commoncap.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. /* Common capabilities, needed by capability.o.
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. */
  9. #include <linux/capability.h>
  10. #include <linux/audit.h>
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/lsm_hooks.h>
  15. #include <linux/file.h>
  16. #include <linux/mm.h>
  17. #include <linux/mman.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/swap.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/xattr.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/mount.h>
  26. #include <linux/sched.h>
  27. #include <linux/prctl.h>
  28. #include <linux/securebits.h>
  29. #include <linux/user_namespace.h>
  30. #include <linux/binfmts.h>
  31. #include <linux/personality.h>
  32. /*
  33. * If a non-root user executes a setuid-root binary in
  34. * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  35. * However if fE is also set, then the intent is for only
  36. * the file capabilities to be applied, and the setuid-root
  37. * bit is left on either to change the uid (plausible) or
  38. * to get full privilege on a kernel without file capabilities
  39. * support. So in that case we do not raise capabilities.
  40. *
  41. * Warn if that happens, once per boot.
  42. */
  43. static void warn_setuid_and_fcaps_mixed(const char *fname)
  44. {
  45. static int warned;
  46. if (!warned) {
  47. printk(KERN_INFO "warning: `%s' has both setuid-root and"
  48. " effective capabilities. Therefore not raising all"
  49. " capabilities.\n", fname);
  50. warned = 1;
  51. }
  52. }
  53. /**
  54. * cap_capable - Determine whether a task has a particular effective capability
  55. * @cred: The credentials to use
  56. * @ns: The user namespace in which we need the capability
  57. * @cap: The capability to check for
  58. * @audit: Whether to write an audit message or not
  59. *
  60. * Determine whether the nominated task has the specified capability amongst
  61. * its effective set, returning 0 if it does, -ve if it does not.
  62. *
  63. * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  64. * and has_capability() functions. That is, it has the reverse semantics:
  65. * cap_has_capability() returns 0 when a task has a capability, but the
  66. * kernel's capable() and has_capability() returns 1 for this case.
  67. */
  68. int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
  69. int cap, int audit)
  70. {
  71. struct user_namespace *ns = targ_ns;
  72. /* See if cred has the capability in the target user namespace
  73. * by examining the target user namespace and all of the target
  74. * user namespace's parents.
  75. */
  76. for (;;) {
  77. /* Do we have the necessary capabilities? */
  78. if (ns == cred->user_ns)
  79. return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  80. /* Have we tried all of the parent namespaces? */
  81. if (ns == &init_user_ns)
  82. return -EPERM;
  83. /*
  84. * The owner of the user namespace in the parent of the
  85. * user namespace has all caps.
  86. */
  87. if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
  88. return 0;
  89. /*
  90. * If you have a capability in a parent user ns, then you have
  91. * it over all children user namespaces as well.
  92. */
  93. ns = ns->parent;
  94. }
  95. /* We never get here */
  96. }
  97. /**
  98. * cap_settime - Determine whether the current process may set the system clock
  99. * @ts: The time to set
  100. * @tz: The timezone to set
  101. *
  102. * Determine whether the current process may set the system clock and timezone
  103. * information, returning 0 if permission granted, -ve if denied.
  104. */
  105. int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
  106. {
  107. if (!capable(CAP_SYS_TIME))
  108. return -EPERM;
  109. return 0;
  110. }
  111. /**
  112. * cap_ptrace_access_check - Determine whether the current process may access
  113. * another
  114. * @child: The process to be accessed
  115. * @mode: The mode of attachment.
  116. *
  117. * If we are in the same or an ancestor user_ns and have all the target
  118. * task's capabilities, then ptrace access is allowed.
  119. * If we have the ptrace capability to the target user_ns, then ptrace
  120. * access is allowed.
  121. * Else denied.
  122. *
  123. * Determine whether a process may access another, returning 0 if permission
  124. * granted, -ve if denied.
  125. */
  126. int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
  127. {
  128. int ret = 0;
  129. const struct cred *cred, *child_cred;
  130. const kernel_cap_t *caller_caps;
  131. rcu_read_lock();
  132. cred = current_cred();
  133. child_cred = __task_cred(child);
  134. if (mode & PTRACE_MODE_FSCREDS)
  135. caller_caps = &cred->cap_effective;
  136. else
  137. caller_caps = &cred->cap_permitted;
  138. if (cred->user_ns == child_cred->user_ns &&
  139. cap_issubset(child_cred->cap_permitted, *caller_caps))
  140. goto out;
  141. if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
  142. goto out;
  143. ret = -EPERM;
  144. out:
  145. rcu_read_unlock();
  146. return ret;
  147. }
  148. /**
  149. * cap_ptrace_traceme - Determine whether another process may trace the current
  150. * @parent: The task proposed to be the tracer
  151. *
  152. * If parent is in the same or an ancestor user_ns and has all current's
  153. * capabilities, then ptrace access is allowed.
