow_reg_dma);
  2462. qdev->rx_ring_shadow_reg_area = NULL;
  2463. }
  2464. if (qdev->tx_ring_shadow_reg_area) {
  2465. pci_free_consistent(qdev->pdev,
  2466. PAGE_SIZE,
  2467. qdev->tx_ring_shadow_reg_area,
  2468. qdev->tx_ring_shadow_reg_dma);
  2469. qdev->tx_ring_shadow_reg_area = NULL;
  2470. }
  2471. }
  2472. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2473. {
  2474. qdev->rx_ring_shadow_reg_area =
  2475. pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
  2476. &qdev->rx_ring_shadow_reg_dma);
  2477. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2478. netif_err(qdev, ifup, qdev->ndev,
  2479. "Allocation of RX shadow space failed.\n");
  2480. return -ENOMEM;
  2481. }
  2482. qdev->tx_ring_shadow_reg_area =
  2483. pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
  2484. &qdev->tx_ring_shadow_reg_dma);
  2485. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2486. netif_err(qdev, ifup, qdev->ndev,
  2487. "Allocation of TX shadow space failed.\n");
  2488. goto err_wqp_sh_area;
  2489. }
  2490. return 0;
  2491. err_wqp_sh_area:
  2492. pci_free_consistent(qdev->pdev,
  2493. PAGE_SIZE,
  2494. qdev->rx_ring_shadow_reg_area,
  2495. qdev->rx_ring_shadow_reg_dma);
  2496. return -ENOMEM;
  2497. }
  2498. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2499. {
  2500. struct tx_ring_desc *tx_ring_desc;
  2501. int i;
  2502. struct ob_mac_iocb_req *mac_iocb_ptr;
  2503. mac_iocb_ptr = tx_ring->wq_base;
  2504. tx_ring_desc = tx_ring->q;
  2505. for (i = 0; i < tx_ring->wq_len; i++) {
  2506. tx_ring_desc->index = i;
  2507. tx_ring_desc->skb = NULL;
  2508. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2509. mac_iocb_ptr++;
  2510. tx_ring_desc++;
  2511. }
  2512. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2513. }
  2514. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2515. struct tx_ring *tx_ring)
  2516. {
  2517. if (tx_ring->wq_base) {
  2518. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2519. tx_ring->wq_base, tx_ring->wq_base_dma);
  2520. tx_ring->wq_base = NULL;
  2521. }
  2522. kfree(tx_ring->q);
  2523. tx_ring->q = NULL;
  2524. }
  2525. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2526. struct tx_ring *tx_ring)
  2527. {
  2528. tx_ring->wq_base =
  2529. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2530. &tx_ring->wq_base_dma);
  2531. if ((tx_ring->wq_base == NULL) ||
  2532. tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
  2533. goto pci_alloc_err;
  2534. tx_ring->q =
  2535. kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc),
  2536. GFP_KERNEL);
  2537. if (tx_ring->q == NULL)
  2538. goto err;
  2539. return 0;
  2540. err:
  2541. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2542. tx_ring->wq_base, tx_ring->wq_base_dma);
  2543. tx_ring->wq_base = NULL;
  2544. pci_alloc_err:
  2545. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2546. return -ENOMEM;
  2547. }
  2548. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2549. {
  2550. struct bq_desc *lbq_desc;
  2551. uint32_t curr_idx, clean_idx;
  2552. curr_idx = rx_ring->lbq_curr_idx;
  2553. clean_idx = rx_ring->lbq_clean_idx;
  2554. while (curr_idx != clean_idx) {
  2555. lbq_desc = &rx_ring->lbq[curr_idx];
  2556. if (lbq_desc->p.pg_chunk.last_flag) {
  2557. pci_unmap_page(qdev->pdev,
  2558. lbq_desc->p.pg_chunk.map,
  2559. ql_lbq_block_size(qdev),
  2560. PCI_DMA_FROMDEVICE);
  2561. lbq_desc->p.pg_chunk.last_flag = 0;
  2562. }
  2563. put_page(lbq_desc->p.pg_chunk.page);
  2564. lbq_desc->p.pg_chunk.page = NULL;
  2565. if (++curr_idx == rx_ring->lbq_len)
  2566. curr_idx = 0;
  2567. }
  2568. if (rx_ring->pg_chunk.page) {
  2569. pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
  2570. ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
  2571. put_page(rx_ring->pg_chunk.page);
  2572. rx_ring->pg_chunk.page = NULL;
  2573. }
  2574. }
  2575. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2576. {
  2577. int i;
  2578. struct bq_desc *sbq_desc;
  2579. for (i = 0; i < rx_ring->sbq_len; i++) {
  2580. sbq_desc = &rx_ring->sbq[i];
  2581. if (sbq_desc == NULL) {
  2582. netif_err(qdev, ifup, qdev->ndev,
  2583. "sbq_desc %d is NULL.\n", i);
  2584. return;
  2585. }
  2586. if (sbq_desc->p.skb) {
  2587. pci_unmap_single(qdev->pdev,
  2588. dma_unmap_addr(sbq_desc, mapaddr),
  2589. dma_unmap_len(sbq_desc, maplen),
  2590. PCI_DMA_FROMDEVICE);
  2591. dev_kfree_skb(sbq_desc->p.skb);
  2592. sbq_desc->p.skb = NULL;
  2593. }
  2594. }
  2595. }
  2596. /* Free all large and small rx buffers associated
  2597. * with the completion queues for this device.
  2598. */
  2599. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2600. {
  2601. int i;
  2602. struct rx_ring *rx_ring;
  2603. for (i = 0; i < qdev->rx_ring_count; i++) {
  2604. rx_ring = &qdev->rx_ring[i];
  2605. if (rx_ring->lbq)
  2606. ql_free_lbq_buffers(qdev, rx_ring);
  2607. if (rx_ring->sbq)
  2608. ql_free_sbq_buffers(qdev, rx_ring);
  2609. }
  2610. }
  2611. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2612. {
  2613. struct rx_ring *rx_ring;
  2614. int i;
  2615. for (i = 0; i < qdev->rx_ring_count; i++) {
  2616. rx_ring = &qdev->rx_ring[i];
  2617. if (rx_ring->type != TX_Q)
  2618. ql_update_buffer_queues(qdev, rx_ring);
  2619. }
  2620. }
  2621. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2622. struct rx_ring *rx_ring)
  2623. {
  2624. int i;
  2625. struct bq_desc *lbq_desc;
  2626. __le64 *bq = rx_ring->lbq_base;
  2627. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2628. for (i = 0; i < rx_ring->lbq_len; i++) {
  2629. lbq_desc = &rx_ring->lbq[i];
  2630. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2631. lbq_desc->index = i;
  2632. lbq_desc->addr = bq;
  2633. bq++;
  2634. }
  2635. }
  2636. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2637. struct rx_ring *rx_ring)
  2638. {
  2639. int i;
  2640. struct bq_desc *sbq_desc;
  2641. __le64 *bq = rx_ring->sbq_base;
  2642. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2643. for (i = 0; i < rx_ring->sbq_len; i++) {
  2644. sbq_desc = &rx_ring->sbq[i];
  2645. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2646. sbq_desc->index = i;
  2647. sbq_desc->addr = bq;
  2648. bq++;
  2649. }
  2650. }
  2651. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2652. struct rx_ring *rx_ring)
  2653. {
  2654. /* Free the small buffer queue. */
  2655. if (rx_ring->sbq_base) {
  2656. pci_free_consistent(qdev->pdev,
  2657. rx_ring->sbq_size,
  2658. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2659. rx_ring->sbq_base = NULL;
  2660. }
  2661. /* Free the small buffer queue control blocks. */
  2662. kfree(rx_ring->sbq);
  2663. rx_ring->sbq = NULL;
  2664. /* Free the large buffer queue. */
  2665. if (rx_ring->lbq_base) {
  2666. pci_free_consistent(qdev->pdev,
  2667. rx_ring->lbq_size,
  2668. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2669. rx_ring->lbq_base = NULL;
  2670. }
  2671. /* Free the large buffer queue control blocks. */
  2672. kfree(rx_ring->lbq);
  2673. rx_ring->lbq = NULL;
  2674. /* Free the rx queue. */
  2675. if (rx_ring->cq_base) {
  2676. pci_free_consistent(qdev->pdev,
  2677. rx_ring->cq_size,
  2678. rx_ring->cq_base, rx_ring->cq_base_dma);
  2679. rx_ring->cq_base = NULL;
  2680. }
  2681. }
  2682. /* Allocate queues and buffers for this completions queue based
  2683. * on the values in the parameter structure. */
  2684. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2685. struct rx_ring *rx_ring)
  2686. {
  2687. /*
  2688. * Allocate the completion queue for this rx_ring.
  2689. */
  2690. rx_ring->cq_base =
  2691. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2692. &rx_ring->cq_base_dma);
  2693. if (rx_ring->cq_base == NULL) {
  2694. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2695. return -ENOMEM;
  2696. }
  2697. if (rx_ring->sbq_len) {
  2698. /*
  2699. * Allocate small buffer queue.
