tcp_input.c 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. #include <trace/events/tcp.h>
  77. #include <linux/static_key.h>
  78. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  79. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  80. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  81. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  82. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  83. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  84. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  85. #define FLAG_ECE 0x40 /* ECE in this ACK */
  86. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  87. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  88. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  89. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  90. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  91. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  92. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  93. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  94. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  95. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  96. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  97. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  98. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  99. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  100. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  101. #define REXMIT_NONE 0 /* no loss recovery to do */
  102. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  103. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  104. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  105. unsigned int len)
  106. {
  107. static bool __once __read_mostly;
  108. if (!__once) {
  109. struct net_device *dev;
  110. __once = true;
  111. rcu_read_lock();
  112. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  113. if (!dev || len >= dev->mtu)
  114. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  115. dev ? dev->name : "Unknown driver");
  116. rcu_read_unlock();
  117. }
  118. }
  119. /* Adapt the MSS value used to make delayed ack decision to the
  120. * real world.
  121. */
  122. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  123. {
  124. struct inet_connection_sock *icsk = inet_csk(sk);
  125. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  126. unsigned int len;
  127. icsk->icsk_ack.last_seg_size = 0;
  128. /* skb->len may jitter because of SACKs, even if peer
  129. * sends good full-sized frames.
  130. */
  131. len = skb_shinfo(skb)->gso_size ? : skb->len;
  132. if (len >= icsk->icsk_ack.rcv_mss) {
  133. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  134. tcp_sk(sk)->advmss);
  135. /* Account for possibly-removed options */
  136. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  137. MAX_TCP_OPTION_SPACE))
  138. tcp_gro_dev_warn(sk, skb, len);
  139. } else {
  140. /* Otherwise, we make more careful check taking into account,
  141. * that SACKs block is variable.
  142. *
  143. * "len" is invariant segment length, including TCP header.
  144. */
  145. len += skb->data - skb_transport_header(skb);
  146. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  147. /* If PSH is not set, packet should be
  148. * full sized, provided peer TCP is not badly broken.
  149. * This observation (if it is correct 8)) allows
  150. * to handle super-low mtu links fairly.
  151. */
  152. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  153. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  154. /* Subtract also invariant (if peer is RFC compliant),
  155. * tcp header plus fixed timestamp option length.
  156. * Resulting "len" is MSS free of SACK jitter.
  157. */
  158. len -= tcp_sk(sk)->tcp_header_len;
  159. icsk->icsk_ack.last_seg_size = len;
  160. if (len == lss) {
  161. icsk->icsk_ack.rcv_mss = len;
  162. return;
  163. }
  164. }
  165. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  166. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  167. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  168. }
  169. }
  170. static void tcp_incr_quickack(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  174. if (quickacks == 0)
  175. quickacks = 2;
  176. if (quickacks > icsk->icsk_ack.quick)
  177. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  178. }
  179. static void tcp_enter_quickack_mode(struct sock *sk)
  180. {
  181. struct inet_connection_sock *icsk = inet_csk(sk);
  182. tcp_incr_quickack(sk);
  183. icsk->icsk_ack.pingpong = 0;
  184. icsk->icsk_ack.ato = TCP_ATO_MIN;
  185. }
  186. /* Send ACKs quickly, if "quick" count is not exhausted
  187. * and the session is not interactive.
  188. */
  189. static bool tcp_in_quickack_mode(struct sock *sk)
  190. {
  191. const struct inet_connection_sock *icsk = inet_csk(sk);
  192. const struct dst_entry *dst = __sk_dst_get(sk);
  193. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  194. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  195. }
  196. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  197. {
  198. if (tp->ecn_flags & TCP_ECN_OK)
  199. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  200. }
  201. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (tcp_hdr(skb)->cwr)
  204. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  205. }
  206. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  207. {
  208. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  209. }
  210. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  211. {
  212. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  213. case INET_ECN_NOT_ECT:
  214. /* Funny extension: if ECT is not set on a segment,
  215. * and we already seen ECT on a previous segment,
  216. * it is probably a retransmit.
  217. */
  218. if (tp->ecn_flags & TCP_ECN_SEEN)
  219. tcp_enter_quickack_mode((struct sock *)tp);
  220. break;
  221. case INET_ECN_CE:
  222. if (tcp_ca_needs_ecn((struct sock *)tp))
  223. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  224. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  225. /* Better not delay acks, sender can have a very low cwnd */
  226. tcp_enter_quickack_mode((struct sock *)tp);
  227. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  228. }
  229. tp->ecn_flags |= TCP_ECN_SEEN;
  230. break;
  231. default:
  232. if (tcp_ca_needs_ecn((struct sock *)tp))
  233. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  234. tp->ecn_flags |= TCP_ECN_SEEN;
  235. break;
  236. }
  237. }
  238. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  239. {
  240. if (tp->ecn_flags & TCP_ECN_OK)
  241. __tcp_ecn_check_ce(tp, skb);
  242. }
  243. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  244. {
  245. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  246. tp->ecn_flags &= ~TCP_ECN_OK;
  247. }
  248. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  249. {
  250. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  251. tp->ecn_flags &= ~TCP_ECN_OK;
  252. }
  253. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  254. {
  255. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  256. return true;
  257. return false;
  258. }
  259. /* Buffer size and advertised window tuning.
  260. *
  261. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  262. */
  263. static void tcp_sndbuf_expand(struct sock *sk)
  264. {
  265. const struct tcp_sock *tp = tcp_sk(sk);
  266. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  267. int sndmem, per_mss;
  268. u32 nr_segs;
  269. /* Worst case is non GSO/TSO : each frame consumes one skb
  270. * and skb->head is kmalloced using power of two area of memory
  271. */
  272. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  273. MAX_TCP_HEADER +
  274. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  275. per_mss = roundup_pow_of_two(per_mss) +
  276. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  277. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  278. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  279. /* Fast Recovery (RFC 5681 3.2) :
  280. * Cubic needs 1.7 factor, rounded to 2 to include
  281. * extra cushion (application might react slowly to POLLOUT)
  282. */
  283. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  284. sndmem *= nr_segs * per_mss;
  285. if (sk->sk_sndbuf < sndmem)
  286. sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
  287. }
  288. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  289. *
  290. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  291. * forward and advertised in receiver window (tp->rcv_wnd) and
  292. * "application buffer", required to isolate scheduling/application
  293. * latencies from network.
  294. * window_clamp is maximal advertised window. It can be less than
  295. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  296. * is reserved for "application" buffer. The less window_clamp is
  297. * the smoother our behaviour from viewpoint of network, but the lower
  298. * throughput and the higher sensitivity of the connection to losses. 8)
  299. *
  300. * rcv_ssthresh is more strict window_clamp used at "slow start"
  301. * phase to predict further behaviour of this connection.
  302. * It is used for two goals:
  303. * - to enforce header prediction at sender, even when application
  304. * requires some significant "application buffer". It is check #1.
  305. * - to prevent pruning of receive queue because of misprediction
  306. * of receiver window. Check #2.
  307. *
  308. * The scheme does not work when sender sends good segments opening
  309. * window and then starts to feed us spaghetti. But it should work
  310. * in common situations. Otherwise, we have to rely on queue collapsing.
  311. */
  312. /* Slow part of check#2. */
  313. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. /* Optimize this! */
  317. int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
  318. int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
  319. while (tp->rcv_ssthresh <= window) {
  320. if (truesize <= skb->len)
  321. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  322. truesize >>= 1;
  323. window >>= 1;
  324. }
  325. return 0;
  326. }
  327. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. /* Check #1 */
  331. if (tp->rcv_ssthresh < tp->window_clamp &&
  332. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  333. !tcp_under_memory_pressure(sk)) {
  334. int incr;
  335. /* Check #2. Increase window, if skb with such overhead
  336. * will fit to rcvbuf in future.
  337. */
  338. if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
  339. incr = 2 * tp->advmss;
  340. else
  341. incr = __tcp_grow_window(sk, skb);
  342. if (incr) {
  343. incr = max_t(int, incr, 2 * skb->len);
  344. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  345. tp->window_clamp);
  346. inet_csk(sk)->icsk_ack.quick |= 1;
  347. }
  348. }
  349. }
  350. /* 3. Tuning rcvbuf, when connection enters established state. */
  351. static void tcp_fixup_rcvbuf(struct sock *sk)
  352. {
  353. u32 mss = tcp_sk(sk)->advmss;
  354. int rcvmem;
  355. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  356. tcp_default_init_rwnd(mss);
  357. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  358. * Allow enough cushion so that sender is not limited by our window
  359. */
  360. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
  361. rcvmem <<= 2;
  362. if (sk->sk_rcvbuf < rcvmem)
  363. sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  364. }
  365. /* 4. Try to fixup all. It is made immediately after connection enters
  366. * established state.
  367. */
  368. void tcp_init_buffer_space(struct sock *sk)
  369. {
  370. int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
  371. struct tcp_sock *tp = tcp_sk(sk);
  372. int maxwin;
  373. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  374. tcp_fixup_rcvbuf(sk);
  375. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  376. tcp_sndbuf_expand(sk);
  377. tp->rcvq_space.space = tp->rcv_wnd;
  378. tcp_mstamp_refresh(tp);
  379. tp->rcvq_space.time = tp->tcp_mstamp;
  380. tp->rcvq_space.seq = tp->copied_seq;
  381. maxwin = tcp_full_space(sk);
  382. if (tp->window_clamp >= maxwin) {
  383. tp->window_clamp = maxwin;
  384. if (tcp_app_win && maxwin > 4 * tp->advmss)
  385. tp->window_clamp = max(maxwin -
  386. (maxwin >> tcp_app_win),
  387. 4 * tp->advmss);
  388. }
  389. /* Force reservation of one segment. */
  390. if (tcp_app_win &&
  391. tp->window_clamp > 2 * tp->advmss &&
  392. tp->window_clamp + tp->advmss > maxwin)
  393. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  394. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  395. tp->snd_cwnd_stamp = tcp_jiffies32;
  396. }
  397. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  398. static void tcp_clamp_window(struct sock *sk)
  399. {
  400. struct tcp_sock *tp = tcp_sk(sk);
  401. struct inet_connection_sock *icsk = inet_csk(sk);
  402. struct net *net = sock_net(sk);
  403. icsk->icsk_ack.quick = 0;
  404. if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
  405. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  406. !tcp_under_memory_pressure(sk) &&
  407. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  408. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  409. net->ipv4.sysctl_tcp_rmem[2]);
  410. }
  411. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  412. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  413. }
  414. /* Initialize RCV_MSS value.
  415. * RCV_MSS is an our guess about MSS used by the peer.
  416. * We haven't any direct information about the MSS.
  417. * It's better to underestimate the RCV_MSS rather than overestimate.
  418. * Overestimations make us ACKing less frequently than needed.
  419. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  420. */
  421. void tcp_initialize_rcv_mss(struct sock *sk)
  422. {
  423. const struct tcp_sock *tp = tcp_sk(sk);
  424. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  425. hint = min(hint, tp->rcv_wnd / 2);
  426. hint = min(hint, TCP_MSS_DEFAULT);
  427. hint = max(hint, TCP_MIN_MSS);
  428. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  429. }
  430. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  431. /* Receiver "autotuning" code.
  432. *
  433. * The algorithm for RTT estimation w/o timestamps is based on
  434. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  435. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  436. *
  437. * More detail on this code can be found at
  438. * <http://staff.psc.edu/jheffner/>,
  439. * though this reference is out of date. A new paper
  440. * is pending.
  441. */
  442. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  443. {
  444. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  445. long m = sample;
  446. if (m == 0)
  447. m = 1;
  448. if (new_sample != 0) {
  449. /* If we sample in larger samples in the non-timestamp
  450. * case, we could grossly overestimate the RTT especially
  451. * with chatty applications or bulk transfer apps which
  452. * are stalled on filesystem I/O.
  453. *
  454. * Also, since we are only going for a minimum in the
  455. * non-timestamp case, we do not smooth things out
  456. * else with timestamps disabled convergence takes too
  457. * long.
  458. */
  459. if (!win_dep) {
  460. m -= (new_sample >> 3);
  461. new_sample += m;
  462. } else {
  463. m <<= 3;
  464. if (m < new_sample)
  465. new_sample = m;
  466. }
  467. } else {
  468. /* No previous measure. */
  469. new_sample = m << 3;
  470. }
  471. tp->rcv_rtt_est.rtt_us = new_sample;
  472. }
  473. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  474. {
  475. u32 delta_us;
  476. if (tp->rcv_rtt_est.time == 0)
  477. goto new_measure;
  478. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  479. return;
  480. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  481. tcp_rcv_rtt_update(tp, delta_us, 1);
  482. new_measure:
  483. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  484. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  485. }
  486. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  487. const struct sk_buff *skb)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. if (tp->rx_opt.rcv_tsecr &&
  491. (TCP_SKB_CB(skb)->end_seq -
  492. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  493. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  494. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  495. tcp_rcv_rtt_update(tp, delta_us, 0);
  496. }
  497. }
  498. /*
  499. * This function should be called every time data is copied to user space.
  500. * It calculates the appropriate TCP receive buffer space.
  501. */
  502. void tcp_rcv_space_adjust(struct sock *sk)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. int time;
  506. int copied;
  507. tcp_mstamp_refresh(tp);
  508. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  509. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  510. return;
  511. /* Number of bytes copied to user in last RTT */
  512. copied = tp->copied_seq - tp->rcvq_space.seq;
  513. if (copied <= tp->rcvq_space.space)
  514. goto new_measure;
  515. /* A bit of theory :
  516. * copied = bytes received in previous RTT, our base window
  517. * To cope with packet losses, we need a 2x factor
  518. * To cope with slow start, and sender growing its cwin by 100 %
  519. * every RTT, we need a 4x factor, because the ACK we are sending
  520. * now is for the next RTT, not the current one :
  521. * <prev RTT . ><current RTT .. ><next RTT .... >
  522. */
  523. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
  524. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  525. int rcvwin, rcvmem, rcvbuf;
  526. /* minimal window to cope with packet losses, assuming
  527. * steady state. Add some cushion because of small variations.
  528. */
  529. rcvwin = (copied << 1) + 16 * tp->advmss;
  530. /* If rate increased by 25%,
  531. * assume slow start, rcvwin = 3 * copied
  532. * If rate increased by 50%,
  533. * assume sender can use 2x growth, rcvwin = 4 * copied
  534. */
  535. if (copied >=
  536. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  537. if (copied >=
  538. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  539. rcvwin <<= 1;
  540. else
  541. rcvwin += (rcvwin >> 1);
  542. }
  543. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  544. while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
  545. rcvmem += 128;
  546. rcvbuf = min(rcvwin / tp->advmss * rcvmem,
  547. sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  548. if (rcvbuf > sk->sk_rcvbuf) {
  549. sk->sk_rcvbuf = rcvbuf;
  550. /* Make the window clamp follow along. */
  551. tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
  552. }
  553. }
  554. tp->rcvq_space.space = copied;
  555. new_measure:
  556. tp->rcvq_space.seq = tp->copied_seq;
  557. tp->rcvq_space.time = tp->tcp_mstamp;
  558. }
  559. /* There is something which you must keep in mind when you analyze the
  560. * behavior of the tp->ato delayed ack timeout interval. When a
  561. * connection starts up, we want to ack as quickly as possible. The
  562. * problem is that "good" TCP's do slow start at the beginning of data
  563. * transmission. The means that until we send the first few ACK's the
  564. * sender will sit on his end and only queue most of his data, because
  565. * he can only send snd_cwnd unacked packets at any given time. For
  566. * each ACK we send, he increments snd_cwnd and transmits more of his
  567. * queue. -DaveM
  568. */
  569. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  570. {
  571. struct tcp_sock *tp = tcp_sk(sk);
  572. struct inet_connection_sock *icsk = inet_csk(sk);
  573. u32 now;
  574. inet_csk_schedule_ack(sk);
  575. tcp_measure_rcv_mss(sk, skb);
  576. tcp_rcv_rtt_measure(tp);
  577. now = tcp_jiffies32;
  578. if (!icsk->icsk_ack.ato) {
  579. /* The _first_ data packet received, initialize
  580. * delayed ACK engine.
  581. */
  582. tcp_incr_quickack(sk);
  583. icsk->icsk_ack.ato = TCP_ATO_MIN;
  584. } else {
  585. int m = now - icsk->icsk_ack.lrcvtime;
  586. if (m <= TCP_ATO_MIN / 2) {
  587. /* The fastest case is the first. */
  588. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  589. } else if (m < icsk->icsk_ack.ato) {
  590. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  591. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  592. icsk->icsk_ack.ato = icsk->icsk_rto;
  593. } else if (m > icsk->icsk_rto) {
  594. /* Too long gap. Apparently sender failed to
  595. * restart window, so that we send ACKs quickly.
  596. */
  597. tcp_incr_quickack(sk);
  598. sk_mem_reclaim(sk);
  599. }
  600. }
  601. icsk->icsk_ack.lrcvtime = now;
  602. tcp_ecn_check_ce(tp, skb);
  603. if (skb->len >= 128)
  604. tcp_grow_window(sk, skb);
  605. }
  606. /* Called to compute a smoothed rtt estimate. The data fed to this
  607. * routine either comes from timestamps, or from segments that were
  608. * known _not_ to have been retransmitted [see Karn/Partridge
  609. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  610. * piece by Van Jacobson.
  611. * NOTE: the next three routines used to be one big routine.
  612. * To save cycles in the RFC 1323 implementation it was better to break
  613. * it up into three procedures. -- erics
  614. */
  615. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  616. {
  617. struct tcp_sock *tp = tcp_sk(sk);
  618. long m = mrtt_us; /* RTT */
  619. u32 srtt = tp->srtt_us;
  620. /* The following amusing code comes from Jacobson's
  621. * article in SIGCOMM '88. Note that rtt and mdev
  622. * are scaled versions of rtt and mean deviation.
  623. * This is designed to be as fast as possible
  624. * m stands for "measurement".
  625. *
  626. * On a 1990 paper the rto value is changed to:
  627. * RTO = rtt + 4 * mdev
  628. *
  629. * Funny. This algorithm seems to be very broken.
  630. * These formulae increase RTO, when it should be decreased, increase
  631. * too slowly, when it should be increased quickly, decrease too quickly
  632. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  633. * does not matter how to _calculate_ it. Seems, it was trap
  634. * that VJ failed to avoid. 8)
  635. */
  636. if (srtt != 0) {
  637. m -= (srtt >> 3); /* m is now error in rtt est */
  638. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  639. if (m < 0) {
  640. m = -m; /* m is now abs(error) */
  641. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  642. /* This is similar to one of Eifel findings.
  643. * Eifel blocks mdev updates when rtt decreases.
  644. * This solution is a bit different: we use finer gain
  645. * for mdev in this case (alpha*beta).
  646. * Like Eifel it also prevents growth of rto,
  647. * but also it limits too fast rto decreases,
  648. * happening in pure Eifel.
  649. */
  650. if (m > 0)
  651. m >>= 3;
  652. } else {
  653. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  654. }
  655. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  656. if (tp->mdev_us > tp->mdev_max_us) {
  657. tp->mdev_max_us = tp->mdev_us;
  658. if (tp->mdev_max_us > tp->rttvar_us)
  659. tp->rttvar_us = tp->mdev_max_us;
  660. }
  661. if (after(tp->snd_una, tp->rtt_seq)) {
  662. if (tp->mdev_max_us < tp->rttvar_us)
  663. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  664. tp->rtt_seq = tp->snd_nxt;
  665. tp->mdev_max_us = tcp_rto_min_us(sk);
  666. }
  667. } else {
  668. /* no previous measure. */
  669. srtt = m << 3; /* take the measured time to be rtt */
  670. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  671. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  672. tp->mdev_max_us = tp->rttvar_us;
  673. tp->rtt_seq = tp->snd_nxt;
  674. }
  675. tp->srtt_us = max(1U, srtt);
  676. }
  677. static void tcp_update_pacing_rate(struct sock *sk)
  678. {
  679. const struct tcp_sock *tp = tcp_sk(sk);
  680. u64 rate;
  681. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  682. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  683. /* current rate is (cwnd * mss) / srtt
  684. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  685. * In Congestion Avoidance phase, set it to 120 % the current rate.
  686. *
  687. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  688. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  689. * end of slow start and should slow down.
  690. */
  691. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  692. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
  693. else
  694. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
  695. rate *= max(tp->snd_cwnd, tp->packets_out);
  696. if (likely(tp->srtt_us))
  697. do_div(rate, tp->srtt_us);
  698. /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
  699. * without any lock. We want to make sure compiler wont store
  700. * intermediate values in this location.
  701. */
  702. WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
  703. sk->sk_max_pacing_rate));
  704. }
  705. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  706. * routine referred to above.
  707. */
  708. static void tcp_set_rto(struct sock *sk)
  709. {
  710. const struct tcp_sock *tp = tcp_sk(sk);
  711. /* Old crap is replaced with new one. 8)
  712. *
  713. * More seriously:
  714. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  715. * It cannot be less due to utterly erratic ACK generation made
  716. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  717. * to do with delayed acks, because at cwnd>2 true delack timeout
  718. * is invisible. Actually, Linux-2.4 also generates erratic
  719. * ACKs in some circumstances.
  720. */
  721. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  722. /* 2. Fixups made earlier cannot be right.
  723. * If we do not estimate RTO correctly without them,
  724. * all the algo is pure shit and should be replaced
  725. * with correct one. It is exactly, which we pretend to do.
  726. */
  727. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  728. * guarantees that rto is higher.
  729. */
  730. tcp_bound_rto(sk);
  731. }
  732. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  733. {
  734. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  735. if (!cwnd)
  736. cwnd = TCP_INIT_CWND;
  737. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  738. }
  739. /* Take a notice that peer is sending D-SACKs */
  740. static void tcp_dsack_seen(struct tcp_sock *tp)
  741. {
  742. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  743. tp->rack.dsack_seen = 1;
  744. }
  745. /* It's reordering when higher sequence was delivered (i.e. sacked) before
  746. * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
  747. * distance is approximated in full-mss packet distance ("reordering").
  748. */
  749. static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
  750. const int ts)
  751. {
  752. struct tcp_sock *tp = tcp_sk(sk);
  753. const u32 mss = tp->mss_cache;
  754. u32 fack, metric;
  755. fack = tcp_highest_sack_seq(tp);
  756. if (!before(low_seq, fack))
  757. return;
  758. metric = fack - low_seq;
  759. if ((metric > tp->reordering * mss) && mss) {
  760. #if FASTRETRANS_DEBUG > 1
  761. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  762. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  763. tp->reordering,
  764. 0,
  765. tp->sacked_out,
  766. tp->undo_marker ? tp->undo_retrans : 0);
  767. #endif
  768. tp->reordering = min_t(u32, (metric + mss - 1) / mss,
  769. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  770. }
  771. tp->rack.reord = 1;
  772. /* This exciting event is worth to be remembered. 8) */
  773. NET_INC_STATS(sock_net(sk),
  774. ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
  775. }
  776. /* This must be called before lost_out is incremented */
  777. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  778. {
  779. if (!tp->retransmit_skb_hint ||
  780. before(TCP_SKB_CB(skb)->seq,
  781. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  782. tp->retransmit_skb_hint = skb;
  783. }
  784. /* Sum the number of packets on the wire we have marked as lost.
  785. * There are two cases we care about here:
  786. * a) Packet hasn't been marked lost (nor retransmitted),
  787. * and this is the first loss.
  788. * b) Packet has been marked both lost and retransmitted,
  789. * and this means we think it was lost again.