  154. * If parent has the ptrace capability to current's user_ns, then ptrace
  155. * access is allowed.
  156. * Else denied.
  157. *
  158. * Determine whether the nominated task is permitted to trace the current
  159. * process, returning 0 if permission is granted, -ve if denied.
  160. */
  161. int cap_ptrace_traceme(struct task_struct *parent)
  162. {
  163. int ret = 0;
  164. const struct cred *cred, *child_cred;
  165. rcu_read_lock();
  166. cred = __task_cred(parent);
  167. child_cred = current_cred();
  168. if (cred->user_ns == child_cred->user_ns &&
  169. cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
  170. goto out;
  171. if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
  172. goto out;
  173. ret = -EPERM;
  174. out:
  175. rcu_read_unlock();
  176. return ret;
  177. }
  178. /**
  179. * cap_capget - Retrieve a task's capability sets
  180. * @target: The task from which to retrieve the capability sets
  181. * @effective: The place to record the effective set
  182. * @inheritable: The place to record the inheritable set
  183. * @permitted: The place to record the permitted set
  184. *
  185. * This function retrieves the capabilities of the nominated task and returns
  186. * them to the caller.
  187. */
  188. int cap_capget(struct task_struct *target, kernel_cap_t *effective,
  189. kernel_cap_t *inheritable, kernel_cap_t *permitted)
  190. {
  191. const struct cred *cred;
  192. /* Derived from kernel/capability.c:sys_capget. */
  193. rcu_read_lock();
  194. cred = __task_cred(target);
  195. *effective = cred->cap_effective;
  196. *inheritable = cred->cap_inheritable;
  197. *permitted = cred->cap_permitted;
  198. rcu_read_unlock();
  199. return 0;
  200. }
  201. /*
  202. * Determine whether the inheritable capabilities are limited to the old
  203. * permitted set. Returns 1 if they are limited, 0 if they are not.
  204. */
  205. static inline int cap_inh_is_capped(void)
  206. {
  207. /* they are so limited unless the current task has the CAP_SETPCAP
  208. * capability
  209. */
  210. if (cap_capable(current_cred(), current_cred()->user_ns,
  211. CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
  212. return 0;
  213. return 1;
  214. }
  215. /**
  216. * cap_capset - Validate and apply proposed changes to current's capabilities
  217. * @new: The proposed new credentials; alterations should be made here
  218. * @old: The current task's current credentials
  219. * @effective: A pointer to the proposed new effective capabilities set
  220. * @inheritable: A pointer to the proposed new inheritable capabilities set
  221. * @permitted: A pointer to the proposed new permitted capabilities set
  222. *
  223. * This function validates and applies a proposed mass change to the current
  224. * process's capability sets. The changes are made to the proposed new
  225. * credentials, and assuming no error, will be committed by the caller of LSM.
  226. */
  227. int cap_capset(struct cred *new,
  228. const struct cred *old,
  229. const kernel_cap_t *effective,
  230. const kernel_cap_t *inheritable,
  231. const kernel_cap_t *permitted)
  232. {
  233. if (cap_inh_is_capped() &&
  234. !cap_issubset(*inheritable,
  235. cap_combine(old->cap_inheritable,
  236. old->cap_permitted)))
  237. /* incapable of using this inheritable set */
  238. return -EPERM;
  239. if (!cap_issubset(*inheritable,
  240. cap_combine(old->cap_inheritable,
  241. old->cap_bset)))
  242. /* no new pI capabilities outside bounding set */
  243. return -EPERM;
  244. /* verify restrictions on target's new Permitted set */
  245. if (!cap_issubset(*permitted, old->cap_permitted))
  246. return -EPERM;
  247. /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
  248. if (!cap_issubset(*effective, *permitted))
  249. return -EPERM;
  250. new->cap_effective = *effective;
  251. new->cap_inheritable = *inheritable;
  252. new->cap_permitted = *permitted;
  253. /*
  254. * Mask off ambient bits that are no longer both permitted and
  255. * inheritable.
