e1000_ethtool.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright(c) 1999 - 2006 Intel Corporation. */
  3. /* ethtool support for e1000 */
  4. #include "e1000.h"
  5. #include <linux/jiffies.h>
  6. #include <linux/uaccess.h>
  7. enum {NETDEV_STATS, E1000_STATS};
  8. struct e1000_stats {
  9. char stat_string[ETH_GSTRING_LEN];
  10. int type;
  11. int sizeof_stat;
  12. int stat_offset;
  13. };
  14. #define E1000_STAT(m) E1000_STATS, \
  15. sizeof(((struct e1000_adapter *)0)->m), \
  16. offsetof(struct e1000_adapter, m)
  17. #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
  18. sizeof(((struct net_device *)0)->m), \
  19. offsetof(struct net_device, m)
  20. static const struct e1000_stats e1000_gstrings_stats[] = {
  21. { "rx_packets", E1000_STAT(stats.gprc) },
  22. { "tx_packets", E1000_STAT(stats.gptc) },
  23. { "rx_bytes", E1000_STAT(stats.gorcl) },
  24. { "tx_bytes", E1000_STAT(stats.gotcl) },
  25. { "rx_broadcast", E1000_STAT(stats.bprc) },
  26. { "tx_broadcast", E1000_STAT(stats.bptc) },
  27. { "rx_multicast", E1000_STAT(stats.mprc) },
  28. { "tx_multicast", E1000_STAT(stats.mptc) },
  29. { "rx_errors", E1000_STAT(stats.rxerrc) },
  30. { "tx_errors", E1000_STAT(stats.txerrc) },
  31. { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  32. { "multicast", E1000_STAT(stats.mprc) },
  33. { "collisions", E1000_STAT(stats.colc) },
  34. { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  35. { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  36. { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  37. { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  38. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  39. { "rx_missed_errors", E1000_STAT(stats.mpc) },
  40. { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  41. { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  42. { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  43. { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  44. { "tx_window_errors", E1000_STAT(stats.latecol) },
  45. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  46. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  47. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  48. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  49. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  50. { "tx_restart_queue", E1000_STAT(restart_queue) },
  51. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  52. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  53. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  54. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  55. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  56. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  57. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  58. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  59. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  60. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  61. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  62. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  63. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  64. { "tx_smbus", E1000_STAT(stats.mgptc) },
  65. { "rx_smbus", E1000_STAT(stats.mgprc) },
  66. { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  67. };
  68. #define E1000_QUEUE_STATS_LEN 0
  69. #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  70. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  71. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  72. "Register test (offline)", "Eeprom test (offline)",
  73. "Interrupt test (offline)", "Loopback test (offline)",
  74. "Link test (on/offline)"
  75. };
  76. #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
  77. static int e1000_get_link_ksettings(struct net_device *netdev,
  78. struct ethtool_link_ksettings *cmd)
  79. {
  80. struct e1000_adapter *adapter = netdev_priv(netdev);
  81. struct e1000_hw *hw = &adapter->hw;
  82. u32 supported, advertising;
  83. if (hw->media_type == e1000_media_type_copper) {
  84. supported = (SUPPORTED_10baseT_Half |
  85. SUPPORTED_10baseT_Full |
  86. SUPPORTED_100baseT_Half |
  87. SUPPORTED_100baseT_Full |
  88. SUPPORTED_1000baseT_Full|
  89. SUPPORTED_Autoneg |
  90. SUPPORTED_TP);
  91. advertising = ADVERTISED_TP;
  92. if (hw->autoneg == 1) {
  93. advertising |= ADVERTISED_Autoneg;
  94. /* the e1000 autoneg seems to match ethtool nicely */
  95. advertising |= hw->autoneg_advertised;
  96. }
  97. cmd->base.port = PORT_TP;
  98. cmd->base.phy_address = hw->phy_addr;
  99. } else {
  100. supported = (SUPPORTED_1000baseT_Full |
  101. SUPPORTED_FIBRE |
  102. SUPPORTED_Autoneg);
  103. advertising = (ADVERTISED_1000baseT_Full |
  104. ADVERTISED_FIBRE |
  105. ADVERTISED_Autoneg);
  106. cmd->base.port = PORT_FIBRE;
  107. }
  108. if (er32(STATUS) & E1000_STATUS_LU) {
  109. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  110. &adapter->link_duplex);
  111. cmd->base.speed = adapter->link_speed;
  112. /* unfortunately FULL_DUPLEX != DUPLEX_FULL
  113. * and HALF_DUPLEX != DUPLEX_HALF
  114. */
  115. if (adapter->link_duplex == FULL_DUPLEX)
  116. cmd->base.duplex = DUPLEX_FULL;
  117. else
  118. cmd->base.duplex = DUPLEX_HALF;
  119. } else {
  120. cmd->base.speed = SPEED_UNKNOWN;
  121. cmd->base.duplex = DUPLEX_UNKNOWN;
  122. }
  123. cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  124. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  125. /* MDI-X => 1; MDI => 0 */
  126. if ((hw->media_type == e1000_media_type_copper) &&
  127. netif_carrier_ok(netdev))
  128. cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
  129. ETH_TP_MDI_X : ETH_TP_MDI);
  130. else
  131. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  132. if (hw->mdix == AUTO_ALL_MODES)
  133. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  134. else
  135. cmd->base.eth_tp_mdix_ctrl = hw->mdix;
  136. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  137. supported);
  138. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  139. advertising);
  140. return 0;
  141. }
  142. static int e1000_set_link_ksettings(struct net_device *netdev,
  143. const struct ethtool_link_ksettings *cmd)
  144. {
  145. struct e1000_adapter *adapter = netdev_priv(netdev);
  146. struct e1000_hw *hw = &adapter->hw;
  147. u32 advertising;
  148. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  149. cmd->link_modes.advertising);
  150. /* MDI setting is only allowed when autoneg enabled because
  151. * some hardware doesn't allow MDI setting when speed or
  152. * duplex is forced.
  153. */
  154. if (cmd->base.eth_tp_mdix_ctrl) {
  155. if (hw->media_type != e1000_media_type_copper)
  156. return -EOPNOTSUPP;
  157. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  158. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  159. e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  160. return -EINVAL;
  161. }
  162. }
  163. while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  164. msleep(1);
  165. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  166. hw->autoneg = 1;
  167. if (hw->media_type == e1000_media_type_fiber)
  168. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  169. ADVERTISED_FIBRE |
  170. ADVERTISED_Autoneg;
  171. else
  172. hw->autoneg_advertised = advertising |
  173. ADVERTISED_TP |
  174. ADVERTISED_Autoneg;
  175. } else {
  176. u32 speed = cmd->base.speed;
  177. /* calling this overrides forced MDI setting */
  178. if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  179. clear_bit(__E1000_RESETTING, &adapter->flags);
  180. return -EINVAL;
  181. }
  182. }
  183. /* MDI-X => 2; MDI => 1; Auto => 3 */
  184. if (cmd->base.eth_tp_mdix_ctrl) {
  185. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  186. hw->mdix = AUTO_ALL_MODES;
  187. else
  188. hw->mdix = cmd->base.eth_tp_mdix_ctrl;
  189. }
  190. /* reset the link */
  191. if (netif_running(adapter->netdev)) {
  192. e1000_down(adapter);
  193. e1000_up(adapter);
  194. } else {
  195. e1000_reset(adapter);
  196. }
  197. clear_bit(__E1000_RESETTING, &adapter->flags);
  198. return 0;
  199. }
  200. static u32 e1000_get_link(struct net_device *netdev)
  201. {
  202. struct e1000_adapter *adapter = netdev_priv(netdev);
  203. /* If the link is not reported up to netdev, interrupts are disabled,
  204. * and so the physical link state may have changed since we last
  205. * looked. Set get_link_status to make sure that the true link
  206. * state is interrogated, rather than pulling a cached and possibly
  207. * stale link state from the driver.
