intel.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/sched/clock.h>
  8. #include <linux/thread_info.h>
  9. #include <linux/init.h>
  10. #include <linux/uaccess.h>
  11. #include <asm/cpufeature.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/msr.h>
  14. #include <asm/bugs.h>
  15. #include <asm/cpu.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/microcode_intel.h>
  18. #include <asm/hwcap2.h>
  19. #include <asm/elf.h>
  20. #ifdef CONFIG_X86_64
  21. #include <linux/topology.h>
  22. #endif
  23. #include "cpu.h"
  24. #ifdef CONFIG_X86_LOCAL_APIC
  25. #include <asm/mpspec.h>
  26. #include <asm/apic.h>
  27. #endif
  28. /*
  29. * Just in case our CPU detection goes bad, or you have a weird system,
  30. * allow a way to override the automatic disabling of MPX.
  31. */
  32. static int forcempx;
  33. static int __init forcempx_setup(char *__unused)
  34. {
  35. forcempx = 1;
  36. return 1;
  37. }
  38. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  39. void check_mpx_erratum(struct cpuinfo_x86 *c)
  40. {
  41. if (forcempx)
  42. return;
  43. /*
  44. * Turn off the MPX feature on CPUs where SMEP is not
  45. * available or disabled.
  46. *
  47. * Works around Intel Erratum SKD046: "Branch Instructions
  48. * May Initialize MPX Bound Registers Incorrectly".
  49. *
  50. * This might falsely disable MPX on systems without
  51. * SMEP, like Atom processors without SMEP. But there
  52. * is no such hardware known at the moment.
  53. */
  54. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  55. setup_clear_cpu_cap(X86_FEATURE_MPX);
  56. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  57. }
  58. }
  59. static bool ring3mwait_disabled __read_mostly;
  60. static int __init ring3mwait_disable(char *__unused)
  61. {
  62. ring3mwait_disabled = true;
  63. return 0;
  64. }
  65. __setup("ring3mwait=disable", ring3mwait_disable);
  66. static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  67. {
  68. /*
  69. * Ring 3 MONITOR/MWAIT feature cannot be detected without
  70. * cpu model and family comparison.
  71. */
  72. if (c->x86 != 6)
  73. return;
  74. switch (c->x86_model) {
  75. case INTEL_FAM6_XEON_PHI_KNL:
  76. case INTEL_FAM6_XEON_PHI_KNM:
  77. break;
  78. default:
  79. return;
  80. }
  81. if (ring3mwait_disabled)
  82. return;
  83. set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  84. this_cpu_or(msr_misc_features_shadow,
  85. 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
  86. if (c == &boot_cpu_data)
  87. ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
  88. }
  89. /*
  90. * Early microcode releases for the Spectre v2 mitigation were broken.
  91. * Information taken from;
  92. * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
  93. * - https://kb.vmware.com/s/article/52345
  94. * - Microcode revisions observed in the wild
  95. * - Release note from 20180108 microcode release
  96. */
  97. struct sku_microcode {
  98. u8 model;
  99. u8 stepping;
  100. u32 microcode;
  101. };
  102. static const struct sku_microcode spectre_bad_microcodes[] = {
  103. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0B, 0x80 },
  104. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0A, 0x80 },
  105. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x09, 0x80 },
  106. { INTEL_FAM6_KABYLAKE_MOBILE, 0x0A, 0x80 },
  107. { INTEL_FAM6_KABYLAKE_MOBILE, 0x09, 0x80 },
  108. { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
  109. { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
  110. { INTEL_FAM6_BROADWELL_CORE, 0x04, 0x28 },
  111. { INTEL_FAM6_BROADWELL_GT3E, 0x01, 0x1b },
  112. { INTEL_FAM6_BROADWELL_XEON_D, 0x02, 0x14 },
  113. { INTEL_FAM6_BROADWELL_XEON_D, 0x03, 0x07000011 },
  114. { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
  115. { INTEL_FAM6_HASWELL_ULT, 0x01, 0x21 },
  116. { INTEL_FAM6_HASWELL_GT3E, 0x01, 0x18 },
  117. { INTEL_FAM6_HASWELL_CORE, 0x03, 0x23 },
  118. { INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
  119. { INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
  120. { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
  121. /* Observed in the wild */
  122. { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
  123. { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
  124. };
  125. static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
  126. {
  127. int i;
  128. /*
  129. * We know that the hypervisor lie to us on the microcode version so
  130. * we may as well hope that it is running the correct version.