  2700. */
  2701. rx_ring->sbq_base =
  2702. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2703. &rx_ring->sbq_base_dma);
  2704. if (rx_ring->sbq_base == NULL) {
  2705. netif_err(qdev, ifup, qdev->ndev,
  2706. "Small buffer queue allocation failed.\n");
  2707. goto err_mem;
  2708. }
  2709. /*
  2710. * Allocate small buffer queue control blocks.
  2711. */
  2712. rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
  2713. sizeof(struct bq_desc),
  2714. GFP_KERNEL);
  2715. if (rx_ring->sbq == NULL)
  2716. goto err_mem;
  2717. ql_init_sbq_ring(qdev, rx_ring);
  2718. }
  2719. if (rx_ring->lbq_len) {
  2720. /*
  2721. * Allocate large buffer queue.
  2722. */
  2723. rx_ring->lbq_base =
  2724. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2725. &rx_ring->lbq_base_dma);
  2726. if (rx_ring->lbq_base == NULL) {
  2727. netif_err(qdev, ifup, qdev->ndev,
  2728. "Large buffer queue allocation failed.\n");
  2729. goto err_mem;
  2730. }
  2731. /*
  2732. * Allocate large buffer queue control blocks.
  2733. */
  2734. rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
  2735. sizeof(struct bq_desc),
  2736. GFP_KERNEL);
  2737. if (rx_ring->lbq == NULL)
  2738. goto err_mem;
  2739. ql_init_lbq_ring(qdev, rx_ring);
  2740. }
  2741. return 0;
  2742. err_mem:
  2743. ql_free_rx_resources(qdev, rx_ring);
  2744. return -ENOMEM;
  2745. }
  2746. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2747. {
  2748. struct tx_ring *tx_ring;
  2749. struct tx_ring_desc *tx_ring_desc;
  2750. int i, j;
  2751. /*
  2752. * Loop through all queues and free
  2753. * any resources.
  2754. */
  2755. for (j = 0; j < qdev->tx_ring_count; j++) {
  2756. tx_ring = &qdev->tx_ring[j];
  2757. for (i = 0; i < tx_ring->wq_len; i++) {
  2758. tx_ring_desc = &tx_ring->q[i];
  2759. if (tx_ring_desc && tx_ring_desc->skb) {
  2760. netif_err(qdev, ifdown, qdev->ndev,
  2761. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2762. tx_ring_desc->skb, j,
  2763. tx_ring_desc->index);
  2764. ql_unmap_send(qdev, tx_ring_desc,
  2765. tx_ring_desc->map_cnt);
  2766. dev_kfree_skb(tx_ring_desc->skb);
  2767. tx_ring_desc->skb = NULL;
  2768. }
  2769. }
  2770. }
  2771. }
  2772. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2773. {
  2774. int i;
  2775. for (i = 0; i < qdev->tx_ring_count; i++)
  2776. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2777. for (i = 0; i < qdev->rx_ring_count; i++)
  2778. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2779. ql_free_shadow_space(qdev);
  2780. }
  2781. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2782. {
  2783. int i;
  2784. /* Allocate space for our shadow registers and such. */
  2785. if (ql_alloc_shadow_space(qdev))
  2786. return -ENOMEM;
  2787. for (i = 0; i < qdev->rx_ring_count; i++) {
  2788. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2789. netif_err(qdev, ifup, qdev->ndev,
  2790. "RX resource allocation failed.\n");
  2791. goto err_mem;
  2792. }
  2793. }
  2794. /* Allocate tx queue resources */
  2795. for (i = 0; i < qdev->tx_ring_count; i++) {
  2796. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2797. netif_err(qdev, ifup, qdev->ndev,
  2798. "TX resource allocation failed.\n");
  2799. goto err_mem;
  2800. }
  2801. }
  2802. return 0;
  2803. err_mem:
  2804. ql_free_mem_resources(qdev);
  2805. return -ENOMEM;
  2806. }
  2807. /* Set up the rx ring control block and pass it to the chip.
  2808. * The control block is defined as
  2809. * "Completion Queue Initialization Control Block", or cqicb.
  2810. */
  2811. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2812. {
  2813. struct cqicb *cqicb = &rx_ring->cqicb;
  2814. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2815. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2816. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2817. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2818. void __iomem *doorbell_area =
  2819. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2820. int err = 0;
  2821. u16 bq_len;
  2822. u64 tmp;
  2823. __le64 *base_indirect_ptr;
  2824. int page_entries;
  2825. /* Set up the shadow registers for this ring. */
  2826. rx_ring->prod_idx_sh_reg = shadow_reg;
  2827. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2828. *rx_ring->prod_idx_sh_reg = 0;
  2829. shadow_reg += sizeof(u64);
  2830. shadow_reg_dma += sizeof(u64);
  2831. rx_ring->lbq_base_indirect = shadow_reg;
  2832. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2833. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2834. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2835. rx_ring->sbq_base_indirect = shadow_reg;
  2836. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2837. /* PCI doorbell mem area + 0x00 for consumer index register */
  2838. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2839. rx_ring->cnsmr_idx = 0;
  2840. rx_ring->curr_entry = rx_ring->cq_base;
  2841. /* PCI doorbell mem area + 0x04 for valid register */
  2842. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2843. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2844. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2845. /* PCI doorbell mem area + 0x1c */
  2846. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2847. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2848. cqicb->msix_vect = rx_ring->irq;
  2849. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2850. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2851. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2852. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2853. /*
  2854. * Set up the control block load flags.
  2855. */
  2856. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2857. FLAGS_LV | /* Load MSI-X vector */
  2858. FLAGS_LI; /* Load irq delay values */
  2859. if (rx_ring->lbq_len) {
  2860. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2861. tmp = (u64)rx_ring->lbq_base_dma;
  2862. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2863. page_entries = 0;
  2864. do {
  2865. *base_indirect_ptr = cpu_to_le64(tmp);
  2866. tmp += DB_PAGE_SIZE;
  2867. base_indirect_ptr++;
  2868. page_entries++;
  2869. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2870. cqicb->lbq_addr =
  2871. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2872. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2873. (u16) rx_ring->lbq_buf_size;
  2874. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2875. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2876. (u16) rx_ring->lbq_len;
  2877. cqicb->lbq_len = cpu_to_le16(bq_len);
  2878. rx_ring->lbq_prod_idx = 0;
  2879. rx_ring->lbq_curr_idx = 0;
  2880. rx_ring->lbq_clean_idx = 0;
  2881. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2882. }
  2883. if (rx_ring->sbq_len) {
  2884. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2885. tmp = (u64)rx_ring->sbq_base_dma;
  2886. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2887. page_entries = 0;
  2888. do {
  2889. *base_indirect_ptr = cpu_to_le64(tmp);
  2890. tmp += DB_PAGE_SIZE;
  2891. base_indirect_ptr++;
  2892. page_entries++;
  2893. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2894. cqicb->sbq_addr =
  2895. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2896. cqicb->sbq_buf_size =
  2897. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2898. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2899. (u16) rx_ring->sbq_len;
  2900. cqicb->sbq_len = cpu_to_le16(bq_len);
  2901. rx_ring->sbq_prod_idx = 0;
  2902. rx_ring->sbq_curr_idx = 0;
  2903. rx_ring->sbq_clean_idx = 0;
  2904. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2905. }
  2906. switch (rx_ring->type) {
  2907. case TX_Q:
  2908. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2909. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2910. break;
  2911. case RX_Q:
  2912. /* Inbound completion handling rx_rings run in
  2913. * separate NAPI contexts.
  2914. */
  2915. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2916. 64);
  2917. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2918. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2919. break;
  2920. default:
  2921. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2922. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2923. }
  2924. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2925. CFG_LCQ, rx_ring->cq_id);
  2926. if (err) {
  2927. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2928. return err;
  2929. }
  2930. return err;
  2931. }
  2932. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2933. {
  2934. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2935. void __iomem *doorbell_area =
  2936. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2937. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2938. (tx_ring->wq_id * sizeof(u64));
  2939. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2940. (tx_ring->wq_id * sizeof(u64));
  2941. int err = 0;
  2942. /*
  2943. * Assign doorbell registers for this tx_ring.
  2944. */
  2945. /* TX PCI doorbell mem area for tx producer index */
  2946. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2947. tx_ring->prod_idx = 0;
  2948. /* TX PCI doorbell mem area + 0x04 */
  2949. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2950. /*
  2951. * Assign shadow registers for this tx_ring.