  256. */
  257. new->cap_ambient = cap_intersect(new->cap_ambient,
  258. cap_intersect(*permitted,
  259. *inheritable));
  260. if (WARN_ON(!cap_ambient_invariant_ok(new)))
  261. return -EINVAL;
  262. return 0;
  263. }
  264. /*
  265. * Clear proposed capability sets for execve().
  266. */
  267. static inline void bprm_clear_caps(struct linux_binprm *bprm)
  268. {
  269. cap_clear(bprm->cred->cap_permitted);
  270. bprm->cap_effective = false;
  271. }
  272. /**
  273. * cap_inode_need_killpriv - Determine if inode change affects privileges
  274. * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
  275. *
  276. * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
  277. * affects the security markings on that inode, and if it is, should
  278. * inode_killpriv() be invoked or the change rejected?
  279. *
  280. * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
  281. * -ve to deny the change.
  282. */
  283. int cap_inode_need_killpriv(struct dentry *dentry)
  284. {
  285. struct inode *inode = d_backing_inode(dentry);
  286. int error;
  287. error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
  288. return error > 0;
  289. }
  290. /**
  291. * cap_inode_killpriv - Erase the security markings on an inode
  292. * @dentry: The inode/dentry to alter
  293. *
  294. * Erase the privilege-enhancing security markings on an inode.
  295. *
  296. * Returns 0 if successful, -ve on error.
  297. */
  298. int cap_inode_killpriv(struct dentry *dentry)
  299. {
  300. int error;
  301. error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
  302. if (error == -EOPNOTSUPP)
  303. error = 0;
  304. return error;
  305. }
  306. /*
  307. * Calculate the new process capability sets from the capability sets attached
  308. * to a file.
  309. */
  310. static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
  311. struct linux_binprm *bprm,
  312. bool *effective,
  313. bool *has_cap)
  314. {
  315. struct cred *new = bprm->cred;
  316. unsigned i;
  317. int ret = 0;
  318. if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
  319. *effective = true;
  320. if (caps->magic_etc & VFS_CAP_REVISION_MASK)
  321. *has_cap = true;
  322. CAP_FOR_EACH_U32(i) {
  323. __u32 permitted = caps->permitted.cap[i];
  324. __u32 inheritable = caps->inheritable.cap[i];
  325. /*
  326. * pP' = (X & fP) | (pI & fI)
  327. * The addition of pA' is handled later.
  328. */
  329. new->cap_permitted.cap[i] =
  330. (new->cap_bset.cap[i] & permitted) |
  331. (new->cap_inheritable.cap[i] & inheritable);
  332. if (permitted & ~new->cap_permitted.cap[i])
  333. /* insufficient to execute correctly */
  334. ret = -EPERM;
  335. }
  336. /*
  337. * For legacy apps, with no internal support for recognizing they
  338. * do not have enough capabilities, we return an error if they are
  339. * missing some "forced" (aka file-permitted) capabilities.
  340. */
  341. return *effective ? ret : 0;
  342. }
  343. /*
  344. * Extract the on-exec-apply capability sets for an executable file.
  345. */
  346. int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
  347. {
  348. struct inode *inode = d_backing_inode(dentry);
  349. __u32 magic_etc;
  350. unsigned tocopy, i;
  351. int size;
  352. struct vfs_cap_data caps;
  353. memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
  354. if (!inode)
  355. return -ENODATA;
  356. size = __vfs_getxattr((struct dentry *)dentry, inode,
  357. XATTR_NAME_CAPS, &caps, XATTR_CAPS_SZ);
  358. if (size == -ENODATA || size == -EOPNOTSUPP)
  359. /* no data, that's ok */
  360. return -ENODATA;
  361. if (size < 0)
  362. return size;
  363. if (size < sizeof(magic_etc))
  364. return -EINVAL;
  365. cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
  366. switch (magic_etc & VFS_CAP_REVISION_MASK) {
  367. case VFS_CAP_REVISION_1:
  368. if (size != XATTR_CAPS_SZ_1)
  369. return -EINVAL;
  370. tocopy = VFS_CAP_U32_1;
  371. break;
  372. case VFS_CAP_REVISION_2:
  373. if (size != XATTR_CAPS_SZ_2)
  374. return -EINVAL;
  375. tocopy = VFS_CAP_U32_2;
  376. break;
  377. default:
  378. return -EINVAL;
  379. }
  380. CAP_FOR_EACH_U32(i) {
  381. if (i >= tocopy)
  382. break;
  383. cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
  384. cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
  385. }
  386. cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
  387. cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
  388. return 0;
  389. }
  390. /*
  391. * Attempt to get the on-exec apply capability sets for an executable file from
  392. * its xattrs and, if present, apply them to the proposed credentials being
  393. * constructed by execve().
