skbuff.h 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/netdev_features.h>
  31. /* Don't change this without changing skb_csum_unnecessary! */
  32. #define CHECKSUM_NONE 0
  33. #define CHECKSUM_UNNECESSARY 1
  34. #define CHECKSUM_COMPLETE 2
  35. #define CHECKSUM_PARTIAL 3
  36. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  37. ~(SMP_CACHE_BYTES - 1))
  38. #define SKB_WITH_OVERHEAD(X) \
  39. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  40. #define SKB_MAX_ORDER(X, ORDER) \
  41. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  42. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  43. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  44. /* return minimum truesize of one skb containing X bytes of data */
  45. #define SKB_TRUESIZE(X) ((X) + \
  46. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  47. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  48. /* A. Checksumming of received packets by device.
  49. *
  50. * NONE: device failed to checksum this packet.
  51. * skb->csum is undefined.
  52. *
  53. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54. * skb->csum is undefined.
  55. * It is bad option, but, unfortunately, many of vendors do this.
  56. * Apparently with secret goal to sell you new device, when you
  57. * will add new protocol to your host. F.e. IPv6. 8)
  58. *
  59. * COMPLETE: the most generic way. Device supplied checksum of _all_
  60. * the packet as seen by netif_rx in skb->csum.
  61. * NOTE: Even if device supports only some protocols, but
  62. * is able to produce some skb->csum, it MUST use COMPLETE,
  63. * not UNNECESSARY.
  64. *
  65. * PARTIAL: identical to the case for output below. This may occur
  66. * on a packet received directly from another Linux OS, e.g.,
  67. * a virtualised Linux kernel on the same host. The packet can
  68. * be treated in the same way as UNNECESSARY except that on
  69. * output (i.e., forwarding) the checksum must be filled in
  70. * by the OS or the hardware.
  71. *
  72. * B. Checksumming on output.
  73. *
  74. * NONE: skb is checksummed by protocol or csum is not required.
  75. *
  76. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77. * from skb->csum_start to the end and to record the checksum
  78. * at skb->csum_start + skb->csum_offset.
  79. *
  80. * Device must show its capabilities in dev->features, set
  81. * at device setup time.
  82. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83. * everything.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list we
  118. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  119. * buffers which do not start on a page boundary.
  120. *
  121. * Since GRO uses frags we allocate at least 16 regardless of page
  122. * size.
  123. */
  124. #if (65536/PAGE_SIZE + 1) < 16
  125. #define MAX_SKB_FRAGS 16UL
  126. #else
  127. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  128. #endif
  129. typedef struct skb_frag_struct skb_frag_t;
  130. struct skb_frag_struct {
  131. struct {
  132. struct page *p;
  133. } page;
  134. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  135. __u32 page_offset;
  136. __u32 size;
  137. #else
  138. __u16 page_offset;
  139. __u16 size;
  140. #endif
  141. };
  142. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  143. {
  144. return frag->size;
  145. }
  146. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  147. {
  148. frag->size = size;
  149. }
  150. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  151. {
  152. frag->size += delta;
  153. }
  154. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  155. {
  156. frag->size -= delta;
  157. }
  158. #define HAVE_HW_TIME_STAMP
  159. /**
  160. * struct skb_shared_hwtstamps - hardware time stamps
  161. * @hwtstamp: hardware time stamp transformed into duration
  162. * since arbitrary point in time
  163. * @syststamp: hwtstamp transformed to system time base
  164. *
  165. * Software time stamps generated by ktime_get_real() are stored in
  166. * skb->tstamp. The relation between the different kinds of time
  167. * stamps is as follows:
  168. *
  169. * syststamp and tstamp can be compared against each other in
  170. * arbitrary combinations. The accuracy of a
  171. * syststamp/tstamp/"syststamp from other device" comparison is
  172. * limited by the accuracy of the transformation into system time
  173. * base. This depends on the device driver and its underlying
  174. * hardware.
  175. *
  176. * hwtstamps can only be compared against other hwtstamps from
  177. * the same device.
  178. *
  179. * This structure is attached to packets as part of the
  180. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  181. */
  182. struct skb_shared_hwtstamps {
  183. ktime_t hwtstamp;
  184. ktime_t syststamp;
  185. };
  186. /* Definitions for tx_flags in struct skb_shared_info */
  187. enum {
  188. /* generate hardware time stamp */
  189. SKBTX_HW_TSTAMP = 1 << 0,
  190. /* generate software time stamp */
  191. SKBTX_SW_TSTAMP = 1 << 1,
  192. /* device driver is going to provide hardware time stamp */
  193. SKBTX_IN_PROGRESS = 1 << 2,
  194. /* ensure the originating sk reference is available on driver level */
  195. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  196. /* device driver supports TX zero-copy buffers */
  197. SKBTX_DEV_ZEROCOPY = 1 << 4,
  198. /* generate wifi status information (where possible) */
  199. SKBTX_WIFI_STATUS = 1 << 5,
  200. };
  201. /*
  202. * The callback notifies userspace to release buffers when skb DMA is done in
  203. * lower device, the skb last reference should be 0 when calling this.
  204. * The desc is used to track userspace buffer index.
  205. */
  206. struct ubuf_info {
  207. void (*callback)(void *);
  208. void *arg;
  209. unsigned long desc;
  210. };
  211. /* This data is invariant across clones and lives at
  212. * the end of the header data, ie. at skb->end.
  213. */
  214. struct skb_shared_info {
  215. unsigned char nr_frags;
  216. __u8 tx_flags;
  217. unsigned short gso_size;
  218. /* Warning: this field is not always filled in (UFO)! */
  219. unsigned short gso_segs;
  220. unsigned short gso_type;
  221. struct sk_buff *frag_list;
  222. struct skb_shared_hwtstamps hwtstamps;
  223. __be32 ip6_frag_id;
  224. /*
  225. * Warning : all fields before dataref are cleared in __alloc_skb()
  226. */
  227. atomic_t dataref;
  228. /* Intermediate layers must ensure that destructor_arg
  229. * remains valid until skb destructor */
  230. void * destructor_arg;
  231. /* must be last field, see pskb_expand_head() */
  232. skb_frag_t frags[MAX_SKB_FRAGS];
  233. };
  234. /* We divide dataref into two halves. The higher 16 bits hold references
  235. * to the payload part of skb->data. The lower 16 bits hold references to
  236. * the entire skb->data. A clone of a headerless skb holds the length of
  237. * the header in skb->hdr_len.
  238. *
  239. * All users must obey the rule that the skb->data reference count must be
  240. * greater than or equal to the payload reference count.
  241. *
  242. * Holding a reference to the payload part means that the user does not
  243. * care about modifications to the header part of skb->data.
  244. */
  245. #define SKB_DATAREF_SHIFT 16
  246. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  247. enum {
  248. SKB_FCLONE_UNAVAILABLE,
  249. SKB_FCLONE_ORIG,
  250. SKB_FCLONE_CLONE,
  251. };
  252. enum {
  253. SKB_GSO_TCPV4 = 1 << 0,
  254. SKB_GSO_UDP = 1 << 1,
  255. /* This indicates the skb is from an untrusted source. */
  256. SKB_GSO_DODGY = 1 << 2,
  257. /* This indicates the tcp segment has CWR set. */
  258. SKB_GSO_TCP_ECN = 1 << 3,
  259. SKB_GSO_TCPV6 = 1 << 4,
  260. SKB_GSO_FCOE = 1 << 5,
  261. };
  262. #if BITS_PER_LONG > 32
  263. #define NET_SKBUFF_DATA_USES_OFFSET 1
  264. #endif
  265. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  266. typedef unsigned int sk_buff_data_t;
  267. #else
  268. typedef unsigned char *sk_buff_data_t;
  269. #endif
  270. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  271. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  272. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  273. #endif
  274. /**
  275. * struct sk_buff - socket buffer
  276. * @next: Next buffer in list
  277. * @prev: Previous buffer in list
  278. * @tstamp: Time we arrived
  279. * @sk: Socket we are owned by
  280. * @dev: Device we arrived on/are leaving by
  281. * @cb: Control buffer. Free for use by every layer. Put private vars here
  282. * @_skb_refdst: destination entry (with norefcount bit)
  283. * @sp: the security path, used for xfrm
  284. * @len: Length of actual data
  285. * @data_len: Data length
  286. * @mac_len: Length of link layer header
  287. * @hdr_len: writable header length of cloned skb
  288. * @csum: Checksum (must include start/offset pair)
  289. * @csum_start: Offset from skb->head where checksumming should start
  290. * @csum_offset: Offset from csum_start where checksum should be stored
  291. * @priority: Packet queueing priority
  292. * @local_df: allow local fragmentation
  293. * @cloned: Head may be cloned (check refcnt to be sure)
  294. * @ip_summed: Driver fed us an IP checksum
  295. * @nohdr: Payload reference only, must not modify header
  296. * @nfctinfo: Relationship of this skb to the connection
  297. * @pkt_type: Packet class
  298. * @fclone: skbuff clone status
  299. * @ipvs_property: skbuff is owned by ipvs
  300. * @peeked: this packet has been seen already, so stats have been
  301. * done for it, don't do them again
  302. * @nf_trace: netfilter packet trace flag
  303. * @protocol: Packet protocol from driver
  304. * @destructor: Destruct function
  305. * @nfct: Associated connection, if any
  306. * @nfct_reasm: netfilter conntrack re-assembly pointer
  307. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  308. * @skb_iif: ifindex of device we arrived on
  309. * @tc_index: Traffic control index
  310. * @tc_verd: traffic control verdict
  311. * @rxhash: the packet hash computed on receive
  312. * @queue_mapping: Queue mapping for multiqueue devices
  313. * @ndisc_nodetype: router type (from link layer)
  314. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  315. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  316. * ports.