  2952. */
  2953. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2954. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2955. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2956. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2957. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2958. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2959. wqicb->rid = 0;
  2960. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2961. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2962. ql_init_tx_ring(qdev, tx_ring);
  2963. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2964. (u16) tx_ring->wq_id);
  2965. if (err) {
  2966. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2967. return err;
  2968. }
  2969. return err;
  2970. }
  2971. static void ql_disable_msix(struct ql_adapter *qdev)
  2972. {
  2973. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2974. pci_disable_msix(qdev->pdev);
  2975. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2976. kfree(qdev->msi_x_entry);
  2977. qdev->msi_x_entry = NULL;
  2978. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2979. pci_disable_msi(qdev->pdev);
  2980. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2981. }
  2982. }
  2983. /* We start by trying to get the number of vectors
  2984. * stored in qdev->intr_count. If we don't get that
  2985. * many then we reduce the count and try again.
  2986. */
  2987. static void ql_enable_msix(struct ql_adapter *qdev)
  2988. {
  2989. int i, err;
  2990. /* Get the MSIX vectors. */
  2991. if (qlge_irq_type == MSIX_IRQ) {
  2992. /* Try to alloc space for the msix struct,
  2993. * if it fails then go to MSI/legacy.
  2994. */
  2995. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2996. sizeof(struct msix_entry),
  2997. GFP_KERNEL);
  2998. if (!qdev->msi_x_entry) {
  2999. qlge_irq_type = MSI_IRQ;
  3000. goto msi;
  3001. }
  3002. for (i = 0; i < qdev->intr_count; i++)
  3003. qdev->msi_x_entry[i].entry = i;
  3004. err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
  3005. 1, qdev->intr_count);
  3006. if (err < 0) {
  3007. kfree(qdev->msi_x_entry);
  3008. qdev->msi_x_entry = NULL;
  3009. netif_warn(qdev, ifup, qdev->ndev,
  3010. "MSI-X Enable failed, trying MSI.\n");
  3011. qlge_irq_type = MSI_IRQ;
  3012. } else {
  3013. qdev->intr_count = err;
  3014. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  3015. netif_info(qdev, ifup, qdev->ndev,
  3016. "MSI-X Enabled, got %d vectors.\n",
  3017. qdev->intr_count);
  3018. return;
  3019. }
  3020. }
  3021. msi:
  3022. qdev->intr_count = 1;
  3023. if (qlge_irq_type == MSI_IRQ) {
  3024. if (!pci_enable_msi(qdev->pdev)) {
  3025. set_bit(QL_MSI_ENABLED, &qdev->flags);
  3026. netif_info(qdev, ifup, qdev->ndev,
  3027. "Running with MSI interrupts.\n");
  3028. return;
  3029. }
  3030. }
  3031. qlge_irq_type = LEG_IRQ;
  3032. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3033. "Running with legacy interrupts.\n");
  3034. }
  3035. /* Each vector services 1 RSS ring and and 1 or more
  3036. * TX completion rings. This function loops through
  3037. * the TX completion rings and assigns the vector that
  3038. * will service it. An example would be if there are
  3039. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  3040. * This would mean that vector 0 would service RSS ring 0
  3041. * and TX completion rings 0,1,2 and 3. Vector 1 would
  3042. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  3043. */
  3044. static void ql_set_tx_vect(struct ql_adapter *qdev)
  3045. {
  3046. int i, j, vect;
  3047. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3048. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3049. /* Assign irq vectors to TX rx_rings.*/
  3050. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  3051. i < qdev->rx_ring_count; i++) {
  3052. if (j == tx_rings_per_vector) {
  3053. vect++;
  3054. j = 0;
  3055. }
  3056. qdev->rx_ring[i].irq = vect;
  3057. j++;
  3058. }
  3059. } else {
  3060. /* For single vector all rings have an irq
  3061. * of zero.
  3062. */
  3063. for (i = 0; i < qdev->rx_ring_count; i++)
  3064. qdev->rx_ring[i].irq = 0;
  3065. }
  3066. }
  3067. /* Set the interrupt mask for this vector. Each vector
  3068. * will service 1 RSS ring and 1 or more TX completion
  3069. * rings. This function sets up a bit mask per vector
  3070. * that indicates which rings it services.
  3071. */
  3072. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3073. {
  3074. int j, vect = ctx->intr;
  3075. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3076. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3077. /* Add the RSS ring serviced by this vector
  3078. * to the mask.
  3079. */
  3080. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3081. /* Add the TX ring(s) serviced by this vector
  3082. * to the mask. */
  3083. for (j = 0; j < tx_rings_per_vector; j++) {
  3084. ctx->irq_mask |=
  3085. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3086. (vect * tx_rings_per_vector) + j].cq_id);
  3087. }
  3088. } else {
  3089. /* For single vector we just shift each queue's
  3090. * ID into the mask.
  3091. */
  3092. for (j = 0; j < qdev->rx_ring_count; j++)
  3093. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3094. }
  3095. }
  3096. /*
  3097. * Here we build the intr_context structures based on
  3098. * our rx_ring count and intr vector count.
  3099. * The intr_context structure is used to hook each vector
  3100. * to possibly different handlers.
  3101. */
  3102. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3103. {
  3104. int i = 0;
  3105. struct intr_context *intr_context = &qdev->intr_context[0];
  3106. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3107. /* Each rx_ring has it's
  3108. * own intr_context since we have separate
  3109. * vectors for each queue.
  3110. */
  3111. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3112. qdev->rx_ring[i].irq = i;
  3113. intr_context->intr = i;
  3114. intr_context->qdev = qdev;
  3115. /* Set up this vector's bit-mask that indicates
  3116. * which queues it services.
  3117. */
  3118. ql_set_irq_mask(qdev, intr_context);
  3119. /*
  3120. * We set up each vectors enable/disable/read bits so
  3121. * there's no bit/mask calculations in the critical path.
  3122. */
  3123. intr_context->intr_en_mask =
  3124. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3125. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3126. | i;
  3127. intr_context->intr_dis_mask =
  3128. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3129. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3130. INTR_EN_IHD | i;
  3131. intr_context->intr_read_mask =
  3132. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3133. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3134. i;
  3135. if (i == 0) {
  3136. /* The first vector/queue handles
  3137. * broadcast/multicast, fatal errors,
  3138. * and firmware events. This in addition
  3139. * to normal inbound NAPI processing.
  3140. */
  3141. intr_context->handler = qlge_isr;
  3142. sprintf(intr_context->name, "%s-rx-%d",
  3143. qdev->ndev->name, i);
  3144. } else {
  3145. /*
  3146. * Inbound queues handle unicast frames only.
  3147. */
  3148. intr_context->handler = qlge_msix_rx_isr;
  3149. sprintf(intr_context->name, "%s-rx-%d",
  3150. qdev->ndev->name, i);
  3151. }
  3152. }
  3153. } else {
  3154. /*
  3155. * All rx_rings use the same intr_context since
  3156. * there is only one vector.
  3157. */
  3158. intr_context->intr = 0;
  3159. intr_context->qdev = qdev;
  3160. /*
  3161. * We set up each vectors enable/disable/read bits so
  3162. * there's no bit/mask calculations in the critical path.
  3163. */
  3164. intr_context->intr_en_mask =
  3165. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3166. intr_context->intr_dis_mask =
  3167. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3168. INTR_EN_TYPE_DISABLE;
  3169. intr_context->intr_read_mask =
  3170. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3171. /*
  3172. * Single interrupt means one handler for all rings.
  3173. */
  3174. intr_context->handler = qlge_isr;
  3175. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3176. /* Set up this vector's bit-mask that indicates
  3177. * which queues it services. In this case there is
  3178. * a single vector so it will service all RSS and
  3179. * TX completion rings.
  3180. */
  3181. ql_set_irq_mask(qdev, intr_context);
  3182. }
  3183. /* Tell the TX completion rings which MSIx vector
  3184. * they will be using.
  3185. */
  3186. ql_set_tx_vect(qdev);
  3187. }
  3188. static void ql_free_irq(struct ql_adapter *qdev)
  3189. {
  3190. int i;
  3191. struct intr_context *intr_context = &qdev->intr_context[0];
  3192. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3193. if (intr_context->hooked) {
  3194. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3195. free_irq(qdev->msi_x_entry[i].vector,
  3196. &qdev->rx_ring[i]);
  3197. } else {
  3198. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3199. }
  3200. }
  3201. }
  3202. ql_disable_msix(qdev);
  3203. }
  3204. static int ql_request_irq(struct ql_adapter *qdev)
  3205. {
  3206. int i;
  3207. int status = 0;
  3208. struct pci_dev *pdev = qdev->pdev;
  3209. struct intr_context *intr_context = &qdev->intr_context[0];
  3210. ql_resolve_queues_to_irqs(qdev);
  3211. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3212. atomic_set(&intr_context->irq_cnt, 0);
  3213. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3214. status = request_irq(qdev->msi_x_entry[i].vector,
  3215. intr_context->handler,
  3216. 0,
  3217. intr_context->name,
  3218. &qdev->rx_ring[i]);
  3219. if (status) {
  3220. netif_err(qdev, ifup, qdev->ndev,
  3221. "Failed request for MSIX interrupt %d.\n",
  3222. i);
  3223. goto err_irq;
  3224. }
  3225. } else {
  3226. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3227. "trying msi or legacy interrupts.\n");
  3228. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3229. "%s: irq = %d.\n", __func__, pdev->irq);
  3230. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3231. "%s: context->name = %s.\n", __func__,
  3232. intr_context->name);
  3233. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3234. "%s: dev_id = 0x%p.\n", __func__,
  3235. &qdev->rx_ring[0]);
  3236. status =
  3237. request_irq(pdev->irq, qlge_isr,
  3238. test_bit(QL_MSI_ENABLED,
  3239. &qdev->
  3240. flags) ? 0 : IRQF_SHARED,
  3241. intr_context->name, &qdev->rx_ring[0]);
  3242. if (status)
  3243. goto err_irq;
  3244. netif_err(qdev, ifup, qdev->ndev,
  3245. "Hooked intr %d, queue type %s, with name %s.\n",
  3246. i,
  3247. qdev->rx_ring[0].type == DEFAULT_Q ?