  208. */
  209. if (!netif_carrier_ok(netdev))
  210. adapter->hw.get_link_status = 1;
  211. return e1000_has_link(adapter);
  212. }
  213. static void e1000_get_pauseparam(struct net_device *netdev,
  214. struct ethtool_pauseparam *pause)
  215. {
  216. struct e1000_adapter *adapter = netdev_priv(netdev);
  217. struct e1000_hw *hw = &adapter->hw;
  218. pause->autoneg =
  219. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  220. if (hw->fc == E1000_FC_RX_PAUSE) {
  221. pause->rx_pause = 1;
  222. } else if (hw->fc == E1000_FC_TX_PAUSE) {
  223. pause->tx_pause = 1;
  224. } else if (hw->fc == E1000_FC_FULL) {
  225. pause->rx_pause = 1;
  226. pause->tx_pause = 1;
  227. }
  228. }
  229. static int e1000_set_pauseparam(struct net_device *netdev,
  230. struct ethtool_pauseparam *pause)
  231. {
  232. struct e1000_adapter *adapter = netdev_priv(netdev);
  233. struct e1000_hw *hw = &adapter->hw;
  234. int retval = 0;
  235. adapter->fc_autoneg = pause->autoneg;
  236. while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  237. msleep(1);
  238. if (pause->rx_pause && pause->tx_pause)
  239. hw->fc = E1000_FC_FULL;
  240. else if (pause->rx_pause && !pause->tx_pause)
  241. hw->fc = E1000_FC_RX_PAUSE;
  242. else if (!pause->rx_pause && pause->tx_pause)
  243. hw->fc = E1000_FC_TX_PAUSE;
  244. else if (!pause->rx_pause && !pause->tx_pause)
  245. hw->fc = E1000_FC_NONE;
  246. hw->original_fc = hw->fc;
  247. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  248. if (netif_running(adapter->netdev)) {
  249. e1000_down(adapter);
  250. e1000_up(adapter);
  251. } else {
  252. e1000_reset(adapter);
  253. }
  254. } else
  255. retval = ((hw->media_type == e1000_media_type_fiber) ?
  256. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  257. clear_bit(__E1000_RESETTING, &adapter->flags);
  258. return retval;
  259. }
  260. static u32 e1000_get_msglevel(struct net_device *netdev)
  261. {
  262. struct e1000_adapter *adapter = netdev_priv(netdev);
  263. return adapter->msg_enable;
  264. }
  265. static void e1000_set_msglevel(struct net_device *netdev, u32 data)
  266. {
  267. struct e1000_adapter *adapter = netdev_priv(netdev);
  268. adapter->msg_enable = data;
  269. }
  270. static int e1000_get_regs_len(struct net_device *netdev)
  271. {
  272. #define E1000_REGS_LEN 32
  273. return E1000_REGS_LEN * sizeof(u32);
  274. }
  275. static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  276. void *p)
  277. {
  278. struct e1000_adapter *adapter = netdev_priv(netdev);
  279. struct e1000_hw *hw = &adapter->hw;
  280. u32 *regs_buff = p;
  281. u16 phy_data;
  282. memset(p, 0, E1000_REGS_LEN * sizeof(u32));
  283. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  284. regs_buff[0] = er32(CTRL);
  285. regs_buff[1] = er32(STATUS);
  286. regs_buff[2] = er32(RCTL);
  287. regs_buff[3] = er32(RDLEN);
  288. regs_buff[4] = er32(RDH);
  289. regs_buff[5] = er32(RDT);
  290. regs_buff[6] = er32(RDTR);
  291. regs_buff[7] = er32(TCTL);
  292. regs_buff[8] = er32(TDLEN);
  293. regs_buff[9] = er32(TDH);
  294. regs_buff[10] = er32(TDT);
  295. regs_buff[11] = er32(TIDV);
  296. regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
  297. if (hw->phy_type == e1000_phy_igp) {
  298. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  299. IGP01E1000_PHY_AGC_A);
  300. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  301. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  302. regs_buff[13] = (u32)phy_data; /* cable length */
  303. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  304. IGP01E1000_PHY_AGC_B);
  305. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  306. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  307. regs_buff[14] = (u32)phy_data; /* cable length */
  308. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  309. IGP01E1000_PHY_AGC_C);
  310. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  311. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  312. regs_buff[15] = (u32)phy_data; /* cable length */
  313. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  314. IGP01E1000_PHY_AGC_D);
  315. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  316. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  317. regs_buff[16] = (u32)phy_data; /* cable length */
  318. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  319. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  320. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  321. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  322. regs_buff[18] = (u32)phy_data; /* cable polarity */
  323. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  324. IGP01E1000_PHY_PCS_INIT_REG);
  325. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  326. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  327. regs_buff[19] = (u32)phy_data; /* cable polarity */
  328. regs_buff[20] = 0; /* polarity correction enabled (always) */
  329. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  330. regs_buff[23] = regs_buff[18]; /* mdix mode */
  331. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  332. } else {
  333. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  334. regs_buff[13] = (u32)phy_data; /* cable length */
  335. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  336. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  337. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  338. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  339. regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
  340. regs_buff[18] = regs_buff[13]; /* cable polarity */
  341. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  342. regs_buff[20] = regs_buff[17]; /* polarity correction */
  343. /* phy receive errors */
  344. regs_buff[22] = adapter->phy_stats.receive_errors;
  345. regs_buff[23] = regs_buff[13]; /* mdix mode */
  346. }
  347. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  348. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  349. regs_buff[24] = (u32)phy_data; /* phy local receiver status */
  350. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  351. if (hw->mac_type >= e1000_82540 &&
  352. hw->media_type == e1000_media_type_copper) {
  353. regs_buff[26] = er32(MANC);
  354. }
  355. }
  356. static int e1000_get_eeprom_len(struct net_device *netdev)
  357. {
  358. struct e1000_adapter *adapter = netdev_priv(netdev);
  359. struct e1000_hw *hw = &adapter->hw;
  360. return hw->eeprom.word_size * 2;
  361. }
  362. static int e1000_get_eeprom(struct net_device *netdev,
  363. struct ethtool_eeprom *eeprom, u8 *bytes)
  364. {
  365. struct e1000_adapter *adapter = netdev_priv(netdev);
  366. struct e1000_hw *hw = &adapter->hw;
  367. u16 *eeprom_buff;
  368. int first_word, last_word;
  369. int ret_val = 0;
  370. u16 i;
  371. if (eeprom->len == 0)
  372. return -EINVAL;
  373. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  374. first_word = eeprom->offset >> 1;
  375. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  376. eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
  377. GFP_KERNEL);
  378. if (!eeprom_buff)
  379. return -ENOMEM;
  380. if (hw->eeprom.type == e1000_eeprom_spi)
  381. ret_val = e1000_read_eeprom(hw, first_word,
  382. last_word - first_word + 1,
  383. eeprom_buff);
  384. else {
  385. for (i = 0; i < last_word - first_word + 1; i++) {
  386. ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  387. &eeprom_buff[i]);
  388. if (ret_val)
  389. break;
  390. }
  391. }
  392. /* Device's eeprom is always little-endian, word addressable */
  393. for (i = 0; i < last_word - first_word + 1; i++)
  394. le16_to_cpus(&eeprom_buff[i]);
  395. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  396. eeprom->len);
  397. kfree(eeprom_buff);
  398. return ret_val;
  399. }
  400. static int e1000_set_eeprom(struct net_device *netdev,