  317. * @wifi_acked_valid: wifi_acked was set
  318. * @wifi_acked: whether frame was acked on wifi or not
  319. * @dma_cookie: a cookie to one of several possible DMA operations
  320. * done by skb DMA functions
  321. * @secmark: security marking
  322. * @mark: Generic packet mark
  323. * @dropcount: total number of sk_receive_queue overflows
  324. * @vlan_tci: vlan tag control information
  325. * @transport_header: Transport layer header
  326. * @network_header: Network layer header
  327. * @mac_header: Link layer header
  328. * @tail: Tail pointer
  329. * @end: End pointer
  330. * @head: Head of buffer
  331. * @data: Data head pointer
  332. * @truesize: Buffer size
  333. * @users: User count - see {datagram,tcp}.c
  334. */
  335. struct sk_buff {
  336. /* These two members must be first. */
  337. struct sk_buff *next;
  338. struct sk_buff *prev;
  339. ktime_t tstamp;
  340. struct sock *sk;
  341. struct net_device *dev;
  342. /*
  343. * This is the control buffer. It is free to use for every
  344. * layer. Please put your private variables there. If you
  345. * want to keep them across layers you have to do a skb_clone()
  346. * first. This is owned by whoever has the skb queued ATM.
  347. */
  348. char cb[48] __aligned(8);
  349. unsigned long _skb_refdst;
  350. #ifdef CONFIG_XFRM
  351. struct sec_path *sp;
  352. #endif
  353. unsigned int len,
  354. data_len;
  355. __u16 mac_len,
  356. hdr_len;
  357. union {
  358. __wsum csum;
  359. struct {
  360. __u16 csum_start;
  361. __u16 csum_offset;
  362. };
  363. };
  364. __u32 priority;
  365. kmemcheck_bitfield_begin(flags1);
  366. __u8 local_df:1,
  367. cloned:1,
  368. ip_summed:2,
  369. nohdr:1,
  370. nfctinfo:3;
  371. __u8 pkt_type:3,
  372. fclone:2,
  373. ipvs_property:1,
  374. peeked:1,
  375. nf_trace:1;
  376. kmemcheck_bitfield_end(flags1);
  377. __be16 protocol;
  378. void (*destructor)(struct sk_buff *skb);
  379. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  380. struct nf_conntrack *nfct;
  381. #endif
  382. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  383. struct sk_buff *nfct_reasm;
  384. #endif
  385. #ifdef CONFIG_BRIDGE_NETFILTER
  386. struct nf_bridge_info *nf_bridge;
  387. #endif
  388. int skb_iif;
  389. #ifdef CONFIG_NET_SCHED
  390. __u16 tc_index; /* traffic control index */
  391. #ifdef CONFIG_NET_CLS_ACT
  392. __u16 tc_verd; /* traffic control verdict */
  393. #endif
  394. #endif
  395. __u32 rxhash;
  396. __u16 queue_mapping;
  397. kmemcheck_bitfield_begin(flags2);
  398. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  399. __u8 ndisc_nodetype:2;
  400. #endif
  401. __u8 ooo_okay:1;
  402. __u8 l4_rxhash:1;
  403. __u8 wifi_acked_valid:1;
  404. __u8 wifi_acked:1;
  405. /* 10/12 bit hole (depending on ndisc_nodetype presence) */
  406. kmemcheck_bitfield_end(flags2);
  407. #ifdef CONFIG_NET_DMA
  408. dma_cookie_t dma_cookie;
  409. #endif
  410. #ifdef CONFIG_NETWORK_SECMARK
  411. __u32 secmark;
  412. #endif
  413. union {
  414. __u32 mark;
  415. __u32 dropcount;
  416. };
  417. __u16 vlan_tci;
  418. sk_buff_data_t transport_header;
  419. sk_buff_data_t network_header;
  420. sk_buff_data_t mac_header;
  421. /* These elements must be at the end, see alloc_skb() for details. */
  422. sk_buff_data_t tail;
  423. sk_buff_data_t end;
  424. unsigned char *head,
  425. *data;
  426. unsigned int truesize;
  427. atomic_t users;
  428. };
  429. #ifdef __KERNEL__
  430. /*
  431. * Handling routines are only of interest to the kernel
  432. */
  433. #include <linux/slab.h>
  434. #include <asm/system.h>
  435. /*
  436. * skb might have a dst pointer attached, refcounted or not.
  437. * _skb_refdst low order bit is set if refcount was _not_ taken
  438. */
  439. #define SKB_DST_NOREF 1UL
  440. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  441. /**
  442. * skb_dst - returns skb dst_entry
  443. * @skb: buffer
  444. *
  445. * Returns skb dst_entry, regardless of reference taken or not.
  446. */
  447. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  448. {
  449. /* If refdst was not refcounted, check we still are in a
  450. * rcu_read_lock section
  451. */
  452. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  453. !rcu_read_lock_held() &&
  454. !rcu_read_lock_bh_held());
  455. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  456. }
  457. /**
  458. * skb_dst_set - sets skb dst
  459. * @skb: buffer
  460. * @dst: dst entry
  461. *
  462. * Sets skb dst, assuming a reference was taken on dst and should
  463. * be released by skb_dst_drop()
  464. */
  465. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  466. {
  467. skb->_skb_refdst = (unsigned long)dst;
  468. }
  469. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  470. /**
  471. * skb_dst_is_noref - Test if skb dst isn't refcounted
  472. * @skb: buffer
  473. */
  474. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  475. {
  476. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  477. }
  478. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  479. {
  480. return (struct rtable *)skb_dst(skb);
  481. }
  482. extern void kfree_skb(struct sk_buff *skb);
  483. extern void consume_skb(struct sk_buff *skb);
  484. extern void __kfree_skb(struct sk_buff *skb);
  485. extern struct sk_buff *__alloc_skb(unsigned int size,
  486. gfp_t priority, int fclone, int node);
  487. extern struct sk_buff *build_skb(void *data);
  488. static inline struct sk_buff *alloc_skb(unsigned int size,
  489. gfp_t priority)
  490. {
  491. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  492. }
  493. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  494. gfp_t priority)
  495. {
  496. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  497. }
  498. extern void skb_recycle(struct sk_buff *skb);
  499. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  500. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  501. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  502. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  503. gfp_t priority);
  504. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  505. gfp_t priority);
  506. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  507. int headroom, gfp_t gfp_mask);
  508. extern int pskb_expand_head(struct sk_buff *skb,
  509. int nhead, int ntail,
  510. gfp_t gfp_mask);
  511. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  512. unsigned int headroom);
  513. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  514. int newheadroom, int newtailroom,
  515. gfp_t priority);
  516. extern int skb_to_sgvec(struct sk_buff *skb,
  517. struct scatterlist *sg, int offset,
  518. int len);
  519. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  520. struct sk_buff **trailer);
  521. extern int skb_pad(struct sk_buff *skb, int pad);
  522. #define dev_kfree_skb(a) consume_skb(a)
  523. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  524. int getfrag(void *from, char *to, int offset,
  525. int len,int odd, struct sk_buff *skb),
  526. void *from, int length);
  527. struct skb_seq_state {
  528. __u32 lower_offset;
  529. __u32 upper_offset;
  530. __u32 frag_idx;
  531. __u32 stepped_offset;
  532. struct sk_buff *root_skb;
  533. struct sk_buff *cur_skb;
  534. __u8 *frag_data;
  535. };
  536. extern void skb_prepare_seq_read(struct sk_buff *skb,
  537. unsigned int from, unsigned int to,
  538. struct skb_seq_state *st);
  539. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  540. struct skb_seq_state *st);
  541. extern void skb_abort_seq_read(struct skb_seq_state *st);
  542. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  543. unsigned int to, struct ts_config *config,
  544. struct ts_state *state);
  545. extern void __skb_get_rxhash(struct sk_buff *skb);
  546. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  547. {
  548. if (!skb->rxhash)
  549. __skb_get_rxhash(skb);
  550. return skb->rxhash;
  551. }
  552. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  553. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  554. {
  555. return skb->head + skb->end;
  556. }
  557. #else
  558. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  559. {
  560. return skb->end;
  561. }
  562. #endif
  563. /* Internal */
  564. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  565. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  566. {
  567. return &skb_shinfo(skb)->hwtstamps;
  568. }
  569. /**
  570. * skb_queue_empty - check if a queue is empty
  571. * @list: queue head
  572. *
  573. * Returns true if the queue is empty, false otherwise.