  790. */
  791. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  792. {
  793. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  794. if (!(sacked & TCPCB_LOST) ||
  795. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  796. tp->lost += tcp_skb_pcount(skb);
  797. }
  798. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  799. {
  800. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  801. tcp_verify_retransmit_hint(tp, skb);
  802. tp->lost_out += tcp_skb_pcount(skb);
  803. tcp_sum_lost(tp, skb);
  804. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  805. }
  806. }
  807. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  808. {
  809. tcp_verify_retransmit_hint(tp, skb);
  810. tcp_sum_lost(tp, skb);
  811. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  812. tp->lost_out += tcp_skb_pcount(skb);
  813. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  814. }
  815. }
  816. /* This procedure tags the retransmission queue when SACKs arrive.
  817. *
  818. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  819. * Packets in queue with these bits set are counted in variables
  820. * sacked_out, retrans_out and lost_out, correspondingly.
  821. *
  822. * Valid combinations are:
  823. * Tag InFlight Description
  824. * 0 1 - orig segment is in flight.
  825. * S 0 - nothing flies, orig reached receiver.
  826. * L 0 - nothing flies, orig lost by net.
  827. * R 2 - both orig and retransmit are in flight.
  828. * L|R 1 - orig is lost, retransmit is in flight.
  829. * S|R 1 - orig reached receiver, retrans is still in flight.
  830. * (L|S|R is logically valid, it could occur when L|R is sacked,
  831. * but it is equivalent to plain S and code short-curcuits it to S.
  832. * L|S is logically invalid, it would mean -1 packet in flight 8))
  833. *
  834. * These 6 states form finite state machine, controlled by the following events:
  835. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  836. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  837. * 3. Loss detection event of two flavors:
  838. * A. Scoreboard estimator decided the packet is lost.
  839. * A'. Reno "three dupacks" marks head of queue lost.
  840. * B. SACK arrives sacking SND.NXT at the moment, when the
  841. * segment was retransmitted.
  842. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  843. *
  844. * It is pleasant to note, that state diagram turns out to be commutative,
  845. * so that we are allowed not to be bothered by order of our actions,
  846. * when multiple events arrive simultaneously. (see the function below).
  847. *
  848. * Reordering detection.
  849. * --------------------
  850. * Reordering metric is maximal distance, which a packet can be displaced
  851. * in packet stream. With SACKs we can estimate it:
  852. *
  853. * 1. SACK fills old hole and the corresponding segment was not
  854. * ever retransmitted -> reordering. Alas, we cannot use it
  855. * when segment was retransmitted.
  856. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  857. * for retransmitted and already SACKed segment -> reordering..
  858. * Both of these heuristics are not used in Loss state, when we cannot
  859. * account for retransmits accurately.
  860. *
  861. * SACK block validation.
  862. * ----------------------
  863. *
  864. * SACK block range validation checks that the received SACK block fits to
  865. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  866. * Note that SND.UNA is not included to the range though being valid because
  867. * it means that the receiver is rather inconsistent with itself reporting
  868. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  869. * perfectly valid, however, in light of RFC2018 which explicitly states
  870. * that "SACK block MUST reflect the newest segment. Even if the newest
  871. * segment is going to be discarded ...", not that it looks very clever
  872. * in case of head skb. Due to potentional receiver driven attacks, we
  873. * choose to avoid immediate execution of a walk in write queue due to
  874. * reneging and defer head skb's loss recovery to standard loss recovery
  875. * procedure that will eventually trigger (nothing forbids us doing this).
  876. *
  877. * Implements also blockage to start_seq wrap-around. Problem lies in the
  878. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  879. * there's no guarantee that it will be before snd_nxt (n). The problem
  880. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  881. * wrap (s_w):
  882. *
  883. * <- outs wnd -> <- wrapzone ->
  884. * u e n u_w e_w s n_w
  885. * | | | | | | |
  886. * |<------------+------+----- TCP seqno space --------------+---------->|
  887. * ...-- <2^31 ->| |<--------...
  888. * ...---- >2^31 ------>| |<--------...
  889. *
  890. * Current code wouldn't be vulnerable but it's better still to discard such
  891. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  892. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  893. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  894. * equal to the ideal case (infinite seqno space without wrap caused issues).
  895. *
  896. * With D-SACK the lower bound is extended to cover sequence space below
  897. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  898. * again, D-SACK block must not to go across snd_una (for the same reason as
  899. * for the normal SACK blocks, explained above). But there all simplicity
  900. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  901. * fully below undo_marker they do not affect behavior in anyway and can
  902. * therefore be safely ignored. In rare cases (which are more or less
  903. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  904. * fragmentation and packet reordering past skb's retransmission. To consider
  905. * them correctly, the acceptable range must be extended even more though
  906. * the exact amount is rather hard to quantify. However, tp->max_window can
  907. * be used as an exaggerated estimate.
  908. */
  909. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  910. u32 start_seq, u32 end_seq)
  911. {
  912. /* Too far in future, or reversed (interpretation is ambiguous) */
  913. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  914. return false;
  915. /* Nasty start_seq wrap-around check (see comments above) */
  916. if (!before(start_seq, tp->snd_nxt))
  917. return false;
  918. /* In outstanding window? ...This is valid exit for D-SACKs too.
  919. * start_seq == snd_una is non-sensical (see comments above)
  920. */
  921. if (after(start_seq, tp->snd_una))
  922. return true;
  923. if (!is_dsack || !tp->undo_marker)
  924. return false;
  925. /* ...Then it's D-SACK, and must reside below snd_una completely */
  926. if (after(end_seq, tp->snd_una))
  927. return false;
  928. if (!before(start_seq, tp->undo_marker))
  929. return true;
  930. /* Too old */
  931. if (!after(end_seq, tp->undo_marker))
  932. return false;
  933. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  934. * start_seq < undo_marker and end_seq >= undo_marker.
  935. */
  936. return !before(start_seq, end_seq - tp->max_window);
  937. }
  938. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  939. struct tcp_sack_block_wire *sp, int num_sacks,
  940. u32 prior_snd_una)
  941. {
  942. struct tcp_sock *tp = tcp_sk(sk);
  943. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  944. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  945. bool dup_sack = false;
  946. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  947. dup_sack = true;
  948. tcp_dsack_seen(tp);
  949. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  950. } else if (num_sacks > 1) {
  951. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  952. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  953. if (!after(end_seq_0, end_seq_1) &&
  954. !before(start_seq_0, start_seq_1)) {
  955. dup_sack = true;
  956. tcp_dsack_seen(tp);
  957. NET_INC_STATS(sock_net(sk),
  958. LINUX_MIB_TCPDSACKOFORECV);
  959. }
  960. }
  961. /* D-SACK for already forgotten data... Do dumb counting. */
  962. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  963. !after(end_seq_0, prior_snd_una) &&
  964. after(end_seq_0, tp->undo_marker))
  965. tp->undo_retrans--;
  966. return dup_sack;
  967. }
  968. struct tcp_sacktag_state {
  969. u32 reord;
  970. /* Timestamps for earliest and latest never-retransmitted segment
  971. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  972. * but congestion control should still get an accurate delay signal.
  973. */
  974. u64 first_sackt;
  975. u64 last_sackt;
  976. struct rate_sample *rate;
  977. int flag;
  978. unsigned int mss_now;
  979. };
  980. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  981. * the incoming SACK may not exactly match but we can find smaller MSS
  982. * aligned portion of it that matches. Therefore we might need to fragment
  983. * which may fail and creates some hassle (caller must handle error case
  984. * returns).
  985. *
  986. * FIXME: this could be merged to shift decision code
  987. */
  988. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  989. u32 start_seq, u32 end_seq)
  990. {
  991. int err;
  992. bool in_sack;
  993. unsigned int pkt_len;
  994. unsigned int mss;
  995. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  996. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  997. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  998. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  999. mss = tcp_skb_mss(skb);
  1000. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1001. if (!in_sack) {
  1002. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1003. if (pkt_len < mss)
  1004. pkt_len = mss;
  1005. } else {
  1006. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1007. if (pkt_len < mss)
  1008. return -EINVAL;
  1009. }
  1010. /* Round if necessary so that SACKs cover only full MSSes
  1011. * and/or the remaining small portion (if present)
  1012. */
  1013. if (pkt_len > mss) {
  1014. unsigned int new_len = (pkt_len / mss) * mss;
  1015. if (!in_sack && new_len < pkt_len)
  1016. new_len += mss;
  1017. pkt_len = new_len;
  1018. }
  1019. if (pkt_len >= skb->len && !in_sack)
  1020. return 0;
  1021. err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1022. pkt_len, mss, GFP_ATOMIC);
  1023. if (err < 0)
  1024. return err;
  1025. }
  1026. return in_sack;
  1027. }
  1028. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1029. static u8 tcp_sacktag_one(struct sock *sk,
  1030. struct tcp_sacktag_state *state, u8 sacked,
  1031. u32 start_seq, u32 end_seq,
  1032. int dup_sack, int pcount,
  1033. u64 xmit_time)
  1034. {
  1035. struct tcp_sock *tp = tcp_sk(sk);
  1036. /* Account D-SACK for retransmitted packet. */
  1037. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1038. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1039. after(end_seq, tp->undo_marker))
  1040. tp->undo_retrans--;
  1041. if ((sacked & TCPCB_SACKED_ACKED) &&
  1042. before(start_seq, state->reord))
  1043. state->reord = start_seq;
  1044. }
  1045. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1046. if (!after(end_seq, tp->snd_una))
  1047. return sacked;
  1048. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1049. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1050. if (sacked & TCPCB_SACKED_RETRANS) {
  1051. /* If the segment is not tagged as lost,
  1052. * we do not clear RETRANS, believing
  1053. * that retransmission is still in flight.
  1054. */
  1055. if (sacked & TCPCB_LOST) {
  1056. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1057. tp->lost_out -= pcount;
  1058. tp->retrans_out -= pcount;
  1059. }
  1060. } else {
  1061. if (!(sacked & TCPCB_RETRANS)) {
  1062. /* New sack for not retransmitted frame,
  1063. * which was in hole. It is reordering.
  1064. */
  1065. if (before(start_seq,
  1066. tcp_highest_sack_seq(tp)) &&
  1067. before(start_seq, state->reord))
  1068. state->reord = start_seq;
  1069. if (!after(end_seq, tp->high_seq))
  1070. state->flag |= FLAG_ORIG_SACK_ACKED;
  1071. if (state->first_sackt == 0)
  1072. state->first_sackt = xmit_time;
  1073. state->last_sackt = xmit_time;
  1074. }
  1075. if (sacked & TCPCB_LOST) {
  1076. sacked &= ~TCPCB_LOST;
  1077. tp->lost_out -= pcount;
  1078. }
  1079. }
  1080. sacked |= TCPCB_SACKED_ACKED;
  1081. state->flag |= FLAG_DATA_SACKED;
  1082. tp->sacked_out += pcount;
  1083. tp->delivered += pcount; /* Out-of-order packets delivered */
  1084. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1085. if (tp->lost_skb_hint &&
  1086. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1087. tp->lost_cnt_hint += pcount;
  1088. }
  1089. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1090. * frames and clear it. undo_retrans is decreased above, L|R frames
  1091. * are accounted above as well.
  1092. */
  1093. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1094. sacked &= ~TCPCB_SACKED_RETRANS;
  1095. tp->retrans_out -= pcount;
  1096. }
  1097. return sacked;
  1098. }
  1099. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1100. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1101. */
  1102. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
  1103. struct sk_buff *skb,
  1104. struct tcp_sacktag_state *state,
  1105. unsigned int pcount, int shifted, int mss,
  1106. bool dup_sack)
  1107. {
  1108. struct tcp_sock *tp = tcp_sk(sk);
  1109. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1110. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1111. BUG_ON(!pcount);
  1112. /* Adjust counters and hints for the newly sacked sequence
  1113. * range but discard the return value since prev is already
  1114. * marked. We must tag the range first because the seq
  1115. * advancement below implicitly advances
  1116. * tcp_highest_sack_seq() when skb is highest_sack.
  1117. */
  1118. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1119. start_seq, end_seq, dup_sack, pcount,
  1120. skb->skb_mstamp);
  1121. tcp_rate_skb_delivered(sk, skb, state->rate);
  1122. if (skb == tp->lost_skb_hint)
  1123. tp->lost_cnt_hint += pcount;
  1124. TCP_SKB_CB(prev)->end_seq += shifted;
  1125. TCP_SKB_CB(skb)->seq += shifted;
  1126. tcp_skb_pcount_add(prev, pcount);
  1127. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1128. tcp_skb_pcount_add(skb, -pcount);
  1129. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1130. * in theory this shouldn't be necessary but as long as DSACK
  1131. * code can come after this skb later on it's better to keep
  1132. * setting gso_size to something.
  1133. */
  1134. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1135. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1136. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1137. if (tcp_skb_pcount(skb) <= 1)
  1138. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1139. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1140. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1141. if (skb->len > 0) {
  1142. BUG_ON(!tcp_skb_pcount(skb));
  1143. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1144. return false;
  1145. }
  1146. /* Whole SKB was eaten :-) */
  1147. if (skb == tp->retransmit_skb_hint)
  1148. tp->retransmit_skb_hint = prev;
  1149. if (skb == tp->lost_skb_hint) {
  1150. tp->lost_skb_hint = prev;
  1151. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1152. }
  1153. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1154. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1155. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1156. TCP_SKB_CB(prev)->end_seq++;
  1157. if (skb == tcp_highest_sack(sk))
  1158. tcp_advance_highest_sack(sk, skb);
  1159. tcp_skb_collapse_tstamp(prev, skb);
  1160. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1161. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1162. tcp_rtx_queue_unlink_and_free(skb, sk);
  1163. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1164. return true;
  1165. }
  1166. /* I wish gso_size would have a bit more sane initialization than
  1167. * something-or-zero which complicates things
  1168. */
  1169. static int tcp_skb_seglen(const struct sk_buff *skb)
  1170. {
  1171. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1172. }
  1173. /* Shifting pages past head area doesn't work */
  1174. static int skb_can_shift(const struct sk_buff *skb)
  1175. {
  1176. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1177. }
  1178. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1179. * skb.
  1180. */
  1181. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1182. struct tcp_sacktag_state *state,
  1183. u32 start_seq, u32 end_seq,
  1184. bool dup_sack)
  1185. {
  1186. struct tcp_sock *tp = tcp_sk(sk);
  1187. struct sk_buff *prev;
  1188. int mss;
  1189. int pcount = 0;
  1190. int len;
  1191. int in_sack;
  1192. if (!sk_can_gso(sk))
  1193. goto fallback;
  1194. /* Normally R but no L won't result in plain S */
  1195. if (!dup_sack &&
  1196. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1197. goto fallback;
  1198. if (!skb_can_shift(skb))
  1199. goto fallback;
  1200. /* This frame is about to be dropped (was ACKed). */
  1201. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1202. goto fallback;
  1203. /* Can only happen with delayed DSACK + discard craziness */
  1204. prev = skb_rb_prev(skb);
  1205. if (!prev)
  1206. goto fallback;
  1207. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1208. goto fallback;
  1209. if (!tcp_skb_can_collapse_to(prev))
  1210. goto fallback;
  1211. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1212. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1213. if (in_sack) {
  1214. len = skb->len;
  1215. pcount = tcp_skb_pcount(skb);
  1216. mss = tcp_skb_seglen(skb);
  1217. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1218. * drop this restriction as unnecessary
  1219. */
  1220. if (mss != tcp_skb_seglen(prev))
  1221. goto fallback;
  1222. } else {
  1223. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1224. goto noop;
  1225. /* CHECKME: This is non-MSS split case only?, this will
  1226. * cause skipped skbs due to advancing loop btw, original
  1227. * has that feature too
  1228. */
  1229. if (tcp_skb_pcount(skb) <= 1)
  1230. goto noop;
  1231. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1232. if (!in_sack) {
  1233. /* TODO: head merge to next could be attempted here
  1234. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1235. * though it might not be worth of the additional hassle
  1236. *
  1237. * ...we can probably just fallback to what was done
  1238. * previously. We could try merging non-SACKed ones
  1239. * as well but it probably isn't going to buy off
  1240. * because later SACKs might again split them, and
  1241. * it would make skb timestamp tracking considerably
  1242. * harder problem.
  1243. */
  1244. goto fallback;
  1245. }
  1246. len = end_seq - TCP_SKB_CB(skb)->seq;
  1247. BUG_ON(len < 0);
  1248. BUG_ON(len > skb->len);
  1249. /* MSS boundaries should be honoured or else pcount will
  1250. * severely break even though it makes things bit trickier.
  1251. * Optimize common case to avoid most of the divides
  1252. */
  1253. mss = tcp_skb_mss(skb);
  1254. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1255. * drop this restriction as unnecessary
  1256. */
  1257. if (mss != tcp_skb_seglen(prev))
  1258. goto fallback;
  1259. if (len == mss) {
  1260. pcount = 1;
  1261. } else if (len < mss) {
  1262. goto noop;
  1263. } else {
  1264. pcount = len / mss;
  1265. len = pcount * mss;
  1266. }
  1267. }
  1268. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1269. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1270. goto fallback;
  1271. if (!skb_shift(prev, skb, len))
  1272. goto fallback;
  1273. if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
  1274. goto out;
  1275. /* Hole filled allows collapsing with the next as well, this is very
  1276. * useful when hole on every nth skb pattern happens
  1277. */
  1278. skb = skb_rb_next(prev);
  1279. if (!skb)
  1280. goto out;
  1281. if (!skb_can_shift(skb) ||
  1282. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1283. (mss != tcp_skb_seglen(skb)))
  1284. goto out;
  1285. len = skb->len;
  1286. if (skb_shift(prev, skb, len)) {
  1287. pcount += tcp_skb_pcount(skb);
  1288. tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
  1289. len, mss, 0);
  1290. }
  1291. out:
  1292. return prev;
  1293. noop:
  1294. return skb;
  1295. fallback:
  1296. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1297. return NULL;
  1298. }
  1299. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1300. struct tcp_sack_block *next_dup,
  1301. struct tcp_sacktag_state *state,
  1302. u32 start_seq, u32 end_seq,
  1303. bool dup_sack_in)
  1304. {
  1305. struct tcp_sock *tp = tcp_sk(sk);
  1306. struct sk_buff *tmp;
  1307. skb_rbtree_walk_from(skb) {
  1308. int in_sack = 0;
  1309. bool dup_sack = dup_sack_in;
  1310. /* queue is in-order => we can short-circuit the walk early */
  1311. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1312. break;
  1313. if (next_dup &&
  1314. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1315. in_sack = tcp_match_skb_to_sack(sk, skb,
  1316. next_dup->start_seq,
  1317. next_dup->end_seq);
  1318. if (in_sack > 0)
  1319. dup_sack = true;
  1320. }
  1321. /* skb reference here is a bit tricky to get right, since
  1322. * shifting can eat and free both this skb and the next,
  1323. * so not even _safe variant of the loop is enough.
  1324. */
  1325. if (in_sack <= 0) {
  1326. tmp = tcp_shift_skb_data(sk, skb, state,
  1327. start_seq, end_seq, dup_sack);
  1328. if (tmp) {
  1329. if (tmp != skb) {
  1330. skb = tmp;
  1331. continue;
  1332. }
  1333. in_sack = 0;
  1334. } else {
  1335. in_sack = tcp_match_skb_to_sack(sk, skb,
  1336. start_seq,
  1337. end_seq);
  1338. }
  1339. }
  1340. if (unlikely(in_sack < 0))
  1341. break;
  1342. if (in_sack) {
  1343. TCP_SKB_CB(skb)->sacked =
  1344. tcp_sacktag_one(sk,
  1345. state,
  1346. TCP_SKB_CB(skb)->sacked,
  1347. TCP_SKB_CB(skb)->seq,
  1348. TCP_SKB_CB(skb)->end_seq,
  1349. dup_sack,
  1350. tcp_skb_pcount(skb),
  1351. skb->skb_mstamp);
  1352. tcp_rate_skb_delivered(sk, skb, state->rate);
  1353. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1354. list_del_init(&skb->tcp_tsorted_anchor);
  1355. if (!before(TCP_SKB_CB(skb)->seq,
  1356. tcp_highest_sack_seq(tp)))
  1357. tcp_advance_highest_sack(sk, skb);
  1358. }
  1359. }
  1360. return skb;
  1361. }
  1362. static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
  1363. struct tcp_sacktag_state *state,
  1364. u32 seq)
  1365. {
  1366. struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
  1367. struct sk_buff *skb;
  1368. while (*p) {
  1369. parent = *p;
  1370. skb = rb_to_skb(parent);
  1371. if (before(seq, TCP_SKB_CB(skb)->seq)) {
  1372. p = &parent->rb_left;
  1373. continue;
  1374. }
  1375. if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
  1376. p = &parent->rb_right;
  1377. continue;
  1378. }
  1379. return skb;
  1380. }
  1381. return NULL;
  1382. }
  1383. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1384. struct tcp_sacktag_state *state,
  1385. u32 skip_to_seq)
  1386. {
  1387. if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
  1388. return skb;
  1389. return tcp_sacktag_bsearch(sk, state, skip_to_seq);
  1390. }
  1391. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1392. struct sock *sk,
  1393. struct tcp_sack_block *next_dup,
  1394. struct tcp_sacktag_state *state,
  1395. u32 skip_to_seq)
  1396. {
  1397. if (!next_dup)
  1398. return skb;
  1399. if (before(next_dup->start_seq, skip_to_seq)) {
  1400. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1401. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1402. next_dup->start_seq, next_dup->end_seq,
  1403. 1);
  1404. }
  1405. return skb;
  1406. }
  1407. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1408. {
  1409. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1410. }
  1411. static int
  1412. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1413. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1414. {
  1415. struct tcp_sock *tp = tcp_sk(sk);
  1416. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1417. TCP_SKB_CB(ack_skb)->sacked);
  1418. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1419. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1420. struct tcp_sack_block *cache;
  1421. struct sk_buff *skb;
  1422. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1423. int used_sacks;
  1424. bool found_dup_sack = false;
  1425. int i, j;
  1426. int first_sack_index;
  1427. state->flag = 0;
  1428. state->reord = tp->snd_nxt;
  1429. if (!tp->sacked_out)
  1430. tcp_highest_sack_reset(sk);
  1431. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1432. num_sacks, prior_snd_una);
  1433. if (found_dup_sack) {
  1434. state->flag |= FLAG_DSACKING_ACK;
  1435. tp->delivered++; /* A spurious retransmission is delivered */
  1436. }
  1437. /* Eliminate too old ACKs, but take into
  1438. * account more or less fresh ones, they can
  1439. * contain valid SACK info.