  401. struct ethtool_eeprom *eeprom, u8 *bytes)
  402. {
  403. struct e1000_adapter *adapter = netdev_priv(netdev);
  404. struct e1000_hw *hw = &adapter->hw;
  405. u16 *eeprom_buff;
  406. void *ptr;
  407. int max_len, first_word, last_word, ret_val = 0;
  408. u16 i;
  409. if (eeprom->len == 0)
  410. return -EOPNOTSUPP;
  411. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  412. return -EFAULT;
  413. max_len = hw->eeprom.word_size * 2;
  414. first_word = eeprom->offset >> 1;
  415. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  416. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  417. if (!eeprom_buff)
  418. return -ENOMEM;
  419. ptr = (void *)eeprom_buff;
  420. if (eeprom->offset & 1) {
  421. /* need read/modify/write of first changed EEPROM word
  422. * only the second byte of the word is being modified
  423. */
  424. ret_val = e1000_read_eeprom(hw, first_word, 1,
  425. &eeprom_buff[0]);
  426. ptr++;
  427. }
  428. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  429. /* need read/modify/write of last changed EEPROM word
  430. * only the first byte of the word is being modified
  431. */
  432. ret_val = e1000_read_eeprom(hw, last_word, 1,
  433. &eeprom_buff[last_word - first_word]);
  434. }
  435. /* Device's eeprom is always little-endian, word addressable */
  436. for (i = 0; i < last_word - first_word + 1; i++)
  437. le16_to_cpus(&eeprom_buff[i]);
  438. memcpy(ptr, bytes, eeprom->len);
  439. for (i = 0; i < last_word - first_word + 1; i++)
  440. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  441. ret_val = e1000_write_eeprom(hw, first_word,
  442. last_word - first_word + 1, eeprom_buff);
  443. /* Update the checksum over the first part of the EEPROM if needed */
  444. if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
  445. e1000_update_eeprom_checksum(hw);
  446. kfree(eeprom_buff);
  447. return ret_val;
  448. }
  449. static void e1000_get_drvinfo(struct net_device *netdev,
  450. struct ethtool_drvinfo *drvinfo)
  451. {
  452. struct e1000_adapter *adapter = netdev_priv(netdev);
  453. strlcpy(drvinfo->driver, e1000_driver_name,
  454. sizeof(drvinfo->driver));
  455. strlcpy(drvinfo->version, e1000_driver_version,
  456. sizeof(drvinfo->version));
  457. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  458. sizeof(drvinfo->bus_info));
  459. }
  460. static void e1000_get_ringparam(struct net_device *netdev,
  461. struct ethtool_ringparam *ring)
  462. {
  463. struct e1000_adapter *adapter = netdev_priv(netdev);
  464. struct e1000_hw *hw = &adapter->hw;
  465. e1000_mac_type mac_type = hw->mac_type;
  466. struct e1000_tx_ring *txdr = adapter->tx_ring;
  467. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  468. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  469. E1000_MAX_82544_RXD;
  470. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  471. E1000_MAX_82544_TXD;
  472. ring->rx_pending = rxdr->count;
  473. ring->tx_pending = txdr->count;
  474. }
  475. static int e1000_set_ringparam(struct net_device *netdev,
  476. struct ethtool_ringparam *ring)
  477. {
  478. struct e1000_adapter *adapter = netdev_priv(netdev);
  479. struct e1000_hw *hw = &adapter->hw;
  480. e1000_mac_type mac_type = hw->mac_type;
  481. struct e1000_tx_ring *txdr, *tx_old;
  482. struct e1000_rx_ring *rxdr, *rx_old;
  483. int i, err;
  484. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  485. return -EINVAL;
  486. while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
  487. msleep(1);
  488. if (netif_running(adapter->netdev))
  489. e1000_down(adapter);
  490. tx_old = adapter->tx_ring;
  491. rx_old = adapter->rx_ring;
  492. err = -ENOMEM;
  493. txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
  494. GFP_KERNEL);
  495. if (!txdr)
  496. goto err_alloc_tx;
  497. rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
  498. GFP_KERNEL);
  499. if (!rxdr)
  500. goto err_alloc_rx;
  501. adapter->tx_ring = txdr;
  502. adapter->rx_ring = rxdr;
  503. rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
  504. rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
  505. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  506. rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  507. txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
  508. txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
  509. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  510. txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  511. for (i = 0; i < adapter->num_tx_queues; i++)
  512. txdr[i].count = txdr->count;
  513. for (i = 0; i < adapter->num_rx_queues; i++)
  514. rxdr[i].count = rxdr->count;
  515. if (netif_running(adapter->netdev)) {
  516. /* Try to get new resources before deleting old */
  517. err = e1000_setup_all_rx_resources(adapter);
  518. if (err)
  519. goto err_setup_rx;
  520. err = e1000_setup_all_tx_resources(adapter);
  521. if (err)
  522. goto err_setup_tx;
  523. /* save the new, restore the old in order to free it,
  524. * then restore the new back again
  525. */
  526. adapter->rx_ring = rx_old;
  527. adapter->tx_ring = tx_old;
  528. e1000_free_all_rx_resources(adapter);
  529. e1000_free_all_tx_resources(adapter);
  530. adapter->rx_ring = rxdr;
  531. adapter->tx_ring = txdr;
  532. err = e1000_up(adapter);
  533. if (err)
  534. goto err_setup;
  535. }
  536. kfree(tx_old);
  537. kfree(rx_old);
  538. clear_bit(__E1000_RESETTING, &adapter->flags);
  539. return 0;
  540. err_setup_tx:
  541. e1000_free_all_rx_resources(adapter);
  542. err_setup_rx:
  543. adapter->rx_ring = rx_old;
  544. adapter->tx_ring = tx_old;
  545. kfree(rxdr);
  546. err_alloc_rx:
  547. kfree(txdr);
  548. err_alloc_tx:
  549. if (netif_running(adapter->netdev))
  550. e1000_up(adapter);
  551. err_setup:
  552. clear_bit(__E1000_RESETTING, &adapter->flags);
  553. return err;
  554. }
  555. static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
  556. u32 mask, u32 write)
  557. {
  558. struct e1000_hw *hw = &adapter->hw;
  559. static const u32 test[] = {
  560. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
  561. };
  562. u8 __iomem *address = hw->hw_addr + reg;
  563. u32 read;
  564. int i;
  565. for (i = 0; i < ARRAY_SIZE(test); i++) {
  566. writel(write & test[i], address);
  567. read = readl(address);
  568. if (read != (write & test[i] & mask)) {
  569. e_err(drv, "pattern test reg %04X failed: "
  570. "got 0x%08X expected 0x%08X\n",
  571. reg, read, (write & test[i] & mask));
  572. *data = reg;
  573. return true;
  574. }
  575. }
  576. return false;
  577. }
  578. static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
  579. u32 mask, u32 write)
  580. {
  581. struct e1000_hw *hw = &adapter->hw;
  582. u8 __iomem *address = hw->hw_addr + reg;
  583. u32 read;
  584. writel(write & mask, address);
  585. read = readl(address);
  586. if ((read & mask) != (write & mask)) {
  587. e_err(drv, "set/check reg %04X test failed: "
  588. "got 0x%08X expected 0x%08X\n",
  589. reg, (read & mask), (write & mask));
  590. *data = reg;
  591. return true;
  592. }
  593. return false;
  594. }
  595. #define REG_PATTERN_TEST(reg, mask, write) \
  596. do { \
  597. if (reg_pattern_test(adapter, data, \
  598. (hw->mac_type >= e1000_82543) \
  599. ? E1000_##reg : E1000_82542_##reg, \
  600. mask, write)) \
  601. return 1; \
  602. } while (0)
  603. #define REG_SET_AND_CHECK(reg, mask, write) \
  604. do { \
  605. if (reg_set_and_check(adapter, data, \
  606. (hw->mac_type >= e1000_82543) \
  607. ? E1000_##reg : E1000_82542_##reg, \
  608. mask, write)) \
  609. return 1; \
  610. } while (0)
  611. static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
  612. {
  613. u32 value, before, after;
  614. u32 i, toggle;
  615. struct e1000_hw *hw = &adapter->hw;
  616. /* The status register is Read Only, so a write should fail.