  574. */
  575. static inline int skb_queue_empty(const struct sk_buff_head *list)
  576. {
  577. return list->next == (struct sk_buff *)list;
  578. }
  579. /**
  580. * skb_queue_is_last - check if skb is the last entry in the queue
  581. * @list: queue head
  582. * @skb: buffer
  583. *
  584. * Returns true if @skb is the last buffer on the list.
  585. */
  586. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  587. const struct sk_buff *skb)
  588. {
  589. return skb->next == (struct sk_buff *)list;
  590. }
  591. /**
  592. * skb_queue_is_first - check if skb is the first entry in the queue
  593. * @list: queue head
  594. * @skb: buffer
  595. *
  596. * Returns true if @skb is the first buffer on the list.
  597. */
  598. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  599. const struct sk_buff *skb)
  600. {
  601. return skb->prev == (struct sk_buff *)list;
  602. }
  603. /**
  604. * skb_queue_next - return the next packet in the queue
  605. * @list: queue head
  606. * @skb: current buffer
  607. *
  608. * Return the next packet in @list after @skb. It is only valid to
  609. * call this if skb_queue_is_last() evaluates to false.
  610. */
  611. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  612. const struct sk_buff *skb)
  613. {
  614. /* This BUG_ON may seem severe, but if we just return then we
  615. * are going to dereference garbage.
  616. */
  617. BUG_ON(skb_queue_is_last(list, skb));
  618. return skb->next;
  619. }
  620. /**
  621. * skb_queue_prev - return the prev packet in the queue
  622. * @list: queue head
  623. * @skb: current buffer
  624. *
  625. * Return the prev packet in @list before @skb. It is only valid to
  626. * call this if skb_queue_is_first() evaluates to false.
  627. */
  628. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  629. const struct sk_buff *skb)
  630. {
  631. /* This BUG_ON may seem severe, but if we just return then we
  632. * are going to dereference garbage.
  633. */
  634. BUG_ON(skb_queue_is_first(list, skb));
  635. return skb->prev;
  636. }
  637. /**
  638. * skb_get - reference buffer
  639. * @skb: buffer to reference
  640. *
  641. * Makes another reference to a socket buffer and returns a pointer
  642. * to the buffer.
  643. */
  644. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  645. {
  646. atomic_inc(&skb->users);
  647. return skb;
  648. }
  649. /*
  650. * If users == 1, we are the only owner and are can avoid redundant
  651. * atomic change.
  652. */
  653. /**
  654. * skb_cloned - is the buffer a clone
  655. * @skb: buffer to check
  656. *
  657. * Returns true if the buffer was generated with skb_clone() and is
  658. * one of multiple shared copies of the buffer. Cloned buffers are
  659. * shared data so must not be written to under normal circumstances.
  660. */
  661. static inline int skb_cloned(const struct sk_buff *skb)
  662. {
  663. return skb->cloned &&
  664. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  665. }
  666. /**
  667. * skb_header_cloned - is the header a clone
  668. * @skb: buffer to check
  669. *
  670. * Returns true if modifying the header part of the buffer requires
  671. * the data to be copied.
  672. */
  673. static inline int skb_header_cloned(const struct sk_buff *skb)
  674. {
  675. int dataref;
  676. if (!skb->cloned)
  677. return 0;
  678. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  679. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  680. return dataref != 1;
  681. }
  682. /**
  683. * skb_header_release - release reference to header
  684. * @skb: buffer to operate on
  685. *
  686. * Drop a reference to the header part of the buffer. This is done
  687. * by acquiring a payload reference. You must not read from the header
  688. * part of skb->data after this.
  689. */
  690. static inline void skb_header_release(struct sk_buff *skb)
  691. {
  692. BUG_ON(skb->nohdr);
  693. skb->nohdr = 1;
  694. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  695. }
  696. /**
  697. * skb_shared - is the buffer shared
  698. * @skb: buffer to check
  699. *
  700. * Returns true if more than one person has a reference to this
  701. * buffer.
  702. */
  703. static inline int skb_shared(const struct sk_buff *skb)
  704. {
  705. return atomic_read(&skb->users) != 1;
  706. }
  707. /**
  708. * skb_share_check - check if buffer is shared and if so clone it
  709. * @skb: buffer to check
  710. * @pri: priority for memory allocation
  711. *
  712. * If the buffer is shared the buffer is cloned and the old copy
  713. * drops a reference. A new clone with a single reference is returned.
  714. * If the buffer is not shared the original buffer is returned. When
  715. * being called from interrupt status or with spinlocks held pri must
  716. * be GFP_ATOMIC.
  717. *
  718. * NULL is returned on a memory allocation failure.
  719. */
  720. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  721. gfp_t pri)
  722. {
  723. might_sleep_if(pri & __GFP_WAIT);
  724. if (skb_shared(skb)) {
  725. struct sk_buff *nskb = skb_clone(skb, pri);
  726. kfree_skb(skb);
  727. skb = nskb;
  728. }
  729. return skb;
  730. }
  731. /*
  732. * Copy shared buffers into a new sk_buff. We effectively do COW on
  733. * packets to handle cases where we have a local reader and forward
  734. * and a couple of other messy ones. The normal one is tcpdumping
  735. * a packet thats being forwarded.
  736. */
  737. /**
  738. * skb_unshare - make a copy of a shared buffer
  739. * @skb: buffer to check
  740. * @pri: priority for memory allocation
  741. *
  742. * If the socket buffer is a clone then this function creates a new
  743. * copy of the data, drops a reference count on the old copy and returns
  744. * the new copy with the reference count at 1. If the buffer is not a clone
  745. * the original buffer is returned. When called with a spinlock held or
  746. * from interrupt state @pri must be %GFP_ATOMIC
  747. *
  748. * %NULL is returned on a memory allocation failure.
  749. */
  750. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  751. gfp_t pri)
  752. {
  753. might_sleep_if(pri & __GFP_WAIT);
  754. if (skb_cloned(skb)) {
  755. struct sk_buff *nskb = skb_copy(skb, pri);
  756. kfree_skb(skb); /* Free our shared copy */
  757. skb = nskb;
  758. }
  759. return skb;
  760. }
  761. /**
  762. * skb_peek - peek at the head of an &sk_buff_head
  763. * @list_: list to peek at
  764. *
  765. * Peek an &sk_buff. Unlike most other operations you _MUST_
  766. * be careful with this one. A peek leaves the buffer on the
  767. * list and someone else may run off with it. You must hold
  768. * the appropriate locks or have a private queue to do this.
  769. *
  770. * Returns %NULL for an empty list or a pointer to the head element.
  771. * The reference count is not incremented and the reference is therefore
  772. * volatile. Use with caution.
  773. */
  774. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  775. {
  776. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  777. if (list == (struct sk_buff *)list_)
  778. list = NULL;
  779. return list;
  780. }
  781. /**
  782. * skb_peek_tail - peek at the tail of an &sk_buff_head
  783. * @list_: list to peek at
  784. *
  785. * Peek an &sk_buff. Unlike most other operations you _MUST_
  786. * be careful with this one. A peek leaves the buffer on the
  787. * list and someone else may run off with it. You must hold
  788. * the appropriate locks or have a private queue to do this.
  789. *
  790. * Returns %NULL for an empty list or a pointer to the tail element.
  791. * The reference count is not incremented and the reference is therefore
  792. * volatile. Use with caution.