  1440. */
  1441. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1442. return 0;
  1443. if (!tp->packets_out)
  1444. goto out;
  1445. used_sacks = 0;
  1446. first_sack_index = 0;
  1447. for (i = 0; i < num_sacks; i++) {
  1448. bool dup_sack = !i && found_dup_sack;
  1449. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1450. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1451. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1452. sp[used_sacks].start_seq,
  1453. sp[used_sacks].end_seq)) {
  1454. int mib_idx;
  1455. if (dup_sack) {
  1456. if (!tp->undo_marker)
  1457. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1458. else
  1459. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1460. } else {
  1461. /* Don't count olds caused by ACK reordering */
  1462. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1463. !after(sp[used_sacks].end_seq, tp->snd_una))
  1464. continue;
  1465. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1466. }
  1467. NET_INC_STATS(sock_net(sk), mib_idx);
  1468. if (i == 0)
  1469. first_sack_index = -1;
  1470. continue;
  1471. }
  1472. /* Ignore very old stuff early */
  1473. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1474. continue;
  1475. used_sacks++;
  1476. }
  1477. /* order SACK blocks to allow in order walk of the retrans queue */
  1478. for (i = used_sacks - 1; i > 0; i--) {
  1479. for (j = 0; j < i; j++) {
  1480. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1481. swap(sp[j], sp[j + 1]);
  1482. /* Track where the first SACK block goes to */
  1483. if (j == first_sack_index)
  1484. first_sack_index = j + 1;
  1485. }
  1486. }
  1487. }
  1488. state->mss_now = tcp_current_mss(sk);
  1489. skb = NULL;
  1490. i = 0;
  1491. if (!tp->sacked_out) {
  1492. /* It's already past, so skip checking against it */
  1493. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1494. } else {
  1495. cache = tp->recv_sack_cache;
  1496. /* Skip empty blocks in at head of the cache */
  1497. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1498. !cache->end_seq)
  1499. cache++;
  1500. }
  1501. while (i < used_sacks) {
  1502. u32 start_seq = sp[i].start_seq;
  1503. u32 end_seq = sp[i].end_seq;
  1504. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1505. struct tcp_sack_block *next_dup = NULL;
  1506. if (found_dup_sack && ((i + 1) == first_sack_index))
  1507. next_dup = &sp[i + 1];
  1508. /* Skip too early cached blocks */
  1509. while (tcp_sack_cache_ok(tp, cache) &&
  1510. !before(start_seq, cache->end_seq))
  1511. cache++;
  1512. /* Can skip some work by looking recv_sack_cache? */
  1513. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1514. after(end_seq, cache->start_seq)) {
  1515. /* Head todo? */
  1516. if (before(start_seq, cache->start_seq)) {
  1517. skb = tcp_sacktag_skip(skb, sk, state,
  1518. start_seq);
  1519. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1520. state,
  1521. start_seq,
  1522. cache->start_seq,
  1523. dup_sack);
  1524. }
  1525. /* Rest of the block already fully processed? */
  1526. if (!after(end_seq, cache->end_seq))
  1527. goto advance_sp;
  1528. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1529. state,
  1530. cache->end_seq);
  1531. /* ...tail remains todo... */
  1532. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1533. /* ...but better entrypoint exists! */
  1534. skb = tcp_highest_sack(sk);
  1535. if (!skb)
  1536. break;
  1537. cache++;
  1538. goto walk;
  1539. }
  1540. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1541. /* Check overlap against next cached too (past this one already) */
  1542. cache++;
  1543. continue;
  1544. }
  1545. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1546. skb = tcp_highest_sack(sk);
  1547. if (!skb)
  1548. break;
  1549. }
  1550. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1551. walk:
  1552. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1553. start_seq, end_seq, dup_sack);
  1554. advance_sp:
  1555. i++;
  1556. }
  1557. /* Clear the head of the cache sack blocks so we can skip it next time */
  1558. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1559. tp->recv_sack_cache[i].start_seq = 0;
  1560. tp->recv_sack_cache[i].end_seq = 0;
  1561. }
  1562. for (j = 0; j < used_sacks; j++)
  1563. tp->recv_sack_cache[i++] = sp[j];
  1564. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
  1565. tcp_check_sack_reordering(sk, state->reord, 0);
  1566. tcp_verify_left_out(tp);
  1567. out:
  1568. #if FASTRETRANS_DEBUG > 0
  1569. WARN_ON((int)tp->sacked_out < 0);
  1570. WARN_ON((int)tp->lost_out < 0);
  1571. WARN_ON((int)tp->retrans_out < 0);
  1572. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1573. #endif
  1574. return state->flag;
  1575. }
  1576. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1577. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1578. */
  1579. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1580. {
  1581. u32 holes;
  1582. holes = max(tp->lost_out, 1U);
  1583. holes = min(holes, tp->packets_out);
  1584. if ((tp->sacked_out + holes) > tp->packets_out) {
  1585. tp->sacked_out = tp->packets_out - holes;
  1586. return true;
  1587. }
  1588. return false;
  1589. }
  1590. /* If we receive more dupacks than we expected counting segments
  1591. * in assumption of absent reordering, interpret this as reordering.
  1592. * The only another reason could be bug in receiver TCP.
  1593. */
  1594. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1595. {
  1596. struct tcp_sock *tp = tcp_sk(sk);
  1597. if (!tcp_limit_reno_sacked(tp))
  1598. return;
  1599. tp->reordering = min_t(u32, tp->packets_out + addend,
  1600. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  1601. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
  1602. }
  1603. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1604. static void tcp_add_reno_sack(struct sock *sk)
  1605. {
  1606. struct tcp_sock *tp = tcp_sk(sk);
  1607. u32 prior_sacked = tp->sacked_out;
  1608. tp->sacked_out++;
  1609. tcp_check_reno_reordering(sk, 0);
  1610. if (tp->sacked_out > prior_sacked)
  1611. tp->delivered++; /* Some out-of-order packet is delivered */
  1612. tcp_verify_left_out(tp);
  1613. }
  1614. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1615. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1616. {
  1617. struct tcp_sock *tp = tcp_sk(sk);
  1618. if (acked > 0) {
  1619. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1620. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1621. if (acked - 1 >= tp->sacked_out)
  1622. tp->sacked_out = 0;
  1623. else
  1624. tp->sacked_out -= acked - 1;
  1625. }
  1626. tcp_check_reno_reordering(sk, acked);
  1627. tcp_verify_left_out(tp);
  1628. }
  1629. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1630. {
  1631. tp->sacked_out = 0;
  1632. }
  1633. void tcp_clear_retrans(struct tcp_sock *tp)
  1634. {
  1635. tp->retrans_out = 0;
  1636. tp->lost_out = 0;
  1637. tp->undo_marker = 0;
  1638. tp->undo_retrans = -1;
  1639. tp->sacked_out = 0;
  1640. }
  1641. static inline void tcp_init_undo(struct tcp_sock *tp)
  1642. {
  1643. tp->undo_marker = tp->snd_una;
  1644. /* Retransmission still in flight may cause DSACKs later. */
  1645. tp->undo_retrans = tp->retrans_out ? : -1;
  1646. }
  1647. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1648. * and reset tags completely, otherwise preserve SACKs. If receiver
  1649. * dropped its ofo queue, we will know this due to reneging detection.
  1650. */
  1651. void tcp_enter_loss(struct sock *sk)
  1652. {
  1653. const struct inet_connection_sock *icsk = inet_csk(sk);
  1654. struct tcp_sock *tp = tcp_sk(sk);
  1655. struct net *net = sock_net(sk);
  1656. struct sk_buff *skb;
  1657. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1658. bool is_reneg; /* is receiver reneging on SACKs? */
  1659. bool mark_lost;
  1660. /* Reduce ssthresh if it has not yet been made inside this window. */
  1661. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1662. !after(tp->high_seq, tp->snd_una) ||
  1663. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1664. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1665. tp->prior_cwnd = tp->snd_cwnd;
  1666. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1667. tcp_ca_event(sk, CA_EVENT_LOSS);
  1668. tcp_init_undo(tp);
  1669. }
  1670. tp->snd_cwnd = 1;
  1671. tp->snd_cwnd_cnt = 0;
  1672. tp->snd_cwnd_stamp = tcp_jiffies32;
  1673. tp->retrans_out = 0;
  1674. tp->lost_out = 0;
  1675. if (tcp_is_reno(tp))
  1676. tcp_reset_reno_sack(tp);
  1677. skb = tcp_rtx_queue_head(sk);
  1678. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1679. if (is_reneg) {
  1680. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1681. tp->sacked_out = 0;
  1682. /* Mark SACK reneging until we recover from this loss event. */
  1683. tp->is_sack_reneg = 1;
  1684. }
  1685. tcp_clear_all_retrans_hints(tp);
  1686. skb_rbtree_walk_from(skb) {
  1687. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1688. is_reneg);
  1689. if (mark_lost)
  1690. tcp_sum_lost(tp, skb);
  1691. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1692. if (mark_lost) {
  1693. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1694. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1695. tp->lost_out += tcp_skb_pcount(skb);
  1696. }
  1697. }
  1698. tcp_verify_left_out(tp);
  1699. /* Timeout in disordered state after receiving substantial DUPACKs
  1700. * suggests that the degree of reordering is over-estimated.
  1701. */
  1702. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1703. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1704. tp->reordering = min_t(unsigned int, tp->reordering,
  1705. net->ipv4.sysctl_tcp_reordering);
  1706. tcp_set_ca_state(sk, TCP_CA_Loss);
  1707. tp->high_seq = tp->snd_nxt;
  1708. tcp_ecn_queue_cwr(tp);
  1709. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1710. * loss recovery is underway except recurring timeout(s) on
  1711. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1712. *
  1713. * In theory F-RTO can be used repeatedly during loss recovery.
  1714. * In practice this interacts badly with broken middle-boxes that
  1715. * falsely raise the receive window, which results in repeated
  1716. * timeouts and stop-and-go behavior.
  1717. */
  1718. tp->frto = net->ipv4.sysctl_tcp_frto &&
  1719. (new_recovery || icsk->icsk_retransmits) &&
  1720. !inet_csk(sk)->icsk_mtup.probe_size;
  1721. }
  1722. /* If ACK arrived pointing to a remembered SACK, it means that our
  1723. * remembered SACKs do not reflect real state of receiver i.e.
  1724. * receiver _host_ is heavily congested (or buggy).
  1725. *
  1726. * To avoid big spurious retransmission bursts due to transient SACK
  1727. * scoreboard oddities that look like reneging, we give the receiver a
  1728. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1729. * restore sanity to the SACK scoreboard. If the apparent reneging
  1730. * persists until this RTO then we'll clear the SACK scoreboard.
  1731. */
  1732. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1733. {
  1734. if (flag & FLAG_SACK_RENEGING) {
  1735. struct tcp_sock *tp = tcp_sk(sk);
  1736. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1737. msecs_to_jiffies(10));
  1738. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1739. delay, TCP_RTO_MAX);
  1740. return true;
  1741. }
  1742. return false;
  1743. }
  1744. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1745. * counter when SACK is enabled (without SACK, sacked_out is used for
  1746. * that purpose).
  1747. *
  1748. * With reordering, holes may still be in flight, so RFC3517 recovery
  1749. * uses pure sacked_out (total number of SACKed segments) even though
  1750. * it violates the RFC that uses duplicate ACKs, often these are equal
  1751. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1752. * they differ. Since neither occurs due to loss, TCP should really
  1753. * ignore them.
  1754. */
  1755. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1756. {
  1757. return tp->sacked_out + 1;
  1758. }
  1759. /* Linux NewReno/SACK/ECN state machine.
  1760. * --------------------------------------
  1761. *
  1762. * "Open" Normal state, no dubious events, fast path.
  1763. * "Disorder" In all the respects it is "Open",
  1764. * but requires a bit more attention. It is entered when
  1765. * we see some SACKs or dupacks. It is split of "Open"
  1766. * mainly to move some processing from fast path to slow one.
  1767. * "CWR" CWND was reduced due to some Congestion Notification event.
  1768. * It can be ECN, ICMP source quench, local device congestion.
  1769. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1770. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1771. *
  1772. * tcp_fastretrans_alert() is entered:
  1773. * - each incoming ACK, if state is not "Open"
  1774. * - when arrived ACK is unusual, namely:
  1775. * * SACK
  1776. * * Duplicate ACK.
  1777. * * ECN ECE.
  1778. *
  1779. * Counting packets in flight is pretty simple.
  1780. *
  1781. * in_flight = packets_out - left_out + retrans_out
  1782. *
  1783. * packets_out is SND.NXT-SND.UNA counted in packets.
  1784. *
  1785. * retrans_out is number of retransmitted segments.
  1786. *
  1787. * left_out is number of segments left network, but not ACKed yet.
  1788. *
  1789. * left_out = sacked_out + lost_out
  1790. *
  1791. * sacked_out: Packets, which arrived to receiver out of order
  1792. * and hence not ACKed. With SACKs this number is simply
  1793. * amount of SACKed data. Even without SACKs
  1794. * it is easy to give pretty reliable estimate of this number,
  1795. * counting duplicate ACKs.
  1796. *
  1797. * lost_out: Packets lost by network. TCP has no explicit
  1798. * "loss notification" feedback from network (for now).
  1799. * It means that this number can be only _guessed_.
  1800. * Actually, it is the heuristics to predict lossage that
  1801. * distinguishes different algorithms.
  1802. *
  1803. * F.e. after RTO, when all the queue is considered as lost,
  1804. * lost_out = packets_out and in_flight = retrans_out.
  1805. *
  1806. * Essentially, we have now a few algorithms detecting
  1807. * lost packets.
  1808. *
  1809. * If the receiver supports SACK:
  1810. *
  1811. * RFC6675/3517: It is the conventional algorithm. A packet is
  1812. * considered lost if the number of higher sequence packets
  1813. * SACKed is greater than or equal the DUPACK thoreshold
  1814. * (reordering). This is implemented in tcp_mark_head_lost and
  1815. * tcp_update_scoreboard.
  1816. *
  1817. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1818. * (2017-) that checks timing instead of counting DUPACKs.
  1819. * Essentially a packet is considered lost if it's not S/ACKed
  1820. * after RTT + reordering_window, where both metrics are
  1821. * dynamically measured and adjusted. This is implemented in
  1822. * tcp_rack_mark_lost.
  1823. *
  1824. * If the receiver does not support SACK:
  1825. *
  1826. * NewReno (RFC6582): in Recovery we assume that one segment
  1827. * is lost (classic Reno). While we are in Recovery and
  1828. * a partial ACK arrives, we assume that one more packet
  1829. * is lost (NewReno). This heuristics are the same in NewReno
  1830. * and SACK.
  1831. *
  1832. * Really tricky (and requiring careful tuning) part of algorithm
  1833. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1834. * The first determines the moment _when_ we should reduce CWND and,
  1835. * hence, slow down forward transmission. In fact, it determines the moment
  1836. * when we decide that hole is caused by loss, rather than by a reorder.
  1837. *
  1838. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1839. * holes, caused by lost packets.
  1840. *
  1841. * And the most logically complicated part of algorithm is undo
  1842. * heuristics. We detect false retransmits due to both too early
  1843. * fast retransmit (reordering) and underestimated RTO, analyzing
  1844. * timestamps and D-SACKs. When we detect that some segments were
  1845. * retransmitted by mistake and CWND reduction was wrong, we undo
  1846. * window reduction and abort recovery phase. This logic is hidden
  1847. * inside several functions named tcp_try_undo_<something>.
  1848. */
  1849. /* This function decides, when we should leave Disordered state
  1850. * and enter Recovery phase, reducing congestion window.
  1851. *
  1852. * Main question: may we further continue forward transmission
  1853. * with the same cwnd?
  1854. */
  1855. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1856. {
  1857. struct tcp_sock *tp = tcp_sk(sk);
  1858. /* Trick#1: The loss is proven. */
  1859. if (tp->lost_out)
  1860. return true;
  1861. /* Not-A-Trick#2 : Classic rule... */
  1862. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1863. return true;
  1864. return false;
  1865. }
  1866. /* Detect loss in event "A" above by marking head of queue up as lost.
  1867. * For non-SACK(Reno) senders, the first "packets" number of segments
  1868. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1869. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1870. * the maximum SACKed segments to pass before reaching this limit.
  1871. */
  1872. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1873. {
  1874. struct tcp_sock *tp = tcp_sk(sk);
  1875. struct sk_buff *skb;
  1876. int cnt, oldcnt, lost;
  1877. unsigned int mss;
  1878. /* Use SACK to deduce losses of new sequences sent during recovery */
  1879. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1880. WARN_ON(packets > tp->packets_out);
  1881. skb = tp->lost_skb_hint;
  1882. if (skb) {
  1883. /* Head already handled? */
  1884. if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
  1885. return;
  1886. cnt = tp->lost_cnt_hint;
  1887. } else {
  1888. skb = tcp_rtx_queue_head(sk);
  1889. cnt = 0;
  1890. }
  1891. skb_rbtree_walk_from(skb) {
  1892. /* TODO: do this better */
  1893. /* this is not the most efficient way to do this... */
  1894. tp->lost_skb_hint = skb;
  1895. tp->lost_cnt_hint = cnt;
  1896. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1897. break;
  1898. oldcnt = cnt;
  1899. if (tcp_is_reno(tp) ||
  1900. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1901. cnt += tcp_skb_pcount(skb);
  1902. if (cnt > packets) {
  1903. if (tcp_is_sack(tp) ||
  1904. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1905. (oldcnt >= packets))
  1906. break;
  1907. mss = tcp_skb_mss(skb);
  1908. /* If needed, chop off the prefix to mark as lost. */
  1909. lost = (packets - oldcnt) * mss;
  1910. if (lost < skb->len &&
  1911. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1912. lost, mss, GFP_ATOMIC) < 0)
  1913. break;
  1914. cnt = packets;
  1915. }
  1916. tcp_skb_mark_lost(tp, skb);
  1917. if (mark_head)
  1918. break;
  1919. }
  1920. tcp_verify_left_out(tp);
  1921. }
  1922. /* Account newly detected lost packet(s) */
  1923. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1924. {
  1925. struct tcp_sock *tp = tcp_sk(sk);
  1926. if (tcp_is_reno(tp)) {
  1927. tcp_mark_head_lost(sk, 1, 1);
  1928. } else {
  1929. int sacked_upto = tp->sacked_out - tp->reordering;
  1930. if (sacked_upto >= 0)
  1931. tcp_mark_head_lost(sk, sacked_upto, 0);
  1932. else if (fast_rexmit)
  1933. tcp_mark_head_lost(sk, 1, 1);
  1934. }
  1935. }
  1936. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1937. {
  1938. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1939. before(tp->rx_opt.rcv_tsecr, when);
  1940. }
  1941. /* skb is spurious retransmitted if the returned timestamp echo
  1942. * reply is prior to the skb transmission time
  1943. */
  1944. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1945. const struct sk_buff *skb)
  1946. {
  1947. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1948. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1949. }
  1950. /* Nothing was retransmitted or returned timestamp is less
  1951. * than timestamp of the first retransmission.
  1952. */
  1953. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1954. {
  1955. return !tp->retrans_stamp ||
  1956. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1957. }
  1958. /* Undo procedures. */
  1959. /* We can clear retrans_stamp when there are no retransmissions in the
  1960. * window. It would seem that it is trivially available for us in
  1961. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1962. * what will happen if errors occur when sending retransmission for the
  1963. * second time. ...It could the that such segment has only
  1964. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1965. * the head skb is enough except for some reneging corner cases that
  1966. * are not worth the effort.
  1967. *
  1968. * Main reason for all this complexity is the fact that connection dying
  1969. * time now depends on the validity of the retrans_stamp, in particular,
  1970. * that successive retransmissions of a segment must not advance
  1971. * retrans_stamp under any conditions.
  1972. */
  1973. static bool tcp_any_retrans_done(const struct sock *sk)
  1974. {
  1975. const struct tcp_sock *tp = tcp_sk(sk);
  1976. struct sk_buff *skb;
  1977. if (tp->retrans_out)
  1978. return true;
  1979. skb = tcp_rtx_queue_head(sk);
  1980. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  1981. return true;
  1982. return false;
  1983. }
  1984. static void DBGUNDO(struct sock *sk, const char *msg)
  1985. {
  1986. #if FASTRETRANS_DEBUG > 1
  1987. struct tcp_sock *tp = tcp_sk(sk);
  1988. struct inet_sock *inet = inet_sk(sk);
  1989. if (sk->sk_family == AF_INET) {
  1990. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1991. msg,
  1992. &inet->inet_daddr, ntohs(inet->inet_dport),
  1993. tp->snd_cwnd, tcp_left_out(tp),
  1994. tp->snd_ssthresh, tp->prior_ssthresh,
  1995. tp->packets_out);
  1996. }
  1997. #if IS_ENABLED(CONFIG_IPV6)
  1998. else if (sk->sk_family == AF_INET6) {
  1999. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2000. msg,
  2001. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2002. tp->snd_cwnd, tcp_left_out(tp),
  2003. tp->snd_ssthresh, tp->prior_ssthresh,
  2004. tp->packets_out);
  2005. }
  2006. #endif
  2007. #endif
  2008. }
  2009. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2010. {
  2011. struct tcp_sock *tp = tcp_sk(sk);
  2012. if (unmark_loss) {
  2013. struct sk_buff *skb;
  2014. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2015. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2016. }
  2017. tp->lost_out = 0;
  2018. tcp_clear_all_retrans_hints(tp);
  2019. }
  2020. if (tp->prior_ssthresh) {
  2021. const struct inet_connection_sock *icsk = inet_csk(sk);
  2022. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2023. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2024. tp->snd_ssthresh = tp->prior_ssthresh;
  2025. tcp_ecn_withdraw_cwr(tp);
  2026. }
  2027. }
  2028. tp->snd_cwnd_stamp = tcp_jiffies32;
  2029. tp->undo_marker = 0;
  2030. tp->rack.advanced = 1; /* Force RACK to re-exam losses */
  2031. }
  2032. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2033. {
  2034. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2035. }
  2036. /* People celebrate: "We love our President!" */
  2037. static bool tcp_try_undo_recovery(struct sock *sk)
  2038. {
  2039. struct tcp_sock *tp = tcp_sk(sk);
  2040. if (tcp_may_undo(tp)) {
  2041. int mib_idx;
  2042. /* Happy end! We did not retransmit anything
  2043. * or our original transmission succeeded.
  2044. */
  2045. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2046. tcp_undo_cwnd_reduction(sk, false);
  2047. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2048. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2049. else
  2050. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2051. NET_INC_STATS(sock_net(sk), mib_idx);
  2052. } else if (tp->rack.reo_wnd_persist) {
  2053. tp->rack.reo_wnd_persist--;
  2054. }
  2055. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2056. /* Hold old state until something *above* high_seq
  2057. * is ACKed. For Reno it is MUST to prevent false
  2058. * fast retransmits (RFC2582). SACK TCP is safe. */
  2059. if (!tcp_any_retrans_done(sk))
  2060. tp->retrans_stamp = 0;
  2061. return true;
  2062. }
  2063. tcp_set_ca_state(sk, TCP_CA_Open);
  2064. tp->is_sack_reneg = 0;
  2065. return false;
  2066. }
  2067. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2068. static bool tcp_try_undo_dsack(struct sock *sk)
  2069. {
  2070. struct tcp_sock *tp = tcp_sk(sk);
  2071. if (tp->undo_marker && !tp->undo_retrans) {
  2072. tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
  2073. tp->rack.reo_wnd_persist + 1);
  2074. DBGUNDO(sk, "D-SACK");
  2075. tcp_undo_cwnd_reduction(sk, false);
  2076. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2077. return true;
  2078. }
  2079. return false;
  2080. }
  2081. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2082. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2083. {
  2084. struct tcp_sock *tp = tcp_sk(sk);
  2085. if (frto_undo || tcp_may_undo(tp)) {
  2086. tcp_undo_cwnd_reduction(sk, true);
  2087. DBGUNDO(sk, "partial loss");
  2088. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2089. if (frto_undo)
  2090. NET_INC_STATS(sock_net(sk),
  2091. LINUX_MIB_TCPSPURIOUSRTOS);
  2092. inet_csk(sk)->icsk_retransmits = 0;
  2093. if (frto_undo || tcp_is_sack(tp)) {
  2094. tcp_set_ca_state(sk, TCP_CA_Open);
  2095. tp->is_sack_reneg = 0;
  2096. }
  2097. return true;
  2098. }
  2099. return false;
  2100. }
  2101. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2102. * It computes the number of packets to send (sndcnt) based on packets newly
  2103. * delivered:
  2104. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2105. * cwnd reductions across a full RTT.