  617. * Some bits that get toggled are ignored.
  618. */
  619. /* there are several bits on newer hardware that are r/w */
  620. toggle = 0xFFFFF833;
  621. before = er32(STATUS);
  622. value = (er32(STATUS) & toggle);
  623. ew32(STATUS, toggle);
  624. after = er32(STATUS) & toggle;
  625. if (value != after) {
  626. e_err(drv, "failed STATUS register test got: "
  627. "0x%08X expected: 0x%08X\n", after, value);
  628. *data = 1;
  629. return 1;
  630. }
  631. /* restore previous status */
  632. ew32(STATUS, before);
  633. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  634. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  635. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  636. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  637. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  638. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  639. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  640. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  641. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  642. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  643. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  644. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  645. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  646. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  647. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  648. before = 0x06DFB3FE;
  649. REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
  650. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  651. if (hw->mac_type >= e1000_82543) {
  652. REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
  653. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  654. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  655. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  656. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  657. value = E1000_RAR_ENTRIES;
  658. for (i = 0; i < value; i++) {
  659. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
  660. 0x8003FFFF, 0xFFFFFFFF);
  661. }
  662. } else {
  663. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  664. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  665. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  666. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  667. }
  668. value = E1000_MC_TBL_SIZE;
  669. for (i = 0; i < value; i++)
  670. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  671. *data = 0;
  672. return 0;
  673. }
  674. static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
  675. {
  676. struct e1000_hw *hw = &adapter->hw;
  677. u16 temp;
  678. u16 checksum = 0;
  679. u16 i;
  680. *data = 0;
  681. /* Read and add up the contents of the EEPROM */
  682. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  683. if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
  684. *data = 1;
  685. break;
  686. }
  687. checksum += temp;
  688. }
  689. /* If Checksum is not Correct return error else test passed */
  690. if ((checksum != (u16)EEPROM_SUM) && !(*data))
  691. *data = 2;
  692. return *data;
  693. }
  694. static irqreturn_t e1000_test_intr(int irq, void *data)
  695. {
  696. struct net_device *netdev = (struct net_device *)data;
  697. struct e1000_adapter *adapter = netdev_priv(netdev);
  698. struct e1000_hw *hw = &adapter->hw;
  699. adapter->test_icr |= er32(ICR);
  700. return IRQ_HANDLED;
  701. }
  702. static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
  703. {
  704. struct net_device *netdev = adapter->netdev;
  705. u32 mask, i = 0;
  706. bool shared_int = true;
  707. u32 irq = adapter->pdev->irq;
  708. struct e1000_hw *hw = &adapter->hw;
  709. *data = 0;
  710. /* NOTE: we don't test MSI interrupts here, yet
  711. * Hook up test interrupt handler just for this test
  712. */
  713. if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
  714. netdev))
  715. shared_int = false;
  716. else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
  717. netdev->name, netdev)) {
  718. *data = 1;
  719. return -1;
  720. }
  721. e_info(hw, "testing %s interrupt\n", (shared_int ?
  722. "shared" : "unshared"));
  723. /* Disable all the interrupts */
  724. ew32(IMC, 0xFFFFFFFF);
  725. E1000_WRITE_FLUSH();
  726. msleep(10);
  727. /* Test each interrupt */
  728. for (; i < 10; i++) {
  729. /* Interrupt to test */
  730. mask = 1 << i;
  731. if (!shared_int) {
  732. /* Disable the interrupt to be reported in
  733. * the cause register and then force the same
  734. * interrupt and see if one gets posted. If
  735. * an interrupt was posted to the bus, the
  736. * test failed.
  737. */
  738. adapter->test_icr = 0;
  739. ew32(IMC, mask);
  740. ew32(ICS, mask);
  741. E1000_WRITE_FLUSH();
  742. msleep(10);
  743. if (adapter->test_icr & mask) {
  744. *data = 3;
  745. break;
  746. }
  747. }
  748. /* Enable the interrupt to be reported in
  749. * the cause register and then force the same
  750. * interrupt and see if one gets posted. If
  751. * an interrupt was not posted to the bus, the
  752. * test failed.
  753. */
  754. adapter->test_icr = 0;
  755. ew32(IMS, mask);
  756. ew32(ICS, mask);
  757. E1000_WRITE_FLUSH();
  758. msleep(10);
  759. if (!(adapter->test_icr & mask)) {
  760. *data = 4;
  761. break;
  762. }
  763. if (!shared_int) {
  764. /* Disable the other interrupts to be reported in
  765. * the cause register and then force the other
  766. * interrupts and see if any get posted. If
  767. * an interrupt was posted to the bus, the
  768. * test failed.