  394. */
  395. static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
  396. {
  397. int rc = 0;
  398. struct cpu_vfs_cap_data vcaps;
  399. bprm_clear_caps(bprm);
  400. if (!file_caps_enabled)
  401. return 0;
  402. if (!mnt_may_suid(bprm->file->f_path.mnt))
  403. return 0;
  404. /*
  405. * This check is redundant with mnt_may_suid() but is kept to make
  406. * explicit that capability bits are limited to s_user_ns and its
  407. * descendants.
  408. */
  409. if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
  410. return 0;
  411. rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
  412. if (rc < 0) {
  413. if (rc == -EINVAL)
  414. printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
  415. __func__, rc, bprm->filename);
  416. else if (rc == -ENODATA)
  417. rc = 0;
  418. goto out;
  419. }
  420. rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
  421. if (rc == -EINVAL)
  422. printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
  423. __func__, rc, bprm->filename);
  424. out:
  425. if (rc)
  426. bprm_clear_caps(bprm);
  427. return rc;
  428. }
  429. /**
  430. * cap_bprm_set_creds - Set up the proposed credentials for execve().
  431. * @bprm: The execution parameters, including the proposed creds
  432. *
  433. * Set up the proposed credentials for a new execution context being
  434. * constructed by execve(). The proposed creds in @bprm->cred is altered,
  435. * which won't take effect immediately. Returns 0 if successful, -ve on error.
  436. */
  437. int cap_bprm_set_creds(struct linux_binprm *bprm)
  438. {
  439. const struct cred *old = current_cred();
  440. struct cred *new = bprm->cred;
  441. bool effective, has_cap = false, is_setid;
  442. int ret;
  443. kuid_t root_uid;
  444. if (WARN_ON(!cap_ambient_invariant_ok(old)))
  445. return -EPERM;
  446. effective = false;
  447. ret = get_file_caps(bprm, &effective, &has_cap);
  448. if (ret < 0)
  449. return ret;
  450. root_uid = make_kuid(new->user_ns, 0);
  451. if (!issecure(SECURE_NOROOT)) {
  452. /*
  453. * If the legacy file capability is set, then don't set privs
  454. * for a setuid root binary run by a non-root user. Do set it
  455. * for a root user just to cause least surprise to an admin.
  456. */
  457. if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
  458. warn_setuid_and_fcaps_mixed(bprm->filename);
  459. goto skip;
  460. }
  461. /*
  462. * To support inheritance of root-permissions and suid-root
  463. * executables under compatibility mode, we override the
  464. * capability sets for the file.
  465. *
  466. * If only the real uid is 0, we do not set the effective bit.
  467. */
  468. if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
  469. /* pP' = (cap_bset & ~0) | (pI & ~0) */
  470. new->cap_permitted = cap_combine(old->cap_bset,
  471. old->cap_inheritable);
  472. }
  473. if (uid_eq(new->euid, root_uid))
  474. effective = true;
  475. }
  476. skip:
  477. /* if we have fs caps, clear dangerous personality flags */
  478. if (!cap_issubset(new->cap_permitted, old->cap_permitted))
  479. bprm->per_clear |= PER_CLEAR_ON_SETID;
  480. /* Don't let someone trace a set[ug]id/setpcap binary with the revised
  481. * credentials unless they have the appropriate permit.
  482. *
  483. * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
  484. */
  485. is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
  486. if ((is_setid ||
  487. !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
  488. ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
  489. !ptracer_capable(current, new->user_ns))) {
  490. /* downgrade; they get no more than they had, and maybe less */
  491. if (!ns_capable(new->user_ns, CAP_SETUID) ||
  492. (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
  493. new->euid = new->uid;
  494. new->egid = new->gid;
  495. }
  496. new->cap_permitted = cap_intersect(new->cap_permitted,
  497. old->cap_permitted);
  498. }
  499. new->suid = new->fsuid = new->euid;
  500. new->sgid = new->fsgid = new->egid;
  501. /* File caps or setid cancels ambient. */
  502. if (has_cap || is_setid)
  503. cap_clear(new->cap_ambient);
  504. /*
  505. * Now that we've computed pA', update pP' to give:
  506. * pP' = (X & fP) | (pI & fI) | pA'
  507. */
  508. new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
  509. /*
  510. * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
  511. * this is the same as pE' = (fE ? pP' : 0) | pA'.