  3248. "DEFAULT_Q" :
  3249. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3250. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3251. intr_context->name);
  3252. }
  3253. intr_context->hooked = 1;
  3254. }
  3255. return status;
  3256. err_irq:
  3257. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
  3258. ql_free_irq(qdev);
  3259. return status;
  3260. }
  3261. static int ql_start_rss(struct ql_adapter *qdev)
  3262. {
  3263. static const u8 init_hash_seed[] = {
  3264. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3265. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3266. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3267. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3268. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3269. };
  3270. struct ricb *ricb = &qdev->ricb;
  3271. int status = 0;
  3272. int i;
  3273. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3274. memset((void *)ricb, 0, sizeof(*ricb));
  3275. ricb->base_cq = RSS_L4K;
  3276. ricb->flags =
  3277. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3278. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3279. /*
  3280. * Fill out the Indirection Table.
  3281. */
  3282. for (i = 0; i < 1024; i++)
  3283. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3284. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3285. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3286. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3287. if (status) {
  3288. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3289. return status;
  3290. }
  3291. return status;
  3292. }
  3293. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3294. {
  3295. int i, status = 0;
  3296. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3297. if (status)
  3298. return status;
  3299. /* Clear all the entries in the routing table. */
  3300. for (i = 0; i < 16; i++) {
  3301. status = ql_set_routing_reg(qdev, i, 0, 0);
  3302. if (status) {
  3303. netif_err(qdev, ifup, qdev->ndev,
  3304. "Failed to init routing register for CAM packets.\n");
  3305. break;
  3306. }
  3307. }
  3308. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3309. return status;
  3310. }
  3311. /* Initialize the frame-to-queue routing. */
  3312. static int ql_route_initialize(struct ql_adapter *qdev)
  3313. {
  3314. int status = 0;
  3315. /* Clear all the entries in the routing table. */
  3316. status = ql_clear_routing_entries(qdev);
  3317. if (status)
  3318. return status;
  3319. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3320. if (status)
  3321. return status;
  3322. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3323. RT_IDX_IP_CSUM_ERR, 1);
  3324. if (status) {
  3325. netif_err(qdev, ifup, qdev->ndev,
  3326. "Failed to init routing register "
  3327. "for IP CSUM error packets.\n");
  3328. goto exit;
  3329. }
  3330. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3331. RT_IDX_TU_CSUM_ERR, 1);
  3332. if (status) {
  3333. netif_err(qdev, ifup, qdev->ndev,
  3334. "Failed to init routing register "
  3335. "for TCP/UDP CSUM error packets.\n");
  3336. goto exit;
  3337. }
  3338. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3339. if (status) {
  3340. netif_err(qdev, ifup, qdev->ndev,
  3341. "Failed to init routing register for broadcast packets.\n");
  3342. goto exit;
  3343. }
  3344. /* If we have more than one inbound queue, then turn on RSS in the
  3345. * routing block.
  3346. */
  3347. if (qdev->rss_ring_count > 1) {
  3348. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3349. RT_IDX_RSS_MATCH, 1);
  3350. if (status) {
  3351. netif_err(qdev, ifup, qdev->ndev,
  3352. "Failed to init routing register for MATCH RSS packets.\n");
  3353. goto exit;
  3354. }
  3355. }
  3356. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3357. RT_IDX_CAM_HIT, 1);
  3358. if (status)
  3359. netif_err(qdev, ifup, qdev->ndev,
  3360. "Failed to init routing register for CAM packets.\n");
  3361. exit:
  3362. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3363. return status;
  3364. }
  3365. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3366. {
  3367. int status, set;
  3368. /* If check if the link is up and use to
  3369. * determine if we are setting or clearing
  3370. * the MAC address in the CAM.
  3371. */
  3372. set = ql_read32(qdev, STS);
  3373. set &= qdev->port_link_up;
  3374. status = ql_set_mac_addr(qdev, set);
  3375. if (status) {
  3376. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3377. return status;
  3378. }
  3379. status = ql_route_initialize(qdev);
  3380. if (status)
  3381. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3382. return status;
  3383. }
  3384. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3385. {
  3386. u32 value, mask;
  3387. int i;
  3388. int status = 0;
  3389. /*
  3390. * Set up the System register to halt on errors.
  3391. */
  3392. value = SYS_EFE | SYS_FAE;
  3393. mask = value << 16;
  3394. ql_write32(qdev, SYS, mask | value);
  3395. /* Set the default queue, and VLAN behavior. */
  3396. value = NIC_RCV_CFG_DFQ;
  3397. mask = NIC_RCV_CFG_DFQ_MASK;
  3398. if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
  3399. value |= NIC_RCV_CFG_RV;
  3400. mask |= (NIC_RCV_CFG_RV << 16);
  3401. }
  3402. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3403. /* Set the MPI interrupt to enabled. */
  3404. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3405. /* Enable the function, set pagesize, enable error checking. */
  3406. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3407. FSC_EC | FSC_VM_PAGE_4K;
  3408. value |= SPLT_SETTING;
  3409. /* Set/clear header splitting. */
  3410. mask = FSC_VM_PAGESIZE_MASK |
  3411. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3412. ql_write32(qdev, FSC, mask | value);
  3413. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3414. /* Set RX packet routing to use port/pci function on which the
  3415. * packet arrived on in addition to usual frame routing.
  3416. * This is helpful on bonding where both interfaces can have
  3417. * the same MAC address.
  3418. */
  3419. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3420. /* Reroute all packets to our Interface.
  3421. * They may have been routed to MPI firmware
  3422. * due to WOL.
  3423. */
  3424. value = ql_read32(qdev, MGMT_RCV_CFG);
  3425. value &= ~MGMT_RCV_CFG_RM;
  3426. mask = 0xffff0000;
  3427. /* Sticky reg needs clearing due to WOL. */
  3428. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3429. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3430. /* Default WOL is enable on Mezz cards */
  3431. if (qdev->pdev->subsystem_device == 0x0068 ||
  3432. qdev->pdev->subsystem_device == 0x0180)
  3433. qdev->wol = WAKE_MAGIC;
  3434. /* Start up the rx queues. */
  3435. for (i = 0; i < qdev->rx_ring_count; i++) {
  3436. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3437. if (status) {
  3438. netif_err(qdev, ifup, qdev->ndev,
  3439. "Failed to start rx ring[%d].\n", i);
  3440. return status;
  3441. }
  3442. }
  3443. /* If there is more than one inbound completion queue
  3444. * then download a RICB to configure RSS.
  3445. */
  3446. if (qdev->rss_ring_count > 1) {
  3447. status = ql_start_rss(qdev);
  3448. if (status) {
  3449. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3450. return status;
  3451. }
  3452. }
  3453. /* Start up the tx queues. */
  3454. for (i = 0; i < qdev->tx_ring_count; i++) {
  3455. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3456. if (status) {
  3457. netif_err(qdev, ifup, qdev->ndev,
  3458. "Failed to start tx ring[%d].\n", i);
  3459. return status;
  3460. }
  3461. }
  3462. /* Initialize the port and set the max framesize. */
  3463. status = qdev->nic_ops->port_initialize(qdev);
  3464. if (status)
  3465. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3466. /* Set up the MAC address and frame routing filter. */
  3467. status = ql_cam_route_initialize(qdev);
  3468. if (status) {
  3469. netif_err(qdev, ifup, qdev->ndev,
  3470. "Failed to init CAM/Routing tables.\n");
  3471. return status;
  3472. }
  3473. /* Start NAPI for the RSS queues. */
  3474. for (i = 0; i < qdev->rss_ring_count; i++)
  3475. napi_enable(&qdev->rx_ring[i].napi);
  3476. return status;
  3477. }
  3478. /* Issue soft reset to chip. */
  3479. static int ql_adapter_reset(struct ql_adapter *qdev)
  3480. {
  3481. u32 value;
  3482. int status = 0;
  3483. unsigned long end_jiffies;
  3484. /* Clear all the entries in the routing table. */
  3485. status = ql_clear_routing_entries(qdev);
  3486. if (status) {
  3487. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3488. return status;
  3489. }
  3490. /* Check if bit is set then skip the mailbox command and
  3491. * clear the bit, else we are in normal reset process.