  2106. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2107. * But when the retransmits are acked without further losses, PRR
  2108. * slow starts cwnd up to ssthresh to speed up the recovery.
  2109. */
  2110. static void tcp_init_cwnd_reduction(struct sock *sk)
  2111. {
  2112. struct tcp_sock *tp = tcp_sk(sk);
  2113. tp->high_seq = tp->snd_nxt;
  2114. tp->tlp_high_seq = 0;
  2115. tp->snd_cwnd_cnt = 0;
  2116. tp->prior_cwnd = tp->snd_cwnd;
  2117. tp->prr_delivered = 0;
  2118. tp->prr_out = 0;
  2119. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2120. tcp_ecn_queue_cwr(tp);
  2121. }
  2122. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2123. {
  2124. struct tcp_sock *tp = tcp_sk(sk);
  2125. int sndcnt = 0;
  2126. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2127. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2128. return;
  2129. tp->prr_delivered += newly_acked_sacked;
  2130. if (delta < 0) {
  2131. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2132. tp->prior_cwnd - 1;
  2133. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2134. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2135. !(flag & FLAG_LOST_RETRANS)) {
  2136. sndcnt = min_t(int, delta,
  2137. max_t(int, tp->prr_delivered - tp->prr_out,
  2138. newly_acked_sacked) + 1);
  2139. } else {
  2140. sndcnt = min(delta, newly_acked_sacked);
  2141. }
  2142. /* Force a fast retransmit upon entering fast recovery */
  2143. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2144. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2145. }
  2146. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2147. {
  2148. struct tcp_sock *tp = tcp_sk(sk);
  2149. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2150. return;
  2151. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2152. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2153. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2154. tp->snd_cwnd = tp->snd_ssthresh;
  2155. tp->snd_cwnd_stamp = tcp_jiffies32;
  2156. }
  2157. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2158. }
  2159. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2160. void tcp_enter_cwr(struct sock *sk)
  2161. {
  2162. struct tcp_sock *tp = tcp_sk(sk);
  2163. tp->prior_ssthresh = 0;
  2164. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2165. tp->undo_marker = 0;
  2166. tcp_init_cwnd_reduction(sk);
  2167. tcp_set_ca_state(sk, TCP_CA_CWR);
  2168. }
  2169. }
  2170. EXPORT_SYMBOL(tcp_enter_cwr);
  2171. static void tcp_try_keep_open(struct sock *sk)
  2172. {
  2173. struct tcp_sock *tp = tcp_sk(sk);
  2174. int state = TCP_CA_Open;
  2175. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2176. state = TCP_CA_Disorder;
  2177. if (inet_csk(sk)->icsk_ca_state != state) {
  2178. tcp_set_ca_state(sk, state);
  2179. tp->high_seq = tp->snd_nxt;
  2180. }
  2181. }
  2182. static void tcp_try_to_open(struct sock *sk, int flag)
  2183. {
  2184. struct tcp_sock *tp = tcp_sk(sk);
  2185. tcp_verify_left_out(tp);
  2186. if (!tcp_any_retrans_done(sk))
  2187. tp->retrans_stamp = 0;
  2188. if (flag & FLAG_ECE)
  2189. tcp_enter_cwr(sk);
  2190. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2191. tcp_try_keep_open(sk);
  2192. }
  2193. }
  2194. static void tcp_mtup_probe_failed(struct sock *sk)
  2195. {
  2196. struct inet_connection_sock *icsk = inet_csk(sk);
  2197. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2198. icsk->icsk_mtup.probe_size = 0;
  2199. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2200. }
  2201. static void tcp_mtup_probe_success(struct sock *sk)
  2202. {
  2203. struct tcp_sock *tp = tcp_sk(sk);
  2204. struct inet_connection_sock *icsk = inet_csk(sk);
  2205. /* FIXME: breaks with very large cwnd */
  2206. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2207. tp->snd_cwnd = tp->snd_cwnd *
  2208. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2209. icsk->icsk_mtup.probe_size;
  2210. tp->snd_cwnd_cnt = 0;
  2211. tp->snd_cwnd_stamp = tcp_jiffies32;
  2212. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2213. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2214. icsk->icsk_mtup.probe_size = 0;
  2215. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2216. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2217. }
  2218. /* Do a simple retransmit without using the backoff mechanisms in
  2219. * tcp_timer. This is used for path mtu discovery.
  2220. * The socket is already locked here.
  2221. */
  2222. void tcp_simple_retransmit(struct sock *sk)
  2223. {
  2224. const struct inet_connection_sock *icsk = inet_csk(sk);
  2225. struct tcp_sock *tp = tcp_sk(sk);
  2226. struct sk_buff *skb;
  2227. unsigned int mss = tcp_current_mss(sk);
  2228. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2229. if (tcp_skb_seglen(skb) > mss &&
  2230. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2231. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2232. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2233. tp->retrans_out -= tcp_skb_pcount(skb);
  2234. }
  2235. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2236. }
  2237. }
  2238. tcp_clear_retrans_hints_partial(tp);
  2239. if (!tp->lost_out)
  2240. return;
  2241. if (tcp_is_reno(tp))
  2242. tcp_limit_reno_sacked(tp);
  2243. tcp_verify_left_out(tp);
  2244. /* Don't muck with the congestion window here.
  2245. * Reason is that we do not increase amount of _data_
  2246. * in network, but units changed and effective
  2247. * cwnd/ssthresh really reduced now.
  2248. */
  2249. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2250. tp->high_seq = tp->snd_nxt;
  2251. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2252. tp->prior_ssthresh = 0;
  2253. tp->undo_marker = 0;
  2254. tcp_set_ca_state(sk, TCP_CA_Loss);
  2255. }
  2256. tcp_xmit_retransmit_queue(sk);
  2257. }
  2258. EXPORT_SYMBOL(tcp_simple_retransmit);
  2259. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2260. {
  2261. struct tcp_sock *tp = tcp_sk(sk);
  2262. int mib_idx;
  2263. if (tcp_is_reno(tp))
  2264. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2265. else
  2266. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2267. NET_INC_STATS(sock_net(sk), mib_idx);
  2268. tp->prior_ssthresh = 0;
  2269. tcp_init_undo(tp);
  2270. if (!tcp_in_cwnd_reduction(sk)) {
  2271. if (!ece_ack)
  2272. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2273. tcp_init_cwnd_reduction(sk);
  2274. }
  2275. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2276. }
  2277. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2278. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2279. */
  2280. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2281. int *rexmit)
  2282. {
  2283. struct tcp_sock *tp = tcp_sk(sk);
  2284. bool recovered = !before(tp->snd_una, tp->high_seq);
  2285. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2286. tcp_try_undo_loss(sk, false))
  2287. return;
  2288. /* The ACK (s)acks some never-retransmitted data meaning not all
  2289. * the data packets before the timeout were lost. Therefore we
  2290. * undo the congestion window and state. This is essentially
  2291. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2292. * a retransmitted skb is permantly marked, we can apply such an
  2293. * operation even if F-RTO was not used.
  2294. */
  2295. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2296. tcp_try_undo_loss(sk, tp->undo_marker))
  2297. return;
  2298. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2299. if (after(tp->snd_nxt, tp->high_seq)) {
  2300. if (flag & FLAG_DATA_SACKED || is_dupack)
  2301. tp->frto = 0; /* Step 3.a. loss was real */
  2302. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2303. tp->high_seq = tp->snd_nxt;
  2304. /* Step 2.b. Try send new data (but deferred until cwnd
  2305. * is updated in tcp_ack()). Otherwise fall back to
  2306. * the conventional recovery.
  2307. */
  2308. if (!tcp_write_queue_empty(sk) &&
  2309. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2310. *rexmit = REXMIT_NEW;
  2311. return;
  2312. }
  2313. tp->frto = 0;
  2314. }
  2315. }
  2316. if (recovered) {
  2317. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2318. tcp_try_undo_recovery(sk);
  2319. return;
  2320. }
  2321. if (tcp_is_reno(tp)) {
  2322. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2323. * delivered. Lower inflight to clock out (re)tranmissions.
  2324. */
  2325. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2326. tcp_add_reno_sack(sk);
  2327. else if (flag & FLAG_SND_UNA_ADVANCED)
  2328. tcp_reset_reno_sack(tp);
  2329. }
  2330. *rexmit = REXMIT_LOST;
  2331. }
  2332. /* Undo during fast recovery after partial ACK. */
  2333. static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
  2334. {
  2335. struct tcp_sock *tp = tcp_sk(sk);
  2336. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2337. /* Plain luck! Hole if filled with delayed
  2338. * packet, rather than with a retransmit. Check reordering.
  2339. */
  2340. tcp_check_sack_reordering(sk, prior_snd_una, 1);
  2341. /* We are getting evidence that the reordering degree is higher
  2342. * than we realized. If there are no retransmits out then we
  2343. * can undo. Otherwise we clock out new packets but do not
  2344. * mark more packets lost or retransmit more.
  2345. */
  2346. if (tp->retrans_out)
  2347. return true;
  2348. if (!tcp_any_retrans_done(sk))
  2349. tp->retrans_stamp = 0;
  2350. DBGUNDO(sk, "partial recovery");
  2351. tcp_undo_cwnd_reduction(sk, true);
  2352. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2353. tcp_try_keep_open(sk);
  2354. return true;
  2355. }
  2356. return false;
  2357. }
  2358. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2359. {
  2360. struct tcp_sock *tp = tcp_sk(sk);
  2361. /* Use RACK to detect loss */
  2362. if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2363. u32 prior_retrans = tp->retrans_out;
  2364. tcp_rack_mark_lost(sk);
  2365. if (prior_retrans > tp->retrans_out)
  2366. *ack_flag |= FLAG_LOST_RETRANS;
  2367. }
  2368. }
  2369. static bool tcp_force_fast_retransmit(struct sock *sk)
  2370. {
  2371. struct tcp_sock *tp = tcp_sk(sk);
  2372. return after(tcp_highest_sack_seq(tp),
  2373. tp->snd_una + tp->reordering * tp->mss_cache);
  2374. }
  2375. /* Process an event, which can update packets-in-flight not trivially.
  2376. * Main goal of this function is to calculate new estimate for left_out,
  2377. * taking into account both packets sitting in receiver's buffer and
  2378. * packets lost by network.
  2379. *
  2380. * Besides that it updates the congestion state when packet loss or ECN
  2381. * is detected. But it does not reduce the cwnd, it is done by the
  2382. * congestion control later.
  2383. *
  2384. * It does _not_ decide what to send, it is made in function
  2385. * tcp_xmit_retransmit_queue().
  2386. */
  2387. static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
  2388. bool is_dupack, int *ack_flag, int *rexmit)
  2389. {
  2390. struct inet_connection_sock *icsk = inet_csk(sk);
  2391. struct tcp_sock *tp = tcp_sk(sk);
  2392. int fast_rexmit = 0, flag = *ack_flag;
  2393. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2394. tcp_force_fast_retransmit(sk));
  2395. if (!tp->packets_out && tp->sacked_out)
  2396. tp->sacked_out = 0;
  2397. /* Now state machine starts.
  2398. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2399. if (flag & FLAG_ECE)
  2400. tp->prior_ssthresh = 0;
  2401. /* B. In all the states check for reneging SACKs. */
  2402. if (tcp_check_sack_reneging(sk, flag))
  2403. return;
  2404. /* C. Check consistency of the current state. */
  2405. tcp_verify_left_out(tp);
  2406. /* D. Check state exit conditions. State can be terminated
  2407. * when high_seq is ACKed. */
  2408. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2409. WARN_ON(tp->retrans_out != 0);
  2410. tp->retrans_stamp = 0;
  2411. } else if (!before(tp->snd_una, tp->high_seq)) {
  2412. switch (icsk->icsk_ca_state) {
  2413. case TCP_CA_CWR:
  2414. /* CWR is to be held something *above* high_seq
  2415. * is ACKed for CWR bit to reach receiver. */
  2416. if (tp->snd_una != tp->high_seq) {
  2417. tcp_end_cwnd_reduction(sk);
  2418. tcp_set_ca_state(sk, TCP_CA_Open);
  2419. }
  2420. break;
  2421. case TCP_CA_Recovery:
  2422. if (tcp_is_reno(tp))
  2423. tcp_reset_reno_sack(tp);
  2424. if (tcp_try_undo_recovery(sk))
  2425. return;
  2426. tcp_end_cwnd_reduction(sk);
  2427. break;
  2428. }
  2429. }
  2430. /* E. Process state. */
  2431. switch (icsk->icsk_ca_state) {
  2432. case TCP_CA_Recovery:
  2433. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2434. if (tcp_is_reno(tp) && is_dupack)
  2435. tcp_add_reno_sack(sk);
  2436. } else {
  2437. if (tcp_try_undo_partial(sk, prior_snd_una))
  2438. return;
  2439. /* Partial ACK arrived. Force fast retransmit. */
  2440. do_lost = tcp_is_reno(tp) ||
  2441. tcp_force_fast_retransmit(sk);
  2442. }
  2443. if (tcp_try_undo_dsack(sk)) {
  2444. tcp_try_keep_open(sk);
  2445. return;
  2446. }
  2447. tcp_rack_identify_loss(sk, ack_flag);
  2448. break;
  2449. case TCP_CA_Loss:
  2450. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2451. tcp_rack_identify_loss(sk, ack_flag);
  2452. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2453. (*ack_flag & FLAG_LOST_RETRANS)))
  2454. return;
  2455. /* Change state if cwnd is undone or retransmits are lost */
  2456. /* fall through */
  2457. default:
  2458. if (tcp_is_reno(tp)) {
  2459. if (flag & FLAG_SND_UNA_ADVANCED)
  2460. tcp_reset_reno_sack(tp);
  2461. if (is_dupack)
  2462. tcp_add_reno_sack(sk);
  2463. }
  2464. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2465. tcp_try_undo_dsack(sk);
  2466. tcp_rack_identify_loss(sk, ack_flag);
  2467. if (!tcp_time_to_recover(sk, flag)) {
  2468. tcp_try_to_open(sk, flag);
  2469. return;
  2470. }
  2471. /* MTU probe failure: don't reduce cwnd */
  2472. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2473. icsk->icsk_mtup.probe_size &&
  2474. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2475. tcp_mtup_probe_failed(sk);
  2476. /* Restores the reduction we did in tcp_mtup_probe() */
  2477. tp->snd_cwnd++;
  2478. tcp_simple_retransmit(sk);
  2479. return;
  2480. }
  2481. /* Otherwise enter Recovery state */
  2482. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2483. fast_rexmit = 1;
  2484. }
  2485. if (do_lost)
  2486. tcp_update_scoreboard(sk, fast_rexmit);
  2487. *rexmit = REXMIT_LOST;
  2488. }
  2489. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2490. {
  2491. u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
  2492. struct tcp_sock *tp = tcp_sk(sk);
  2493. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2494. rtt_us ? : jiffies_to_usecs(1));
  2495. }
  2496. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2497. long seq_rtt_us, long sack_rtt_us,
  2498. long ca_rtt_us, struct rate_sample *rs)
  2499. {
  2500. const struct tcp_sock *tp = tcp_sk(sk);
  2501. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2502. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2503. * Karn's algorithm forbids taking RTT if some retransmitted data
  2504. * is acked (RFC6298).
  2505. */
  2506. if (seq_rtt_us < 0)
  2507. seq_rtt_us = sack_rtt_us;
  2508. /* RTTM Rule: A TSecr value received in a segment is used to
  2509. * update the averaged RTT measurement only if the segment
  2510. * acknowledges some new data, i.e., only if it advances the
  2511. * left edge of the send window.
  2512. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2513. */
  2514. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2515. flag & FLAG_ACKED) {
  2516. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2517. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2518. seq_rtt_us = ca_rtt_us = delta_us;
  2519. }
  2520. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2521. if (seq_rtt_us < 0)
  2522. return false;
  2523. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2524. * always taken together with ACK, SACK, or TS-opts. Any negative
  2525. * values will be skipped with the seq_rtt_us < 0 check above.
  2526. */
  2527. tcp_update_rtt_min(sk, ca_rtt_us);
  2528. tcp_rtt_estimator(sk, seq_rtt_us);
  2529. tcp_set_rto(sk);
  2530. /* RFC6298: only reset backoff on valid RTT measurement. */
  2531. inet_csk(sk)->icsk_backoff = 0;
  2532. return true;
  2533. }
  2534. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2535. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2536. {
  2537. struct rate_sample rs;
  2538. long rtt_us = -1L;
  2539. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2540. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2541. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2542. }
  2543. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2544. {
  2545. const struct inet_connection_sock *icsk = inet_csk(sk);
  2546. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2547. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2548. }
  2549. /* Restart timer after forward progress on connection.
  2550. * RFC2988 recommends to restart timer to now+rto.
  2551. */
  2552. void tcp_rearm_rto(struct sock *sk)
  2553. {
  2554. const struct inet_connection_sock *icsk = inet_csk(sk);
  2555. struct tcp_sock *tp = tcp_sk(sk);
  2556. /* If the retrans timer is currently being used by Fast Open
  2557. * for SYN-ACK retrans purpose, stay put.
  2558. */
  2559. if (tp->fastopen_rsk)
  2560. return;
  2561. if (!tp->packets_out) {
  2562. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2563. } else {
  2564. u32 rto = inet_csk(sk)->icsk_rto;
  2565. /* Offset the time elapsed after installing regular RTO */
  2566. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2567. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2568. s64 delta_us = tcp_rto_delta_us(sk);
  2569. /* delta_us may not be positive if the socket is locked
  2570. * when the retrans timer fires and is rescheduled.
  2571. */
  2572. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2573. }
  2574. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2575. TCP_RTO_MAX);
  2576. }
  2577. }
  2578. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2579. static void tcp_set_xmit_timer(struct sock *sk)
  2580. {
  2581. if (!tcp_schedule_loss_probe(sk, true))
  2582. tcp_rearm_rto(sk);
  2583. }
  2584. /* If we get here, the whole TSO packet has not been acked. */
  2585. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2586. {
  2587. struct tcp_sock *tp = tcp_sk(sk);
  2588. u32 packets_acked;
  2589. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2590. packets_acked = tcp_skb_pcount(skb);
  2591. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2592. return 0;
  2593. packets_acked -= tcp_skb_pcount(skb);
  2594. if (packets_acked) {
  2595. BUG_ON(tcp_skb_pcount(skb) == 0);
  2596. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2597. }
  2598. return packets_acked;
  2599. }
  2600. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2601. u32 prior_snd_una)
  2602. {
  2603. const struct skb_shared_info *shinfo;
  2604. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2605. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2606. return;
  2607. shinfo = skb_shinfo(skb);
  2608. if (!before(shinfo->tskey, prior_snd_una) &&
  2609. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2610. tcp_skb_tsorted_save(skb) {
  2611. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2612. } tcp_skb_tsorted_restore(skb);
  2613. }
  2614. }
  2615. /* Remove acknowledged frames from the retransmission queue. If our packet
  2616. * is before the ack sequence we can discard it as it's confirmed to have
  2617. * arrived at the other end.
  2618. */
  2619. static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
  2620. u32 prior_snd_una,
  2621. struct tcp_sacktag_state *sack)
  2622. {
  2623. const struct inet_connection_sock *icsk = inet_csk(sk);
  2624. u64 first_ackt, last_ackt;
  2625. struct tcp_sock *tp = tcp_sk(sk);
  2626. u32 prior_sacked = tp->sacked_out;
  2627. u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
  2628. struct sk_buff *skb, *next;
  2629. bool fully_acked = true;
  2630. long sack_rtt_us = -1L;
  2631. long seq_rtt_us = -1L;
  2632. long ca_rtt_us = -1L;
  2633. u32 pkts_acked = 0;
  2634. u32 last_in_flight = 0;
  2635. bool rtt_update;
  2636. int flag = 0;
  2637. first_ackt = 0;
  2638. for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
  2639. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2640. const u32 start_seq = scb->seq;
  2641. u8 sacked = scb->sacked;
  2642. u32 acked_pcount;
  2643. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2644. /* Determine how many packets and what bytes were acked, tso and else */
  2645. if (after(scb->end_seq, tp->snd_una)) {
  2646. if (tcp_skb_pcount(skb) == 1 ||
  2647. !after(tp->snd_una, scb->seq))
  2648. break;
  2649. acked_pcount = tcp_tso_acked(sk, skb);
  2650. if (!acked_pcount)
  2651. break;
  2652. fully_acked = false;
  2653. } else {
  2654. acked_pcount = tcp_skb_pcount(skb);
  2655. }
  2656. if (unlikely(sacked & TCPCB_RETRANS)) {
  2657. if (sacked & TCPCB_SACKED_RETRANS)
  2658. tp->retrans_out -= acked_pcount;
  2659. flag |= FLAG_RETRANS_DATA_ACKED;
  2660. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2661. last_ackt = skb->skb_mstamp;
  2662. WARN_ON_ONCE(last_ackt == 0);
  2663. if (!first_ackt)
  2664. first_ackt = last_ackt;
  2665. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2666. if (before(start_seq, reord))
  2667. reord = start_seq;
  2668. if (!after(scb->end_seq, tp->high_seq))
  2669. flag |= FLAG_ORIG_SACK_ACKED;
  2670. }
  2671. if (sacked & TCPCB_SACKED_ACKED) {
  2672. tp->sacked_out -= acked_pcount;
  2673. } else if (tcp_is_sack(tp)) {
  2674. tp->delivered += acked_pcount;
  2675. if (!tcp_skb_spurious_retrans(tp, skb))
  2676. tcp_rack_advance(tp, sacked, scb->end_seq,
  2677. skb->skb_mstamp);
  2678. }
  2679. if (sacked & TCPCB_LOST)
  2680. tp->lost_out -= acked_pcount;
  2681. tp->packets_out -= acked_pcount;
  2682. pkts_acked += acked_pcount;
  2683. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2684. /* Initial outgoing SYN's get put onto the write_queue
  2685. * just like anything else we transmit. It is not
  2686. * true data, and if we misinform our callers that
  2687. * this ACK acks real data, we will erroneously exit
  2688. * connection startup slow start one packet too
  2689. * quickly. This is severely frowned upon behavior.
  2690. */
  2691. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2692. flag |= FLAG_DATA_ACKED;
  2693. } else {
  2694. flag |= FLAG_SYN_ACKED;
  2695. tp->retrans_stamp = 0;
  2696. }
  2697. if (!fully_acked)
  2698. break;
  2699. next = skb_rb_next(skb);
  2700. if (unlikely(skb == tp->retransmit_skb_hint))
  2701. tp->retransmit_skb_hint = NULL;
  2702. if (unlikely(skb == tp->lost_skb_hint))
  2703. tp->lost_skb_hint = NULL;
  2704. tcp_rtx_queue_unlink_and_free(skb, sk);
  2705. }
  2706. if (!skb)
  2707. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2708. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2709. tp->snd_up = tp->snd_una;
  2710. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2711. flag |= FLAG_SACK_RENEGING;
  2712. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2713. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2714. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2715. }
  2716. if (sack->first_sackt) {
  2717. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2718. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2719. }
  2720. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2721. ca_rtt_us, sack->rate);
  2722. if (flag & FLAG_ACKED) {
  2723. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2724. if (unlikely(icsk->icsk_mtup.probe_size &&
  2725. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2726. tcp_mtup_probe_success(sk);
  2727. }
  2728. if (tcp_is_reno(tp)) {
  2729. tcp_remove_reno_sacks(sk, pkts_acked);
  2730. } else {
  2731. int delta;
  2732. /* Non-retransmitted hole got filled? That's reordering */
  2733. if (before(reord, prior_fack))
  2734. tcp_check_sack_reordering(sk, reord, 0);
  2735. delta = prior_sacked - tp->sacked_out;
  2736. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2737. }
  2738. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2739. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2740. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2741. * after when the head was last (re)transmitted. Otherwise the
  2742. * timeout may continue to extend in loss recovery.