  769. */
  770. adapter->test_icr = 0;
  771. ew32(IMC, ~mask & 0x00007FFF);
  772. ew32(ICS, ~mask & 0x00007FFF);
  773. E1000_WRITE_FLUSH();
  774. msleep(10);
  775. if (adapter->test_icr) {
  776. *data = 5;
  777. break;
  778. }
  779. }
  780. }
  781. /* Disable all the interrupts */
  782. ew32(IMC, 0xFFFFFFFF);
  783. E1000_WRITE_FLUSH();
  784. msleep(10);
  785. /* Unhook test interrupt handler */
  786. free_irq(irq, netdev);
  787. return *data;
  788. }
  789. static void e1000_free_desc_rings(struct e1000_adapter *adapter)
  790. {
  791. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  792. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  793. struct pci_dev *pdev = adapter->pdev;
  794. int i;
  795. if (txdr->desc && txdr->buffer_info) {
  796. for (i = 0; i < txdr->count; i++) {
  797. if (txdr->buffer_info[i].dma)
  798. dma_unmap_single(&pdev->dev,
  799. txdr->buffer_info[i].dma,
  800. txdr->buffer_info[i].length,
  801. DMA_TO_DEVICE);
  802. if (txdr->buffer_info[i].skb)
  803. dev_kfree_skb(txdr->buffer_info[i].skb);
  804. }
  805. }
  806. if (rxdr->desc && rxdr->buffer_info) {
  807. for (i = 0; i < rxdr->count; i++) {
  808. if (rxdr->buffer_info[i].dma)
  809. dma_unmap_single(&pdev->dev,
  810. rxdr->buffer_info[i].dma,
  811. E1000_RXBUFFER_2048,
  812. DMA_FROM_DEVICE);
  813. kfree(rxdr->buffer_info[i].rxbuf.data);
  814. }
  815. }
  816. if (txdr->desc) {
  817. dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
  818. txdr->dma);
  819. txdr->desc = NULL;
  820. }
  821. if (rxdr->desc) {
  822. dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
  823. rxdr->dma);
  824. rxdr->desc = NULL;
  825. }
  826. kfree(txdr->buffer_info);
  827. txdr->buffer_info = NULL;
  828. kfree(rxdr->buffer_info);
  829. rxdr->buffer_info = NULL;
  830. }
  831. static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
  832. {
  833. struct e1000_hw *hw = &adapter->hw;
  834. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  835. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  836. struct pci_dev *pdev = adapter->pdev;
  837. u32 rctl;
  838. int i, ret_val;
  839. /* Setup Tx descriptor ring and Tx buffers */
  840. if (!txdr->count)
  841. txdr->count = E1000_DEFAULT_TXD;
  842. txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
  843. GFP_KERNEL);
  844. if (!txdr->buffer_info) {
  845. ret_val = 1;
  846. goto err_nomem;
  847. }
  848. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  849. txdr->size = ALIGN(txdr->size, 4096);
  850. txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
  851. GFP_KERNEL);
  852. if (!txdr->desc) {
  853. ret_val = 2;
  854. goto err_nomem;
  855. }
  856. txdr->next_to_use = txdr->next_to_clean = 0;
  857. ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
  858. ew32(TDBAH, ((u64)txdr->dma >> 32));
  859. ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
  860. ew32(TDH, 0);
  861. ew32(TDT, 0);
  862. ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
  863. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  864. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  865. for (i = 0; i < txdr->count; i++) {
  866. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  867. struct sk_buff *skb;
  868. unsigned int size = 1024;
  869. skb = alloc_skb(size, GFP_KERNEL);
  870. if (!skb) {
  871. ret_val = 3;
  872. goto err_nomem;
  873. }
  874. skb_put(skb, size);
  875. txdr->buffer_info[i].skb = skb;
  876. txdr->buffer_info[i].length = skb->len;
  877. txdr->buffer_info[i].dma =
  878. dma_map_single(&pdev->dev, skb->data, skb->len,
  879. DMA_TO_DEVICE);
  880. if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
  881. ret_val = 4;
  882. goto err_nomem;
  883. }
  884. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  885. tx_desc->lower.data = cpu_to_le32(skb->len);
  886. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  887. E1000_TXD_CMD_IFCS |
  888. E1000_TXD_CMD_RPS);
  889. tx_desc->upper.data = 0;
  890. }
  891. /* Setup Rx descriptor ring and Rx buffers */
  892. if (!rxdr->count)
  893. rxdr->count = E1000_DEFAULT_RXD;
  894. rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
  895. GFP_KERNEL);
  896. if (!rxdr->buffer_info) {
  897. ret_val = 5;
  898. goto err_nomem;
  899. }
  900. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  901. rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
  902. GFP_KERNEL);
  903. if (!rxdr->desc) {
  904. ret_val = 6;
  905. goto err_nomem;
  906. }
  907. rxdr->next_to_use = rxdr->next_to_clean = 0;
  908. rctl = er32(RCTL);
  909. ew32(RCTL, rctl & ~E1000_RCTL_EN);
  910. ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
  911. ew32(RDBAH, ((u64)rxdr->dma >> 32));
  912. ew32(RDLEN, rxdr->size);
  913. ew32(RDH, 0);
  914. ew32(RDT, 0);
  915. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  916. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  917. (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
  918. ew32(RCTL, rctl);
  919. for (i = 0; i < rxdr->count; i++) {
  920. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  921. u8 *buf;
  922. buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
  923. GFP_KERNEL);
  924. if (!buf) {
  925. ret_val = 7;
  926. goto err_nomem;
  927. }
  928. rxdr->buffer_info[i].rxbuf.data = buf;
  929. rxdr->buffer_info[i].dma =
  930. dma_map_single(&pdev->dev,
  931. buf + NET_SKB_PAD + NET_IP_ALIGN,
  932. E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
  933. if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
  934. ret_val = 8;
  935. goto err_nomem;
  936. }
  937. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  938. }
  939. return 0;
  940. err_nomem:
  941. e1000_free_desc_rings(adapter);
  942. return ret_val;
  943. }
  944. static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  945. {
  946. struct e1000_hw *hw = &adapter->hw;
  947. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  948. e1000_write_phy_reg(hw, 29, 0x001F);
  949. e1000_write_phy_reg(hw, 30, 0x8FFC);
  950. e1000_write_phy_reg(hw, 29, 0x001A);
  951. e1000_write_phy_reg(hw, 30, 0x8FF0);
  952. }
  953. static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  954. {
  955. struct e1000_hw *hw = &adapter->hw;
  956. u16 phy_reg;
  957. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  958. * Extended PHY Specific Control Register to 25MHz clock. This
  959. * value defaults back to a 2.5MHz clock when the PHY is reset.
  960. */
  961. e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  962. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  963. e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  964. /* In addition, because of the s/w reset above, we need to enable
  965. * CRS on TX. This must be set for both full and half duplex
  966. * operation.
  967. */
  968. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  969. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  970. e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  971. }
  972. static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  973. {
  974. struct e1000_hw *hw = &adapter->hw;
  975. u32 ctrl_reg;
  976. u16 phy_reg;
  977. /* Setup the Device Control Register for PHY loopback test. */
  978. ctrl_reg = er32(CTRL);
  979. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  980. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  981. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  982. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  983. E1000_CTRL_FD); /* Force Duplex to FULL */
  984. ew32(CTRL, ctrl_reg);
  985. /* Read the PHY Specific Control Register (0x10) */
  986. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  987. /* Clear Auto-Crossover bits in PHY Specific Control Register
  988. * (bits 6:5).
  989. */
  990. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  991. e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  992. /* Perform software reset on the PHY */
  993. e1000_phy_reset(hw);
  994. /* Have to setup TX_CLK and TX_CRS after software reset */
  995. e1000_phy_reset_clk_and_crs(adapter);
  996. e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
  997. /* Wait for reset to complete. */
  998. udelay(500);
  999. /* Have to setup TX_CLK and TX_CRS after software reset */
  1000. e1000_phy_reset_clk_and_crs(adapter);
  1001. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1002. e1000_phy_disable_receiver(adapter);
  1003. /* Set the loopback bit in the PHY control register. */
  1004. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1005. phy_reg |= MII_CR_LOOPBACK;
  1006. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1007. /* Setup TX_CLK and TX_CRS one more time. */
  1008. e1000_phy_reset_clk_and_crs(adapter);
  1009. /* Check Phy Configuration */
  1010. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1011. if (phy_reg != 0x4100)
  1012. return 9;
  1013. e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1014. if (phy_reg != 0x0070)
  1015. return 10;
  1016. e1000_read_phy_reg(hw, 29, &phy_reg);
  1017. if (phy_reg != 0x001A)
  1018. return 11;
  1019. return 0;
  1020. }
  1021. static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1022. {
  1023. struct e1000_hw *hw = &adapter->hw;
  1024. u32 ctrl_reg = 0;
  1025. u32 stat_reg = 0;
  1026. hw->autoneg = false;
  1027. if (hw->phy_type == e1000_phy_m88) {
  1028. /* Auto-MDI/MDIX Off */
  1029. e1000_write_phy_reg(hw,
  1030. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1031. /* reset to update Auto-MDI/MDIX */
  1032. e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
  1033. /* autoneg off */
  1034. e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
  1035. }
  1036. ctrl_reg = er32(CTRL);
  1037. /* force 1000, set loopback */
  1038. e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
  1039. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1040. ctrl_reg = er32(CTRL);
  1041. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1042. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1043. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1044. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1045. E1000_CTRL_FD); /* Force Duplex to FULL */
  1046. if (hw->media_type == e1000_media_type_copper &&
  1047. hw->phy_type == e1000_phy_m88)
  1048. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1049. else {
  1050. /* Set the ILOS bit on the fiber Nic is half
  1051. * duplex link is detected.