  3492. */
  3493. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3494. /* Stop management traffic. */
  3495. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3496. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3497. ql_wait_fifo_empty(qdev);
  3498. } else
  3499. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3500. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3501. end_jiffies = jiffies + usecs_to_jiffies(30);
  3502. do {
  3503. value = ql_read32(qdev, RST_FO);
  3504. if ((value & RST_FO_FR) == 0)
  3505. break;
  3506. cpu_relax();
  3507. } while (time_before(jiffies, end_jiffies));
  3508. if (value & RST_FO_FR) {
  3509. netif_err(qdev, ifdown, qdev->ndev,
  3510. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3511. status = -ETIMEDOUT;
  3512. }
  3513. /* Resume management traffic. */
  3514. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3515. return status;
  3516. }
  3517. static void ql_display_dev_info(struct net_device *ndev)
  3518. {
  3519. struct ql_adapter *qdev = netdev_priv(ndev);
  3520. netif_info(qdev, probe, qdev->ndev,
  3521. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3522. "XG Roll = %d, XG Rev = %d.\n",
  3523. qdev->func,
  3524. qdev->port,
  3525. qdev->chip_rev_id & 0x0000000f,
  3526. qdev->chip_rev_id >> 4 & 0x0000000f,
  3527. qdev->chip_rev_id >> 8 & 0x0000000f,
  3528. qdev->chip_rev_id >> 12 & 0x0000000f);
  3529. netif_info(qdev, probe, qdev->ndev,
  3530. "MAC address %pM\n", ndev->dev_addr);
  3531. }
  3532. static int ql_wol(struct ql_adapter *qdev)
  3533. {
  3534. int status = 0;
  3535. u32 wol = MB_WOL_DISABLE;
  3536. /* The CAM is still intact after a reset, but if we
  3537. * are doing WOL, then we may need to program the
  3538. * routing regs. We would also need to issue the mailbox
  3539. * commands to instruct the MPI what to do per the ethtool
  3540. * settings.
  3541. */
  3542. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3543. WAKE_MCAST | WAKE_BCAST)) {
  3544. netif_err(qdev, ifdown, qdev->ndev,
  3545. "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
  3546. qdev->wol);
  3547. return -EINVAL;
  3548. }
  3549. if (qdev->wol & WAKE_MAGIC) {
  3550. status = ql_mb_wol_set_magic(qdev, 1);
  3551. if (status) {
  3552. netif_err(qdev, ifdown, qdev->ndev,
  3553. "Failed to set magic packet on %s.\n",
  3554. qdev->ndev->name);
  3555. return status;
  3556. } else
  3557. netif_info(qdev, drv, qdev->ndev,
  3558. "Enabled magic packet successfully on %s.\n",
  3559. qdev->ndev->name);
  3560. wol |= MB_WOL_MAGIC_PKT;
  3561. }
  3562. if (qdev->wol) {
  3563. wol |= MB_WOL_MODE_ON;
  3564. status = ql_mb_wol_mode(qdev, wol);
  3565. netif_err(qdev, drv, qdev->ndev,
  3566. "WOL %s (wol code 0x%x) on %s\n",
  3567. (status == 0) ? "Successfully set" : "Failed",
  3568. wol, qdev->ndev->name);
  3569. }
  3570. return status;
  3571. }
  3572. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3573. {
  3574. /* Don't kill the reset worker thread if we
  3575. * are in the process of recovery.
  3576. */
  3577. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3578. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3579. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3580. cancel_delayed_work_sync(&qdev->mpi_work);
  3581. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3582. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3583. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3584. }
  3585. static int ql_adapter_down(struct ql_adapter *qdev)
  3586. {
  3587. int i, status = 0;
  3588. ql_link_off(qdev);
  3589. ql_cancel_all_work_sync(qdev);
  3590. for (i = 0; i < qdev->rss_ring_count; i++)
  3591. napi_disable(&qdev->rx_ring[i].napi);
  3592. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3593. ql_disable_interrupts(qdev);
  3594. ql_tx_ring_clean(qdev);
  3595. /* Call netif_napi_del() from common point.
  3596. */
  3597. for (i = 0; i < qdev->rss_ring_count; i++)
  3598. netif_napi_del(&qdev->rx_ring[i].napi);
  3599. status = ql_adapter_reset(qdev);
  3600. if (status)
  3601. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3602. qdev->func);
  3603. ql_free_rx_buffers(qdev);
  3604. return status;
  3605. }
  3606. static int ql_adapter_up(struct ql_adapter *qdev)
  3607. {
  3608. int err = 0;
  3609. err = ql_adapter_initialize(qdev);
  3610. if (err) {
  3611. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3612. goto err_init;
  3613. }
  3614. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3615. ql_alloc_rx_buffers(qdev);
  3616. /* If the port is initialized and the
  3617. * link is up the turn on the carrier.
  3618. */
  3619. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3620. (ql_read32(qdev, STS) & qdev->port_link_up))
  3621. ql_link_on(qdev);
  3622. /* Restore rx mode. */
  3623. clear_bit(QL_ALLMULTI, &qdev->flags);
  3624. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3625. qlge_set_multicast_list(qdev->ndev);
  3626. /* Restore vlan setting. */
  3627. qlge_restore_vlan(qdev);
  3628. ql_enable_interrupts(qdev);
  3629. ql_enable_all_completion_interrupts(qdev);
  3630. netif_tx_start_all_queues(qdev->ndev);
  3631. return 0;
  3632. err_init:
  3633. ql_adapter_reset(qdev);
  3634. return err;
  3635. }
  3636. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3637. {
  3638. ql_free_mem_resources(qdev);
  3639. ql_free_irq(qdev);
  3640. }
  3641. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3642. {
  3643. int status = 0;
  3644. if (ql_alloc_mem_resources(qdev)) {
  3645. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3646. return -ENOMEM;
  3647. }
  3648. status = ql_request_irq(qdev);
  3649. return status;
  3650. }
  3651. static int qlge_close(struct net_device *ndev)
  3652. {
  3653. struct ql_adapter *qdev = netdev_priv(ndev);
  3654. /* If we hit pci_channel_io_perm_failure
  3655. * failure condition, then we already
  3656. * brought the adapter down.
  3657. */
  3658. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3659. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3660. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3661. return 0;
  3662. }
  3663. /*
  3664. * Wait for device to recover from a reset.
  3665. * (Rarely happens, but possible.)
  3666. */
  3667. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3668. msleep(1);
  3669. ql_adapter_down(qdev);
  3670. ql_release_adapter_resources(qdev);
  3671. return 0;
  3672. }
  3673. static int ql_configure_rings(struct ql_adapter *qdev)
  3674. {
  3675. int i;
  3676. struct rx_ring *rx_ring;
  3677. struct tx_ring *tx_ring;
  3678. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3679. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3680. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3681. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3682. /* In a perfect world we have one RSS ring for each CPU
  3683. * and each has it's own vector. To do that we ask for
  3684. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3685. * vector count to what we actually get. We then
  3686. * allocate an RSS ring for each.
  3687. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3688. */
  3689. qdev->intr_count = cpu_cnt;
  3690. ql_enable_msix(qdev);
  3691. /* Adjust the RSS ring count to the actual vector count. */
  3692. qdev->rss_ring_count = qdev->intr_count;
  3693. qdev->tx_ring_count = cpu_cnt;
  3694. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3695. for (i = 0; i < qdev->tx_ring_count; i++) {
  3696. tx_ring = &qdev->tx_ring[i];
  3697. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3698. tx_ring->qdev = qdev;
  3699. tx_ring->wq_id = i;
  3700. tx_ring->wq_len = qdev->tx_ring_size;
  3701. tx_ring->wq_size =
  3702. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3703. /*
  3704. * The completion queue ID for the tx rings start
  3705. * immediately after the rss rings.
  3706. */
  3707. tx_ring->cq_id = qdev->rss_ring_count + i;
  3708. }
  3709. for (i = 0; i < qdev->rx_ring_count; i++) {
  3710. rx_ring = &qdev->rx_ring[i];
  3711. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3712. rx_ring->qdev = qdev;
  3713. rx_ring->cq_id = i;
  3714. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3715. if (i < qdev->rss_ring_count) {
  3716. /*
  3717. * Inbound (RSS) queues.
  3718. */
  3719. rx_ring->cq_len = qdev->rx_ring_size;
  3720. rx_ring->cq_size =
  3721. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3722. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3723. rx_ring->lbq_size =
  3724. rx_ring->lbq_len * sizeof(__le64);
  3725. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3726. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3727. rx_ring->sbq_size =
  3728. rx_ring->sbq_len * sizeof(__le64);
  3729. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3730. rx_ring->type = RX_Q;
  3731. } else {
  3732. /*
  3733. * Outbound queue handles outbound completions only.