  512. */
  513. if (effective)
  514. new->cap_effective = new->cap_permitted;
  515. else
  516. new->cap_effective = new->cap_ambient;
  517. if (WARN_ON(!cap_ambient_invariant_ok(new)))
  518. return -EPERM;
  519. bprm->cap_effective = effective;
  520. /*
  521. * Audit candidate if current->cap_effective is set
  522. *
  523. * We do not bother to audit if 3 things are true:
  524. * 1) cap_effective has all caps
  525. * 2) we are root
  526. * 3) root is supposed to have all caps (SECURE_NOROOT)
  527. * Since this is just a normal root execing a process.
  528. *
  529. * Number 1 above might fail if you don't have a full bset, but I think
  530. * that is interesting information to audit.
  531. */
  532. if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
  533. if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
  534. !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
  535. issecure(SECURE_NOROOT)) {
  536. ret = audit_log_bprm_fcaps(bprm, new, old);
  537. if (ret < 0)
  538. return ret;
  539. }
  540. }
  541. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  542. if (WARN_ON(!cap_ambient_invariant_ok(new)))
  543. return -EPERM;
  544. return 0;
  545. }
  546. /**
  547. * cap_bprm_secureexec - Determine whether a secure execution is required
  548. * @bprm: The execution parameters
  549. *
  550. * Determine whether a secure execution is required, return 1 if it is, and 0
  551. * if it is not.
  552. *
  553. * The credentials have been committed by this point, and so are no longer
  554. * available through @bprm->cred.
  555. */
  556. int cap_bprm_secureexec(struct linux_binprm *bprm)
  557. {
  558. const struct cred *cred = current_cred();
  559. kuid_t root_uid = make_kuid(cred->user_ns, 0);
  560. if (!uid_eq(cred->uid, root_uid)) {
  561. if (bprm->cap_effective)
  562. return 1;
  563. if (!cap_issubset(cred->cap_permitted, cred->cap_ambient))
  564. return 1;
  565. }
  566. return (!uid_eq(cred->euid, cred->uid) ||
  567. !gid_eq(cred->egid, cred->gid));
  568. }
  569. /**
  570. * cap_inode_setxattr - Determine whether an xattr may be altered
  571. * @dentry: The inode/dentry being altered
  572. * @name: The name of the xattr to be changed
  573. * @value: The value that the xattr will be changed to
  574. * @size: The size of value
  575. * @flags: The replacement flag
  576. *
  577. * Determine whether an xattr may be altered or set on an inode, returning 0 if
  578. * permission is granted, -ve if denied.
  579. *
  580. * This is used to make sure security xattrs don't get updated or set by those
  581. * who aren't privileged to do so.
  582. */
  583. int cap_inode_setxattr(struct dentry *dentry, const char *name,
  584. const void *value, size_t size, int flags)
  585. {
  586. if (!strcmp(name, XATTR_NAME_CAPS)) {
  587. if (!capable(CAP_SETFCAP))
  588. return -EPERM;
  589. return 0;
  590. }
  591. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  592. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  593. !capable(CAP_SYS_ADMIN))
  594. return -EPERM;
  595. return 0;
  596. }
  597. /**
  598. * cap_inode_removexattr - Determine whether an xattr may be removed
  599. * @dentry: The inode/dentry being altered
  600. * @name: The name of the xattr to be changed
  601. *
  602. * Determine whether an xattr may be removed from an inode, returning 0 if
  603. * permission is granted, -ve if denied.
  604. *
  605. * This is used to make sure security xattrs don't get removed by those who
  606. * aren't privileged to remove them.
  607. */
  608. int cap_inode_removexattr(struct dentry *dentry, const char *name)
  609. {
  610. if (!strcmp(name, XATTR_NAME_CAPS)) {
  611. if (!capable(CAP_SETFCAP))
  612. return -EPERM;
  613. return 0;
  614. }
  615. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  616. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  617. !capable(CAP_SYS_ADMIN))
  618. return -EPERM;
  619. return 0;
  620. }
  621. /*
  622. * cap_emulate_setxuid() fixes the effective / permitted capabilities of
  623. * a process after a call to setuid, setreuid, or setresuid.