  1052. */
  1053. stat_reg = er32(STATUS);
  1054. if ((stat_reg & E1000_STATUS_FD) == 0)
  1055. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1056. }
  1057. ew32(CTRL, ctrl_reg);
  1058. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1059. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1060. */
  1061. if (hw->phy_type == e1000_phy_m88)
  1062. e1000_phy_disable_receiver(adapter);
  1063. udelay(500);
  1064. return 0;
  1065. }
  1066. static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1067. {
  1068. struct e1000_hw *hw = &adapter->hw;
  1069. u16 phy_reg = 0;
  1070. u16 count = 0;
  1071. switch (hw->mac_type) {
  1072. case e1000_82543:
  1073. if (hw->media_type == e1000_media_type_copper) {
  1074. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1075. * Some PHY registers get corrupted at random, so
  1076. * attempt this 10 times.
  1077. */
  1078. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1079. count++ < 10);
  1080. if (count < 11)
  1081. return 0;
  1082. }
  1083. break;
  1084. case e1000_82544:
  1085. case e1000_82540:
  1086. case e1000_82545:
  1087. case e1000_82545_rev_3:
  1088. case e1000_82546:
  1089. case e1000_82546_rev_3:
  1090. case e1000_82541:
  1091. case e1000_82541_rev_2:
  1092. case e1000_82547:
  1093. case e1000_82547_rev_2:
  1094. return e1000_integrated_phy_loopback(adapter);
  1095. default:
  1096. /* Default PHY loopback work is to read the MII
  1097. * control register and assert bit 14 (loopback mode).
  1098. */
  1099. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1100. phy_reg |= MII_CR_LOOPBACK;
  1101. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1102. return 0;
  1103. }
  1104. return 8;
  1105. }
  1106. static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1107. {
  1108. struct e1000_hw *hw = &adapter->hw;
  1109. u32 rctl;
  1110. if (hw->media_type == e1000_media_type_fiber ||
  1111. hw->media_type == e1000_media_type_internal_serdes) {
  1112. switch (hw->mac_type) {
  1113. case e1000_82545:
  1114. case e1000_82546:
  1115. case e1000_82545_rev_3:
  1116. case e1000_82546_rev_3:
  1117. return e1000_set_phy_loopback(adapter);
  1118. default:
  1119. rctl = er32(RCTL);
  1120. rctl |= E1000_RCTL_LBM_TCVR;
  1121. ew32(RCTL, rctl);
  1122. return 0;
  1123. }
  1124. } else if (hw->media_type == e1000_media_type_copper) {
  1125. return e1000_set_phy_loopback(adapter);
  1126. }
  1127. return 7;
  1128. }
  1129. static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1130. {
  1131. struct e1000_hw *hw = &adapter->hw;
  1132. u32 rctl;
  1133. u16 phy_reg;
  1134. rctl = er32(RCTL);
  1135. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1136. ew32(RCTL, rctl);
  1137. switch (hw->mac_type) {
  1138. case e1000_82545:
  1139. case e1000_82546:
  1140. case e1000_82545_rev_3:
  1141. case e1000_82546_rev_3:
  1142. default:
  1143. hw->autoneg = true;
  1144. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1145. if (phy_reg & MII_CR_LOOPBACK) {
  1146. phy_reg &= ~MII_CR_LOOPBACK;
  1147. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1148. e1000_phy_reset(hw);
  1149. }
  1150. break;
  1151. }
  1152. }
  1153. static void e1000_create_lbtest_frame(struct sk_buff *skb,
  1154. unsigned int frame_size)
  1155. {
  1156. memset(skb->data, 0xFF, frame_size);
  1157. frame_size &= ~1;
  1158. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1159. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1160. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1161. }
  1162. static int e1000_check_lbtest_frame(const unsigned char *data,
  1163. unsigned int frame_size)
  1164. {
  1165. frame_size &= ~1;
  1166. if (*(data + 3) == 0xFF) {
  1167. if ((*(data + frame_size / 2 + 10) == 0xBE) &&
  1168. (*(data + frame_size / 2 + 12) == 0xAF)) {
  1169. return 0;
  1170. }
  1171. }
  1172. return 13;
  1173. }
  1174. static int e1000_run_loopback_test(struct e1000_adapter *adapter)
  1175. {
  1176. struct e1000_hw *hw = &adapter->hw;
  1177. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1178. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1179. struct pci_dev *pdev = adapter->pdev;
  1180. int i, j, k, l, lc, good_cnt, ret_val = 0;
  1181. unsigned long time;
  1182. ew32(RDT, rxdr->count - 1);
  1183. /* Calculate the loop count based on the largest descriptor ring
  1184. * The idea is to wrap the largest ring a number of times using 64
  1185. * send/receive pairs during each loop
  1186. */
  1187. if (rxdr->count <= txdr->count)
  1188. lc = ((txdr->count / 64) * 2) + 1;
  1189. else
  1190. lc = ((rxdr->count / 64) * 2) + 1;
  1191. k = l = 0;
  1192. for (j = 0; j <= lc; j++) { /* loop count loop */
  1193. for (i = 0; i < 64; i++) { /* send the packets */
  1194. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1195. 1024);
  1196. dma_sync_single_for_device(&pdev->dev,
  1197. txdr->buffer_info[k].dma,
  1198. txdr->buffer_info[k].length,
  1199. DMA_TO_DEVICE);
  1200. if (unlikely(++k == txdr->count))
  1201. k = 0;
  1202. }
  1203. ew32(TDT, k);
  1204. E1000_WRITE_FLUSH();
  1205. msleep(200);
  1206. time = jiffies; /* set the start time for the receive */
  1207. good_cnt = 0;
  1208. do { /* receive the sent packets */
  1209. dma_sync_single_for_cpu(&pdev->dev,
  1210. rxdr->buffer_info[l].dma,
  1211. E1000_RXBUFFER_2048,
  1212. DMA_FROM_DEVICE);
  1213. ret_val = e1000_check_lbtest_frame(
  1214. rxdr->buffer_info[l].rxbuf.data +
  1215. NET_SKB_PAD + NET_IP_ALIGN,
  1216. 1024);
  1217. if (!ret_val)
  1218. good_cnt++;
  1219. if (unlikely(++l == rxdr->count))
  1220. l = 0;
  1221. /* time + 20 msecs (200 msecs on 2.4) is more than
  1222. * enough time to complete the receives, if it's
  1223. * exceeded, break and error off
  1224. */
  1225. } while (good_cnt < 64 && time_after(time + 20, jiffies));
  1226. if (good_cnt != 64) {
  1227. ret_val = 13; /* ret_val is the same as mis-compare */
  1228. break;
  1229. }
  1230. if (time_after_eq(jiffies, time + 2)) {
  1231. ret_val = 14; /* error code for time out error */
  1232. break;
  1233. }
  1234. } /* end loop count loop */
  1235. return ret_val;
  1236. }
  1237. static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
  1238. {
  1239. *data = e1000_setup_desc_rings(adapter);
  1240. if (*data)
  1241. goto out;
  1242. *data = e1000_setup_loopback_test(adapter);
  1243. if (*data)
  1244. goto err_loopback;
  1245. *data = e1000_run_loopback_test(adapter);