  2743. */
  2744. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2745. }
  2746. if (icsk->icsk_ca_ops->pkts_acked) {
  2747. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2748. .rtt_us = sack->rate->rtt_us,
  2749. .in_flight = last_in_flight };
  2750. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2751. }
  2752. #if FASTRETRANS_DEBUG > 0
  2753. WARN_ON((int)tp->sacked_out < 0);
  2754. WARN_ON((int)tp->lost_out < 0);
  2755. WARN_ON((int)tp->retrans_out < 0);
  2756. if (!tp->packets_out && tcp_is_sack(tp)) {
  2757. icsk = inet_csk(sk);
  2758. if (tp->lost_out) {
  2759. pr_debug("Leak l=%u %d\n",
  2760. tp->lost_out, icsk->icsk_ca_state);
  2761. tp->lost_out = 0;
  2762. }
  2763. if (tp->sacked_out) {
  2764. pr_debug("Leak s=%u %d\n",
  2765. tp->sacked_out, icsk->icsk_ca_state);
  2766. tp->sacked_out = 0;
  2767. }
  2768. if (tp->retrans_out) {
  2769. pr_debug("Leak r=%u %d\n",
  2770. tp->retrans_out, icsk->icsk_ca_state);
  2771. tp->retrans_out = 0;
  2772. }
  2773. }
  2774. #endif
  2775. return flag;
  2776. }
  2777. static void tcp_ack_probe(struct sock *sk)
  2778. {
  2779. struct inet_connection_sock *icsk = inet_csk(sk);
  2780. struct sk_buff *head = tcp_send_head(sk);
  2781. const struct tcp_sock *tp = tcp_sk(sk);
  2782. /* Was it a usable window open? */
  2783. if (!head)
  2784. return;
  2785. if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
  2786. icsk->icsk_backoff = 0;
  2787. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2788. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2789. * This function is not for random using!
  2790. */
  2791. } else {
  2792. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2793. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2794. when, TCP_RTO_MAX);
  2795. }
  2796. }
  2797. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2798. {
  2799. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2800. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2801. }
  2802. /* Decide wheather to run the increase function of congestion control. */
  2803. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2804. {
  2805. /* If reordering is high then always grow cwnd whenever data is
  2806. * delivered regardless of its ordering. Otherwise stay conservative
  2807. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2808. * new SACK or ECE mark may first advance cwnd here and later reduce
  2809. * cwnd in tcp_fastretrans_alert() based on more states.
  2810. */
  2811. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2812. return flag & FLAG_FORWARD_PROGRESS;
  2813. return flag & FLAG_DATA_ACKED;
  2814. }
  2815. /* The "ultimate" congestion control function that aims to replace the rigid
  2816. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2817. * It's called toward the end of processing an ACK with precise rate
  2818. * information. All transmission or retransmission are delayed afterwards.
  2819. */
  2820. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2821. int flag, const struct rate_sample *rs)
  2822. {
  2823. const struct inet_connection_sock *icsk = inet_csk(sk);
  2824. if (icsk->icsk_ca_ops->cong_control) {
  2825. icsk->icsk_ca_ops->cong_control(sk, rs);
  2826. return;
  2827. }
  2828. if (tcp_in_cwnd_reduction(sk)) {
  2829. /* Reduce cwnd if state mandates */
  2830. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2831. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2832. /* Advance cwnd if state allows */
  2833. tcp_cong_avoid(sk, ack, acked_sacked);
  2834. }
  2835. tcp_update_pacing_rate(sk);
  2836. }
  2837. /* Check that window update is acceptable.
  2838. * The function assumes that snd_una<=ack<=snd_next.
  2839. */
  2840. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2841. const u32 ack, const u32 ack_seq,
  2842. const u32 nwin)
  2843. {
  2844. return after(ack, tp->snd_una) ||
  2845. after(ack_seq, tp->snd_wl1) ||
  2846. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2847. }
  2848. /* If we update tp->snd_una, also update tp->bytes_acked */
  2849. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2850. {
  2851. u32 delta = ack - tp->snd_una;
  2852. sock_owned_by_me((struct sock *)tp);
  2853. tp->bytes_acked += delta;
  2854. tp->snd_una = ack;
  2855. }
  2856. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2857. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2858. {
  2859. u32 delta = seq - tp->rcv_nxt;
  2860. sock_owned_by_me((struct sock *)tp);
  2861. tp->bytes_received += delta;
  2862. tp->rcv_nxt = seq;
  2863. }
  2864. /* Update our send window.
  2865. *
  2866. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2867. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2868. */
  2869. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2870. u32 ack_seq)
  2871. {
  2872. struct tcp_sock *tp = tcp_sk(sk);
  2873. int flag = 0;
  2874. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2875. if (likely(!tcp_hdr(skb)->syn))
  2876. nwin <<= tp->rx_opt.snd_wscale;
  2877. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2878. flag |= FLAG_WIN_UPDATE;
  2879. tcp_update_wl(tp, ack_seq);
  2880. if (tp->snd_wnd != nwin) {
  2881. tp->snd_wnd = nwin;
  2882. /* Note, it is the only place, where
  2883. * fast path is recovered for sending TCP.
  2884. */
  2885. tp->pred_flags = 0;
  2886. tcp_fast_path_check(sk);
  2887. if (!tcp_write_queue_empty(sk))
  2888. tcp_slow_start_after_idle_check(sk);
  2889. if (nwin > tp->max_window) {
  2890. tp->max_window = nwin;
  2891. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2892. }
  2893. }
  2894. }
  2895. tcp_snd_una_update(tp, ack);
  2896. return flag;
  2897. }
  2898. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2899. u32 *last_oow_ack_time)
  2900. {
  2901. if (*last_oow_ack_time) {
  2902. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2903. if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
  2904. NET_INC_STATS(net, mib_idx);
  2905. return true; /* rate-limited: don't send yet! */
  2906. }
  2907. }
  2908. *last_oow_ack_time = tcp_jiffies32;
  2909. return false; /* not rate-limited: go ahead, send dupack now! */
  2910. }
  2911. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2912. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2913. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2914. * attacks that send repeated SYNs or ACKs for the same connection. To
  2915. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2916. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2917. */
  2918. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2919. int mib_idx, u32 *last_oow_ack_time)
  2920. {
  2921. /* Data packets without SYNs are not likely part of an ACK loop. */
  2922. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2923. !tcp_hdr(skb)->syn)
  2924. return false;
  2925. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2926. }
  2927. /* RFC 5961 7 [ACK Throttling] */
  2928. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2929. {
  2930. /* unprotected vars, we dont care of overwrites */
  2931. static u32 challenge_timestamp;
  2932. static unsigned int challenge_count;
  2933. struct tcp_sock *tp = tcp_sk(sk);
  2934. struct net *net = sock_net(sk);
  2935. u32 count, now;
  2936. /* First check our per-socket dupack rate limit. */
  2937. if (__tcp_oow_rate_limited(net,
  2938. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2939. &tp->last_oow_ack_time))
  2940. return;
  2941. /* Then check host-wide RFC 5961 rate limit. */
  2942. now = jiffies / HZ;
  2943. if (now != challenge_timestamp) {
  2944. u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
  2945. u32 half = (ack_limit + 1) >> 1;
  2946. challenge_timestamp = now;
  2947. WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
  2948. }
  2949. count = READ_ONCE(challenge_count);
  2950. if (count > 0) {
  2951. WRITE_ONCE(challenge_count, count - 1);
  2952. NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
  2953. tcp_send_ack(sk);
  2954. }
  2955. }
  2956. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2957. {
  2958. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2959. tp->rx_opt.ts_recent_stamp = get_seconds();
  2960. }
  2961. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2962. {
  2963. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2964. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2965. * extra check below makes sure this can only happen
  2966. * for pure ACK frames. -DaveM
  2967. *
  2968. * Not only, also it occurs for expired timestamps.
  2969. */
  2970. if (tcp_paws_check(&tp->rx_opt, 0))
  2971. tcp_store_ts_recent(tp);
  2972. }
  2973. }
  2974. /* This routine deals with acks during a TLP episode.
  2975. * We mark the end of a TLP episode on receiving TLP dupack or when
  2976. * ack is after tlp_high_seq.
  2977. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2978. */
  2979. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2980. {
  2981. struct tcp_sock *tp = tcp_sk(sk);
  2982. if (before(ack, tp->tlp_high_seq))
  2983. return;
  2984. if (flag & FLAG_DSACKING_ACK) {
  2985. /* This DSACK means original and TLP probe arrived; no loss */
  2986. tp->tlp_high_seq = 0;
  2987. } else if (after(ack, tp->tlp_high_seq)) {
  2988. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2989. * tlp_high_seq in tcp_init_cwnd_reduction()
  2990. */
  2991. tcp_init_cwnd_reduction(sk);
  2992. tcp_set_ca_state(sk, TCP_CA_CWR);
  2993. tcp_end_cwnd_reduction(sk);
  2994. tcp_try_keep_open(sk);
  2995. NET_INC_STATS(sock_net(sk),
  2996. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2997. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2998. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2999. /* Pure dupack: original and TLP probe arrived; no loss */
  3000. tp->tlp_high_seq = 0;
  3001. }
  3002. }
  3003. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3004. {
  3005. const struct inet_connection_sock *icsk = inet_csk(sk);
  3006. if (icsk->icsk_ca_ops->in_ack_event)
  3007. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3008. }
  3009. /* Congestion control has updated the cwnd already. So if we're in
  3010. * loss recovery then now we do any new sends (for FRTO) or
  3011. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3012. */
  3013. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3014. {
  3015. struct tcp_sock *tp = tcp_sk(sk);
  3016. if (rexmit == REXMIT_NONE)
  3017. return;
  3018. if (unlikely(rexmit == 2)) {
  3019. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3020. TCP_NAGLE_OFF);
  3021. if (after(tp->snd_nxt, tp->high_seq))
  3022. return;
  3023. tp->frto = 0;
  3024. }
  3025. tcp_xmit_retransmit_queue(sk);
  3026. }
  3027. /* This routine deals with incoming acks, but not outgoing ones. */
  3028. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3029. {
  3030. struct inet_connection_sock *icsk = inet_csk(sk);
  3031. struct tcp_sock *tp = tcp_sk(sk);
  3032. struct tcp_sacktag_state sack_state;
  3033. struct rate_sample rs = { .prior_delivered = 0 };
  3034. u32 prior_snd_una = tp->snd_una;
  3035. bool is_sack_reneg = tp->is_sack_reneg;
  3036. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3037. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3038. bool is_dupack = false;
  3039. int prior_packets = tp->packets_out;
  3040. u32 delivered = tp->delivered;
  3041. u32 lost = tp->lost;
  3042. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3043. u32 prior_fack;
  3044. sack_state.first_sackt = 0;
  3045. sack_state.rate = &rs;
  3046. /* We very likely will need to access rtx queue. */
  3047. prefetch(sk->tcp_rtx_queue.rb_node);
  3048. /* If the ack is older than previous acks
  3049. * then we can probably ignore it.
  3050. */
  3051. if (before(ack, prior_snd_una)) {
  3052. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3053. if (before(ack, prior_snd_una - tp->max_window)) {
  3054. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3055. tcp_send_challenge_ack(sk, skb);
  3056. return -1;
  3057. }
  3058. goto old_ack;
  3059. }
  3060. /* If the ack includes data we haven't sent yet, discard
  3061. * this segment (RFC793 Section 3.9).
  3062. */
  3063. if (after(ack, tp->snd_nxt))
  3064. goto invalid_ack;
  3065. if (after(ack, prior_snd_una)) {
  3066. flag |= FLAG_SND_UNA_ADVANCED;
  3067. icsk->icsk_retransmits = 0;
  3068. }
  3069. prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
  3070. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3071. /* ts_recent update must be made after we are sure that the packet
  3072. * is in window.
  3073. */
  3074. if (flag & FLAG_UPDATE_TS_RECENT)
  3075. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3076. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3077. /* Window is constant, pure forward advance.
  3078. * No more checks are required.
  3079. * Note, we use the fact that SND.UNA>=SND.WL2.
  3080. */
  3081. tcp_update_wl(tp, ack_seq);
  3082. tcp_snd_una_update(tp, ack);
  3083. flag |= FLAG_WIN_UPDATE;
  3084. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3085. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3086. } else {
  3087. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3088. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3089. flag |= FLAG_DATA;
  3090. else
  3091. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3092. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3093. if (TCP_SKB_CB(skb)->sacked)
  3094. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3095. &sack_state);
  3096. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3097. flag |= FLAG_ECE;
  3098. ack_ev_flags |= CA_ACK_ECE;
  3099. }
  3100. if (flag & FLAG_WIN_UPDATE)
  3101. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3102. tcp_in_ack_event(sk, ack_ev_flags);
  3103. }
  3104. /* We passed data and got it acked, remove any soft error
  3105. * log. Something worked...
  3106. */
  3107. sk->sk_err_soft = 0;
  3108. icsk->icsk_probes_out = 0;
  3109. tp->rcv_tstamp = tcp_jiffies32;
  3110. if (!prior_packets)
  3111. goto no_queue;
  3112. /* See if we can take anything off of the retransmit queue. */
  3113. flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
  3114. tcp_rack_update_reo_wnd(sk, &rs);
  3115. if (tp->tlp_high_seq)
  3116. tcp_process_tlp_ack(sk, ack, flag);
  3117. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3118. if (flag & FLAG_SET_XMIT_TIMER)
  3119. tcp_set_xmit_timer(sk);
  3120. if (tcp_ack_is_dubious(sk, flag)) {
  3121. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3122. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3123. &rexmit);
  3124. }
  3125. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3126. sk_dst_confirm(sk);
  3127. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3128. lost = tp->lost - lost; /* freshly marked lost */
  3129. tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
  3130. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3131. tcp_xmit_recovery(sk, rexmit);
  3132. return 1;
  3133. no_queue:
  3134. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3135. if (flag & FLAG_DSACKING_ACK)
  3136. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3137. &rexmit);
  3138. /* If this ack opens up a zero window, clear backoff. It was
  3139. * being used to time the probes, and is probably far higher than
  3140. * it needs to be for normal retransmission.
  3141. */
  3142. tcp_ack_probe(sk);
  3143. if (tp->tlp_high_seq)
  3144. tcp_process_tlp_ack(sk, ack, flag);
  3145. return 1;
  3146. invalid_ack:
  3147. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3148. return -1;
  3149. old_ack:
  3150. /* If data was SACKed, tag it and see if we should send more data.
  3151. * If data was DSACKed, see if we can undo a cwnd reduction.
  3152. */
  3153. if (TCP_SKB_CB(skb)->sacked) {
  3154. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3155. &sack_state);
  3156. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3157. &rexmit);
  3158. tcp_xmit_recovery(sk, rexmit);
  3159. }
  3160. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3161. return 0;
  3162. }
  3163. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3164. bool syn, struct tcp_fastopen_cookie *foc,
  3165. bool exp_opt)
  3166. {
  3167. /* Valid only in SYN or SYN-ACK with an even length. */
  3168. if (!foc || !syn || len < 0 || (len & 1))
  3169. return;
  3170. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3171. len <= TCP_FASTOPEN_COOKIE_MAX)
  3172. memcpy(foc->val, cookie, len);
  3173. else if (len != 0)
  3174. len = -1;
  3175. foc->len = len;
  3176. foc->exp = exp_opt;
  3177. }
  3178. static void smc_parse_options(const struct tcphdr *th,
  3179. struct tcp_options_received *opt_rx,
  3180. const unsigned char *ptr,
  3181. int opsize)
  3182. {
  3183. #if IS_ENABLED(CONFIG_SMC)
  3184. if (static_branch_unlikely(&tcp_have_smc)) {
  3185. if (th->syn && !(opsize & 1) &&
  3186. opsize >= TCPOLEN_EXP_SMC_BASE &&
  3187. get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
  3188. opt_rx->smc_ok = 1;
  3189. }
  3190. #endif
  3191. }
  3192. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3193. * But, this can also be called on packets in the established flow when
  3194. * the fast version below fails.
  3195. */
  3196. void tcp_parse_options(const struct net *net,
  3197. const struct sk_buff *skb,
  3198. struct tcp_options_received *opt_rx, int estab,
  3199. struct tcp_fastopen_cookie *foc)
  3200. {
  3201. const unsigned char *ptr;
  3202. const struct tcphdr *th = tcp_hdr(skb);
  3203. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3204. ptr = (const unsigned char *)(th + 1);
  3205. opt_rx->saw_tstamp = 0;
  3206. while (length > 0) {
  3207. int opcode = *ptr++;
  3208. int opsize;
  3209. switch (opcode) {
  3210. case TCPOPT_EOL:
  3211. return;
  3212. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3213. length--;
  3214. continue;
  3215. default:
  3216. opsize = *ptr++;
  3217. if (opsize < 2) /* "silly options" */
  3218. return;
  3219. if (opsize > length)
  3220. return; /* don't parse partial options */
  3221. switch (opcode) {
  3222. case TCPOPT_MSS:
  3223. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3224. u16 in_mss = get_unaligned_be16(ptr);
  3225. if (in_mss) {
  3226. if (opt_rx->user_mss &&
  3227. opt_rx->user_mss < in_mss)
  3228. in_mss = opt_rx->user_mss;
  3229. opt_rx->mss_clamp = in_mss;
  3230. }
  3231. }
  3232. break;
  3233. case TCPOPT_WINDOW:
  3234. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3235. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3236. __u8 snd_wscale = *(__u8 *)ptr;
  3237. opt_rx->wscale_ok = 1;
  3238. if (snd_wscale > TCP_MAX_WSCALE) {
  3239. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3240. __func__,
  3241. snd_wscale,
  3242. TCP_MAX_WSCALE);
  3243. snd_wscale = TCP_MAX_WSCALE;
  3244. }
  3245. opt_rx->snd_wscale = snd_wscale;
  3246. }
  3247. break;
  3248. case TCPOPT_TIMESTAMP:
  3249. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3250. ((estab && opt_rx->tstamp_ok) ||
  3251. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3252. opt_rx->saw_tstamp = 1;
  3253. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3254. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3255. }
  3256. break;
  3257. case TCPOPT_SACK_PERM:
  3258. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3259. !estab && net->ipv4.sysctl_tcp_sack) {
  3260. opt_rx->sack_ok = TCP_SACK_SEEN;
  3261. tcp_sack_reset(opt_rx);
  3262. }
  3263. break;
  3264. case TCPOPT_SACK:
  3265. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3266. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3267. opt_rx->sack_ok) {
  3268. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3269. }
  3270. break;
  3271. #ifdef CONFIG_TCP_MD5SIG
  3272. case TCPOPT_MD5SIG:
  3273. /*
  3274. * The MD5 Hash has already been
  3275. * checked (see tcp_v{4,6}_do_rcv()).
  3276. */
  3277. break;
  3278. #endif
  3279. case TCPOPT_FASTOPEN:
  3280. tcp_parse_fastopen_option(
  3281. opsize - TCPOLEN_FASTOPEN_BASE,
  3282. ptr, th->syn, foc, false);
  3283. break;
  3284. case TCPOPT_EXP:
  3285. /* Fast Open option shares code 254 using a
  3286. * 16 bits magic number.
  3287. */
  3288. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3289. get_unaligned_be16(ptr) ==
  3290. TCPOPT_FASTOPEN_MAGIC)
  3291. tcp_parse_fastopen_option(opsize -
  3292. TCPOLEN_EXP_FASTOPEN_BASE,
  3293. ptr + 2, th->syn, foc, true);
  3294. else
  3295. smc_parse_options(th, opt_rx, ptr,
  3296. opsize);
  3297. break;
  3298. }
  3299. ptr += opsize-2;
  3300. length -= opsize;
  3301. }
  3302. }
  3303. }
  3304. EXPORT_SYMBOL(tcp_parse_options);
  3305. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3306. {
  3307. const __be32 *ptr = (const __be32 *)(th + 1);
  3308. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3309. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3310. tp->rx_opt.saw_tstamp = 1;
  3311. ++ptr;
  3312. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3313. ++ptr;
  3314. if (*ptr)
  3315. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3316. else
  3317. tp->rx_opt.rcv_tsecr = 0;
  3318. return true;
  3319. }
  3320. return false;
  3321. }
  3322. /* Fast parse options. This hopes to only see timestamps.
  3323. * If it is wrong it falls back on tcp_parse_options().
  3324. */
  3325. static bool tcp_fast_parse_options(const struct net *net,
  3326. const struct sk_buff *skb,
  3327. const struct tcphdr *th, struct tcp_sock *tp)
  3328. {
  3329. /* In the spirit of fast parsing, compare doff directly to constant
  3330. * values. Because equality is used, short doff can be ignored here.
  3331. */
  3332. if (th->doff == (sizeof(*th) / 4)) {
  3333. tp->rx_opt.saw_tstamp = 0;
  3334. return false;
  3335. } else if (tp->rx_opt.tstamp_ok &&
  3336. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3337. if (tcp_parse_aligned_timestamp(tp, th))
  3338. return true;
  3339. }
  3340. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3341. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3342. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3343. return true;
  3344. }
  3345. #ifdef CONFIG_TCP_MD5SIG
  3346. /*
  3347. * Parse MD5 Signature option
  3348. */
  3349. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3350. {
  3351. int length = (th->doff << 2) - sizeof(*th);
  3352. const u8 *ptr = (const u8 *)(th + 1);
  3353. /* If the TCP option is too short, we can short cut */
  3354. if (length < TCPOLEN_MD5SIG)
  3355. return NULL;
  3356. while (length > 0) {
  3357. int opcode = *ptr++;
  3358. int opsize;
  3359. switch (opcode) {
  3360. case TCPOPT_EOL:
  3361. return NULL;
  3362. case TCPOPT_NOP:
  3363. length--;
  3364. continue;
  3365. default:
  3366. opsize = *ptr++;
  3367. if (opsize < 2 || opsize > length)
  3368. return NULL;
  3369. if (opcode == TCPOPT_MD5SIG)
  3370. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3371. }
  3372. ptr += opsize - 2;
  3373. length -= opsize;
  3374. }
  3375. return NULL;
  3376. }
  3377. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3378. #endif
  3379. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3380. *
  3381. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3382. * it can pass through stack. So, the following predicate verifies that
  3383. * this segment is not used for anything but congestion avoidance or
  3384. * fast retransmit. Moreover, we even are able to eliminate most of such
  3385. * second order effects, if we apply some small "replay" window (~RTO)
  3386. * to timestamp space.
  3387. *
  3388. * All these measures still do not guarantee that we reject wrapped ACKs
  3389. * on networks with high bandwidth, when sequence space is recycled fastly,
  3390. * but it guarantees that such events will be very rare and do not affect
  3391. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3392. * buggy extension.
  3393. *
  3394. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3395. * states that events when retransmit arrives after original data are rare.
  3396. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3397. * the biggest problem on large power networks even with minor reordering.
  3398. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3399. * up to bandwidth of 18Gigabit/sec. 8) ]
  3400. */
  3401. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3402. {
  3403. const struct tcp_sock *tp = tcp_sk(sk);
  3404. const struct tcphdr *th = tcp_hdr(skb);
  3405. u32 seq = TCP_SKB_CB(skb)->seq;
  3406. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3407. return (/* 1. Pure ACK with correct sequence number. */
  3408. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3409. /* 2. ... and duplicate ACK. */
  3410. ack == tp->snd_una &&
  3411. /* 3. ... and does not update window. */
  3412. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3413. /* 4. ... and sits in replay window. */
  3414. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3415. }
  3416. static inline bool tcp_paws_discard(const struct sock *sk,
  3417. const struct sk_buff *skb)
  3418. {
  3419. const struct tcp_sock *tp = tcp_sk(sk);
  3420. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3421. !tcp_disordered_ack(sk, skb);
  3422. }
  3423. /* Check segment sequence number for validity.