  3734. */
  3735. /* outbound cq is same size as tx_ring it services. */
  3736. rx_ring->cq_len = qdev->tx_ring_size;
  3737. rx_ring->cq_size =
  3738. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3739. rx_ring->lbq_len = 0;
  3740. rx_ring->lbq_size = 0;
  3741. rx_ring->lbq_buf_size = 0;
  3742. rx_ring->sbq_len = 0;
  3743. rx_ring->sbq_size = 0;
  3744. rx_ring->sbq_buf_size = 0;
  3745. rx_ring->type = TX_Q;
  3746. }
  3747. }
  3748. return 0;
  3749. }
  3750. static int qlge_open(struct net_device *ndev)
  3751. {
  3752. int err = 0;
  3753. struct ql_adapter *qdev = netdev_priv(ndev);
  3754. err = ql_adapter_reset(qdev);
  3755. if (err)
  3756. return err;
  3757. err = ql_configure_rings(qdev);
  3758. if (err)
  3759. return err;
  3760. err = ql_get_adapter_resources(qdev);
  3761. if (err)
  3762. goto error_up;
  3763. err = ql_adapter_up(qdev);
  3764. if (err)
  3765. goto error_up;
  3766. return err;
  3767. error_up:
  3768. ql_release_adapter_resources(qdev);
  3769. return err;
  3770. }
  3771. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3772. {
  3773. struct rx_ring *rx_ring;
  3774. int i, status;
  3775. u32 lbq_buf_len;
  3776. /* Wait for an outstanding reset to complete. */
  3777. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3778. int i = 4;
  3779. while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3780. netif_err(qdev, ifup, qdev->ndev,
  3781. "Waiting for adapter UP...\n");
  3782. ssleep(1);
  3783. }
  3784. if (!i) {
  3785. netif_err(qdev, ifup, qdev->ndev,
  3786. "Timed out waiting for adapter UP\n");
  3787. return -ETIMEDOUT;
  3788. }
  3789. }
  3790. status = ql_adapter_down(qdev);
  3791. if (status)
  3792. goto error;
  3793. /* Get the new rx buffer size. */
  3794. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3795. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3796. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3797. for (i = 0; i < qdev->rss_ring_count; i++) {
  3798. rx_ring = &qdev->rx_ring[i];
  3799. /* Set the new size. */
  3800. rx_ring->lbq_buf_size = lbq_buf_len;
  3801. }
  3802. status = ql_adapter_up(qdev);
  3803. if (status)
  3804. goto error;
  3805. return status;
  3806. error:
  3807. netif_alert(qdev, ifup, qdev->ndev,
  3808. "Driver up/down cycle failed, closing device.\n");
  3809. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3810. dev_close(qdev->ndev);
  3811. return status;
  3812. }
  3813. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3814. {
  3815. struct ql_adapter *qdev = netdev_priv(ndev);
  3816. int status;
  3817. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3818. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3819. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3820. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3821. } else
  3822. return -EINVAL;
  3823. queue_delayed_work(qdev->workqueue,
  3824. &qdev->mpi_port_cfg_work, 3*HZ);
  3825. ndev->mtu = new_mtu;
  3826. if (!netif_running(qdev->ndev)) {
  3827. return 0;
  3828. }
  3829. status = ql_change_rx_buffers(qdev);
  3830. if (status) {
  3831. netif_err(qdev, ifup, qdev->ndev,
  3832. "Changing MTU failed.\n");
  3833. }
  3834. return status;
  3835. }
  3836. static struct net_device_stats *qlge_get_stats(struct net_device
  3837. *ndev)
  3838. {
  3839. struct ql_adapter *qdev = netdev_priv(ndev);
  3840. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3841. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3842. unsigned long pkts, mcast, dropped, errors, bytes;
  3843. int i;
  3844. /* Get RX stats. */
  3845. pkts = mcast = dropped = errors = bytes = 0;
  3846. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3847. pkts += rx_ring->rx_packets;
  3848. bytes += rx_ring->rx_bytes;
  3849. dropped += rx_ring->rx_dropped;
  3850. errors += rx_ring->rx_errors;
  3851. mcast += rx_ring->rx_multicast;
  3852. }
  3853. ndev->stats.rx_packets = pkts;
  3854. ndev->stats.rx_bytes = bytes;
  3855. ndev->stats.rx_dropped = dropped;
  3856. ndev->stats.rx_errors = errors;
  3857. ndev->stats.multicast = mcast;
  3858. /* Get TX stats. */
  3859. pkts = errors = bytes = 0;
  3860. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3861. pkts += tx_ring->tx_packets;
  3862. bytes += tx_ring->tx_bytes;
  3863. errors += tx_ring->tx_errors;
  3864. }
  3865. ndev->stats.tx_packets = pkts;
  3866. ndev->stats.tx_bytes = bytes;
  3867. ndev->stats.tx_errors = errors;
  3868. return &ndev->stats;
  3869. }
  3870. static void qlge_set_multicast_list(struct net_device *ndev)
  3871. {
  3872. struct ql_adapter *qdev = netdev_priv(ndev);
  3873. struct netdev_hw_addr *ha;
  3874. int i, status;
  3875. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3876. if (status)
  3877. return;
  3878. /*
  3879. * Set or clear promiscuous mode if a
  3880. * transition is taking place.
  3881. */
  3882. if (ndev->flags & IFF_PROMISC) {
  3883. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3884. if (ql_set_routing_reg
  3885. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3886. netif_err(qdev, hw, qdev->ndev,
  3887. "Failed to set promiscuous mode.\n");
  3888. } else {
  3889. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3890. }
  3891. }
  3892. } else {
  3893. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3894. if (ql_set_routing_reg
  3895. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3896. netif_err(qdev, hw, qdev->ndev,
  3897. "Failed to clear promiscuous mode.\n");
  3898. } else {
  3899. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3900. }
  3901. }
  3902. }
  3903. /*
  3904. * Set or clear all multicast mode if a
  3905. * transition is taking place.
  3906. */
  3907. if ((ndev->flags & IFF_ALLMULTI) ||
  3908. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3909. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3910. if (ql_set_routing_reg
  3911. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3912. netif_err(qdev, hw, qdev->ndev,
  3913. "Failed to set all-multi mode.\n");
  3914. } else {
  3915. set_bit(QL_ALLMULTI, &qdev->flags);
  3916. }
  3917. }
  3918. } else {
  3919. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3920. if (ql_set_routing_reg
  3921. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3922. netif_err(qdev, hw, qdev->ndev,
  3923. "Failed to clear all-multi mode.\n");
  3924. } else {
  3925. clear_bit(QL_ALLMULTI, &qdev->flags);
  3926. }
  3927. }
  3928. }
  3929. if (!netdev_mc_empty(ndev)) {
  3930. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3931. if (status)
  3932. goto exit;
  3933. i = 0;
  3934. netdev_for_each_mc_addr(ha, ndev) {
  3935. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3936. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3937. netif_err(qdev, hw, qdev->ndev,
  3938. "Failed to loadmulticast address.\n");
  3939. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3940. goto exit;
  3941. }
  3942. i++;
  3943. }
  3944. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3945. if (ql_set_routing_reg
  3946. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3947. netif_err(qdev, hw, qdev->ndev,
  3948. "Failed to set multicast match mode.\n");
  3949. } else {
  3950. set_bit(QL_ALLMULTI, &qdev->flags);
  3951. }
  3952. }
  3953. exit:
  3954. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3955. }
  3956. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3957. {
  3958. struct ql_adapter *qdev = netdev_priv(ndev);
  3959. struct sockaddr *addr = p;
  3960. int status;
  3961. if (!is_valid_ether_addr(addr->sa_data))
  3962. return -EADDRNOTAVAIL;
  3963. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3964. /* Update local copy of current mac address. */
  3965. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3966. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3967. if (status)
  3968. return status;
  3969. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3970. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3971. if (status)
  3972. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3973. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3974. return status;
  3975. }
  3976. static void qlge_tx_timeout(struct net_device *ndev)
  3977. {
  3978. struct ql_adapter *qdev = netdev_priv(ndev);
  3979. ql_queue_asic_error(qdev);
  3980. }
  3981. static void ql_asic_reset_work(struct work_struct *work)
  3982. {
  3983. struct ql_adapter *qdev =
  3984. container_of(work, struct ql_adapter, asic_reset_work.work);
  3985. int status;
  3986. rtnl_lock();
  3987. status = ql_adapter_down(qdev);
  3988. if (status)
  3989. goto error;
  3990. status = ql_adapter_up(qdev);
  3991. if (status)
  3992. goto error;
  3993. /* Restore rx mode. */
  3994. clear_bit(QL_ALLMULTI, &qdev->flags);
  3995. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3996. qlge_set_multicast_list(qdev->ndev);
  3997. rtnl_unlock();
  3998. return;
  3999. error:
  4000. netif_alert(qdev, ifup, qdev->ndev,
  4001. "Driver up/down cycle failed, closing device\n");
  4002. set_bit(QL_ADAPTER_UP, &qdev->flags);
  4003. dev_close(qdev->ndev);
  4004. rtnl_unlock();
  4005. }
  4006. static const struct nic_operations qla8012_nic_ops = {
  4007. .get_flash = ql_get_8012_flash_params,
  4008. .port_initialize = ql_8012_port_initialize,
  4009. };
  4010. static const struct nic_operations qla8000_nic_ops = {
  4011. .get_flash = ql_get_8000_flash_params,
  4012. .port_initialize = ql_8000_port_initialize,
  4013. };
  4014. /* Find the pcie function number for the other NIC
  4015. * on this chip. Since both NIC functions share a
  4016. * common firmware we have the lowest enabled function
  4017. * do any common work. Examples would be resetting
  4018. * after a fatal firmware error, or doing a firmware
  4019. * coredump.