  1246. e1000_loopback_cleanup(adapter);
  1247. err_loopback:
  1248. e1000_free_desc_rings(adapter);
  1249. out:
  1250. return *data;
  1251. }
  1252. static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
  1253. {
  1254. struct e1000_hw *hw = &adapter->hw;
  1255. *data = 0;
  1256. if (hw->media_type == e1000_media_type_internal_serdes) {
  1257. int i = 0;
  1258. hw->serdes_has_link = false;
  1259. /* On some blade server designs, link establishment
  1260. * could take as long as 2-3 minutes
  1261. */
  1262. do {
  1263. e1000_check_for_link(hw);
  1264. if (hw->serdes_has_link)
  1265. return *data;
  1266. msleep(20);
  1267. } while (i++ < 3750);
  1268. *data = 1;
  1269. } else {
  1270. e1000_check_for_link(hw);
  1271. if (hw->autoneg) /* if auto_neg is set wait for it */
  1272. msleep(4000);
  1273. if (!(er32(STATUS) & E1000_STATUS_LU))
  1274. *data = 1;
  1275. }
  1276. return *data;
  1277. }
  1278. static int e1000_get_sset_count(struct net_device *netdev, int sset)
  1279. {
  1280. switch (sset) {
  1281. case ETH_SS_TEST:
  1282. return E1000_TEST_LEN;
  1283. case ETH_SS_STATS:
  1284. return E1000_STATS_LEN;
  1285. default:
  1286. return -EOPNOTSUPP;
  1287. }
  1288. }
  1289. static void e1000_diag_test(struct net_device *netdev,
  1290. struct ethtool_test *eth_test, u64 *data)
  1291. {
  1292. struct e1000_adapter *adapter = netdev_priv(netdev);
  1293. struct e1000_hw *hw = &adapter->hw;
  1294. bool if_running = netif_running(netdev);
  1295. set_bit(__E1000_TESTING, &adapter->flags);
  1296. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1297. /* Offline tests */
  1298. /* save speed, duplex, autoneg settings */
  1299. u16 autoneg_advertised = hw->autoneg_advertised;
  1300. u8 forced_speed_duplex = hw->forced_speed_duplex;
  1301. u8 autoneg = hw->autoneg;
  1302. e_info(hw, "offline testing starting\n");
  1303. /* Link test performed before hardware reset so autoneg doesn't
  1304. * interfere with test result
  1305. */
  1306. if (e1000_link_test(adapter, &data[4]))
  1307. eth_test->flags |= ETH_TEST_FL_FAILED;
  1308. if (if_running)
  1309. /* indicate we're in test mode */
  1310. e1000_close(netdev);
  1311. else
  1312. e1000_reset(adapter);
  1313. if (e1000_reg_test(adapter, &data[0]))
  1314. eth_test->flags |= ETH_TEST_FL_FAILED;
  1315. e1000_reset(adapter);
  1316. if (e1000_eeprom_test(adapter, &data[1]))
  1317. eth_test->flags |= ETH_TEST_FL_FAILED;
  1318. e1000_reset(adapter);
  1319. if (e1000_intr_test(adapter, &data[2]))
  1320. eth_test->flags |= ETH_TEST_FL_FAILED;
  1321. e1000_reset(adapter);
  1322. /* make sure the phy is powered up */
  1323. e1000_power_up_phy(adapter);
  1324. if (e1000_loopback_test(adapter, &data[3]))
  1325. eth_test->flags |= ETH_TEST_FL_FAILED;
  1326. /* restore speed, duplex, autoneg settings */
  1327. hw->autoneg_advertised = autoneg_advertised;
  1328. hw->forced_speed_duplex = forced_speed_duplex;
  1329. hw->autoneg = autoneg;
  1330. e1000_reset(adapter);
  1331. clear_bit(__E1000_TESTING, &adapter->flags);
  1332. if (if_running)
  1333. e1000_open(netdev);
  1334. } else {
  1335. e_info(hw, "online testing starting\n");
  1336. /* Online tests */
  1337. if (e1000_link_test(adapter, &data[4]))
  1338. eth_test->flags |= ETH_TEST_FL_FAILED;
  1339. /* Online tests aren't run; pass by default */
  1340. data[0] = 0;
  1341. data[1] = 0;
  1342. data[2] = 0;
  1343. data[3] = 0;
  1344. clear_bit(__E1000_TESTING, &adapter->flags);
  1345. }
  1346. msleep_interruptible(4 * 1000);
  1347. }
  1348. static int e1000_wol_exclusion(struct e1000_adapter *adapter,
  1349. struct ethtool_wolinfo *wol)
  1350. {
  1351. struct e1000_hw *hw = &adapter->hw;
  1352. int retval = 1; /* fail by default */
  1353. switch (hw->device_id) {
  1354. case E1000_DEV_ID_82542:
  1355. case E1000_DEV_ID_82543GC_FIBER:
  1356. case E1000_DEV_ID_82543GC_COPPER:
  1357. case E1000_DEV_ID_82544EI_FIBER:
  1358. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1359. case E1000_DEV_ID_82545EM_FIBER:
  1360. case E1000_DEV_ID_82545EM_COPPER:
  1361. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1362. case E1000_DEV_ID_82546GB_PCIE:
  1363. /* these don't support WoL at all */
  1364. wol->supported = 0;
  1365. break;
  1366. case E1000_DEV_ID_82546EB_FIBER:
  1367. case E1000_DEV_ID_82546GB_FIBER:
  1368. /* Wake events not supported on port B */
  1369. if (er32(STATUS) & E1000_STATUS_FUNC_1) {
  1370. wol->supported = 0;
  1371. break;
  1372. }
  1373. /* return success for non excluded adapter ports */
  1374. retval = 0;
  1375. break;
  1376. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1377. /* quad port adapters only support WoL on port A */
  1378. if (!adapter->quad_port_a) {
  1379. wol->supported = 0;
  1380. break;
  1381. }
  1382. /* return success for non excluded adapter ports */
  1383. retval = 0;
  1384. break;
  1385. default:
  1386. /* dual port cards only support WoL on port A from now on
  1387. * unless it was enabled in the eeprom for port B
  1388. * so exclude FUNC_1 ports from having WoL enabled
  1389. */
  1390. if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
  1391. !adapter->eeprom_wol) {
  1392. wol->supported = 0;
  1393. break;
  1394. }
  1395. retval = 0;
  1396. }
  1397. return retval;
  1398. }
  1399. static void e1000_get_wol(struct net_device *netdev,
  1400. struct ethtool_wolinfo *wol)
  1401. {
  1402. struct e1000_adapter *adapter = netdev_priv(netdev);
  1403. struct e1000_hw *hw = &adapter->hw;
  1404. wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  1405. wol->wolopts = 0;
  1406. /* this function will set ->supported = 0 and return 1 if wol is not
  1407. * supported by this hardware
  1408. */
  1409. if (e1000_wol_exclusion(adapter, wol) ||
  1410. !device_can_wakeup(&adapter->pdev->dev))
  1411. return;
  1412. /* apply any specific unsupported masks here */
  1413. switch (hw->device_id) {
  1414. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1415. /* KSP3 does not support UCAST wake-ups */
  1416. wol->supported &= ~WAKE_UCAST;
  1417. if (adapter->wol & E1000_WUFC_EX)
  1418. e_err(drv, "Interface does not support directed "
  1419. "(unicast) frame wake-up packets\n");
  1420. break;
  1421. default:
  1422. break;
  1423. }
  1424. if (adapter->wol & E1000_WUFC_EX)
  1425. wol->wolopts |= WAKE_UCAST;
  1426. if (adapter->wol & E1000_WUFC_MC)
  1427. wol->wolopts |= WAKE_MCAST;