  3424. *
  3425. * Segment controls are considered valid, if the segment
  3426. * fits to the window after truncation to the window. Acceptability
  3427. * of data (and SYN, FIN, of course) is checked separately.
  3428. * See tcp_data_queue(), for example.
  3429. *
  3430. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3431. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3432. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3433. * (borrowed from freebsd)
  3434. */
  3435. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3436. {
  3437. return !before(end_seq, tp->rcv_wup) &&
  3438. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3439. }
  3440. /* When we get a reset we do this. */
  3441. void tcp_reset(struct sock *sk)
  3442. {
  3443. trace_tcp_receive_reset(sk);
  3444. /* We want the right error as BSD sees it (and indeed as we do). */
  3445. switch (sk->sk_state) {
  3446. case TCP_SYN_SENT:
  3447. sk->sk_err = ECONNREFUSED;
  3448. break;
  3449. case TCP_CLOSE_WAIT:
  3450. sk->sk_err = EPIPE;
  3451. break;
  3452. case TCP_CLOSE:
  3453. return;
  3454. default:
  3455. sk->sk_err = ECONNRESET;
  3456. }
  3457. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3458. smp_wmb();
  3459. tcp_done(sk);
  3460. if (!sock_flag(sk, SOCK_DEAD))
  3461. sk->sk_error_report(sk);
  3462. }
  3463. /*
  3464. * Process the FIN bit. This now behaves as it is supposed to work
  3465. * and the FIN takes effect when it is validly part of sequence
  3466. * space. Not before when we get holes.
  3467. *
  3468. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3469. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3470. * TIME-WAIT)
  3471. *
  3472. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3473. * close and we go into CLOSING (and later onto TIME-WAIT)
  3474. *
  3475. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3476. */
  3477. void tcp_fin(struct sock *sk)
  3478. {
  3479. struct tcp_sock *tp = tcp_sk(sk);
  3480. inet_csk_schedule_ack(sk);
  3481. sk->sk_shutdown |= RCV_SHUTDOWN;
  3482. sock_set_flag(sk, SOCK_DONE);
  3483. switch (sk->sk_state) {
  3484. case TCP_SYN_RECV:
  3485. case TCP_ESTABLISHED:
  3486. /* Move to CLOSE_WAIT */
  3487. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3488. inet_csk(sk)->icsk_ack.pingpong = 1;
  3489. break;
  3490. case TCP_CLOSE_WAIT:
  3491. case TCP_CLOSING:
  3492. /* Received a retransmission of the FIN, do
  3493. * nothing.
  3494. */
  3495. break;
  3496. case TCP_LAST_ACK:
  3497. /* RFC793: Remain in the LAST-ACK state. */
  3498. break;
  3499. case TCP_FIN_WAIT1:
  3500. /* This case occurs when a simultaneous close
  3501. * happens, we must ack the received FIN and
  3502. * enter the CLOSING state.
  3503. */
  3504. tcp_send_ack(sk);
  3505. tcp_set_state(sk, TCP_CLOSING);
  3506. break;
  3507. case TCP_FIN_WAIT2:
  3508. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3509. tcp_send_ack(sk);
  3510. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3511. break;
  3512. default:
  3513. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3514. * cases we should never reach this piece of code.
  3515. */
  3516. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3517. __func__, sk->sk_state);
  3518. break;
  3519. }
  3520. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3521. * Probably, we should reset in this case. For now drop them.
  3522. */
  3523. skb_rbtree_purge(&tp->out_of_order_queue);
  3524. if (tcp_is_sack(tp))
  3525. tcp_sack_reset(&tp->rx_opt);
  3526. sk_mem_reclaim(sk);
  3527. if (!sock_flag(sk, SOCK_DEAD)) {
  3528. sk->sk_state_change(sk);
  3529. /* Do not send POLL_HUP for half duplex close. */
  3530. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3531. sk->sk_state == TCP_CLOSE)
  3532. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3533. else
  3534. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3535. }
  3536. }
  3537. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3538. u32 end_seq)
  3539. {
  3540. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3541. if (before(seq, sp->start_seq))
  3542. sp->start_seq = seq;
  3543. if (after(end_seq, sp->end_seq))
  3544. sp->end_seq = end_seq;
  3545. return true;
  3546. }
  3547. return false;
  3548. }
  3549. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3550. {
  3551. struct tcp_sock *tp = tcp_sk(sk);
  3552. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3553. int mib_idx;
  3554. if (before(seq, tp->rcv_nxt))
  3555. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3556. else
  3557. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3558. NET_INC_STATS(sock_net(sk), mib_idx);
  3559. tp->rx_opt.dsack = 1;
  3560. tp->duplicate_sack[0].start_seq = seq;
  3561. tp->duplicate_sack[0].end_seq = end_seq;
  3562. }
  3563. }
  3564. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3565. {
  3566. struct tcp_sock *tp = tcp_sk(sk);
  3567. if (!tp->rx_opt.dsack)
  3568. tcp_dsack_set(sk, seq, end_seq);
  3569. else
  3570. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3571. }
  3572. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3573. {
  3574. struct tcp_sock *tp = tcp_sk(sk);
  3575. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3576. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3577. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3578. tcp_enter_quickack_mode(sk);
  3579. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3580. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3581. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3582. end_seq = tp->rcv_nxt;
  3583. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3584. }
  3585. }
  3586. tcp_send_ack(sk);
  3587. }
  3588. /* These routines update the SACK block as out-of-order packets arrive or
  3589. * in-order packets close up the sequence space.
  3590. */
  3591. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3592. {
  3593. int this_sack;
  3594. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3595. struct tcp_sack_block *swalk = sp + 1;
  3596. /* See if the recent change to the first SACK eats into
  3597. * or hits the sequence space of other SACK blocks, if so coalesce.
  3598. */
  3599. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3600. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3601. int i;
  3602. /* Zap SWALK, by moving every further SACK up by one slot.
  3603. * Decrease num_sacks.
  3604. */
  3605. tp->rx_opt.num_sacks--;
  3606. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3607. sp[i] = sp[i + 1];
  3608. continue;
  3609. }
  3610. this_sack++, swalk++;
  3611. }
  3612. }
  3613. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3614. {
  3615. struct tcp_sock *tp = tcp_sk(sk);
  3616. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3617. int cur_sacks = tp->rx_opt.num_sacks;
  3618. int this_sack;
  3619. if (!cur_sacks)
  3620. goto new_sack;
  3621. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3622. if (tcp_sack_extend(sp, seq, end_seq)) {
  3623. /* Rotate this_sack to the first one. */
  3624. for (; this_sack > 0; this_sack--, sp--)
  3625. swap(*sp, *(sp - 1));
  3626. if (cur_sacks > 1)
  3627. tcp_sack_maybe_coalesce(tp);
  3628. return;
  3629. }
  3630. }
  3631. /* Could not find an adjacent existing SACK, build a new one,
  3632. * put it at the front, and shift everyone else down. We
  3633. * always know there is at least one SACK present already here.
  3634. *
  3635. * If the sack array is full, forget about the last one.
  3636. */
  3637. if (this_sack >= TCP_NUM_SACKS) {
  3638. this_sack--;
  3639. tp->rx_opt.num_sacks--;
  3640. sp--;
  3641. }
  3642. for (; this_sack > 0; this_sack--, sp--)
  3643. *sp = *(sp - 1);
  3644. new_sack:
  3645. /* Build the new head SACK, and we're done. */
  3646. sp->start_seq = seq;
  3647. sp->end_seq = end_seq;
  3648. tp->rx_opt.num_sacks++;
  3649. }
  3650. /* RCV.NXT advances, some SACKs should be eaten. */
  3651. static void tcp_sack_remove(struct tcp_sock *tp)
  3652. {
  3653. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3654. int num_sacks = tp->rx_opt.num_sacks;
  3655. int this_sack;
  3656. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3657. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3658. tp->rx_opt.num_sacks = 0;
  3659. return;
  3660. }
  3661. for (this_sack = 0; this_sack < num_sacks;) {
  3662. /* Check if the start of the sack is covered by RCV.NXT. */
  3663. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3664. int i;
  3665. /* RCV.NXT must cover all the block! */
  3666. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3667. /* Zap this SACK, by moving forward any other SACKS. */
  3668. for (i = this_sack+1; i < num_sacks; i++)
  3669. tp->selective_acks[i-1] = tp->selective_acks[i];
  3670. num_sacks--;
  3671. continue;
  3672. }
  3673. this_sack++;
  3674. sp++;
  3675. }
  3676. tp->rx_opt.num_sacks = num_sacks;
  3677. }
  3678. /**
  3679. * tcp_try_coalesce - try to merge skb to prior one
  3680. * @sk: socket
  3681. * @dest: destination queue
  3682. * @to: prior buffer
  3683. * @from: buffer to add in queue
  3684. * @fragstolen: pointer to boolean
  3685. *
  3686. * Before queueing skb @from after @to, try to merge them
  3687. * to reduce overall memory use and queue lengths, if cost is small.
  3688. * Packets in ofo or receive queues can stay a long time.
  3689. * Better try to coalesce them right now to avoid future collapses.
  3690. * Returns true if caller should free @from instead of queueing it
  3691. */
  3692. static bool tcp_try_coalesce(struct sock *sk,
  3693. struct sk_buff *to,
  3694. struct sk_buff *from,
  3695. bool *fragstolen)
  3696. {
  3697. int delta;
  3698. *fragstolen = false;
  3699. /* Its possible this segment overlaps with prior segment in queue */
  3700. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3701. return false;
  3702. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3703. return false;
  3704. atomic_add(delta, &sk->sk_rmem_alloc);
  3705. sk_mem_charge(sk, delta);
  3706. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3707. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3708. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3709. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3710. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3711. TCP_SKB_CB(to)->has_rxtstamp = true;
  3712. to->tstamp = from->tstamp;
  3713. }
  3714. return true;
  3715. }
  3716. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3717. {
  3718. sk_drops_add(sk, skb);
  3719. __kfree_skb(skb);
  3720. }
  3721. /* This one checks to see if we can put data from the
  3722. * out_of_order queue into the receive_queue.
  3723. */
  3724. static void tcp_ofo_queue(struct sock *sk)
  3725. {
  3726. struct tcp_sock *tp = tcp_sk(sk);
  3727. __u32 dsack_high = tp->rcv_nxt;
  3728. bool fin, fragstolen, eaten;
  3729. struct sk_buff *skb, *tail;
  3730. struct rb_node *p;
  3731. p = rb_first(&tp->out_of_order_queue);
  3732. while (p) {
  3733. skb = rb_to_skb(p);
  3734. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3735. break;
  3736. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3737. __u32 dsack = dsack_high;
  3738. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3739. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3740. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3741. }
  3742. p = rb_next(p);
  3743. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3744. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3745. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3746. tcp_drop(sk, skb);
  3747. continue;
  3748. }
  3749. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3750. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3751. TCP_SKB_CB(skb)->end_seq);
  3752. tail = skb_peek_tail(&sk->sk_receive_queue);
  3753. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3754. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3755. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3756. if (!eaten)
  3757. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3758. else
  3759. kfree_skb_partial(skb, fragstolen);
  3760. if (unlikely(fin)) {
  3761. tcp_fin(sk);
  3762. /* tcp_fin() purges tp->out_of_order_queue,
  3763. * so we must end this loop right now.
  3764. */
  3765. break;
  3766. }
  3767. }
  3768. }
  3769. static bool tcp_prune_ofo_queue(struct sock *sk);
  3770. static int tcp_prune_queue(struct sock *sk);
  3771. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3772. unsigned int size)
  3773. {
  3774. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3775. !sk_rmem_schedule(sk, skb, size)) {
  3776. if (tcp_prune_queue(sk) < 0)
  3777. return -1;
  3778. while (!sk_rmem_schedule(sk, skb, size)) {
  3779. if (!tcp_prune_ofo_queue(sk))
  3780. return -1;
  3781. }
  3782. }
  3783. return 0;
  3784. }
  3785. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3786. {
  3787. struct tcp_sock *tp = tcp_sk(sk);
  3788. struct rb_node **p, *parent;
  3789. struct sk_buff *skb1;
  3790. u32 seq, end_seq;
  3791. bool fragstolen;
  3792. tcp_ecn_check_ce(tp, skb);
  3793. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3794. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3795. tcp_drop(sk, skb);
  3796. return;
  3797. }
  3798. /* Disable header prediction. */
  3799. tp->pred_flags = 0;
  3800. inet_csk_schedule_ack(sk);
  3801. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3802. seq = TCP_SKB_CB(skb)->seq;
  3803. end_seq = TCP_SKB_CB(skb)->end_seq;
  3804. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3805. tp->rcv_nxt, seq, end_seq);
  3806. p = &tp->out_of_order_queue.rb_node;
  3807. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3808. /* Initial out of order segment, build 1 SACK. */
  3809. if (tcp_is_sack(tp)) {
  3810. tp->rx_opt.num_sacks = 1;
  3811. tp->selective_acks[0].start_seq = seq;
  3812. tp->selective_acks[0].end_seq = end_seq;
  3813. }
  3814. rb_link_node(&skb->rbnode, NULL, p);
  3815. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3816. tp->ooo_last_skb = skb;
  3817. goto end;
  3818. }
  3819. /* In the typical case, we are adding an skb to the end of the list.
  3820. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3821. */
  3822. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3823. skb, &fragstolen)) {
  3824. coalesce_done:
  3825. tcp_grow_window(sk, skb);
  3826. kfree_skb_partial(skb, fragstolen);
  3827. skb = NULL;
  3828. goto add_sack;
  3829. }
  3830. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3831. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3832. parent = &tp->ooo_last_skb->rbnode;
  3833. p = &parent->rb_right;
  3834. goto insert;
  3835. }
  3836. /* Find place to insert this segment. Handle overlaps on the way. */
  3837. parent = NULL;
  3838. while (*p) {
  3839. parent = *p;
  3840. skb1 = rb_to_skb(parent);
  3841. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3842. p = &parent->rb_left;
  3843. continue;
  3844. }
  3845. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3846. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3847. /* All the bits are present. Drop. */
  3848. NET_INC_STATS(sock_net(sk),
  3849. LINUX_MIB_TCPOFOMERGE);
  3850. __kfree_skb(skb);
  3851. skb = NULL;
  3852. tcp_dsack_set(sk, seq, end_seq);
  3853. goto add_sack;
  3854. }
  3855. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3856. /* Partial overlap. */
  3857. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3858. } else {
  3859. /* skb's seq == skb1's seq and skb covers skb1.
  3860. * Replace skb1 with skb.
  3861. */
  3862. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3863. &tp->out_of_order_queue);
  3864. tcp_dsack_extend(sk,
  3865. TCP_SKB_CB(skb1)->seq,
  3866. TCP_SKB_CB(skb1)->end_seq);
  3867. NET_INC_STATS(sock_net(sk),
  3868. LINUX_MIB_TCPOFOMERGE);
  3869. __kfree_skb(skb1);
  3870. goto merge_right;
  3871. }
  3872. } else if (tcp_try_coalesce(sk, skb1,
  3873. skb, &fragstolen)) {
  3874. goto coalesce_done;
  3875. }
  3876. p = &parent->rb_right;
  3877. }
  3878. insert:
  3879. /* Insert segment into RB tree. */
  3880. rb_link_node(&skb->rbnode, parent, p);
  3881. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3882. merge_right:
  3883. /* Remove other segments covered by skb. */
  3884. while ((skb1 = skb_rb_next(skb)) != NULL) {
  3885. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3886. break;
  3887. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3888. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3889. end_seq);
  3890. break;
  3891. }
  3892. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3893. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3894. TCP_SKB_CB(skb1)->end_seq);
  3895. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3896. tcp_drop(sk, skb1);
  3897. }
  3898. /* If there is no skb after us, we are the last_skb ! */
  3899. if (!skb1)
  3900. tp->ooo_last_skb = skb;
  3901. add_sack:
  3902. if (tcp_is_sack(tp))
  3903. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3904. end:
  3905. if (skb) {
  3906. tcp_grow_window(sk, skb);
  3907. skb_condense(skb);
  3908. skb_set_owner_r(skb, sk);
  3909. }
  3910. }
  3911. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3912. bool *fragstolen)
  3913. {
  3914. int eaten;
  3915. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3916. __skb_pull(skb, hdrlen);
  3917. eaten = (tail &&
  3918. tcp_try_coalesce(sk, tail,
  3919. skb, fragstolen)) ? 1 : 0;
  3920. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3921. if (!eaten) {
  3922. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3923. skb_set_owner_r(skb, sk);
  3924. }
  3925. return eaten;
  3926. }
  3927. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3928. {
  3929. struct sk_buff *skb;
  3930. int err = -ENOMEM;
  3931. int data_len = 0;
  3932. bool fragstolen;
  3933. if (size == 0)
  3934. return 0;
  3935. if (size > PAGE_SIZE) {
  3936. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3937. data_len = npages << PAGE_SHIFT;
  3938. size = data_len + (size & ~PAGE_MASK);
  3939. }
  3940. skb = alloc_skb_with_frags(size - data_len, data_len,
  3941. PAGE_ALLOC_COSTLY_ORDER,
  3942. &err, sk->sk_allocation);
  3943. if (!skb)
  3944. goto err;
  3945. skb_put(skb, size - data_len);
  3946. skb->data_len = data_len;
  3947. skb->len = size;
  3948. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3949. goto err_free;
  3950. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3951. if (err)
  3952. goto err_free;
  3953. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3954. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3955. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3956. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3957. WARN_ON_ONCE(fragstolen); /* should not happen */
  3958. __kfree_skb(skb);
  3959. }
  3960. return size;
  3961. err_free:
  3962. kfree_skb(skb);
  3963. err:
  3964. return err;
  3965. }
  3966. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3967. {
  3968. struct tcp_sock *tp = tcp_sk(sk);
  3969. bool fragstolen;
  3970. int eaten;
  3971. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3972. __kfree_skb(skb);
  3973. return;
  3974. }
  3975. skb_dst_drop(skb);
  3976. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3977. tcp_ecn_accept_cwr(tp, skb);
  3978. tp->rx_opt.dsack = 0;
  3979. /* Queue data for delivery to the user.
  3980. * Packets in sequence go to the receive queue.
  3981. * Out of sequence packets to the out_of_order_queue.
  3982. */
  3983. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3984. if (tcp_receive_window(tp) == 0)
  3985. goto out_of_window;
  3986. /* Ok. In sequence. In window. */
  3987. queue_and_out:
  3988. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3989. sk_forced_mem_schedule(sk, skb->truesize);
  3990. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3991. goto drop;
  3992. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3993. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3994. if (skb->len)
  3995. tcp_event_data_recv(sk, skb);
  3996. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3997. tcp_fin(sk);
  3998. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3999. tcp_ofo_queue(sk);
  4000. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4001. * gap in queue is filled.
  4002. */
  4003. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4004. inet_csk(sk)->icsk_ack.pingpong = 0;
  4005. }
  4006. if (tp->rx_opt.num_sacks)
  4007. tcp_sack_remove(tp);
  4008. tcp_fast_path_check(sk);
  4009. if (eaten > 0)
  4010. kfree_skb_partial(skb, fragstolen);
  4011. if (!sock_flag(sk, SOCK_DEAD))
  4012. sk->sk_data_ready(sk);
  4013. return;
  4014. }
  4015. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4016. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4017. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4018. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4019. out_of_window:
  4020. tcp_enter_quickack_mode(sk);
  4021. inet_csk_schedule_ack(sk);
  4022. drop:
  4023. tcp_drop(sk, skb);
  4024. return;
  4025. }
  4026. /* Out of window. F.e. zero window probe. */
  4027. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4028. goto out_of_window;
  4029. tcp_enter_quickack_mode(sk);
  4030. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4031. /* Partial packet, seq < rcv_next < end_seq */
  4032. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4033. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4034. TCP_SKB_CB(skb)->end_seq);
  4035. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4036. /* If window is closed, drop tail of packet. But after
  4037. * remembering D-SACK for its head made in previous line.
  4038. */
  4039. if (!tcp_receive_window(tp))
  4040. goto out_of_window;
  4041. goto queue_and_out;
  4042. }
  4043. tcp_data_queue_ofo(sk, skb);
  4044. }
  4045. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4046. {
  4047. if (list)
  4048. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4049. return skb_rb_next(skb);
  4050. }
  4051. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4052. struct sk_buff_head *list,
  4053. struct rb_root *root)
  4054. {
  4055. struct sk_buff *next = tcp_skb_next(skb, list);
  4056. if (list)
  4057. __skb_unlink(skb, list);
  4058. else
  4059. rb_erase(&skb->rbnode, root);
  4060. __kfree_skb(skb);
  4061. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4062. return next;
  4063. }
  4064. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4065. void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4066. {
  4067. struct rb_node **p = &root->rb_node;
  4068. struct rb_node *parent = NULL;
  4069. struct sk_buff *skb1;
  4070. while (*p) {
  4071. parent = *p;
  4072. skb1 = rb_to_skb(parent);
  4073. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4074. p = &parent->rb_left;
  4075. else
  4076. p = &parent->rb_right;
  4077. }
  4078. rb_link_node(&skb->rbnode, parent, p);
  4079. rb_insert_color(&skb->rbnode, root);
  4080. }
  4081. /* Collapse contiguous sequence of skbs head..tail with
  4082. * sequence numbers start..end.
  4083. *
  4084. * If tail is NULL, this means until the end of the queue.
  4085. *
  4086. * Segments with FIN/SYN are not collapsed (only because this
  4087. * simplifies code)
  4088. */
  4089. static void
  4090. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4091. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4092. {
  4093. struct sk_buff *skb = head, *n;
  4094. struct sk_buff_head tmp;
  4095. bool end_of_skbs;
  4096. /* First, check that queue is collapsible and find
  4097. * the point where collapsing can be useful.
  4098. */
  4099. restart:
  4100. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4101. n = tcp_skb_next(skb, list);
  4102. /* No new bits? It is possible on ofo queue. */
  4103. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4104. skb = tcp_collapse_one(sk, skb, list, root);
  4105. if (!skb)
  4106. break;
  4107. goto restart;
  4108. }
  4109. /* The first skb to collapse is:
  4110. * - not SYN/FIN and
  4111. * - bloated or contains data before "start" or
  4112. * overlaps to the next one.
  4113. */
  4114. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4115. (tcp_win_from_space(sk, skb->truesize) > skb->len ||
  4116. before(TCP_SKB_CB(skb)->seq, start))) {
  4117. end_of_skbs = false;
  4118. break;
  4119. }
  4120. if (n && n != tail &&
  4121. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4122. end_of_skbs = false;
  4123. break;
  4124. }
  4125. /* Decided to skip this, advance start seq. */
  4126. start = TCP_SKB_CB(skb)->end_seq;
  4127. }
  4128. if (end_of_skbs ||
  4129. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4130. return;
  4131. __skb_queue_head_init(&tmp);
  4132. while (before(start, end)) {
  4133. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4134. struct sk_buff *nskb;
  4135. nskb = alloc_skb(copy, GFP_ATOMIC);
  4136. if (!nskb)
  4137. break;
  4138. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4139. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4140. if (list)
  4141. __skb_queue_before(list, skb, nskb);
  4142. else
  4143. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4144. skb_set_owner_r(nskb, sk);
  4145. /* Copy data, releasing collapsed skbs. */
  4146. while (copy > 0) {
  4147. int offset = start - TCP_SKB_CB(skb)->seq;
  4148. int size = TCP_SKB_CB(skb)->end_seq - start;
  4149. BUG_ON(offset < 0);
  4150. if (size > 0) {
  4151. size = min(copy, size);
  4152. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4153. BUG();
  4154. TCP_SKB_CB(nskb)->end_seq += size;
  4155. copy -= size;
  4156. start += size;
  4157. }
  4158. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4159. skb = tcp_collapse_one(sk, skb, list, root);
  4160. if (!skb ||
  4161. skb == tail ||
  4162. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4163. goto end;
  4164. }
  4165. }
  4166. }
  4167. end:
  4168. skb_queue_walk_safe(&tmp, skb, n)
  4169. tcp_rbtree_insert(root, skb);
  4170. }
  4171. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4172. * and tcp_collapse() them until all the queue is collapsed.