  4020. */
  4021. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  4022. {
  4023. int status = 0;
  4024. u32 temp;
  4025. u32 nic_func1, nic_func2;
  4026. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  4027. &temp);
  4028. if (status)
  4029. return status;
  4030. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  4031. MPI_TEST_NIC_FUNC_MASK);
  4032. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  4033. MPI_TEST_NIC_FUNC_MASK);
  4034. if (qdev->func == nic_func1)
  4035. qdev->alt_func = nic_func2;
  4036. else if (qdev->func == nic_func2)
  4037. qdev->alt_func = nic_func1;
  4038. else
  4039. status = -EIO;
  4040. return status;
  4041. }
  4042. static int ql_get_board_info(struct ql_adapter *qdev)
  4043. {
  4044. int status;
  4045. qdev->func =
  4046. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4047. if (qdev->func > 3)
  4048. return -EIO;
  4049. status = ql_get_alt_pcie_func(qdev);
  4050. if (status)
  4051. return status;
  4052. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4053. if (qdev->port) {
  4054. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4055. qdev->port_link_up = STS_PL1;
  4056. qdev->port_init = STS_PI1;
  4057. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4058. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4059. } else {
  4060. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4061. qdev->port_link_up = STS_PL0;
  4062. qdev->port_init = STS_PI0;
  4063. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4064. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4065. }
  4066. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4067. qdev->device_id = qdev->pdev->device;
  4068. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4069. qdev->nic_ops = &qla8012_nic_ops;
  4070. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4071. qdev->nic_ops = &qla8000_nic_ops;
  4072. return status;
  4073. }
  4074. static void ql_release_all(struct pci_dev *pdev)
  4075. {
  4076. struct net_device *ndev = pci_get_drvdata(pdev);
  4077. struct ql_adapter *qdev = netdev_priv(ndev);
  4078. if (qdev->workqueue) {
  4079. destroy_workqueue(qdev->workqueue);
  4080. qdev->workqueue = NULL;
  4081. }
  4082. if (qdev->reg_base)
  4083. iounmap(qdev->reg_base);
  4084. if (qdev->doorbell_area)
  4085. iounmap(qdev->doorbell_area);
  4086. vfree(qdev->mpi_coredump);
  4087. pci_release_regions(pdev);
  4088. }
  4089. static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
  4090. int cards_found)
  4091. {
  4092. struct ql_adapter *qdev = netdev_priv(ndev);
  4093. int err = 0;
  4094. memset((void *)qdev, 0, sizeof(*qdev));
  4095. err = pci_enable_device(pdev);
  4096. if (err) {
  4097. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4098. return err;
  4099. }
  4100. qdev->ndev = ndev;
  4101. qdev->pdev = pdev;
  4102. pci_set_drvdata(pdev, ndev);
  4103. /* Set PCIe read request size */
  4104. err = pcie_set_readrq(pdev, 4096);
  4105. if (err) {
  4106. dev_err(&pdev->dev, "Set readrq failed.\n");
  4107. goto err_out1;
  4108. }
  4109. err = pci_request_regions(pdev, DRV_NAME);
  4110. if (err) {
  4111. dev_err(&pdev->dev, "PCI region request failed.\n");
  4112. return err;
  4113. }
  4114. pci_set_master(pdev);
  4115. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4116. set_bit(QL_DMA64, &qdev->flags);
  4117. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4118. } else {
  4119. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4120. if (!err)
  4121. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4122. }
  4123. if (err) {
  4124. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4125. goto err_out2;
  4126. }
  4127. /* Set PCIe reset type for EEH to fundamental. */
  4128. pdev->needs_freset = 1;
  4129. pci_save_state(pdev);
  4130. qdev->reg_base =
  4131. ioremap_nocache(pci_resource_start(pdev, 1),
  4132. pci_resource_len(pdev, 1));
  4133. if (!qdev->reg_base) {
  4134. dev_err(&pdev->dev, "Register mapping failed.\n");
  4135. err = -ENOMEM;
  4136. goto err_out2;
  4137. }
  4138. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4139. qdev->doorbell_area =
  4140. ioremap_nocache(pci_resource_start(pdev, 3),
  4141. pci_resource_len(pdev, 3));
  4142. if (!qdev->doorbell_area) {
  4143. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4144. err = -ENOMEM;
  4145. goto err_out2;
  4146. }
  4147. err = ql_get_board_info(qdev);
  4148. if (err) {
  4149. dev_err(&pdev->dev, "Register access failed.\n");
  4150. err = -EIO;
  4151. goto err_out2;
  4152. }
  4153. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4154. spin_lock_init(&qdev->hw_lock);
  4155. spin_lock_init(&qdev->stats_lock);
  4156. if (qlge_mpi_coredump) {
  4157. qdev->mpi_coredump =
  4158. vmalloc(sizeof(struct ql_mpi_coredump));
  4159. if (qdev->mpi_coredump == NULL) {
  4160. err = -ENOMEM;
  4161. goto err_out2;
  4162. }
  4163. if (qlge_force_coredump)
  4164. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4165. }
  4166. /* make sure the EEPROM is good */
  4167. err = qdev->nic_ops->get_flash(qdev);
  4168. if (err) {
  4169. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4170. goto err_out2;
  4171. }
  4172. /* Keep local copy of current mac address. */
  4173. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4174. /* Set up the default ring sizes. */
  4175. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4176. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4177. /* Set up the coalescing parameters. */
  4178. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4179. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4180. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4181. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4182. /*
  4183. * Set up the operating parameters.
  4184. */
  4185. qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
  4186. ndev->name);
  4187. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4188. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4189. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4190. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4191. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4192. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4193. init_completion(&qdev->ide_completion);
  4194. mutex_init(&qdev->mpi_mutex);
  4195. if (!cards_found) {
  4196. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4197. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4198. DRV_NAME, DRV_VERSION);
  4199. }
  4200. return 0;
  4201. err_out2:
  4202. ql_release_all(pdev);
  4203. err_out1:
  4204. pci_disable_device(pdev);
  4205. return err;
  4206. }
  4207. static const struct net_device_ops qlge_netdev_ops = {
  4208. .ndo_open = qlge_open,
  4209. .ndo_stop = qlge_close,
  4210. .ndo_start_xmit = qlge_send,
  4211. .ndo_change_mtu = qlge_change_mtu,
  4212. .ndo_get_stats = qlge_get_stats,
  4213. .ndo_set_rx_mode = qlge_set_multicast_list,
  4214. .ndo_set_mac_address = qlge_set_mac_address,
  4215. .ndo_validate_addr = eth_validate_addr,
  4216. .ndo_tx_timeout = qlge_tx_timeout,
  4217. .ndo_set_features = qlge_set_features,
  4218. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4219. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4220. };
  4221. static void ql_timer(struct timer_list *t)
  4222. {
  4223. struct ql_adapter *qdev = from_timer(qdev, t, timer);
  4224. u32 var = 0;
  4225. var = ql_read32(qdev, STS);
  4226. if (pci_channel_offline(qdev->pdev)) {
  4227. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4228. return;
  4229. }
  4230. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4231. }
  4232. static int qlge_probe(struct pci_dev *pdev,
  4233. const struct pci_device_id *pci_entry)
  4234. {
  4235. struct net_device *ndev = NULL;
  4236. struct ql_adapter *qdev = NULL;
  4237. static int cards_found = 0;
  4238. int err = 0;
  4239. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4240. min(MAX_CPUS, netif_get_num_default_rss_queues()));
  4241. if (!ndev)
  4242. return -ENOMEM;
  4243. err = ql_init_device(pdev, ndev, cards_found);
  4244. if (err < 0) {
  4245. free_netdev(ndev);
  4246. return err;
  4247. }
  4248. qdev = netdev_priv(ndev);
  4249. SET_NETDEV_DEV(ndev, &pdev->dev);
  4250. ndev->hw_features = NETIF_F_SG |
  4251. NETIF_F_IP_CSUM |
  4252. NETIF_F_TSO |
  4253. NETIF_F_TSO_ECN |
  4254. NETIF_F_HW_VLAN_CTAG_TX |
  4255. NETIF_F_HW_VLAN_CTAG_RX |
  4256. NETIF_F_HW_VLAN_CTAG_FILTER |
  4257. NETIF_F_RXCSUM;
  4258. ndev->features = ndev->hw_features;
  4259. ndev->vlan_features = ndev->hw_features;
  4260. /* vlan gets same features (except vlan filter) */
  4261. ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
  4262. NETIF_F_HW_VLAN_CTAG_TX |
  4263. NETIF_F_HW_VLAN_CTAG_RX);
  4264. if (test_bit(QL_DMA64, &qdev->flags))
  4265. ndev->features |= NETIF_F_HIGHDMA;
  4266. /*
  4267. * Set up net_device structure.