  1428. if (adapter->wol & E1000_WUFC_BC)
  1429. wol->wolopts |= WAKE_BCAST;
  1430. if (adapter->wol & E1000_WUFC_MAG)
  1431. wol->wolopts |= WAKE_MAGIC;
  1432. }
  1433. static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1434. {
  1435. struct e1000_adapter *adapter = netdev_priv(netdev);
  1436. struct e1000_hw *hw = &adapter->hw;
  1437. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1438. return -EOPNOTSUPP;
  1439. if (e1000_wol_exclusion(adapter, wol) ||
  1440. !device_can_wakeup(&adapter->pdev->dev))
  1441. return wol->wolopts ? -EOPNOTSUPP : 0;
  1442. switch (hw->device_id) {
  1443. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1444. if (wol->wolopts & WAKE_UCAST) {
  1445. e_err(drv, "Interface does not support directed "
  1446. "(unicast) frame wake-up packets\n");
  1447. return -EOPNOTSUPP;
  1448. }
  1449. break;
  1450. default:
  1451. break;
  1452. }
  1453. /* these settings will always override what we currently have */
  1454. adapter->wol = 0;
  1455. if (wol->wolopts & WAKE_UCAST)
  1456. adapter->wol |= E1000_WUFC_EX;
  1457. if (wol->wolopts & WAKE_MCAST)
  1458. adapter->wol |= E1000_WUFC_MC;
  1459. if (wol->wolopts & WAKE_BCAST)
  1460. adapter->wol |= E1000_WUFC_BC;
  1461. if (wol->wolopts & WAKE_MAGIC)
  1462. adapter->wol |= E1000_WUFC_MAG;
  1463. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1464. return 0;
  1465. }
  1466. static int e1000_set_phys_id(struct net_device *netdev,
  1467. enum ethtool_phys_id_state state)
  1468. {
  1469. struct e1000_adapter *adapter = netdev_priv(netdev);
  1470. struct e1000_hw *hw = &adapter->hw;
  1471. switch (state) {
  1472. case ETHTOOL_ID_ACTIVE:
  1473. e1000_setup_led(hw);
  1474. return 2;
  1475. case ETHTOOL_ID_ON:
  1476. e1000_led_on(hw);
  1477. break;
  1478. case ETHTOOL_ID_OFF:
  1479. e1000_led_off(hw);
  1480. break;
  1481. case ETHTOOL_ID_INACTIVE:
  1482. e1000_cleanup_led(hw);
  1483. }
  1484. return 0;
  1485. }
  1486. static int e1000_get_coalesce(struct net_device *netdev,
  1487. struct ethtool_coalesce *ec)
  1488. {
  1489. struct e1000_adapter *adapter = netdev_priv(netdev);
  1490. if (adapter->hw.mac_type < e1000_82545)
  1491. return -EOPNOTSUPP;
  1492. if (adapter->itr_setting <= 4)
  1493. ec->rx_coalesce_usecs = adapter->itr_setting;
  1494. else
  1495. ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
  1496. return 0;
  1497. }
  1498. static int e1000_set_coalesce(struct net_device *netdev,
  1499. struct ethtool_coalesce *ec)
  1500. {
  1501. struct e1000_adapter *adapter = netdev_priv(netdev);
  1502. struct e1000_hw *hw = &adapter->hw;
  1503. if (hw->mac_type < e1000_82545)
  1504. return -EOPNOTSUPP;
  1505. if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
  1506. ((ec->rx_coalesce_usecs > 4) &&
  1507. (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
  1508. (ec->rx_coalesce_usecs == 2))
  1509. return -EINVAL;
  1510. if (ec->rx_coalesce_usecs == 4) {
  1511. adapter->itr = adapter->itr_setting = 4;
  1512. } else if (ec->rx_coalesce_usecs <= 3) {
  1513. adapter->itr = 20000;
  1514. adapter->itr_setting = ec->rx_coalesce_usecs;
  1515. } else {
  1516. adapter->itr = (1000000 / ec->rx_coalesce_usecs);
  1517. adapter->itr_setting = adapter->itr & ~3;
  1518. }
  1519. if (adapter->itr_setting != 0)
  1520. ew32(ITR, 1000000000 / (adapter->itr * 256));
  1521. else
  1522. ew32(ITR, 0);
  1523. return 0;
  1524. }
  1525. static int e1000_nway_reset(struct net_device *netdev)
  1526. {
  1527. struct e1000_adapter *adapter = netdev_priv(netdev);
  1528. if (netif_running(netdev))
  1529. e1000_reinit_locked(adapter);
  1530. return 0;
  1531. }
  1532. static void e1000_get_ethtool_stats(struct net_device *netdev,
  1533. struct ethtool_stats *stats, u64 *data)
  1534. {
  1535. struct e1000_adapter *adapter = netdev_priv(netdev);
  1536. int i;
  1537. const struct e1000_stats *stat = e1000_gstrings_stats;
  1538. e1000_update_stats(adapter);
  1539. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
  1540. char *p;
  1541. switch (stat->type) {
  1542. case NETDEV_STATS:
  1543. p = (char *)netdev + stat->stat_offset;
  1544. break;
  1545. case E1000_STATS:
  1546. p = (char *)adapter + stat->stat_offset;
  1547. break;
  1548. default:
  1549. netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
  1550. stat->type, i);
  1551. continue;
  1552. }
  1553. if (stat->sizeof_stat == sizeof(u64))
  1554. data[i] = *(u64 *)p;
  1555. else
  1556. data[i] = *(u32 *)p;
  1557. }
  1558. /* BUG_ON(i != E1000_STATS_LEN); */
  1559. }
  1560. static void e1000_get_strings(struct net_device *netdev, u32 stringset,
  1561. u8 *data)
  1562. {
  1563. u8 *p = data;
  1564. int i;
  1565. switch (stringset) {
  1566. case ETH_SS_TEST:
  1567. memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
  1568. break;
  1569. case ETH_SS_STATS:
  1570. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1571. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1572. ETH_GSTRING_LEN);
  1573. p += ETH_GSTRING_LEN;
  1574. }
  1575. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1576. break;
  1577. }
  1578. }
  1579. static const struct ethtool_ops e1000_ethtool_ops = {
  1580. .get_drvinfo = e1000_get_drvinfo,
  1581. .get_regs_len = e1000_get_regs_len,
  1582. .get_regs = e1000_get_regs,
  1583. .get_wol = e1000_get_wol,
  1584. .set_wol = e1000_set_wol,
  1585. .get_msglevel = e1000_get_msglevel,
  1586. .set_msglevel = e1000_set_msglevel,
  1587. .nway_reset = e1000_nway_reset,
  1588. .get_link = e1000_get_link,
  1589. .get_eeprom_len = e1000_get_eeprom_len,
  1590. .get_eeprom = e1000_get_eeprom,
  1591. .set_eeprom = e1000_set_eeprom,
  1592. .get_ringparam = e1000_get_ringparam,
  1593. .set_ringparam = e1000_set_ringparam,
  1594. .get_pauseparam = e1000_get_pauseparam,
  1595. .set_pauseparam = e1000_set_pauseparam,
  1596. .self_test = e1000_diag_test,
  1597. .get_strings = e1000_get_strings,
  1598. .set_phys_id = e1000_set_phys_id,
  1599. .get_ethtool_stats = e1000_get_ethtool_stats,
  1600. .get_sset_count = e1000_get_sset_count,
  1601. .get_coalesce = e1000_get_coalesce,
  1602. .set_coalesce = e1000_set_coalesce,
  1603. .get_ts_info = ethtool_op_get_ts_info,
  1604. .get_link_ksettings = e1000_get_link_ksettings,
  1605. .set_link_ksettings = e1000_set_link_ksettings,
  1606. };
  1607. void e1000_set_ethtool_ops(struct net_device *netdev)
  1608. {
  1609. netdev->ethtool_ops = &e1000_ethtool_ops;
  1610. }