  131. */
  132. if (cpu_has(c, X86_FEATURE_HYPERVISOR))
  133. return false;
  134. for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
  135. if (c->x86_model == spectre_bad_microcodes[i].model &&
  136. c->x86_stepping == spectre_bad_microcodes[i].stepping)
  137. return (c->microcode <= spectre_bad_microcodes[i].microcode);
  138. }
  139. return false;
  140. }
  141. static void early_init_intel(struct cpuinfo_x86 *c)
  142. {
  143. u64 misc_enable;
  144. /* Unmask CPUID levels if masked: */
  145. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  146. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  147. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  148. c->cpuid_level = cpuid_eax(0);
  149. get_cpu_cap(c);
  150. }
  151. }
  152. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  153. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  154. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  155. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  156. c->microcode = intel_get_microcode_revision();
  157. /* Now if any of them are set, check the blacklist and clear the lot */
  158. if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
  159. cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
  160. cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
  161. cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
  162. pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
  163. setup_clear_cpu_cap(X86_FEATURE_IBRS);
  164. setup_clear_cpu_cap(X86_FEATURE_IBPB);
  165. setup_clear_cpu_cap(X86_FEATURE_STIBP);
  166. setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
  167. setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
  168. }
  169. /*
  170. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  171. *
  172. * A race condition between speculative fetches and invalidating
  173. * a large page. This is worked around in microcode, but we
  174. * need the microcode to have already been loaded... so if it is
  175. * not, recommend a BIOS update and disable large pages.
  176. */
  177. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
  178. c->microcode < 0x20e) {
  179. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  180. clear_cpu_cap(c, X86_FEATURE_PSE);
  181. }
  182. #ifdef CONFIG_X86_64
  183. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  184. #else
  185. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  186. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  187. c->x86_cache_alignment = 128;
  188. #endif
  189. /* CPUID workaround for 0F33/0F34 CPU */
  190. if (c->x86 == 0xF && c->x86_model == 0x3
  191. && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
  192. c->x86_phys_bits = 36;
  193. /*
  194. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  195. * with P/T states and does not stop in deep C-states.
  196. *
  197. * It is also reliable across cores and sockets. (but not across
  198. * cabinets - we turn it off in that case explicitly.)
  199. */
  200. if (c->x86_power & (1 << 8)) {
  201. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  202. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  203. }
  204. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  205. if (c->x86 == 6) {
  206. switch (c->x86_model) {
  207. case 0x27: /* Penwell */
  208. case 0x35: /* Cloverview */
  209. case 0x4a: /* Merrifield */
  210. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  211. break;
  212. default:
  213. break;
  214. }
  215. }
  216. /*
  217. * There is a known erratum on Pentium III and Core Solo
  218. * and Core Duo CPUs.
  219. * " Page with PAT set to WC while associated MTRR is UC
  220. * may consolidate to UC "
  221. * Because of this erratum, it is better to stick with
  222. * setting WC in MTRR rather than using PAT on these CPUs.
  223. *
  224. * Enable PAT WC only on P4, Core 2 or later CPUs.
  225. */
  226. if (c->x86 == 6 && c->x86_model < 15)
  227. clear_cpu_cap(c, X86_FEATURE_PAT);
  228. /*
  229. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  230. * clear the fast string and enhanced fast string CPU capabilities.
  231. */
  232. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  233. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  234. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  235. pr_info("Disabled fast string operations\n");
  236. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  237. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  238. }
  239. }
  240. /*
  241. * Intel Quark Core DevMan_001.pdf section 6.4.11
  242. * "The operating system also is required to invalidate (i.e., flush)
  243. * the TLB when any changes are made to any of the page table entries.
  244. * The operating system must reload CR3 to cause the TLB to be flushed"
  245. *
  246. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  247. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  248. * to be modified.
  249. */
  250. if (c->x86 == 5 && c->x86_model == 9) {
  251. pr_info("Disabling PGE capability bit\n");
  252. setup_clear_cpu_cap(X86_FEATURE_PGE);
  253. }
  254. if (c->cpuid_level >= 0x00000001) {
  255. u32 eax, ebx, ecx, edx;
  256. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  257. /*
  258. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  259. * apicids which are reserved per package. Store the resulting
  260. * shift value for the package management code.