  4268. */
  4269. ndev->tx_queue_len = qdev->tx_ring_size;
  4270. ndev->irq = pdev->irq;
  4271. ndev->netdev_ops = &qlge_netdev_ops;
  4272. ndev->ethtool_ops = &qlge_ethtool_ops;
  4273. ndev->watchdog_timeo = 10 * HZ;
  4274. /* MTU range: this driver only supports 1500 or 9000, so this only
  4275. * filters out values above or below, and we'll rely on
  4276. * qlge_change_mtu to make sure only 1500 or 9000 are allowed
  4277. */
  4278. ndev->min_mtu = ETH_DATA_LEN;
  4279. ndev->max_mtu = 9000;
  4280. err = register_netdev(ndev);
  4281. if (err) {
  4282. dev_err(&pdev->dev, "net device registration failed.\n");
  4283. ql_release_all(pdev);
  4284. pci_disable_device(pdev);
  4285. free_netdev(ndev);
  4286. return err;
  4287. }
  4288. /* Start up the timer to trigger EEH if
  4289. * the bus goes dead
  4290. */
  4291. timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
  4292. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4293. ql_link_off(qdev);
  4294. ql_display_dev_info(ndev);
  4295. atomic_set(&qdev->lb_count, 0);
  4296. cards_found++;
  4297. return 0;
  4298. }
  4299. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4300. {
  4301. return qlge_send(skb, ndev);
  4302. }
  4303. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4304. {
  4305. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4306. }
  4307. static void qlge_remove(struct pci_dev *pdev)
  4308. {
  4309. struct net_device *ndev = pci_get_drvdata(pdev);
  4310. struct ql_adapter *qdev = netdev_priv(ndev);
  4311. del_timer_sync(&qdev->timer);
  4312. ql_cancel_all_work_sync(qdev);
  4313. unregister_netdev(ndev);
  4314. ql_release_all(pdev);
  4315. pci_disable_device(pdev);
  4316. free_netdev(ndev);
  4317. }
  4318. /* Clean up resources without touching hardware. */
  4319. static void ql_eeh_close(struct net_device *ndev)
  4320. {
  4321. int i;
  4322. struct ql_adapter *qdev = netdev_priv(ndev);
  4323. if (netif_carrier_ok(ndev)) {
  4324. netif_carrier_off(ndev);
  4325. netif_stop_queue(ndev);
  4326. }
  4327. /* Disabling the timer */
  4328. ql_cancel_all_work_sync(qdev);
  4329. for (i = 0; i < qdev->rss_ring_count; i++)
  4330. netif_napi_del(&qdev->rx_ring[i].napi);
  4331. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4332. ql_tx_ring_clean(qdev);
  4333. ql_free_rx_buffers(qdev);
  4334. ql_release_adapter_resources(qdev);
  4335. }
  4336. /*
  4337. * This callback is called by the PCI subsystem whenever
  4338. * a PCI bus error is detected.
  4339. */
  4340. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4341. enum pci_channel_state state)
  4342. {
  4343. struct net_device *ndev = pci_get_drvdata(pdev);
  4344. struct ql_adapter *qdev = netdev_priv(ndev);
  4345. switch (state) {
  4346. case pci_channel_io_normal:
  4347. return PCI_ERS_RESULT_CAN_RECOVER;
  4348. case pci_channel_io_frozen:
  4349. netif_device_detach(ndev);
  4350. del_timer_sync(&qdev->timer);
  4351. if (netif_running(ndev))
  4352. ql_eeh_close(ndev);
  4353. pci_disable_device(pdev);
  4354. return PCI_ERS_RESULT_NEED_RESET;
  4355. case pci_channel_io_perm_failure:
  4356. dev_err(&pdev->dev,
  4357. "%s: pci_channel_io_perm_failure.\n", __func__);
  4358. del_timer_sync(&qdev->timer);
  4359. ql_eeh_close(ndev);
  4360. set_bit(QL_EEH_FATAL, &qdev->flags);
  4361. return PCI_ERS_RESULT_DISCONNECT;
  4362. }
  4363. /* Request a slot reset. */
  4364. return PCI_ERS_RESULT_NEED_RESET;
  4365. }
  4366. /*
  4367. * This callback is called after the PCI buss has been reset.
  4368. * Basically, this tries to restart the card from scratch.
  4369. * This is a shortened version of the device probe/discovery code,
  4370. * it resembles the first-half of the () routine.
  4371. */
  4372. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4373. {
  4374. struct net_device *ndev = pci_get_drvdata(pdev);
  4375. struct ql_adapter *qdev = netdev_priv(ndev);
  4376. pdev->error_state = pci_channel_io_normal;
  4377. pci_restore_state(pdev);
  4378. if (pci_enable_device(pdev)) {
  4379. netif_err(qdev, ifup, qdev->ndev,
  4380. "Cannot re-enable PCI device after reset.\n");
  4381. return PCI_ERS_RESULT_DISCONNECT;
  4382. }
  4383. pci_set_master(pdev);
  4384. if (ql_adapter_reset(qdev)) {
  4385. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4386. set_bit(QL_EEH_FATAL, &qdev->flags);
  4387. return PCI_ERS_RESULT_DISCONNECT;
  4388. }
  4389. return PCI_ERS_RESULT_RECOVERED;
  4390. }
  4391. static void qlge_io_resume(struct pci_dev *pdev)
  4392. {
  4393. struct net_device *ndev = pci_get_drvdata(pdev);
  4394. struct ql_adapter *qdev = netdev_priv(ndev);
  4395. int err = 0;
  4396. if (netif_running(ndev)) {
  4397. err = qlge_open(ndev);
  4398. if (err) {
  4399. netif_err(qdev, ifup, qdev->ndev,
  4400. "Device initialization failed after reset.\n");
  4401. return;
  4402. }
  4403. } else {
  4404. netif_err(qdev, ifup, qdev->ndev,
  4405. "Device was not running prior to EEH.\n");
  4406. }
  4407. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4408. netif_device_attach(ndev);
  4409. }
  4410. static const struct pci_error_handlers qlge_err_handler = {
  4411. .error_detected = qlge_io_error_detected,
  4412. .slot_reset = qlge_io_slot_reset,
  4413. .resume = qlge_io_resume,
  4414. };
  4415. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4416. {
  4417. struct net_device *ndev = pci_get_drvdata(pdev);
  4418. struct ql_adapter *qdev = netdev_priv(ndev);
  4419. int err;
  4420. netif_device_detach(ndev);
  4421. del_timer_sync(&qdev->timer);
  4422. if (netif_running(ndev)) {
  4423. err = ql_adapter_down(qdev);
  4424. if (!err)
  4425. return err;
  4426. }
  4427. ql_wol(qdev);
  4428. err = pci_save_state(pdev);
  4429. if (err)
  4430. return err;
  4431. pci_disable_device(pdev);
  4432. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4433. return 0;
  4434. }
  4435. #ifdef CONFIG_PM
  4436. static int qlge_resume(struct pci_dev *pdev)
  4437. {
  4438. struct net_device *ndev = pci_get_drvdata(pdev);
  4439. struct ql_adapter *qdev = netdev_priv(ndev);
  4440. int err;
  4441. pci_set_power_state(pdev, PCI_D0);
  4442. pci_restore_state(pdev);
  4443. err = pci_enable_device(pdev);
  4444. if (err) {
  4445. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4446. return err;
  4447. }
  4448. pci_set_master(pdev);
  4449. pci_enable_wake(pdev, PCI_D3hot, 0);
  4450. pci_enable_wake(pdev, PCI_D3cold, 0);
  4451. if (netif_running(ndev)) {
  4452. err = ql_adapter_up(qdev);
  4453. if (err)
  4454. return err;
  4455. }
  4456. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4457. netif_device_attach(ndev);
  4458. return 0;
  4459. }
  4460. #endif /* CONFIG_PM */
  4461. static void qlge_shutdown(struct pci_dev *pdev)
  4462. {
  4463. qlge_suspend(pdev, PMSG_SUSPEND);
  4464. }
  4465. static struct pci_driver qlge_driver = {
  4466. .name = DRV_NAME,
  4467. .id_table = qlge_pci_tbl,
  4468. .probe = qlge_probe,
  4469. .remove = qlge_remove,
  4470. #ifdef CONFIG_PM
  4471. .suspend = qlge_suspend,
  4472. .resume = qlge_resume,
  4473. #endif
  4474. .shutdown = qlge_shutdown,
  4475. .err_handler = &qlge_err_handler
  4476. };
  4477. module_pci_driver(qlge_driver);