  624. *
  625. * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
  626. * {r,e,s}uid != 0, the permitted and effective capabilities are
  627. * cleared.
  628. *
  629. * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
  630. * capabilities of the process are cleared.
  631. *
  632. * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
  633. * capabilities are set to the permitted capabilities.
  634. *
  635. * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
  636. * never happen.
  637. *
  638. * -astor
  639. *
  640. * cevans - New behaviour, Oct '99
  641. * A process may, via prctl(), elect to keep its capabilities when it
  642. * calls setuid() and switches away from uid==0. Both permitted and
  643. * effective sets will be retained.
  644. * Without this change, it was impossible for a daemon to drop only some
  645. * of its privilege. The call to setuid(!=0) would drop all privileges!
  646. * Keeping uid 0 is not an option because uid 0 owns too many vital
  647. * files..
  648. * Thanks to Olaf Kirch and Peter Benie for spotting this.
  649. */
  650. static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
  651. {
  652. kuid_t root_uid = make_kuid(old->user_ns, 0);
  653. if ((uid_eq(old->uid, root_uid) ||
  654. uid_eq(old->euid, root_uid) ||
  655. uid_eq(old->suid, root_uid)) &&
  656. (!uid_eq(new->uid, root_uid) &&
  657. !uid_eq(new->euid, root_uid) &&
  658. !uid_eq(new->suid, root_uid))) {
  659. if (!issecure(SECURE_KEEP_CAPS)) {
  660. cap_clear(new->cap_permitted);
  661. cap_clear(new->cap_effective);
  662. }
  663. /*
  664. * Pre-ambient programs expect setresuid to nonroot followed
  665. * by exec to drop capabilities. We should make sure that
  666. * this remains the case.
  667. */
  668. cap_clear(new->cap_ambient);
  669. }
  670. if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
  671. cap_clear(new->cap_effective);
  672. if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
  673. new->cap_effective = new->cap_permitted;
  674. }
  675. /**
  676. * cap_task_fix_setuid - Fix up the results of setuid() call
  677. * @new: The proposed credentials
  678. * @old: The current task's current credentials
  679. * @flags: Indications of what has changed
  680. *
  681. * Fix up the results of setuid() call before the credential changes are
  682. * actually applied, returning 0 to grant the changes, -ve to deny them.
  683. */
  684. int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
  685. {
  686. switch (flags) {
  687. case LSM_SETID_RE:
  688. case LSM_SETID_ID:
  689. case LSM_SETID_RES:
  690. /* juggle the capabilities to follow [RES]UID changes unless
  691. * otherwise suppressed */
  692. if (!issecure(SECURE_NO_SETUID_FIXUP))
  693. cap_emulate_setxuid(new, old);
  694. break;
  695. case LSM_SETID_FS:
  696. /* juggle the capabilties to follow FSUID changes, unless
  697. * otherwise suppressed
  698. *
  699. * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
  700. * if not, we might be a bit too harsh here.
  701. */
  702. if (!issecure(SECURE_NO_SETUID_FIXUP)) {
  703. kuid_t root_uid = make_kuid(old->user_ns, 0);
  704. if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
  705. new->cap_effective =
  706. cap_drop_fs_set(new->cap_effective);
  707. if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
  708. new->cap_effective =
  709. cap_raise_fs_set(new->cap_effective,
  710. new->cap_permitted);
  711. }
  712. break;
  713. default:
  714. return -EINVAL;
  715. }
  716. return 0;
  717. }
  718. /*
  719. * Rationale: code calling task_setscheduler, task_setioprio, and
  720. * task_setnice, assumes that
  721. * . if capable(cap_sys_nice), then those actions should be allowed
  722. * . if not capable(cap_sys_nice), but acting on your own processes,
  723. * then those actions should be allowed
  724. * This is insufficient now since you can call code without suid, but
  725. * yet with increased caps.
  726. * So we check for increased caps on the target process.
  727. */
  728. static int cap_safe_nice(struct task_struct *p)
  729. {
  730. int is_subset, ret = 0;
  731. rcu_read_lock();
  732. is_subset = cap_issubset(__task_cred(p)->cap_permitted,
  733. current_cred()->cap_permitted);
  734. if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
  735. ret = -EPERM;
  736. rcu_read_unlock();
  737. return ret;
  738. }
  739. /**
  740. * cap_task_setscheduler - Detemine if scheduler policy change is permitted
  741. * @p: The task to affect
  742. *
  743. * Detemine if the requested scheduler policy change is permitted for the
  744. * specified task, returning 0 if permission is granted, -ve if denied.