  4173. */
  4174. static void tcp_collapse_ofo_queue(struct sock *sk)
  4175. {
  4176. struct tcp_sock *tp = tcp_sk(sk);
  4177. struct sk_buff *skb, *head;
  4178. u32 start, end;
  4179. skb = skb_rb_first(&tp->out_of_order_queue);
  4180. new_range:
  4181. if (!skb) {
  4182. tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
  4183. return;
  4184. }
  4185. start = TCP_SKB_CB(skb)->seq;
  4186. end = TCP_SKB_CB(skb)->end_seq;
  4187. for (head = skb;;) {
  4188. skb = skb_rb_next(skb);
  4189. /* Range is terminated when we see a gap or when
  4190. * we are at the queue end.
  4191. */
  4192. if (!skb ||
  4193. after(TCP_SKB_CB(skb)->seq, end) ||
  4194. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4195. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4196. head, skb, start, end);
  4197. goto new_range;
  4198. }
  4199. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4200. start = TCP_SKB_CB(skb)->seq;
  4201. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4202. end = TCP_SKB_CB(skb)->end_seq;
  4203. }
  4204. }
  4205. /*
  4206. * Clean the out-of-order queue to make room.
  4207. * We drop high sequences packets to :
  4208. * 1) Let a chance for holes to be filled.
  4209. * 2) not add too big latencies if thousands of packets sit there.
  4210. * (But if application shrinks SO_RCVBUF, we could still end up
  4211. * freeing whole queue here)
  4212. *
  4213. * Return true if queue has shrunk.
  4214. */
  4215. static bool tcp_prune_ofo_queue(struct sock *sk)
  4216. {
  4217. struct tcp_sock *tp = tcp_sk(sk);
  4218. struct rb_node *node, *prev;
  4219. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4220. return false;
  4221. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4222. node = &tp->ooo_last_skb->rbnode;
  4223. do {
  4224. prev = rb_prev(node);
  4225. rb_erase(node, &tp->out_of_order_queue);
  4226. tcp_drop(sk, rb_to_skb(node));
  4227. sk_mem_reclaim(sk);
  4228. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4229. !tcp_under_memory_pressure(sk))
  4230. break;
  4231. node = prev;
  4232. } while (node);
  4233. tp->ooo_last_skb = rb_to_skb(prev);
  4234. /* Reset SACK state. A conforming SACK implementation will
  4235. * do the same at a timeout based retransmit. When a connection
  4236. * is in a sad state like this, we care only about integrity
  4237. * of the connection not performance.
  4238. */
  4239. if (tp->rx_opt.sack_ok)
  4240. tcp_sack_reset(&tp->rx_opt);
  4241. return true;
  4242. }
  4243. /* Reduce allocated memory if we can, trying to get
  4244. * the socket within its memory limits again.
  4245. *
  4246. * Return less than zero if we should start dropping frames
  4247. * until the socket owning process reads some of the data
  4248. * to stabilize the situation.
  4249. */
  4250. static int tcp_prune_queue(struct sock *sk)
  4251. {
  4252. struct tcp_sock *tp = tcp_sk(sk);
  4253. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4254. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4255. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4256. tcp_clamp_window(sk);
  4257. else if (tcp_under_memory_pressure(sk))
  4258. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4259. tcp_collapse_ofo_queue(sk);
  4260. if (!skb_queue_empty(&sk->sk_receive_queue))
  4261. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4262. skb_peek(&sk->sk_receive_queue),
  4263. NULL,
  4264. tp->copied_seq, tp->rcv_nxt);
  4265. sk_mem_reclaim(sk);
  4266. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4267. return 0;
  4268. /* Collapsing did not help, destructive actions follow.
  4269. * This must not ever occur. */
  4270. tcp_prune_ofo_queue(sk);
  4271. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4272. return 0;
  4273. /* If we are really being abused, tell the caller to silently
  4274. * drop receive data on the floor. It will get retransmitted
  4275. * and hopefully then we'll have sufficient space.
  4276. */
  4277. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4278. /* Massive buffer overcommit. */
  4279. tp->pred_flags = 0;
  4280. return -1;
  4281. }
  4282. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4283. {
  4284. const struct tcp_sock *tp = tcp_sk(sk);
  4285. /* If the user specified a specific send buffer setting, do
  4286. * not modify it.
  4287. */
  4288. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4289. return false;
  4290. /* If we are under global TCP memory pressure, do not expand. */
  4291. if (tcp_under_memory_pressure(sk))
  4292. return false;
  4293. /* If we are under soft global TCP memory pressure, do not expand. */
  4294. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4295. return false;
  4296. /* If we filled the congestion window, do not expand. */
  4297. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4298. return false;
  4299. return true;
  4300. }
  4301. /* When incoming ACK allowed to free some skb from write_queue,
  4302. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4303. * on the exit from tcp input handler.
  4304. *
  4305. * PROBLEM: sndbuf expansion does not work well with largesend.
  4306. */
  4307. static void tcp_new_space(struct sock *sk)
  4308. {
  4309. struct tcp_sock *tp = tcp_sk(sk);
  4310. if (tcp_should_expand_sndbuf(sk)) {
  4311. tcp_sndbuf_expand(sk);
  4312. tp->snd_cwnd_stamp = tcp_jiffies32;
  4313. }
  4314. sk->sk_write_space(sk);
  4315. }
  4316. static void tcp_check_space(struct sock *sk)
  4317. {
  4318. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4319. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4320. /* pairs with tcp_poll() */
  4321. smp_mb();
  4322. if (sk->sk_socket &&
  4323. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4324. tcp_new_space(sk);
  4325. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4326. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4327. }
  4328. }
  4329. }
  4330. static inline void tcp_data_snd_check(struct sock *sk)
  4331. {
  4332. tcp_push_pending_frames(sk);
  4333. tcp_check_space(sk);
  4334. }
  4335. /*
  4336. * Check if sending an ack is needed.
  4337. */
  4338. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4339. {
  4340. struct tcp_sock *tp = tcp_sk(sk);
  4341. /* More than one full frame received... */
  4342. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4343. /* ... and right edge of window advances far enough.
  4344. * (tcp_recvmsg() will send ACK otherwise). Or...
  4345. */
  4346. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4347. /* We ACK each frame or... */
  4348. tcp_in_quickack_mode(sk) ||
  4349. /* We have out of order data. */
  4350. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4351. /* Then ack it now */
  4352. tcp_send_ack(sk);
  4353. } else {
  4354. /* Else, send delayed ack. */
  4355. tcp_send_delayed_ack(sk);
  4356. }
  4357. }
  4358. static inline void tcp_ack_snd_check(struct sock *sk)
  4359. {
  4360. if (!inet_csk_ack_scheduled(sk)) {
  4361. /* We sent a data segment already. */
  4362. return;
  4363. }
  4364. __tcp_ack_snd_check(sk, 1);
  4365. }
  4366. /*
  4367. * This routine is only called when we have urgent data
  4368. * signaled. Its the 'slow' part of tcp_urg. It could be
  4369. * moved inline now as tcp_urg is only called from one
  4370. * place. We handle URGent data wrong. We have to - as
  4371. * BSD still doesn't use the correction from RFC961.
  4372. * For 1003.1g we should support a new option TCP_STDURG to permit
  4373. * either form (or just set the sysctl tcp_stdurg).
  4374. */
  4375. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4376. {
  4377. struct tcp_sock *tp = tcp_sk(sk);
  4378. u32 ptr = ntohs(th->urg_ptr);
  4379. if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
  4380. ptr--;
  4381. ptr += ntohl(th->seq);
  4382. /* Ignore urgent data that we've already seen and read. */
  4383. if (after(tp->copied_seq, ptr))
  4384. return;
  4385. /* Do not replay urg ptr.
  4386. *
  4387. * NOTE: interesting situation not covered by specs.
  4388. * Misbehaving sender may send urg ptr, pointing to segment,
  4389. * which we already have in ofo queue. We are not able to fetch
  4390. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4391. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4392. * situations. But it is worth to think about possibility of some
  4393. * DoSes using some hypothetical application level deadlock.
  4394. */
  4395. if (before(ptr, tp->rcv_nxt))
  4396. return;
  4397. /* Do we already have a newer (or duplicate) urgent pointer? */
  4398. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4399. return;
  4400. /* Tell the world about our new urgent pointer. */
  4401. sk_send_sigurg(sk);
  4402. /* We may be adding urgent data when the last byte read was
  4403. * urgent. To do this requires some care. We cannot just ignore
  4404. * tp->copied_seq since we would read the last urgent byte again
  4405. * as data, nor can we alter copied_seq until this data arrives
  4406. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4407. *
  4408. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4409. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4410. * and expect that both A and B disappear from stream. This is _wrong_.
  4411. * Though this happens in BSD with high probability, this is occasional.
  4412. * Any application relying on this is buggy. Note also, that fix "works"
  4413. * only in this artificial test. Insert some normal data between A and B and we will
  4414. * decline of BSD again. Verdict: it is better to remove to trap
  4415. * buggy users.
  4416. */
  4417. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4418. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4419. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4420. tp->copied_seq++;
  4421. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4422. __skb_unlink(skb, &sk->sk_receive_queue);
  4423. __kfree_skb(skb);
  4424. }
  4425. }
  4426. tp->urg_data = TCP_URG_NOTYET;
  4427. tp->urg_seq = ptr;
  4428. /* Disable header prediction. */
  4429. tp->pred_flags = 0;
  4430. }
  4431. /* This is the 'fast' part of urgent handling. */
  4432. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4433. {
  4434. struct tcp_sock *tp = tcp_sk(sk);
  4435. /* Check if we get a new urgent pointer - normally not. */
  4436. if (th->urg)
  4437. tcp_check_urg(sk, th);
  4438. /* Do we wait for any urgent data? - normally not... */
  4439. if (tp->urg_data == TCP_URG_NOTYET) {
  4440. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4441. th->syn;
  4442. /* Is the urgent pointer pointing into this packet? */
  4443. if (ptr < skb->len) {
  4444. u8 tmp;
  4445. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4446. BUG();
  4447. tp->urg_data = TCP_URG_VALID | tmp;
  4448. if (!sock_flag(sk, SOCK_DEAD))
  4449. sk->sk_data_ready(sk);
  4450. }
  4451. }
  4452. }
  4453. /* Accept RST for rcv_nxt - 1 after a FIN.
  4454. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4455. * FIN is sent followed by a RST packet. The RST is sent with the same
  4456. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4457. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4458. * ACKs on the closed socket. In addition middleboxes can drop either the
  4459. * challenge ACK or a subsequent RST.
  4460. */
  4461. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4462. {
  4463. struct tcp_sock *tp = tcp_sk(sk);
  4464. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4465. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4466. TCPF_CLOSING));
  4467. }
  4468. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4469. * play significant role here.
  4470. */
  4471. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4472. const struct tcphdr *th, int syn_inerr)
  4473. {
  4474. struct tcp_sock *tp = tcp_sk(sk);
  4475. bool rst_seq_match = false;
  4476. /* RFC1323: H1. Apply PAWS check first. */
  4477. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4478. tp->rx_opt.saw_tstamp &&
  4479. tcp_paws_discard(sk, skb)) {
  4480. if (!th->rst) {
  4481. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4482. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4483. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4484. &tp->last_oow_ack_time))
  4485. tcp_send_dupack(sk, skb);
  4486. goto discard;
  4487. }
  4488. /* Reset is accepted even if it did not pass PAWS. */
  4489. }
  4490. /* Step 1: check sequence number */
  4491. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4492. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4493. * (RST) segments are validated by checking their SEQ-fields."
  4494. * And page 69: "If an incoming segment is not acceptable,
  4495. * an acknowledgment should be sent in reply (unless the RST
  4496. * bit is set, if so drop the segment and return)".
  4497. */
  4498. if (!th->rst) {
  4499. if (th->syn)
  4500. goto syn_challenge;
  4501. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4502. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4503. &tp->last_oow_ack_time))
  4504. tcp_send_dupack(sk, skb);
  4505. } else if (tcp_reset_check(sk, skb)) {
  4506. tcp_reset(sk);
  4507. }
  4508. goto discard;
  4509. }
  4510. /* Step 2: check RST bit */
  4511. if (th->rst) {
  4512. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4513. * FIN and SACK too if available):
  4514. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4515. * the right-most SACK block,
  4516. * then
  4517. * RESET the connection
  4518. * else
  4519. * Send a challenge ACK
  4520. */
  4521. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4522. tcp_reset_check(sk, skb)) {
  4523. rst_seq_match = true;
  4524. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4525. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4526. int max_sack = sp[0].end_seq;
  4527. int this_sack;
  4528. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4529. ++this_sack) {
  4530. max_sack = after(sp[this_sack].end_seq,
  4531. max_sack) ?
  4532. sp[this_sack].end_seq : max_sack;
  4533. }
  4534. if (TCP_SKB_CB(skb)->seq == max_sack)
  4535. rst_seq_match = true;
  4536. }
  4537. if (rst_seq_match)
  4538. tcp_reset(sk);
  4539. else {
  4540. /* Disable TFO if RST is out-of-order
  4541. * and no data has been received
  4542. * for current active TFO socket
  4543. */
  4544. if (tp->syn_fastopen && !tp->data_segs_in &&
  4545. sk->sk_state == TCP_ESTABLISHED)
  4546. tcp_fastopen_active_disable(sk);
  4547. tcp_send_challenge_ack(sk, skb);
  4548. }
  4549. goto discard;
  4550. }
  4551. /* step 3: check security and precedence [ignored] */
  4552. /* step 4: Check for a SYN
  4553. * RFC 5961 4.2 : Send a challenge ack
  4554. */
  4555. if (th->syn) {
  4556. syn_challenge:
  4557. if (syn_inerr)
  4558. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4559. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4560. tcp_send_challenge_ack(sk, skb);
  4561. goto discard;
  4562. }
  4563. return true;
  4564. discard:
  4565. tcp_drop(sk, skb);
  4566. return false;
  4567. }
  4568. /*
  4569. * TCP receive function for the ESTABLISHED state.
  4570. *
  4571. * It is split into a fast path and a slow path. The fast path is
  4572. * disabled when:
  4573. * - A zero window was announced from us - zero window probing
  4574. * is only handled properly in the slow path.
  4575. * - Out of order segments arrived.
  4576. * - Urgent data is expected.
  4577. * - There is no buffer space left
  4578. * - Unexpected TCP flags/window values/header lengths are received
  4579. * (detected by checking the TCP header against pred_flags)
  4580. * - Data is sent in both directions. Fast path only supports pure senders
  4581. * or pure receivers (this means either the sequence number or the ack
  4582. * value must stay constant)
  4583. * - Unexpected TCP option.
  4584. *
  4585. * When these conditions are not satisfied it drops into a standard
  4586. * receive procedure patterned after RFC793 to handle all cases.
  4587. * The first three cases are guaranteed by proper pred_flags setting,
  4588. * the rest is checked inline. Fast processing is turned on in
  4589. * tcp_data_queue when everything is OK.
  4590. */
  4591. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4592. const struct tcphdr *th)
  4593. {
  4594. unsigned int len = skb->len;
  4595. struct tcp_sock *tp = tcp_sk(sk);
  4596. tcp_mstamp_refresh(tp);
  4597. if (unlikely(!sk->sk_rx_dst))
  4598. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4599. /*
  4600. * Header prediction.
  4601. * The code loosely follows the one in the famous
  4602. * "30 instruction TCP receive" Van Jacobson mail.
  4603. *
  4604. * Van's trick is to deposit buffers into socket queue
  4605. * on a device interrupt, to call tcp_recv function
  4606. * on the receive process context and checksum and copy
  4607. * the buffer to user space. smart...
  4608. *
  4609. * Our current scheme is not silly either but we take the
  4610. * extra cost of the net_bh soft interrupt processing...
  4611. * We do checksum and copy also but from device to kernel.
  4612. */
  4613. tp->rx_opt.saw_tstamp = 0;
  4614. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4615. * if header_prediction is to be made
  4616. * 'S' will always be tp->tcp_header_len >> 2
  4617. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4618. * turn it off (when there are holes in the receive
  4619. * space for instance)
  4620. * PSH flag is ignored.
  4621. */
  4622. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4623. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4624. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4625. int tcp_header_len = tp->tcp_header_len;
  4626. /* Timestamp header prediction: tcp_header_len
  4627. * is automatically equal to th->doff*4 due to pred_flags
  4628. * match.
  4629. */
  4630. /* Check timestamp */
  4631. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4632. /* No? Slow path! */
  4633. if (!tcp_parse_aligned_timestamp(tp, th))
  4634. goto slow_path;
  4635. /* If PAWS failed, check it more carefully in slow path */
  4636. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4637. goto slow_path;
  4638. /* DO NOT update ts_recent here, if checksum fails
  4639. * and timestamp was corrupted part, it will result
  4640. * in a hung connection since we will drop all
  4641. * future packets due to the PAWS test.
  4642. */
  4643. }
  4644. if (len <= tcp_header_len) {
  4645. /* Bulk data transfer: sender */
  4646. if (len == tcp_header_len) {
  4647. /* Predicted packet is in window by definition.
  4648. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4649. * Hence, check seq<=rcv_wup reduces to:
  4650. */
  4651. if (tcp_header_len ==
  4652. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4653. tp->rcv_nxt == tp->rcv_wup)
  4654. tcp_store_ts_recent(tp);
  4655. /* We know that such packets are checksummed
  4656. * on entry.
  4657. */
  4658. tcp_ack(sk, skb, 0);
  4659. __kfree_skb(skb);
  4660. tcp_data_snd_check(sk);
  4661. return;
  4662. } else { /* Header too small */
  4663. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4664. goto discard;
  4665. }
  4666. } else {
  4667. int eaten = 0;
  4668. bool fragstolen = false;
  4669. if (tcp_checksum_complete(skb))
  4670. goto csum_error;
  4671. if ((int)skb->truesize > sk->sk_forward_alloc)
  4672. goto step5;
  4673. /* Predicted packet is in window by definition.
  4674. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4675. * Hence, check seq<=rcv_wup reduces to:
  4676. */
  4677. if (tcp_header_len ==
  4678. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4679. tp->rcv_nxt == tp->rcv_wup)
  4680. tcp_store_ts_recent(tp);
  4681. tcp_rcv_rtt_measure_ts(sk, skb);
  4682. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4683. /* Bulk data transfer: receiver */
  4684. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4685. &fragstolen);
  4686. tcp_event_data_recv(sk, skb);
  4687. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4688. /* Well, only one small jumplet in fast path... */
  4689. tcp_ack(sk, skb, FLAG_DATA);
  4690. tcp_data_snd_check(sk);
  4691. if (!inet_csk_ack_scheduled(sk))
  4692. goto no_ack;
  4693. }
  4694. __tcp_ack_snd_check(sk, 0);
  4695. no_ack:
  4696. if (eaten)
  4697. kfree_skb_partial(skb, fragstolen);
  4698. sk->sk_data_ready(sk);
  4699. return;
  4700. }
  4701. }
  4702. slow_path:
  4703. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4704. goto csum_error;
  4705. if (!th->ack && !th->rst && !th->syn)
  4706. goto discard;
  4707. /*
  4708. * Standard slow path.
  4709. */
  4710. if (!tcp_validate_incoming(sk, skb, th, 1))
  4711. return;
  4712. step5:
  4713. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4714. goto discard;
  4715. tcp_rcv_rtt_measure_ts(sk, skb);
  4716. /* Process urgent data. */
  4717. tcp_urg(sk, skb, th);
  4718. /* step 7: process the segment text */
  4719. tcp_data_queue(sk, skb);
  4720. tcp_data_snd_check(sk);
  4721. tcp_ack_snd_check(sk);
  4722. return;
  4723. csum_error:
  4724. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4725. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4726. discard:
  4727. tcp_drop(sk, skb);
  4728. }
  4729. EXPORT_SYMBOL(tcp_rcv_established);
  4730. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4731. {
  4732. struct tcp_sock *tp = tcp_sk(sk);
  4733. struct inet_connection_sock *icsk = inet_csk(sk);
  4734. tcp_set_state(sk, TCP_ESTABLISHED);
  4735. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4736. if (skb) {
  4737. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4738. security_inet_conn_established(sk, skb);
  4739. }
  4740. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4741. /* Prevent spurious tcp_cwnd_restart() on first data
  4742. * packet.
  4743. */
  4744. tp->lsndtime = tcp_jiffies32;
  4745. if (sock_flag(sk, SOCK_KEEPOPEN))
  4746. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4747. if (!tp->rx_opt.snd_wscale)
  4748. __tcp_fast_path_on(tp, tp->snd_wnd);
  4749. else
  4750. tp->pred_flags = 0;
  4751. }
  4752. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4753. struct tcp_fastopen_cookie *cookie)
  4754. {
  4755. struct tcp_sock *tp = tcp_sk(sk);
  4756. struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
  4757. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4758. bool syn_drop = false;
  4759. if (mss == tp->rx_opt.user_mss) {
  4760. struct tcp_options_received opt;
  4761. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4762. tcp_clear_options(&opt);
  4763. opt.user_mss = opt.mss_clamp = 0;
  4764. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4765. mss = opt.mss_clamp;
  4766. }
  4767. if (!tp->syn_fastopen) {
  4768. /* Ignore an unsolicited cookie */
  4769. cookie->len = -1;
  4770. } else if (tp->total_retrans) {
  4771. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4772. * acknowledges data. Presumably the remote received only
  4773. * the retransmitted (regular) SYNs: either the original
  4774. * SYN-data or the corresponding SYN-ACK was dropped.
  4775. */
  4776. syn_drop = (cookie->len < 0 && data);
  4777. } else if (cookie->len < 0 && !tp->syn_data) {
  4778. /* We requested a cookie but didn't get it. If we did not use
  4779. * the (old) exp opt format then try so next time (try_exp=1).