  793. */
  794. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  795. {
  796. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  797. if (list == (struct sk_buff *)list_)
  798. list = NULL;
  799. return list;
  800. }
  801. /**
  802. * skb_queue_len - get queue length
  803. * @list_: list to measure
  804. *
  805. * Return the length of an &sk_buff queue.
  806. */
  807. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  808. {
  809. return list_->qlen;
  810. }
  811. /**
  812. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  813. * @list: queue to initialize
  814. *
  815. * This initializes only the list and queue length aspects of
  816. * an sk_buff_head object. This allows to initialize the list
  817. * aspects of an sk_buff_head without reinitializing things like
  818. * the spinlock. It can also be used for on-stack sk_buff_head
  819. * objects where the spinlock is known to not be used.
  820. */
  821. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  822. {
  823. list->prev = list->next = (struct sk_buff *)list;
  824. list->qlen = 0;
  825. }
  826. /*
  827. * This function creates a split out lock class for each invocation;
  828. * this is needed for now since a whole lot of users of the skb-queue
  829. * infrastructure in drivers have different locking usage (in hardirq)
  830. * than the networking core (in softirq only). In the long run either the
  831. * network layer or drivers should need annotation to consolidate the
  832. * main types of usage into 3 classes.
  833. */
  834. static inline void skb_queue_head_init(struct sk_buff_head *list)
  835. {
  836. spin_lock_init(&list->lock);
  837. __skb_queue_head_init(list);
  838. }
  839. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  840. struct lock_class_key *class)
  841. {
  842. skb_queue_head_init(list);
  843. lockdep_set_class(&list->lock, class);
  844. }
  845. /*
  846. * Insert an sk_buff on a list.
  847. *
  848. * The "__skb_xxxx()" functions are the non-atomic ones that
  849. * can only be called with interrupts disabled.
  850. */
  851. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  852. static inline void __skb_insert(struct sk_buff *newsk,
  853. struct sk_buff *prev, struct sk_buff *next,
  854. struct sk_buff_head *list)
  855. {
  856. newsk->next = next;
  857. newsk->prev = prev;
  858. next->prev = prev->next = newsk;
  859. list->qlen++;
  860. }
  861. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  862. struct sk_buff *prev,
  863. struct sk_buff *next)
  864. {
  865. struct sk_buff *first = list->next;
  866. struct sk_buff *last = list->prev;
  867. first->prev = prev;
  868. prev->next = first;
  869. last->next = next;
  870. next->prev = last;
  871. }
  872. /**
  873. * skb_queue_splice - join two skb lists, this is designed for stacks
  874. * @list: the new list to add
  875. * @head: the place to add it in the first list
  876. */
  877. static inline void skb_queue_splice(const struct sk_buff_head *list,
  878. struct sk_buff_head *head)
  879. {
  880. if (!skb_queue_empty(list)) {
  881. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  882. head->qlen += list->qlen;
  883. }
  884. }
  885. /**
  886. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  887. * @list: the new list to add
  888. * @head: the place to add it in the first list
  889. *
  890. * The list at @list is reinitialised
  891. */
  892. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  893. struct sk_buff_head *head)
  894. {
  895. if (!skb_queue_empty(list)) {
  896. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  897. head->qlen += list->qlen;
  898. __skb_queue_head_init(list);
  899. }
  900. }
  901. /**
  902. * skb_queue_splice_tail - join two skb lists, each list being a queue
  903. * @list: the new list to add
  904. * @head: the place to add it in the first list
  905. */
  906. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  907. struct sk_buff_head *head)
  908. {
  909. if (!skb_queue_empty(list)) {
  910. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  911. head->qlen += list->qlen;
  912. }
  913. }
  914. /**
  915. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  916. * @list: the new list to add
  917. * @head: the place to add it in the first list
  918. *
  919. * Each of the lists is a queue.
  920. * The list at @list is reinitialised
  921. */
  922. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  923. struct sk_buff_head *head)
  924. {
  925. if (!skb_queue_empty(list)) {
  926. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  927. head->qlen += list->qlen;
  928. __skb_queue_head_init(list);
  929. }
  930. }
  931. /**
  932. * __skb_queue_after - queue a buffer at the list head
  933. * @list: list to use
  934. * @prev: place after this buffer
  935. * @newsk: buffer to queue
  936. *
  937. * Queue a buffer int the middle of a list. This function takes no locks
  938. * and you must therefore hold required locks before calling it.
  939. *
  940. * A buffer cannot be placed on two lists at the same time.
  941. */
  942. static inline void __skb_queue_after(struct sk_buff_head *list,
  943. struct sk_buff *prev,
  944. struct sk_buff *newsk)
  945. {
  946. __skb_insert(newsk, prev, prev->next, list);
  947. }
  948. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  949. struct sk_buff_head *list);
  950. static inline void __skb_queue_before(struct sk_buff_head *list,
  951. struct sk_buff *next,
  952. struct sk_buff *newsk)
  953. {
  954. __skb_insert(newsk, next->prev, next, list);
  955. }
  956. /**
  957. * __skb_queue_head - queue a buffer at the list head
  958. * @list: list to use
  959. * @newsk: buffer to queue
  960. *
  961. * Queue a buffer at the start of a list. This function takes no locks
  962. * and you must therefore hold required locks before calling it.
  963. *
  964. * A buffer cannot be placed on two lists at the same time.
  965. */
  966. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  967. static inline void __skb_queue_head(struct sk_buff_head *list,
  968. struct sk_buff *newsk)
  969. {
  970. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  971. }
  972. /**
  973. * __skb_queue_tail - queue a buffer at the list tail
  974. * @list: list to use
  975. * @newsk: buffer to queue
  976. *
  977. * Queue a buffer at the end of a list. This function takes no locks
  978. * and you must therefore hold required locks before calling it.
  979. *
  980. * A buffer cannot be placed on two lists at the same time.
  981. */
  982. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  983. static inline void __skb_queue_tail(struct sk_buff_head *list,
  984. struct sk_buff *newsk)
  985. {
  986. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  987. }
  988. /*
  989. * remove sk_buff from list. _Must_ be called atomically, and with
  990. * the list known..
  991. */
  992. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  993. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  994. {
  995. struct sk_buff *next, *prev;
  996. list->qlen--;
  997. next = skb->next;
  998. prev = skb->prev;
  999. skb->next = skb->prev = NULL;
  1000. next->prev = prev;
  1001. prev->next = next;
  1002. }
  1003. /**
  1004. * __skb_dequeue - remove from the head of the queue
  1005. * @list: list to dequeue from
  1006. *
  1007. * Remove the head of the list. This function does not take any locks
  1008. * so must be used with appropriate locks held only. The head item is
  1009. * returned or %NULL if the list is empty.
  1010. */
  1011. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1012. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1013. {
  1014. struct sk_buff *skb = skb_peek(list);
  1015. if (skb)
  1016. __skb_unlink(skb, list);
  1017. return skb;
  1018. }
  1019. /**
  1020. * __skb_dequeue_tail - remove from the tail of the queue
  1021. * @list: list to dequeue from
  1022. *
  1023. * Remove the tail of the list. This function does not take any locks
  1024. * so must be used with appropriate locks held only. The tail item is
  1025. * returned or %NULL if the list is empty.
  1026. */
  1027. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1028. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1029. {
  1030. struct sk_buff *skb = skb_peek_tail(list);
  1031. if (skb)
  1032. __skb_unlink(skb, list);
  1033. return skb;
  1034. }
  1035. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1036. {
  1037. return skb->data_len;
  1038. }
  1039. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1040. {
  1041. return skb->len - skb->data_len;
  1042. }
  1043. static inline int skb_pagelen(const struct sk_buff *skb)
  1044. {
  1045. int i, len = 0;
  1046. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1047. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1048. return len + skb_headlen(skb);
  1049. }
  1050. /**
  1051. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1052. * @skb: buffer containing fragment to be initialised
  1053. * @i: paged fragment index to initialise
  1054. * @page: the page to use for this fragment
  1055. * @off: the offset to the data with @page
  1056. * @size: the length of the data
  1057. *
  1058. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1059. * offset @off within @page.
  1060. *
  1061. * Does not take any additional reference on the fragment.
  1062. */
  1063. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1064. struct page *page, int off, int size)
  1065. {
  1066. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1067. frag->page.p = page;
  1068. frag->page_offset = off;
  1069. skb_frag_size_set(frag, size);
  1070. }
  1071. /**
  1072. * skb_fill_page_desc - initialise a paged fragment in an skb
  1073. * @skb: buffer containing fragment to be initialised
  1074. * @i: paged fragment index to initialise
  1075. * @page: the page to use for this fragment
  1076. * @off: the offset to the data with @page
  1077. * @size: the length of the data
  1078. *
  1079. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1080. * @skb to point to &size bytes at offset @off within @page. In
  1081. * addition updates @skb such that @i is the last fragment.