  745. */
  746. int cap_task_setscheduler(struct task_struct *p)
  747. {
  748. return cap_safe_nice(p);
  749. }
  750. /**
  751. * cap_task_ioprio - Detemine if I/O priority change is permitted
  752. * @p: The task to affect
  753. * @ioprio: The I/O priority to set
  754. *
  755. * Detemine if the requested I/O priority change is permitted for the specified
  756. * task, returning 0 if permission is granted, -ve if denied.
  757. */
  758. int cap_task_setioprio(struct task_struct *p, int ioprio)
  759. {
  760. return cap_safe_nice(p);
  761. }
  762. /**
  763. * cap_task_ioprio - Detemine if task priority change is permitted
  764. * @p: The task to affect
  765. * @nice: The nice value to set
  766. *
  767. * Detemine if the requested task priority change is permitted for the
  768. * specified task, returning 0 if permission is granted, -ve if denied.
  769. */
  770. int cap_task_setnice(struct task_struct *p, int nice)
  771. {
  772. return cap_safe_nice(p);
  773. }
  774. /*
  775. * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
  776. * the current task's bounding set. Returns 0 on success, -ve on error.
  777. */
  778. static int cap_prctl_drop(unsigned long cap)
  779. {
  780. struct cred *new;
  781. if (!ns_capable(current_user_ns(), CAP_SETPCAP))
  782. return -EPERM;
  783. if (!cap_valid(cap))
  784. return -EINVAL;
  785. new = prepare_creds();
  786. if (!new)
  787. return -ENOMEM;
  788. cap_lower(new->cap_bset, cap);
  789. return commit_creds(new);
  790. }
  791. /**
  792. * cap_task_prctl - Implement process control functions for this security module
  793. * @option: The process control function requested
  794. * @arg2, @arg3, @arg4, @arg5: The argument data for this function
  795. *
  796. * Allow process control functions (sys_prctl()) to alter capabilities; may
  797. * also deny access to other functions not otherwise implemented here.
  798. *
  799. * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
  800. * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
  801. * modules will consider performing the function.
  802. */
  803. int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  804. unsigned long arg4, unsigned long arg5)
  805. {
  806. const struct cred *old = current_cred();
  807. struct cred *new;
  808. switch (option) {
  809. case PR_CAPBSET_READ:
  810. if (!cap_valid(arg2))
  811. return -EINVAL;
  812. return !!cap_raised(old->cap_bset, arg2);
  813. case PR_CAPBSET_DROP:
  814. return cap_prctl_drop(arg2);
  815. /*
  816. * The next four prctl's remain to assist with transitioning a
  817. * system from legacy UID=0 based privilege (when filesystem
  818. * capabilities are not in use) to a system using filesystem
  819. * capabilities only - as the POSIX.1e draft intended.
  820. *
  821. * Note:
  822. *
  823. * PR_SET_SECUREBITS =
  824. * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
  825. * | issecure_mask(SECURE_NOROOT)
  826. * | issecure_mask(SECURE_NOROOT_LOCKED)
  827. * | issecure_mask(SECURE_NO_SETUID_FIXUP)
  828. * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
  829. *
  830. * will ensure that the current process and all of its
  831. * children will be locked into a pure
  832. * capability-based-privilege environment.