  261. */
  262. if (edx & (1U << 28))
  263. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  264. }
  265. check_mpx_erratum(c);
  266. }
  267. #ifdef CONFIG_X86_32
  268. /*
  269. * Early probe support logic for ppro memory erratum #50
  270. *
  271. * This is called before we do cpu ident work
  272. */
  273. int ppro_with_ram_bug(void)
  274. {
  275. /* Uses data from early_cpu_detect now */
  276. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  277. boot_cpu_data.x86 == 6 &&
  278. boot_cpu_data.x86_model == 1 &&
  279. boot_cpu_data.x86_stepping < 8) {
  280. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  281. return 1;
  282. }
  283. return 0;
  284. }
  285. static void intel_smp_check(struct cpuinfo_x86 *c)
  286. {
  287. /* calling is from identify_secondary_cpu() ? */
  288. if (!c->cpu_index)
  289. return;
  290. /*
  291. * Mask B, Pentium, but not Pentium MMX
  292. */
  293. if (c->x86 == 5 &&
  294. c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
  295. c->x86_model <= 3) {
  296. /*
  297. * Remember we have B step Pentia with bugs
  298. */
  299. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  300. "with B stepping processors.\n");
  301. }
  302. }
  303. static int forcepae;
  304. static int __init forcepae_setup(char *__unused)
  305. {
  306. forcepae = 1;
  307. return 1;
  308. }
  309. __setup("forcepae", forcepae_setup);
  310. static void intel_workarounds(struct cpuinfo_x86 *c)
  311. {
  312. #ifdef CONFIG_X86_F00F_BUG
  313. /*
  314. * All models of Pentium and Pentium with MMX technology CPUs
  315. * have the F0 0F bug, which lets nonprivileged users lock up the
  316. * system. Announce that the fault handler will be checking for it.
  317. * The Quark is also family 5, but does not have the same bug.
  318. */
  319. clear_cpu_bug(c, X86_BUG_F00F);
  320. if (c->x86 == 5 && c->x86_model < 9) {
  321. static int f00f_workaround_enabled;
  322. set_cpu_bug(c, X86_BUG_F00F);
  323. if (!f00f_workaround_enabled) {
  324. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  325. f00f_workaround_enabled = 1;
  326. }
  327. }
  328. #endif
  329. /*
  330. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  331. * model 3 mask 3
  332. */
  333. if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
  334. clear_cpu_cap(c, X86_FEATURE_SEP);
  335. /*
  336. * PAE CPUID issue: many Pentium M report no PAE but may have a
  337. * functionally usable PAE implementation.
  338. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  339. */
  340. if (forcepae) {
  341. pr_warn("PAE forced!\n");
  342. set_cpu_cap(c, X86_FEATURE_PAE);
  343. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  344. }
  345. /*
  346. * P4 Xeon erratum 037 workaround.
  347. * Hardware prefetcher may cause stale data to be loaded into the cache.
  348. */
  349. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
  350. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  351. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  352. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  353. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  354. }
  355. }
  356. /*
  357. * See if we have a good local APIC by checking for buggy Pentia,
  358. * i.e. all B steppings and the C2 stepping of P54C when using their
  359. * integrated APIC (see 11AP erratum in "Pentium Processor
  360. * Specification Update").