  4780. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4781. */
  4782. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4783. }
  4784. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4785. if (data) { /* Retransmit unacked data in SYN */
  4786. skb_rbtree_walk_from(data) {
  4787. if (__tcp_retransmit_skb(sk, data, 1))
  4788. break;
  4789. }
  4790. tcp_rearm_rto(sk);
  4791. NET_INC_STATS(sock_net(sk),
  4792. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4793. return true;
  4794. }
  4795. tp->syn_data_acked = tp->syn_data;
  4796. if (tp->syn_data_acked)
  4797. NET_INC_STATS(sock_net(sk),
  4798. LINUX_MIB_TCPFASTOPENACTIVE);
  4799. tcp_fastopen_add_skb(sk, synack);
  4800. return false;
  4801. }
  4802. static void smc_check_reset_syn(struct tcp_sock *tp)
  4803. {
  4804. #if IS_ENABLED(CONFIG_SMC)
  4805. if (static_branch_unlikely(&tcp_have_smc)) {
  4806. if (tp->syn_smc && !tp->rx_opt.smc_ok)
  4807. tp->syn_smc = 0;
  4808. }
  4809. #endif
  4810. }
  4811. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4812. const struct tcphdr *th)
  4813. {
  4814. struct inet_connection_sock *icsk = inet_csk(sk);
  4815. struct tcp_sock *tp = tcp_sk(sk);
  4816. struct tcp_fastopen_cookie foc = { .len = -1 };
  4817. int saved_clamp = tp->rx_opt.mss_clamp;
  4818. bool fastopen_fail;
  4819. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4820. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4821. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4822. if (th->ack) {
  4823. /* rfc793:
  4824. * "If the state is SYN-SENT then
  4825. * first check the ACK bit
  4826. * If the ACK bit is set
  4827. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4828. * a reset (unless the RST bit is set, if so drop
  4829. * the segment and return)"
  4830. */
  4831. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4832. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4833. goto reset_and_undo;
  4834. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4835. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4836. tcp_time_stamp(tp))) {
  4837. NET_INC_STATS(sock_net(sk),
  4838. LINUX_MIB_PAWSACTIVEREJECTED);
  4839. goto reset_and_undo;
  4840. }
  4841. /* Now ACK is acceptable.
  4842. *
  4843. * "If the RST bit is set
  4844. * If the ACK was acceptable then signal the user "error:
  4845. * connection reset", drop the segment, enter CLOSED state,
  4846. * delete TCB, and return."
  4847. */
  4848. if (th->rst) {
  4849. tcp_reset(sk);
  4850. goto discard;
  4851. }
  4852. /* rfc793:
  4853. * "fifth, if neither of the SYN or RST bits is set then
  4854. * drop the segment and return."
  4855. *
  4856. * See note below!
  4857. * --ANK(990513)
  4858. */
  4859. if (!th->syn)
  4860. goto discard_and_undo;
  4861. /* rfc793:
  4862. * "If the SYN bit is on ...
  4863. * are acceptable then ...
  4864. * (our SYN has been ACKed), change the connection
  4865. * state to ESTABLISHED..."
  4866. */
  4867. tcp_ecn_rcv_synack(tp, th);
  4868. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4869. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4870. /* Ok.. it's good. Set up sequence numbers and
  4871. * move to established.
  4872. */
  4873. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4874. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4875. /* RFC1323: The window in SYN & SYN/ACK segments is
  4876. * never scaled.
  4877. */
  4878. tp->snd_wnd = ntohs(th->window);
  4879. if (!tp->rx_opt.wscale_ok) {
  4880. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4881. tp->window_clamp = min(tp->window_clamp, 65535U);
  4882. }
  4883. if (tp->rx_opt.saw_tstamp) {
  4884. tp->rx_opt.tstamp_ok = 1;
  4885. tp->tcp_header_len =
  4886. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4887. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4888. tcp_store_ts_recent(tp);
  4889. } else {
  4890. tp->tcp_header_len = sizeof(struct tcphdr);
  4891. }
  4892. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4893. tcp_initialize_rcv_mss(sk);
  4894. /* Remember, tcp_poll() does not lock socket!
  4895. * Change state from SYN-SENT only after copied_seq
  4896. * is initialized. */
  4897. tp->copied_seq = tp->rcv_nxt;
  4898. smc_check_reset_syn(tp);
  4899. smp_mb();
  4900. tcp_finish_connect(sk, skb);
  4901. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4902. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4903. if (!sock_flag(sk, SOCK_DEAD)) {
  4904. sk->sk_state_change(sk);
  4905. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4906. }
  4907. if (fastopen_fail)
  4908. return -1;
  4909. if (sk->sk_write_pending ||
  4910. icsk->icsk_accept_queue.rskq_defer_accept ||
  4911. icsk->icsk_ack.pingpong) {
  4912. /* Save one ACK. Data will be ready after
  4913. * several ticks, if write_pending is set.
  4914. *
  4915. * It may be deleted, but with this feature tcpdumps
  4916. * look so _wonderfully_ clever, that I was not able
  4917. * to stand against the temptation 8) --ANK
  4918. */
  4919. inet_csk_schedule_ack(sk);
  4920. tcp_enter_quickack_mode(sk);
  4921. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4922. TCP_DELACK_MAX, TCP_RTO_MAX);
  4923. discard:
  4924. tcp_drop(sk, skb);
  4925. return 0;
  4926. } else {
  4927. tcp_send_ack(sk);
  4928. }
  4929. return -1;
  4930. }
  4931. /* No ACK in the segment */
  4932. if (th->rst) {
  4933. /* rfc793:
  4934. * "If the RST bit is set
  4935. *
  4936. * Otherwise (no ACK) drop the segment and return."
  4937. */
  4938. goto discard_and_undo;
  4939. }
  4940. /* PAWS check. */
  4941. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4942. tcp_paws_reject(&tp->rx_opt, 0))
  4943. goto discard_and_undo;
  4944. if (th->syn) {
  4945. /* We see SYN without ACK. It is attempt of
  4946. * simultaneous connect with crossed SYNs.
  4947. * Particularly, it can be connect to self.
  4948. */
  4949. tcp_set_state(sk, TCP_SYN_RECV);
  4950. if (tp->rx_opt.saw_tstamp) {
  4951. tp->rx_opt.tstamp_ok = 1;
  4952. tcp_store_ts_recent(tp);
  4953. tp->tcp_header_len =
  4954. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4955. } else {
  4956. tp->tcp_header_len = sizeof(struct tcphdr);
  4957. }
  4958. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4959. tp->copied_seq = tp->rcv_nxt;
  4960. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4961. /* RFC1323: The window in SYN & SYN/ACK segments is
  4962. * never scaled.
  4963. */
  4964. tp->snd_wnd = ntohs(th->window);
  4965. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4966. tp->max_window = tp->snd_wnd;
  4967. tcp_ecn_rcv_syn(tp, th);
  4968. tcp_mtup_init(sk);
  4969. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4970. tcp_initialize_rcv_mss(sk);
  4971. tcp_send_synack(sk);
  4972. #if 0
  4973. /* Note, we could accept data and URG from this segment.
  4974. * There are no obstacles to make this (except that we must
  4975. * either change tcp_recvmsg() to prevent it from returning data
  4976. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4977. *
  4978. * However, if we ignore data in ACKless segments sometimes,
  4979. * we have no reasons to accept it sometimes.
  4980. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4981. * is not flawless. So, discard packet for sanity.
  4982. * Uncomment this return to process the data.
  4983. */
  4984. return -1;
  4985. #else
  4986. goto discard;
  4987. #endif
  4988. }
  4989. /* "fifth, if neither of the SYN or RST bits is set then
  4990. * drop the segment and return."
  4991. */
  4992. discard_and_undo:
  4993. tcp_clear_options(&tp->rx_opt);
  4994. tp->rx_opt.mss_clamp = saved_clamp;
  4995. goto discard;
  4996. reset_and_undo:
  4997. tcp_clear_options(&tp->rx_opt);
  4998. tp->rx_opt.mss_clamp = saved_clamp;
  4999. return 1;
  5000. }
  5001. /*
  5002. * This function implements the receiving procedure of RFC 793 for
  5003. * all states except ESTABLISHED and TIME_WAIT.
  5004. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5005. * address independent.
  5006. */
  5007. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5008. {
  5009. struct tcp_sock *tp = tcp_sk(sk);
  5010. struct inet_connection_sock *icsk = inet_csk(sk);
  5011. const struct tcphdr *th = tcp_hdr(skb);
  5012. struct request_sock *req;
  5013. int queued = 0;
  5014. bool acceptable;
  5015. switch (sk->sk_state) {
  5016. case TCP_CLOSE:
  5017. goto discard;
  5018. case TCP_LISTEN:
  5019. if (th->ack)
  5020. return 1;
  5021. if (th->rst)
  5022. goto discard;
  5023. if (th->syn) {
  5024. if (th->fin)
  5025. goto discard;
  5026. /* It is possible that we process SYN packets from backlog,
  5027. * so we need to make sure to disable BH right there.
  5028. */
  5029. local_bh_disable();
  5030. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5031. local_bh_enable();
  5032. if (!acceptable)
  5033. return 1;
  5034. consume_skb(skb);
  5035. return 0;
  5036. }
  5037. goto discard;
  5038. case TCP_SYN_SENT:
  5039. tp->rx_opt.saw_tstamp = 0;
  5040. tcp_mstamp_refresh(tp);
  5041. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5042. if (queued >= 0)
  5043. return queued;
  5044. /* Do step6 onward by hand. */
  5045. tcp_urg(sk, skb, th);
  5046. __kfree_skb(skb);
  5047. tcp_data_snd_check(sk);
  5048. return 0;
  5049. }
  5050. tcp_mstamp_refresh(tp);
  5051. tp->rx_opt.saw_tstamp = 0;
  5052. req = tp->fastopen_rsk;
  5053. if (req) {
  5054. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5055. sk->sk_state != TCP_FIN_WAIT1);
  5056. if (!tcp_check_req(sk, skb, req, true))
  5057. goto discard;
  5058. }
  5059. if (!th->ack && !th->rst && !th->syn)
  5060. goto discard;
  5061. if (!tcp_validate_incoming(sk, skb, th, 0))
  5062. return 0;
  5063. /* step 5: check the ACK field */
  5064. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5065. FLAG_UPDATE_TS_RECENT |
  5066. FLAG_NO_CHALLENGE_ACK) > 0;
  5067. if (!acceptable) {
  5068. if (sk->sk_state == TCP_SYN_RECV)
  5069. return 1; /* send one RST */
  5070. tcp_send_challenge_ack(sk, skb);
  5071. goto discard;
  5072. }
  5073. switch (sk->sk_state) {
  5074. case TCP_SYN_RECV:
  5075. if (!tp->srtt_us)
  5076. tcp_synack_rtt_meas(sk, req);
  5077. /* Once we leave TCP_SYN_RECV, we no longer need req
  5078. * so release it.
  5079. */
  5080. if (req) {
  5081. inet_csk(sk)->icsk_retransmits = 0;
  5082. reqsk_fastopen_remove(sk, req, false);
  5083. /* Re-arm the timer because data may have been sent out.
  5084. * This is similar to the regular data transmission case
  5085. * when new data has just been ack'ed.
  5086. *
  5087. * (TFO) - we could try to be more aggressive and
  5088. * retransmitting any data sooner based on when they
  5089. * are sent out.
  5090. */
  5091. tcp_rearm_rto(sk);
  5092. } else {
  5093. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5094. tp->copied_seq = tp->rcv_nxt;
  5095. }
  5096. smp_mb();
  5097. tcp_set_state(sk, TCP_ESTABLISHED);
  5098. sk->sk_state_change(sk);
  5099. /* Note, that this wakeup is only for marginal crossed SYN case.
  5100. * Passively open sockets are not waked up, because
  5101. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5102. */
  5103. if (sk->sk_socket)
  5104. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5105. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5106. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5107. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5108. if (tp->rx_opt.tstamp_ok)
  5109. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5110. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5111. tcp_update_pacing_rate(sk);
  5112. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5113. tp->lsndtime = tcp_jiffies32;
  5114. tcp_initialize_rcv_mss(sk);
  5115. tcp_fast_path_on(tp);
  5116. break;
  5117. case TCP_FIN_WAIT1: {
  5118. int tmo;
  5119. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5120. * Fast Open socket and this is the first acceptable
  5121. * ACK we have received, this would have acknowledged
  5122. * our SYNACK so stop the SYNACK timer.
  5123. */
  5124. if (req) {
  5125. /* We no longer need the request sock. */
  5126. reqsk_fastopen_remove(sk, req, false);
  5127. tcp_rearm_rto(sk);
  5128. }
  5129. if (tp->snd_una != tp->write_seq)
  5130. break;
  5131. tcp_set_state(sk, TCP_FIN_WAIT2);
  5132. sk->sk_shutdown |= SEND_SHUTDOWN;
  5133. sk_dst_confirm(sk);
  5134. if (!sock_flag(sk, SOCK_DEAD)) {
  5135. /* Wake up lingering close() */
  5136. sk->sk_state_change(sk);
  5137. break;
  5138. }
  5139. if (tp->linger2 < 0) {
  5140. tcp_done(sk);
  5141. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5142. return 1;
  5143. }
  5144. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5145. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5146. /* Receive out of order FIN after close() */
  5147. if (tp->syn_fastopen && th->fin)
  5148. tcp_fastopen_active_disable(sk);
  5149. tcp_done(sk);
  5150. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5151. return 1;
  5152. }
  5153. tmo = tcp_fin_time(sk);
  5154. if (tmo > TCP_TIMEWAIT_LEN) {
  5155. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5156. } else if (th->fin || sock_owned_by_user(sk)) {
  5157. /* Bad case. We could lose such FIN otherwise.
  5158. * It is not a big problem, but it looks confusing
  5159. * and not so rare event. We still can lose it now,
  5160. * if it spins in bh_lock_sock(), but it is really
  5161. * marginal case.
  5162. */
  5163. inet_csk_reset_keepalive_timer(sk, tmo);
  5164. } else {
  5165. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5166. goto discard;
  5167. }
  5168. break;
  5169. }
  5170. case TCP_CLOSING:
  5171. if (tp->snd_una == tp->write_seq) {
  5172. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5173. goto discard;
  5174. }
  5175. break;
  5176. case TCP_LAST_ACK:
  5177. if (tp->snd_una == tp->write_seq) {
  5178. tcp_update_metrics(sk);
  5179. tcp_done(sk);
  5180. goto discard;
  5181. }
  5182. break;
  5183. }
  5184. /* step 6: check the URG bit */
  5185. tcp_urg(sk, skb, th);
  5186. /* step 7: process the segment text */
  5187. switch (sk->sk_state) {
  5188. case TCP_CLOSE_WAIT:
  5189. case TCP_CLOSING:
  5190. case TCP_LAST_ACK:
  5191. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5192. break;
  5193. /* fall through */
  5194. case TCP_FIN_WAIT1:
  5195. case TCP_FIN_WAIT2:
  5196. /* RFC 793 says to queue data in these states,
  5197. * RFC 1122 says we MUST send a reset.
  5198. * BSD 4.4 also does reset.
  5199. */
  5200. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5201. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5202. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5203. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5204. tcp_reset(sk);
  5205. return 1;
  5206. }
  5207. }
  5208. /* Fall through */
  5209. case TCP_ESTABLISHED:
  5210. tcp_data_queue(sk, skb);
  5211. queued = 1;
  5212. break;
  5213. }
  5214. /* tcp_data could move socket to TIME-WAIT */
  5215. if (sk->sk_state != TCP_CLOSE) {
  5216. tcp_data_snd_check(sk);
  5217. tcp_ack_snd_check(sk);
  5218. }
  5219. if (!queued) {
  5220. discard:
  5221. tcp_drop(sk, skb);
  5222. }
  5223. return 0;
  5224. }
  5225. EXPORT_SYMBOL(tcp_rcv_state_process);
  5226. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5227. {
  5228. struct inet_request_sock *ireq = inet_rsk(req);
  5229. if (family == AF_INET)
  5230. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5231. &ireq->ir_rmt_addr, port);
  5232. #if IS_ENABLED(CONFIG_IPV6)
  5233. else if (family == AF_INET6)
  5234. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5235. &ireq->ir_v6_rmt_addr, port);
  5236. #endif
  5237. }
  5238. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5239. *
  5240. * If we receive a SYN packet with these bits set, it means a
  5241. * network is playing bad games with TOS bits. In order to
  5242. * avoid possible false congestion notifications, we disable
  5243. * TCP ECN negotiation.
  5244. *
  5245. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5246. * congestion control: Linux DCTCP asserts ECT on all packets,
  5247. * including SYN, which is most optimal solution; however,
  5248. * others, such as FreeBSD do not.
  5249. */
  5250. static void tcp_ecn_create_request(struct request_sock *req,
  5251. const struct sk_buff *skb,
  5252. const struct sock *listen_sk,
  5253. const struct dst_entry *dst)
  5254. {
  5255. const struct tcphdr *th = tcp_hdr(skb);
  5256. const struct net *net = sock_net(listen_sk);
  5257. bool th_ecn = th->ece && th->cwr;
  5258. bool ect, ecn_ok;
  5259. u32 ecn_ok_dst;
  5260. if (!th_ecn)
  5261. return;
  5262. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5263. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5264. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5265. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5266. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5267. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5268. inet_rsk(req)->ecn_ok = 1;
  5269. }
  5270. static void tcp_openreq_init(struct request_sock *req,
  5271. const struct tcp_options_received *rx_opt,
  5272. struct sk_buff *skb, const struct sock *sk)
  5273. {
  5274. struct inet_request_sock *ireq = inet_rsk(req);
  5275. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5276. req->cookie_ts = 0;
  5277. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5278. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5279. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5280. tcp_rsk(req)->last_oow_ack_time = 0;
  5281. req->mss = rx_opt->mss_clamp;
  5282. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5283. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5284. ireq->sack_ok = rx_opt->sack_ok;
  5285. ireq->snd_wscale = rx_opt->snd_wscale;
  5286. ireq->wscale_ok = rx_opt->wscale_ok;
  5287. ireq->acked = 0;
  5288. ireq->ecn_ok = 0;
  5289. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5290. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5291. ireq->ir_mark = inet_request_mark(sk, skb);
  5292. #if IS_ENABLED(CONFIG_SMC)
  5293. ireq->smc_ok = rx_opt->smc_ok;
  5294. #endif
  5295. }
  5296. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5297. struct sock *sk_listener,
  5298. bool attach_listener)
  5299. {
  5300. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5301. attach_listener);
  5302. if (req) {
  5303. struct inet_request_sock *ireq = inet_rsk(req);
  5304. ireq->ireq_opt = NULL;
  5305. #if IS_ENABLED(CONFIG_IPV6)
  5306. ireq->pktopts = NULL;
  5307. #endif
  5308. atomic64_set(&ireq->ir_cookie, 0);
  5309. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5310. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5311. ireq->ireq_family = sk_listener->sk_family;
  5312. }
  5313. return req;
  5314. }
  5315. EXPORT_SYMBOL(inet_reqsk_alloc);
  5316. /*
  5317. * Return true if a syncookie should be sent
  5318. */
  5319. static bool tcp_syn_flood_action(const struct sock *sk,
  5320. const struct sk_buff *skb,
  5321. const char *proto)
  5322. {
  5323. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5324. const char *msg = "Dropping request";
  5325. bool want_cookie = false;
  5326. struct net *net = sock_net(sk);
  5327. #ifdef CONFIG_SYN_COOKIES
  5328. if (net->ipv4.sysctl_tcp_syncookies) {
  5329. msg = "Sending cookies";
  5330. want_cookie = true;
  5331. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5332. } else
  5333. #endif
  5334. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5335. if (!queue->synflood_warned &&
  5336. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5337. xchg(&queue->synflood_warned, 1) == 0)
  5338. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5339. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5340. return want_cookie;
  5341. }
  5342. static void tcp_reqsk_record_syn(const struct sock *sk,
  5343. struct request_sock *req,
  5344. const struct sk_buff *skb)
  5345. {
  5346. if (tcp_sk(sk)->save_syn) {
  5347. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5348. u32 *copy;
  5349. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5350. if (copy) {
  5351. copy[0] = len;
  5352. memcpy(&copy[1], skb_network_header(skb), len);
  5353. req->saved_syn = copy;
  5354. }
  5355. }
  5356. }
  5357. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5358. const struct tcp_request_sock_ops *af_ops,
  5359. struct sock *sk, struct sk_buff *skb)
  5360. {
  5361. struct tcp_fastopen_cookie foc = { .len = -1 };
  5362. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5363. struct tcp_options_received tmp_opt;
  5364. struct tcp_sock *tp = tcp_sk(sk);
  5365. struct net *net = sock_net(sk);
  5366. struct sock *fastopen_sk = NULL;
  5367. struct request_sock *req;
  5368. bool want_cookie = false;
  5369. struct dst_entry *dst;
  5370. struct flowi fl;
  5371. /* TW buckets are converted to open requests without
  5372. * limitations, they conserve resources and peer is
  5373. * evidently real one.
  5374. */
  5375. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5376. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5377. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5378. if (!want_cookie)
  5379. goto drop;
  5380. }
  5381. if (sk_acceptq_is_full(sk)) {
  5382. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5383. goto drop;
  5384. }
  5385. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5386. if (!req)
  5387. goto drop;
  5388. tcp_rsk(req)->af_specific = af_ops;
  5389. tcp_rsk(req)->ts_off = 0;
  5390. tcp_clear_options(&tmp_opt);
  5391. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5392. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5393. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5394. want_cookie ? NULL : &foc);
  5395. if (want_cookie && !tmp_opt.saw_tstamp)
  5396. tcp_clear_options(&tmp_opt);
  5397. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5398. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5399. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5400. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5401. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5402. af_ops->init_req(req, sk, skb);
  5403. if (security_inet_conn_request(sk, skb, req))
  5404. goto drop_and_free;
  5405. if (tmp_opt.tstamp_ok)
  5406. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5407. dst = af_ops->route_req(sk, &fl, req);
  5408. if (!dst)
  5409. goto drop_and_free;
  5410. if (!want_cookie && !isn) {
  5411. /* Kill the following clause, if you dislike this way. */
  5412. if (!net->ipv4.sysctl_tcp_syncookies &&
  5413. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5414. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5415. !tcp_peer_is_proven(req, dst)) {
  5416. /* Without syncookies last quarter of
  5417. * backlog is filled with destinations,
  5418. * proven to be alive.
  5419. * It means that we continue to communicate
  5420. * to destinations, already remembered
  5421. * to the moment of synflood.
  5422. */
  5423. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5424. rsk_ops->family);
  5425. goto drop_and_release;
  5426. }
  5427. isn = af_ops->init_seq(skb);
  5428. }
  5429. tcp_ecn_create_request(req, skb, sk, dst);
  5430. if (want_cookie) {
  5431. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5432. req->cookie_ts = tmp_opt.tstamp_ok;
  5433. if (!tmp_opt.tstamp_ok)
  5434. inet_rsk(req)->ecn_ok = 0;
  5435. }
  5436. tcp_rsk(req)->snt_isn = isn;
  5437. tcp_rsk(req)->txhash = net_tx_rndhash();
  5438. tcp_openreq_init_rwin(req, sk, dst);
  5439. if (!want_cookie) {
  5440. tcp_reqsk_record_syn(sk, req, skb);
  5441. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5442. }
  5443. if (fastopen_sk) {
  5444. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5445. &foc, TCP_SYNACK_FASTOPEN);
  5446. /* Add the child socket directly into the accept queue */
  5447. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5448. sk->sk_data_ready(sk);
  5449. bh_unlock_sock(fastopen_sk);
  5450. sock_put(fastopen_sk);
  5451. } else {
  5452. tcp_rsk(req)->tfo_listener = false;
  5453. if (!want_cookie)
  5454. inet_csk_reqsk_queue_hash_add(sk, req,
  5455. tcp_timeout_init((struct sock *)req));
  5456. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5457. !want_cookie ? TCP_SYNACK_NORMAL :
  5458. TCP_SYNACK_COOKIE);
  5459. if (want_cookie) {
  5460. reqsk_free(req);
  5461. return 0;
  5462. }
  5463. }
  5464. reqsk_put(req);
  5465. return 0;
  5466. drop_and_release:
  5467. dst_release(dst);
  5468. drop_and_free:
  5469. reqsk_free(req);
  5470. drop:
  5471. tcp_listendrop(sk);
  5472. return 0;
  5473. }
  5474. EXPORT_SYMBOL(tcp_conn_request);