  1082. *
  1083. * Does not take any additional reference on the fragment.
  1084. */
  1085. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1086. struct page *page, int off, int size)
  1087. {
  1088. __skb_fill_page_desc(skb, i, page, off, size);
  1089. skb_shinfo(skb)->nr_frags = i + 1;
  1090. }
  1091. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1092. int off, int size);
  1093. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1094. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1095. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1096. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1097. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1098. {
  1099. return skb->head + skb->tail;
  1100. }
  1101. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1102. {
  1103. skb->tail = skb->data - skb->head;
  1104. }
  1105. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1106. {
  1107. skb_reset_tail_pointer(skb);
  1108. skb->tail += offset;
  1109. }
  1110. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1111. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1112. {
  1113. return skb->tail;
  1114. }
  1115. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1116. {
  1117. skb->tail = skb->data;
  1118. }
  1119. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1120. {
  1121. skb->tail = skb->data + offset;
  1122. }
  1123. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1124. /*
  1125. * Add data to an sk_buff
  1126. */
  1127. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1128. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1129. {
  1130. unsigned char *tmp = skb_tail_pointer(skb);
  1131. SKB_LINEAR_ASSERT(skb);
  1132. skb->tail += len;
  1133. skb->len += len;
  1134. return tmp;
  1135. }
  1136. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1137. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1138. {
  1139. skb->data -= len;
  1140. skb->len += len;
  1141. return skb->data;
  1142. }
  1143. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1144. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1145. {
  1146. skb->len -= len;
  1147. BUG_ON(skb->len < skb->data_len);
  1148. return skb->data += len;
  1149. }
  1150. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1151. {
  1152. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1153. }
  1154. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1155. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1156. {
  1157. if (len > skb_headlen(skb) &&
  1158. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1159. return NULL;
  1160. skb->len -= len;
  1161. return skb->data += len;
  1162. }
  1163. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1164. {
  1165. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1166. }
  1167. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1168. {
  1169. if (likely(len <= skb_headlen(skb)))
  1170. return 1;
  1171. if (unlikely(len > skb->len))
  1172. return 0;
  1173. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1174. }
  1175. /**
  1176. * skb_headroom - bytes at buffer head
  1177. * @skb: buffer to check
  1178. *
  1179. * Return the number of bytes of free space at the head of an &sk_buff.
  1180. */
  1181. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1182. {
  1183. return skb->data - skb->head;
  1184. }
  1185. /**
  1186. * skb_tailroom - bytes at buffer end
  1187. * @skb: buffer to check
  1188. *
  1189. * Return the number of bytes of free space at the tail of an sk_buff
  1190. */
  1191. static inline int skb_tailroom(const struct sk_buff *skb)
  1192. {
  1193. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1194. }
  1195. /**
  1196. * skb_reserve - adjust headroom
  1197. * @skb: buffer to alter
  1198. * @len: bytes to move
  1199. *
  1200. * Increase the headroom of an empty &sk_buff by reducing the tail
  1201. * room. This is only allowed for an empty buffer.
  1202. */
  1203. static inline void skb_reserve(struct sk_buff *skb, int len)
  1204. {
  1205. skb->data += len;
  1206. skb->tail += len;
  1207. }
  1208. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1209. {
  1210. skb->mac_len = skb->network_header - skb->mac_header;
  1211. }
  1212. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1213. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1214. {
  1215. return skb->head + skb->transport_header;
  1216. }
  1217. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1218. {
  1219. skb->transport_header = skb->data - skb->head;
  1220. }
  1221. static inline void skb_set_transport_header(struct sk_buff *skb,
  1222. const int offset)
  1223. {
  1224. skb_reset_transport_header(skb);
  1225. skb->transport_header += offset;
  1226. }
  1227. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1228. {
  1229. return skb->head + skb->network_header;
  1230. }
  1231. static inline void skb_reset_network_header(struct sk_buff *skb)
  1232. {
  1233. skb->network_header = skb->data - skb->head;
  1234. }
  1235. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1236. {
  1237. skb_reset_network_header(skb);
  1238. skb->network_header += offset;
  1239. }
  1240. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1241. {
  1242. return skb->head + skb->mac_header;
  1243. }
  1244. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1245. {
  1246. return skb->mac_header != ~0U;
  1247. }
  1248. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1249. {
  1250. skb->mac_header = skb->data - skb->head;
  1251. }
  1252. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1253. {
  1254. skb_reset_mac_header(skb);
  1255. skb->mac_header += offset;
  1256. }
  1257. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1258. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1259. {
  1260. return skb->transport_header;
  1261. }
  1262. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1263. {
  1264. skb->transport_header = skb->data;
  1265. }
  1266. static inline void skb_set_transport_header(struct sk_buff *skb,
  1267. const int offset)
  1268. {
  1269. skb->transport_header = skb->data + offset;
  1270. }
  1271. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1272. {
  1273. return skb->network_header;
  1274. }
  1275. static inline void skb_reset_network_header(struct sk_buff *skb)
  1276. {
  1277. skb->network_header = skb->data;
  1278. }
  1279. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1280. {
  1281. skb->network_header = skb->data + offset;
  1282. }
  1283. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1284. {
  1285. return skb->mac_header;
  1286. }
  1287. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1288. {
  1289. return skb->mac_header != NULL;
  1290. }
  1291. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1292. {
  1293. skb->mac_header = skb->data;
  1294. }
  1295. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1296. {
  1297. skb->mac_header = skb->data + offset;
  1298. }
  1299. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1300. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1301. {
  1302. if (skb_mac_header_was_set(skb)) {
  1303. const unsigned char *old_mac = skb_mac_header(skb);
  1304. skb_set_mac_header(skb, -skb->mac_len);
  1305. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1306. }
  1307. }
  1308. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1309. {
  1310. return skb->csum_start - skb_headroom(skb);
  1311. }
  1312. static inline int skb_transport_offset(const struct sk_buff *skb)
  1313. {
  1314. return skb_transport_header(skb) - skb->data;
  1315. }
  1316. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1317. {
  1318. return skb->transport_header - skb->network_header;
  1319. }
  1320. static inline int skb_network_offset(const struct sk_buff *skb)
  1321. {
  1322. return skb_network_header(skb) - skb->data;
  1323. }
  1324. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1325. {
  1326. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1327. }
  1328. /*
  1329. * CPUs often take a performance hit when accessing unaligned memory
  1330. * locations. The actual performance hit varies, it can be small if the
  1331. * hardware handles it or large if we have to take an exception and fix it
  1332. * in software.
  1333. *
  1334. * Since an ethernet header is 14 bytes network drivers often end up with
  1335. * the IP header at an unaligned offset. The IP header can be aligned by
  1336. * shifting the start of the packet by 2 bytes. Drivers should do this
  1337. * with:
  1338. *
  1339. * skb_reserve(skb, NET_IP_ALIGN);
  1340. *
  1341. * The downside to this alignment of the IP header is that the DMA is now
  1342. * unaligned. On some architectures the cost of an unaligned DMA is high
  1343. * and this cost outweighs the gains made by aligning the IP header.
  1344. *
  1345. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1346. * to be overridden.
  1347. */
  1348. #ifndef NET_IP_ALIGN
  1349. #define NET_IP_ALIGN 2
  1350. #endif
  1351. /*
  1352. * The networking layer reserves some headroom in skb data (via
  1353. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1354. * the header has to grow. In the default case, if the header has to grow
  1355. * 32 bytes or less we avoid the reallocation.
  1356. *
  1357. * Unfortunately this headroom changes the DMA alignment of the resulting
  1358. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1359. * on some architectures. An architecture can override this value,
  1360. * perhaps setting it to a cacheline in size (since that will maintain
  1361. * cacheline alignment of the DMA). It must be a power of 2.
  1362. *
  1363. * Various parts of the networking layer expect at least 32 bytes of
  1364. * headroom, you should not reduce this.
  1365. *
  1366. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1367. * to reduce average number of cache lines per packet.
  1368. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1369. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1370. */
  1371. #ifndef NET_SKB_PAD
  1372. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1373. #endif
  1374. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1375. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1376. {
  1377. if (unlikely(skb_is_nonlinear(skb))) {
  1378. WARN_ON(1);
  1379. return;
  1380. }
  1381. skb->len = len;
  1382. skb_set_tail_pointer(skb, len);
  1383. }
  1384. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1385. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1386. {
  1387. if (skb->data_len)
  1388. return ___pskb_trim(skb, len);
  1389. __skb_trim(skb, len);
  1390. return 0;
  1391. }
  1392. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1393. {
  1394. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1395. }
  1396. /**
  1397. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1398. * @skb: buffer to alter
  1399. * @len: new length
  1400. *
  1401. * This is identical to pskb_trim except that the caller knows that
  1402. * the skb is not cloned so we should never get an error due to out-
  1403. * of-memory.