  361. */
  362. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  363. (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
  364. set_cpu_bug(c, X86_BUG_11AP);
  365. #ifdef CONFIG_X86_INTEL_USERCOPY
  366. /*
  367. * Set up the preferred alignment for movsl bulk memory moves
  368. */
  369. switch (c->x86) {
  370. case 4: /* 486: untested */
  371. break;
  372. case 5: /* Old Pentia: untested */
  373. break;
  374. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  375. movsl_mask.mask = 7;
  376. break;
  377. case 15: /* P4 is OK down to 8-byte alignment */
  378. movsl_mask.mask = 7;
  379. break;
  380. }
  381. #endif
  382. intel_smp_check(c);
  383. }
  384. #else
  385. static void intel_workarounds(struct cpuinfo_x86 *c)
  386. {
  387. }
  388. #endif
  389. static void srat_detect_node(struct cpuinfo_x86 *c)
  390. {
  391. #ifdef CONFIG_NUMA
  392. unsigned node;
  393. int cpu = smp_processor_id();
  394. /* Don't do the funky fallback heuristics the AMD version employs
  395. for now. */
  396. node = numa_cpu_node(cpu);
  397. if (node == NUMA_NO_NODE || !node_online(node)) {
  398. /* reuse the value from init_cpu_to_node() */
  399. node = cpu_to_node(cpu);
  400. }
  401. numa_set_node(cpu, node);
  402. #endif
  403. }
  404. /*
  405. * find out the number of processor cores on the die
  406. */
  407. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  408. {
  409. unsigned int eax, ebx, ecx, edx;
  410. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  411. return 1;
  412. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  413. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  414. if (eax & 0x1f)
  415. return (eax >> 26) + 1;
  416. else
  417. return 1;
  418. }
  419. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  420. {
  421. /* Intel VMX MSR indicated features */
  422. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  423. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  424. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  425. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  426. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  427. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  428. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  429. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  430. clear_cpu_cap(c, X86_FEATURE_VNMI);
  431. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  432. clear_cpu_cap(c, X86_FEATURE_EPT);
  433. clear_cpu_cap(c, X86_FEATURE_VPID);
  434. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  435. msr_ctl = vmx_msr_high | vmx_msr_low;
  436. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  437. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  438. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  439. set_cpu_cap(c, X86_FEATURE_VNMI);
  440. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  441. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  442. vmx_msr_low, vmx_msr_high);
  443. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  444. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  445. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  446. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  447. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  448. set_cpu_cap(c, X86_FEATURE_EPT);
  449. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  450. set_cpu_cap(c, X86_FEATURE_VPID);
  451. }
  452. }
  453. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  454. {
  455. u64 epb;
  456. /*
  457. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  458. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  459. */
  460. if (!cpu_has(c, X86_FEATURE_EPB))
  461. return;
  462. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  463. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  464. return;
  465. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  466. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  467. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  468. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  469. }
  470. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  471. {
  472. /*
  473. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  474. * so reinitialize it properly like during bootup:
  475. */
  476. init_intel_energy_perf(c);
  477. }
  478. static void init_cpuid_fault(struct cpuinfo_x86 *c)
  479. {
  480. u64 msr;
  481. if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
  482. if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
  483. set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
  484. }
  485. }
  486. static void init_intel_misc_features(struct cpuinfo_x86 *c)
  487. {
  488. u64 msr;
  489. if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
  490. return;
  491. /* Clear all MISC features */
  492. this_cpu_write(msr_misc_features_shadow, 0);
  493. /* Check features and update capabilities and shadow control bits */
  494. init_cpuid_fault(c);
  495. probe_xeon_phi_r3mwait(c);
  496. msr = this_cpu_read(msr_misc_features_shadow);
  497. wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
  498. }
  499. static void init_intel(struct cpuinfo_x86 *c)
  500. {
  501. unsigned int l2 = 0;
  502. early_init_intel(c);
  503. intel_workarounds(c);
  504. /*
  505. * Detect the extended topology information if available. This
  506. * will reinitialise the initial_apicid which will be used
  507. * in init_intel_cacheinfo()
  508. */
  509. detect_extended_topology(c);
  510. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  511. /*
  512. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  513. * detection.
  514. */
  515. c->x86_max_cores = intel_num_cpu_cores(c);
  516. #ifdef CONFIG_X86_32
  517. detect_ht(c);
  518. #endif
  519. }
  520. l2 = init_intel_cacheinfo(c);
  521. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  522. if (l2 == 0) {
  523. cpu_detect_cache_sizes(c);
  524. l2 = c->x86_cache_size;
  525. }
  526. if (c->cpuid_level > 9) {
  527. unsigned eax = cpuid_eax(10);
  528. /* Check for version and the number of counters */
  529. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  530. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  531. }
  532. if (cpu_has(c, X86_FEATURE_XMM2))
  533. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  534. if (boot_cpu_has(X86_FEATURE_DS)) {
  535. unsigned int l1;
  536. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  537. if (!(l1 & (1<<11)))
  538. set_cpu_cap(c, X86_FEATURE_BTS);
  539. if (!(l1 & (1<<12)))
  540. set_cpu_cap(c, X86_FEATURE_PEBS);
  541. }
  542. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  543. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  544. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  545. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  546. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  547. set_cpu_bug(c, X86_BUG_MONITOR);
  548. #ifdef CONFIG_X86_64
  549. if (c->x86 == 15)
  550. c->x86_cache_alignment = c->x86_clflush_size * 2;
  551. if (c->x86 == 6)
  552. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  553. #else
  554. /*
  555. * Names for the Pentium II/Celeron processors
  556. * detectable only by also checking the cache size.