  833. */
  834. case PR_SET_SECUREBITS:
  835. if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
  836. & (old->securebits ^ arg2)) /*[1]*/
  837. || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
  838. || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
  839. || (cap_capable(current_cred(),
  840. current_cred()->user_ns, CAP_SETPCAP,
  841. SECURITY_CAP_AUDIT) != 0) /*[4]*/
  842. /*
  843. * [1] no changing of bits that are locked
  844. * [2] no unlocking of locks
  845. * [3] no setting of unsupported bits
  846. * [4] doing anything requires privilege (go read about
  847. * the "sendmail capabilities bug")
  848. */
  849. )
  850. /* cannot change a locked bit */
  851. return -EPERM;
  852. new = prepare_creds();
  853. if (!new)
  854. return -ENOMEM;
  855. new->securebits = arg2;
  856. return commit_creds(new);
  857. case PR_GET_SECUREBITS:
  858. return old->securebits;
  859. case PR_GET_KEEPCAPS:
  860. return !!issecure(SECURE_KEEP_CAPS);
  861. case PR_SET_KEEPCAPS:
  862. if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
  863. return -EINVAL;
  864. if (issecure(SECURE_KEEP_CAPS_LOCKED))
  865. return -EPERM;
  866. new = prepare_creds();
  867. if (!new)
  868. return -ENOMEM;
  869. if (arg2)
  870. new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
  871. else
  872. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  873. return commit_creds(new);
  874. case PR_CAP_AMBIENT:
  875. if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
  876. if (arg3 | arg4 | arg5)
  877. return -EINVAL;
  878. new = prepare_creds();
  879. if (!new)
  880. return -ENOMEM;
  881. cap_clear(new->cap_ambient);
  882. return commit_creds(new);
  883. }
  884. if (((!cap_valid(arg3)) | arg4 | arg5))
  885. return -EINVAL;
  886. if (arg2 == PR_CAP_AMBIENT_IS_SET) {
  887. return !!cap_raised(current_cred()->cap_ambient, arg3);
  888. } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
  889. arg2 != PR_CAP_AMBIENT_LOWER) {
  890. return -EINVAL;
  891. } else {
  892. if (arg2 == PR_CAP_AMBIENT_RAISE &&
  893. (!cap_raised(current_cred()->cap_permitted, arg3) ||
  894. !cap_raised(current_cred()->cap_inheritable,
  895. arg3) ||
  896. issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
  897. return -EPERM;
  898. new = prepare_creds();
  899. if (!new)
  900. return -ENOMEM;
  901. if (arg2 == PR_CAP_AMBIENT_RAISE)
  902. cap_raise(new->cap_ambient, arg3);
  903. else
  904. cap_lower(new->cap_ambient, arg3);
  905. return commit_creds(new);
  906. }
  907. default:
  908. /* No functionality available - continue with default */
  909. return -ENOSYS;
  910. }
  911. }
  912. /**
  913. * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
  914. * @mm: The VM space in which the new mapping is to be made
  915. * @pages: The size of the mapping
  916. *
  917. * Determine whether the allocation of a new virtual mapping by the current
  918. * task is permitted, returning 1 if permission is granted, 0 if not.
  919. */
  920. int cap_vm_enough_memory(struct mm_struct *mm, long pages)
  921. {
  922. int cap_sys_admin = 0;
  923. if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
  924. SECURITY_CAP_NOAUDIT) == 0)
  925. cap_sys_admin = 1;
  926. return cap_sys_admin;
  927. }
  928. /*
  929. * cap_mmap_addr - check if able to map given addr
  930. * @addr: address attempting to be mapped
  931. *
  932. * If the process is attempting to map memory below dac_mmap_min_addr they need
  933. * CAP_SYS_RAWIO. The other parameters to this function are unused by the
  934. * capability security module. Returns 0 if this mapping should be allowed
  935. * -EPERM if not.
  936. */
  937. int cap_mmap_addr(unsigned long addr)
  938. {
  939. int ret = 0;
  940. if (addr < dac_mmap_min_addr) {
  941. ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
  942. SECURITY_CAP_AUDIT);
  943. /* set PF_SUPERPRIV if it turns out we allow the low mmap */
  944. if (ret == 0)
  945. current->flags |= PF_SUPERPRIV;
  946. }
  947. return ret;
  948. }
  949. int cap_mmap_file(struct file *file, unsigned long reqprot,
  950. unsigned long prot, unsigned long flags)
  951. {
  952. return 0;
  953. }
  954. #ifdef CONFIG_SECURITY
  955. struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
  956. LSM_HOOK_INIT(capable, cap_capable),
  957. LSM_HOOK_INIT(settime, cap_settime),
  958. LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
  959. LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
  960. LSM_HOOK_INIT(capget, cap_capget),
  961. LSM_HOOK_INIT(capset, cap_capset),
  962. LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
  963. LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec),
  964. LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
  965. LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
  966. LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
  967. LSM_HOOK_INIT(mmap_file, cap_mmap_file),
  968. LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
  969. LSM_HOOK_INIT(task_prctl, cap_task_prctl),
  970. LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
  971. LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
  972. LSM_HOOK_INIT(task_setnice, cap_task_setnice),
  973. LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
  974. };
  975. void __init capability_add_hooks(void)
  976. {
  977. security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
  978. "capability");
  979. }
  980. #endif /* CONFIG_SECURITY */