  1404. */
  1405. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1406. {
  1407. int err = pskb_trim(skb, len);
  1408. BUG_ON(err);
  1409. }
  1410. /**
  1411. * skb_orphan - orphan a buffer
  1412. * @skb: buffer to orphan
  1413. *
  1414. * If a buffer currently has an owner then we call the owner's
  1415. * destructor function and make the @skb unowned. The buffer continues
  1416. * to exist but is no longer charged to its former owner.
  1417. */
  1418. static inline void skb_orphan(struct sk_buff *skb)
  1419. {
  1420. if (skb->destructor)
  1421. skb->destructor(skb);
  1422. skb->destructor = NULL;
  1423. skb->sk = NULL;
  1424. }
  1425. /**
  1426. * __skb_queue_purge - empty a list
  1427. * @list: list to empty
  1428. *
  1429. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1430. * the list and one reference dropped. This function does not take the
  1431. * list lock and the caller must hold the relevant locks to use it.
  1432. */
  1433. extern void skb_queue_purge(struct sk_buff_head *list);
  1434. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1435. {
  1436. struct sk_buff *skb;
  1437. while ((skb = __skb_dequeue(list)) != NULL)
  1438. kfree_skb(skb);
  1439. }
  1440. /**
  1441. * __dev_alloc_skb - allocate an skbuff for receiving
  1442. * @length: length to allocate
  1443. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1444. *
  1445. * Allocate a new &sk_buff and assign it a usage count of one. The
  1446. * buffer has unspecified headroom built in. Users should allocate
  1447. * the headroom they think they need without accounting for the
  1448. * built in space. The built in space is used for optimisations.
  1449. *
  1450. * %NULL is returned if there is no free memory.
  1451. */
  1452. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1453. gfp_t gfp_mask)
  1454. {
  1455. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1456. if (likely(skb))
  1457. skb_reserve(skb, NET_SKB_PAD);
  1458. return skb;
  1459. }
  1460. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1461. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1462. unsigned int length, gfp_t gfp_mask);
  1463. /**
  1464. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1465. * @dev: network device to receive on
  1466. * @length: length to allocate
  1467. *
  1468. * Allocate a new &sk_buff and assign it a usage count of one. The
  1469. * buffer has unspecified headroom built in. Users should allocate
  1470. * the headroom they think they need without accounting for the
  1471. * built in space. The built in space is used for optimisations.
  1472. *
  1473. * %NULL is returned if there is no free memory. Although this function
  1474. * allocates memory it can be called from an interrupt.
  1475. */
  1476. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1477. unsigned int length)
  1478. {
  1479. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1480. }
  1481. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1482. unsigned int length, gfp_t gfp)
  1483. {
  1484. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1485. if (NET_IP_ALIGN && skb)
  1486. skb_reserve(skb, NET_IP_ALIGN);
  1487. return skb;
  1488. }
  1489. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1490. unsigned int length)
  1491. {
  1492. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1493. }
  1494. /**
  1495. * skb_frag_page - retrieve the page refered to by a paged fragment
  1496. * @frag: the paged fragment
  1497. *
  1498. * Returns the &struct page associated with @frag.
  1499. */
  1500. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1501. {
  1502. return frag->page.p;
  1503. }
  1504. /**
  1505. * __skb_frag_ref - take an addition reference on a paged fragment.
  1506. * @frag: the paged fragment
  1507. *
  1508. * Takes an additional reference on the paged fragment @frag.
  1509. */
  1510. static inline void __skb_frag_ref(skb_frag_t *frag)
  1511. {
  1512. get_page(skb_frag_page(frag));
  1513. }
  1514. /**
  1515. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1516. * @skb: the buffer
  1517. * @f: the fragment offset.
  1518. *
  1519. * Takes an additional reference on the @f'th paged fragment of @skb.
  1520. */
  1521. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1522. {
  1523. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1524. }
  1525. /**
  1526. * __skb_frag_unref - release a reference on a paged fragment.
  1527. * @frag: the paged fragment
  1528. *
  1529. * Releases a reference on the paged fragment @frag.
  1530. */
  1531. static inline void __skb_frag_unref(skb_frag_t *frag)
  1532. {
  1533. put_page(skb_frag_page(frag));
  1534. }
  1535. /**
  1536. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1537. * @skb: the buffer
  1538. * @f: the fragment offset
  1539. *
  1540. * Releases a reference on the @f'th paged fragment of @skb.
  1541. */
  1542. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1543. {
  1544. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1545. }
  1546. /**
  1547. * skb_frag_address - gets the address of the data contained in a paged fragment
  1548. * @frag: the paged fragment buffer
  1549. *
  1550. * Returns the address of the data within @frag. The page must already
  1551. * be mapped.
  1552. */
  1553. static inline void *skb_frag_address(const skb_frag_t *frag)
  1554. {
  1555. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1556. }
  1557. /**
  1558. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1559. * @frag: the paged fragment buffer
  1560. *
  1561. * Returns the address of the data within @frag. Checks that the page
  1562. * is mapped and returns %NULL otherwise.
  1563. */
  1564. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1565. {
  1566. void *ptr = page_address(skb_frag_page(frag));
  1567. if (unlikely(!ptr))
  1568. return NULL;
  1569. return ptr + frag->page_offset;
  1570. }
  1571. /**
  1572. * __skb_frag_set_page - sets the page contained in a paged fragment
  1573. * @frag: the paged fragment
  1574. * @page: the page to set
  1575. *
  1576. * Sets the fragment @frag to contain @page.
  1577. */
  1578. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1579. {
  1580. frag->page.p = page;
  1581. }
  1582. /**
  1583. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1584. * @skb: the buffer
  1585. * @f: the fragment offset
  1586. * @page: the page to set
  1587. *
  1588. * Sets the @f'th fragment of @skb to contain @page.
  1589. */
  1590. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1591. struct page *page)
  1592. {
  1593. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1594. }
  1595. /**
  1596. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1597. * @dev: the device to map the fragment to
  1598. * @frag: the paged fragment to map
  1599. * @offset: the offset within the fragment (starting at the
  1600. * fragment's own offset)
  1601. * @size: the number of bytes to map
  1602. * @dir: the direction of the mapping (%PCI_DMA_*)
  1603. *
  1604. * Maps the page associated with @frag to @device.
  1605. */
  1606. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1607. const skb_frag_t *frag,
  1608. size_t offset, size_t size,
  1609. enum dma_data_direction dir)
  1610. {
  1611. return dma_map_page(dev, skb_frag_page(frag),
  1612. frag->page_offset + offset, size, dir);
  1613. }
  1614. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1615. gfp_t gfp_mask)
  1616. {
  1617. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1618. }
  1619. /**
  1620. * skb_clone_writable - is the header of a clone writable
  1621. * @skb: buffer to check
  1622. * @len: length up to which to write
  1623. *
  1624. * Returns true if modifying the header part of the cloned buffer
  1625. * does not requires the data to be copied.
  1626. */
  1627. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1628. {
  1629. return !skb_header_cloned(skb) &&
  1630. skb_headroom(skb) + len <= skb->hdr_len;
  1631. }
  1632. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1633. int cloned)
  1634. {
  1635. int delta = 0;
  1636. if (headroom < NET_SKB_PAD)
  1637. headroom = NET_SKB_PAD;
  1638. if (headroom > skb_headroom(skb))
  1639. delta = headroom - skb_headroom(skb);
  1640. if (delta || cloned)
  1641. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1642. GFP_ATOMIC);
  1643. return 0;
  1644. }
  1645. /**
  1646. * skb_cow - copy header of skb when it is required
  1647. * @skb: buffer to cow
  1648. * @headroom: needed headroom
  1649. *
  1650. * If the skb passed lacks sufficient headroom or its data part
  1651. * is shared, data is reallocated. If reallocation fails, an error
  1652. * is returned and original skb is not changed.
  1653. *
  1654. * The result is skb with writable area skb->head...skb->tail
  1655. * and at least @headroom of space at head.