  557. * Dixon is NOT a Celeron.
  558. */
  559. if (c->x86 == 6) {
  560. char *p = NULL;
  561. switch (c->x86_model) {
  562. case 5:
  563. if (l2 == 0)
  564. p = "Celeron (Covington)";
  565. else if (l2 == 256)
  566. p = "Mobile Pentium II (Dixon)";
  567. break;
  568. case 6:
  569. if (l2 == 128)
  570. p = "Celeron (Mendocino)";
  571. else if (c->x86_stepping == 0 || c->x86_stepping == 5)
  572. p = "Celeron-A";
  573. break;
  574. case 8:
  575. if (l2 == 128)
  576. p = "Celeron (Coppermine)";
  577. break;
  578. }
  579. if (p)
  580. strcpy(c->x86_model_id, p);
  581. }
  582. if (c->x86 == 15)
  583. set_cpu_cap(c, X86_FEATURE_P4);
  584. if (c->x86 == 6)
  585. set_cpu_cap(c, X86_FEATURE_P3);
  586. #endif
  587. /* Work around errata */
  588. srat_detect_node(c);
  589. if (cpu_has(c, X86_FEATURE_VMX))
  590. detect_vmx_virtcap(c);
  591. init_intel_energy_perf(c);
  592. init_intel_misc_features(c);
  593. }
  594. #ifdef CONFIG_X86_32
  595. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  596. {
  597. /*
  598. * Intel PIII Tualatin. This comes in two flavours.
  599. * One has 256kb of cache, the other 512. We have no way
  600. * to determine which, so we use a boottime override
  601. * for the 512kb model, and assume 256 otherwise.
  602. */
  603. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  604. size = 256;
  605. /*
  606. * Intel Quark SoC X1000 contains a 4-way set associative
  607. * 16K cache with a 16 byte cache line and 256 lines per tag
  608. */
  609. if ((c->x86 == 5) && (c->x86_model == 9))
  610. size = 16;
  611. return size;
  612. }
  613. #endif
  614. #define TLB_INST_4K 0x01
  615. #define TLB_INST_4M 0x02
  616. #define TLB_INST_2M_4M 0x03
  617. #define TLB_INST_ALL 0x05
  618. #define TLB_INST_1G 0x06
  619. #define TLB_DATA_4K 0x11
  620. #define TLB_DATA_4M 0x12
  621. #define TLB_DATA_2M_4M 0x13
  622. #define TLB_DATA_4K_4M 0x14
  623. #define TLB_DATA_1G 0x16
  624. #define TLB_DATA0_4K 0x21
  625. #define TLB_DATA0_4M 0x22
  626. #define TLB_DATA0_2M_4M 0x23
  627. #define STLB_4K 0x41
  628. #define STLB_4K_2M 0x42
  629. static const struct _tlb_table intel_tlb_table[] = {
  630. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  631. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  632. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  633. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  634. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  635. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  636. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  637. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  638. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  639. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  640. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  641. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  642. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  643. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  644. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  645. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  646. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  647. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  648. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  649. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  650. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  651. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  652. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  653. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  654. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  655. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  656. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  657. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  658. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  659. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  660. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  661. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  662. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  663. { 0x00, 0, 0 }
  664. };
  665. static void intel_tlb_lookup(const unsigned char desc)
  666. {
  667. unsigned char k;
  668. if (desc == 0)
  669. return;
  670. /* look up this descriptor in the table */
  671. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  672. intel_tlb_table[k].descriptor != 0; k++)
  673. ;
  674. if (intel_tlb_table[k].tlb_type == 0)
  675. return;
  676. switch (intel_tlb_table[k].tlb_type) {
  677. case STLB_4K:
  678. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  679. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  680. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  681. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  682. break;
  683. case STLB_4K_2M:
  684. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  685. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  686. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  687. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  688. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  689. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  690. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  691. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  692. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  693. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  694. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  695. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  696. break;
  697. case TLB_INST_ALL:
  698. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  699. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  700. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  701. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  702. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  703. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  704. break;
  705. case TLB_INST_4K:
  706. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  707. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  708. break;
  709. case TLB_INST_4M:
  710. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  711. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  712. break;
  713. case TLB_INST_2M_4M:
  714. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  715. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  716. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  717. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  718. break;
  719. case TLB_DATA_4K:
  720. case TLB_DATA0_4K:
  721. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  722. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  723. break;
  724. case TLB_DATA_4M:
  725. case TLB_DATA0_4M:
  726. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  727. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  728. break;
  729. case TLB_DATA_2M_4M:
  730. case TLB_DATA0_2M_4M:
  731. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  732. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  733. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  734. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  735. break;
  736. case TLB_DATA_4K_4M:
  737. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  738. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  739. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  740. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  741. break;
  742. case TLB_DATA_1G:
  743. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  744. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  745. break;
  746. }
  747. }
  748. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  749. {
  750. int i, j, n;
  751. unsigned int regs[4];
  752. unsigned char *desc = (unsigned char *)regs;
  753. if (c->cpuid_level < 2)
  754. return;
  755. /* Number of times to iterate */
  756. n = cpuid_eax(2) & 0xFF;
  757. for (i = 0 ; i < n ; i++) {
  758. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  759. /* If bit 31 is set, this is an unknown format */
  760. for (j = 0 ; j < 3 ; j++)
  761. if (regs[j] & (1 << 31))
  762. regs[j] = 0;
  763. /* Byte 0 is level count, not a descriptor */
  764. for (j = 1 ; j < 16 ; j++)
  765. intel_tlb_lookup(desc[j]);
  766. }
  767. }
  768. static const struct cpu_dev intel_cpu_dev = {
  769. .c_vendor = "Intel",
  770. .c_ident = { "GenuineIntel" },
  771. #ifdef CONFIG_X86_32
  772. .legacy_models = {
  773. { .family = 4, .model_names =
  774. {
  775. [0] = "486 DX-25/33",
  776. [1] = "486 DX-50",
  777. [2] = "486 SX",
  778. [3] = "486 DX/2",
  779. [4] = "486 SL",
  780. [5] = "486 SX/2",
  781. [7] = "486 DX/2-WB",
  782. [8] = "486 DX/4",
  783. [9] = "486 DX/4-WB"
  784. }
  785. },
  786. { .family = 5, .model_names =
  787. {
  788. [0] = "Pentium 60/66 A-step",
  789. [1] = "Pentium 60/66",
  790. [2] = "Pentium 75 - 200",
  791. [3] = "OverDrive PODP5V83",
  792. [4] = "Pentium MMX",
  793. [7] = "Mobile Pentium 75 - 200",
  794. [8] = "Mobile Pentium MMX",
  795. [9] = "Quark SoC X1000",
  796. }
  797. },
  798. { .family = 6, .model_names =
  799. {
  800. [0] = "Pentium Pro A-step",
  801. [1] = "Pentium Pro",
  802. [3] = "Pentium II (Klamath)",
  803. [4] = "Pentium II (Deschutes)",
  804. [5] = "Pentium II (Deschutes)",
  805. [6] = "Mobile Pentium II",
  806. [7] = "Pentium III (Katmai)",
  807. [8] = "Pentium III (Coppermine)",
  808. [10] = "Pentium III (Cascades)",
  809. [11] = "Pentium III (Tualatin)",
  810. }
  811. },
  812. { .family = 15, .model_names =
  813. {
  814. [0] = "Pentium 4 (Unknown)",
  815. [1] = "Pentium 4 (Willamette)",
  816. [2] = "Pentium 4 (Northwood)",
  817. [4] = "Pentium 4 (Foster)",
  818. [5] = "Pentium 4 (Foster)",
  819. }
  820. },
  821. },
  822. .legacy_cache_size = intel_size_cache,
  823. #endif
  824. .c_detect_tlb = intel_detect_tlb,
  825. .c_early_init = early_init_intel,
  826. .c_init = init_intel,
  827. .c_bsp_resume = intel_bsp_resume,
  828. .c_x86_vendor = X86_VENDOR_INTEL,
  829. };
  830. cpu_dev_register(intel_cpu_dev);