  1656. */
  1657. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1658. {
  1659. return __skb_cow(skb, headroom, skb_cloned(skb));
  1660. }
  1661. /**
  1662. * skb_cow_head - skb_cow but only making the head writable
  1663. * @skb: buffer to cow
  1664. * @headroom: needed headroom
  1665. *
  1666. * This function is identical to skb_cow except that we replace the
  1667. * skb_cloned check by skb_header_cloned. It should be used when
  1668. * you only need to push on some header and do not need to modify
  1669. * the data.
  1670. */
  1671. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1672. {
  1673. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1674. }
  1675. /**
  1676. * skb_padto - pad an skbuff up to a minimal size
  1677. * @skb: buffer to pad
  1678. * @len: minimal length
  1679. *
  1680. * Pads up a buffer to ensure the trailing bytes exist and are
  1681. * blanked. If the buffer already contains sufficient data it
  1682. * is untouched. Otherwise it is extended. Returns zero on
  1683. * success. The skb is freed on error.
  1684. */
  1685. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1686. {
  1687. unsigned int size = skb->len;
  1688. if (likely(size >= len))
  1689. return 0;
  1690. return skb_pad(skb, len - size);
  1691. }
  1692. static inline int skb_add_data(struct sk_buff *skb,
  1693. char __user *from, int copy)
  1694. {
  1695. const int off = skb->len;
  1696. if (skb->ip_summed == CHECKSUM_NONE) {
  1697. int err = 0;
  1698. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1699. copy, 0, &err);
  1700. if (!err) {
  1701. skb->csum = csum_block_add(skb->csum, csum, off);
  1702. return 0;
  1703. }
  1704. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1705. return 0;
  1706. __skb_trim(skb, off);
  1707. return -EFAULT;
  1708. }
  1709. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1710. const struct page *page, int off)
  1711. {
  1712. if (i) {
  1713. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1714. return page == skb_frag_page(frag) &&
  1715. off == frag->page_offset + skb_frag_size(frag);
  1716. }
  1717. return 0;
  1718. }
  1719. static inline int __skb_linearize(struct sk_buff *skb)
  1720. {
  1721. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1722. }
  1723. /**
  1724. * skb_linearize - convert paged skb to linear one
  1725. * @skb: buffer to linarize
  1726. *
  1727. * If there is no free memory -ENOMEM is returned, otherwise zero
  1728. * is returned and the old skb data released.
  1729. */
  1730. static inline int skb_linearize(struct sk_buff *skb)
  1731. {
  1732. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1733. }
  1734. /**
  1735. * skb_linearize_cow - make sure skb is linear and writable
  1736. * @skb: buffer to process
  1737. *
  1738. * If there is no free memory -ENOMEM is returned, otherwise zero
  1739. * is returned and the old skb data released.
  1740. */
  1741. static inline int skb_linearize_cow(struct sk_buff *skb)
  1742. {
  1743. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1744. __skb_linearize(skb) : 0;
  1745. }
  1746. /**
  1747. * skb_postpull_rcsum - update checksum for received skb after pull
  1748. * @skb: buffer to update
  1749. * @start: start of data before pull
  1750. * @len: length of data pulled
  1751. *
  1752. * After doing a pull on a received packet, you need to call this to
  1753. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1754. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1755. */
  1756. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1757. const void *start, unsigned int len)
  1758. {
  1759. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1760. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1761. }
  1762. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1763. /**
  1764. * pskb_trim_rcsum - trim received skb and update checksum
  1765. * @skb: buffer to trim
  1766. * @len: new length
  1767. *
  1768. * This is exactly the same as pskb_trim except that it ensures the
  1769. * checksum of received packets are still valid after the operation.
  1770. */
  1771. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1772. {
  1773. if (likely(len >= skb->len))
  1774. return 0;
  1775. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1776. skb->ip_summed = CHECKSUM_NONE;
  1777. return __pskb_trim(skb, len);
  1778. }
  1779. #define skb_queue_walk(queue, skb) \
  1780. for (skb = (queue)->next; \
  1781. skb != (struct sk_buff *)(queue); \
  1782. skb = skb->next)
  1783. #define skb_queue_walk_safe(queue, skb, tmp) \
  1784. for (skb = (queue)->next, tmp = skb->next; \
  1785. skb != (struct sk_buff *)(queue); \
  1786. skb = tmp, tmp = skb->next)
  1787. #define skb_queue_walk_from(queue, skb) \
  1788. for (; skb != (struct sk_buff *)(queue); \
  1789. skb = skb->next)
  1790. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1791. for (tmp = skb->next; \
  1792. skb != (struct sk_buff *)(queue); \
  1793. skb = tmp, tmp = skb->next)
  1794. #define skb_queue_reverse_walk(queue, skb) \
  1795. for (skb = (queue)->prev; \
  1796. skb != (struct sk_buff *)(queue); \
  1797. skb = skb->prev)
  1798. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1799. for (skb = (queue)->prev, tmp = skb->prev; \
  1800. skb != (struct sk_buff *)(queue); \
  1801. skb = tmp, tmp = skb->prev)
  1802. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1803. for (tmp = skb->prev; \
  1804. skb != (struct sk_buff *)(queue); \
  1805. skb = tmp, tmp = skb->prev)
  1806. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1807. {
  1808. return skb_shinfo(skb)->frag_list != NULL;
  1809. }
  1810. static inline void skb_frag_list_init(struct sk_buff *skb)
  1811. {
  1812. skb_shinfo(skb)->frag_list = NULL;
  1813. }
  1814. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1815. {
  1816. frag->next = skb_shinfo(skb)->frag_list;
  1817. skb_shinfo(skb)->frag_list = frag;
  1818. }
  1819. #define skb_walk_frags(skb, iter) \
  1820. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1821. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1822. int *peeked, int *err);
  1823. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1824. int noblock, int *err);
  1825. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1826. struct poll_table_struct *wait);
  1827. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1828. int offset, struct iovec *to,
  1829. int size);
  1830. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1831. int hlen,
  1832. struct iovec *iov);
  1833. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1834. int offset,
  1835. const struct iovec *from,
  1836. int from_offset,
  1837. int len);
  1838. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1839. int offset,
  1840. const struct iovec *to,
  1841. int to_offset,
  1842. int size);
  1843. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1844. extern void skb_free_datagram_locked(struct sock *sk,
  1845. struct sk_buff *skb);
  1846. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1847. unsigned int flags);
  1848. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1849. int len, __wsum csum);
  1850. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1851. void *to, int len);
  1852. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1853. const void *from, int len);
  1854. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1855. int offset, u8 *to, int len,
  1856. __wsum csum);
  1857. extern int skb_splice_bits(struct sk_buff *skb,
  1858. unsigned int offset,
  1859. struct pipe_inode_info *pipe,
  1860. unsigned int len,
  1861. unsigned int flags);
  1862. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1863. extern void skb_split(struct sk_buff *skb,
  1864. struct sk_buff *skb1, const u32 len);
  1865. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1866. int shiftlen);
  1867. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1868. netdev_features_t features);
  1869. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1870. int len, void *buffer)
  1871. {
  1872. int hlen = skb_headlen(skb);
  1873. if (hlen - offset >= len)
  1874. return skb->data + offset;
  1875. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1876. return NULL;
  1877. return buffer;
  1878. }
  1879. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1880. void *to,
  1881. const unsigned int len)
  1882. {
  1883. memcpy(to, skb->data, len);
  1884. }
  1885. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1886. const int offset, void *to,
  1887. const unsigned int len)
  1888. {
  1889. memcpy(to, skb->data + offset, len);
  1890. }
  1891. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1892. const void *from,
  1893. const unsigned int len)
  1894. {
  1895. memcpy(skb->data, from, len);
  1896. }
  1897. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1898. const int offset,
  1899. const void *from,
  1900. const unsigned int len)
  1901. {
  1902. memcpy(skb->data + offset, from, len);
  1903. }
  1904. extern void skb_init(void);
  1905. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1906. {
  1907. return skb->tstamp;
  1908. }
  1909. /**
  1910. * skb_get_timestamp - get timestamp from a skb
  1911. * @skb: skb to get stamp from
  1912. * @stamp: pointer to struct timeval to store stamp in
  1913. *
  1914. * Timestamps are stored in the skb as offsets to a base timestamp.
  1915. * This function converts the offset back to a struct timeval and stores
  1916. * it in stamp.
  1917. */
  1918. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1919. struct timeval *stamp)
  1920. {
  1921. *stamp = ktime_to_timeval(skb->tstamp);
  1922. }
  1923. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1924. struct timespec *stamp)
  1925. {
  1926. *stamp = ktime_to_timespec(skb->tstamp);
  1927. }
  1928. static inline void __net_timestamp(struct sk_buff *skb)
  1929. {
  1930. skb->tstamp = ktime_get_real();
  1931. }
  1932. static inline ktime_t net_timedelta(ktime_t t)
  1933. {
  1934. return ktime_sub(ktime_get_real(), t);
  1935. }
  1936. static inline ktime_t net_invalid_timestamp(void)
  1937. {
  1938. return ktime_set(0, 0);
  1939. }
  1940. extern void skb_timestamping_init(void);
  1941. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1942. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1943. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1944. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1945. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1946. {
  1947. }
  1948. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1949. {
  1950. return false;
  1951. }
  1952. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1953. /**
  1954. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1955. *
  1956. * PHY drivers may accept clones of transmitted packets for
  1957. * timestamping via their phy_driver.txtstamp method. These drivers
  1958. * must call this function to return the skb back to the stack, with
  1959. * or without a timestamp.
  1960. *
  1961. * @skb: clone of the the original outgoing packet
  1962. * @hwtstamps: hardware time stamps, may be NULL if not available
  1963. *
  1964. */
  1965. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1966. struct skb_shared_hwtstamps *hwtstamps);
  1967. /**
  1968. * skb_tstamp_tx - queue clone of skb with send time stamps
  1969. * @orig_skb: the original outgoing packet
  1970. * @hwtstamps: hardware time stamps, may be NULL if not available
  1971. *
  1972. * If the skb has a socket associated, then this function clones the
  1973. * skb (thus sharing the actual data and optional structures), stores
  1974. * the optional hardware time stamping information (if non NULL) or
  1975. * generates a software time stamp (otherwise), then queues the clone
  1976. * to the error queue of the socket. Errors are silently ignored.
  1977. */
  1978. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1979. struct skb_shared_hwtstamps *hwtstamps);
  1980. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1981. {
  1982. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1983. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1984. skb_tstamp_tx(skb, NULL);
  1985. }
  1986. /**
  1987. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1988. *
  1989. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1990. * function immediately before giving the sk_buff to the MAC hardware.
  1991. *
  1992. * @skb: A socket buffer.
  1993. */
  1994. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1995. {
  1996. skb_clone_tx_timestamp(skb);
  1997. sw_tx_timestamp(skb);
  1998. }
  1999. /**
  2000. * skb_complete_wifi_ack - deliver skb with wifi status
  2001. *
  2002. * @skb: the original outgoing packet
  2003. * @acked: ack status
  2004. *
  2005. */
  2006. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2007. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2008. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2009. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2010. {
  2011. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2012. }
  2013. /**
  2014. * skb_checksum_complete - Calculate checksum of an entire packet
  2015. * @skb: packet to process
  2016. *
  2017. * This function calculates the checksum over the entire packet plus
  2018. * the value of skb->csum. The latter can be used to supply the
  2019. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2020. * checksum.
  2021. *
  2022. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2023. * this function can be used to verify that checksum on received
  2024. * packets. In that case the function should return zero if the
  2025. * checksum is correct. In particular, this function will return zero
  2026. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2027. * hardware has already verified the correctness of the checksum.
  2028. */
  2029. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2030. {
  2031. return skb_csum_unnecessary(skb) ?
  2032. 0 : __skb_checksum_complete(skb);
  2033. }
  2034. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2035. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2036. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2037. {
  2038. if (nfct && atomic_dec_and_test(&nfct->use))
  2039. nf_conntrack_destroy(nfct);
  2040. }
  2041. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2042. {
  2043. if (nfct)
  2044. atomic_inc(&nfct->use);
  2045. }
  2046. #endif
  2047. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2048. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2049. {
  2050. if (skb)
  2051. atomic_inc(&skb->users);
  2052. }
  2053. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2054. {
  2055. if (skb)
  2056. kfree_skb(skb);
  2057. }
  2058. #endif
  2059. #ifdef CONFIG_BRIDGE_NETFILTER
  2060. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2061. {
  2062. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2063. kfree(nf_bridge);
  2064. }
  2065. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2066. {
  2067. if (nf_bridge)
  2068. atomic_inc(&nf_bridge->use);
  2069. }
  2070. #endif /* CONFIG_BRIDGE_NETFILTER */
  2071. static inline void nf_reset(struct sk_buff *skb)
  2072. {
  2073. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2074. nf_conntrack_put(skb->nfct);
  2075. skb->nfct = NULL;
  2076. #endif
  2077. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2078. nf_conntrack_put_reasm(skb->nfct_reasm);
  2079. skb->nfct_reasm = NULL;
  2080. #endif
  2081. #ifdef CONFIG_BRIDGE_NETFILTER
  2082. nf_bridge_put(skb->nf_bridge);
  2083. skb->nf_bridge = NULL;
  2084. #endif
  2085. }
  2086. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2087. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2088. {
  2089. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2090. dst->nfct = src->nfct;
  2091. nf_conntrack_get(src->nfct);
  2092. dst->nfctinfo = src->nfctinfo;
  2093. #endif
  2094. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2095. dst->nfct_reasm = src->nfct_reasm;
  2096. nf_conntrack_get_reasm(src->nfct_reasm);
  2097. #endif
  2098. #ifdef CONFIG_BRIDGE_NETFILTER
  2099. dst->nf_bridge = src->nf_bridge;
  2100. nf_bridge_get(src->nf_bridge);
  2101. #endif
  2102. }
  2103. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2104. {
  2105. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2106. nf_conntrack_put(dst->nfct);
  2107. #endif
  2108. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2109. nf_conntrack_put_reasm(dst->nfct_reasm);
  2110. #endif
  2111. #ifdef CONFIG_BRIDGE_NETFILTER
  2112. nf_bridge_put(dst->nf_bridge);
  2113. #endif
  2114. __nf_copy(dst, src);
  2115. }
  2116. #ifdef CONFIG_NETWORK_SECMARK
  2117. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2118. {
  2119. to->secmark = from->secmark;
  2120. }
  2121. static inline void skb_init_secmark(struct sk_buff *skb)
  2122. {
  2123. skb->secmark = 0;
  2124. }
  2125. #else
  2126. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2127. { }
  2128. static inline void skb_init_secmark(struct sk_buff *skb)
  2129. { }
  2130. #endif
  2131. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2132. {
  2133. skb->queue_mapping = queue_mapping;
  2134. }
  2135. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2136. {
  2137. return skb->queue_mapping;
  2138. }
  2139. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2140. {
  2141. to->queue_mapping = from->queue_mapping;
  2142. }
  2143. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2144. {
  2145. skb->queue_mapping = rx_queue + 1;
  2146. }
  2147. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2148. {
  2149. return skb->queue_mapping - 1;
  2150. }
  2151. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2152. {
  2153. return skb->queue_mapping != 0;
  2154. }
  2155. extern u16 __skb_tx_hash(const struct net_device *dev,
  2156. const struct sk_buff *skb,
  2157. unsigned int num_tx_queues);
  2158. #ifdef CONFIG_XFRM
  2159. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2160. {
  2161. return skb->sp;
  2162. }
  2163. #else
  2164. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2165. {
  2166. return NULL;
  2167. }
  2168. #endif
  2169. static inline int skb_is_gso(const struct sk_buff *skb)
  2170. {
  2171. return skb_shinfo(skb)->gso_size;
  2172. }
  2173. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2174. {
  2175. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2176. }
  2177. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2178. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2179. {
  2180. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2181. * wanted then gso_type will be set. */
  2182. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2183. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2184. unlikely(shinfo->gso_type == 0)) {
  2185. __skb_warn_lro_forwarding(skb);
  2186. return true;
  2187. }
  2188. return false;
  2189. }
  2190. static inline void skb_forward_csum(struct sk_buff *skb)
  2191. {
  2192. /* Unfortunately we don't support this one. Any brave souls? */
  2193. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2194. skb->ip_summed = CHECKSUM_NONE;
  2195. }
  2196. /**
  2197. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2198. * @skb: skb to check
  2199. *
  2200. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2201. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2202. * use this helper, to document places where we make this assertion.
  2203. */
  2204. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2205. {
  2206. #ifdef DEBUG
  2207. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2208. #endif
  2209. }
  2210. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2211. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2212. {
  2213. if (irqs_disabled())
  2214. return false;
  2215. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2216. return false;
  2217. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2218. return false;
  2219. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2220. if (skb_end_pointer(skb) - skb->head < skb_size)
  2221. return false;
  2222. if (skb_shared(skb) || skb_cloned(skb))
  2223. return false;
  2224. return true;
  2225. }
  2226. #endif /* __KERNEL__ */
  2227. #endif /* _LINUX_SKBUFF_H */