task_nommu.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #include <linux/mm.h>
  2. #include <linux/file.h>
  3. #include <linux/fdtable.h>
  4. #include <linux/fs_struct.h>
  5. #include <linux/mount.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sched/mm.h>
  10. #include "internal.h"
  11. /*
  12. * Logic: we've got two memory sums for each process, "shared", and
  13. * "non-shared". Shared memory may get counted more than once, for
  14. * each process that owns it. Non-shared memory is counted
  15. * accurately.
  16. */
  17. void task_mem(struct seq_file *m, struct mm_struct *mm)
  18. {
  19. struct vm_area_struct *vma;
  20. struct vm_region *region;
  21. struct rb_node *p;
  22. unsigned long bytes = 0, sbytes = 0, slack = 0, size;
  23. down_read(&mm->mmap_sem);
  24. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  25. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  26. bytes += kobjsize(vma);
  27. region = vma->vm_region;
  28. if (region) {
  29. size = kobjsize(region);
  30. size += region->vm_end - region->vm_start;
  31. } else {
  32. size = vma->vm_end - vma->vm_start;
  33. }
  34. if (atomic_read(&mm->mm_count) > 1 ||
  35. vma->vm_flags & VM_MAYSHARE) {
  36. sbytes += size;
  37. } else {
  38. bytes += size;
  39. if (region)
  40. slack = region->vm_end - vma->vm_end;
  41. }
  42. }
  43. if (atomic_read(&mm->mm_count) > 1)
  44. sbytes += kobjsize(mm);
  45. else
  46. bytes += kobjsize(mm);
  47. if (current->fs && current->fs->users > 1)
  48. sbytes += kobjsize(current->fs);
  49. else
  50. bytes += kobjsize(current->fs);
  51. if (current->files && atomic_read(&current->files->count) > 1)
  52. sbytes += kobjsize(current->files);
  53. else
  54. bytes += kobjsize(current->files);
  55. if (current->sighand && atomic_read(&current->sighand->count) > 1)
  56. sbytes += kobjsize(current->sighand);
  57. else
  58. bytes += kobjsize(current->sighand);
  59. bytes += kobjsize(current); /* includes kernel stack */
  60. seq_printf(m,
  61. "Mem:\t%8lu bytes\n"
  62. "Slack:\t%8lu bytes\n"
  63. "Shared:\t%8lu bytes\n",
  64. bytes, slack, sbytes);
  65. up_read(&mm->mmap_sem);
  66. }
  67. unsigned long task_vsize(struct mm_struct *mm)
  68. {
  69. struct vm_area_struct *vma;
  70. struct rb_node *p;
  71. unsigned long vsize = 0;
  72. down_read(&mm->mmap_sem);
  73. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  74. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  75. vsize += vma->vm_end - vma->vm_start;
  76. }
  77. up_read(&mm->mmap_sem);
  78. return vsize;
  79. }
  80. unsigned long task_statm(struct mm_struct *mm,
  81. unsigned long *shared, unsigned long *text,
  82. unsigned long *data, unsigned long *resident)
  83. {
  84. struct vm_area_struct *vma;
  85. struct vm_region *region;
  86. struct rb_node *p;
  87. unsigned long size = kobjsize(mm);
  88. down_read(&mm->mmap_sem);
  89. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  90. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  91. size += kobjsize(vma);
  92. region = vma->vm_region;
  93. if (region) {
  94. size += kobjsize(region);
  95. size += region->vm_end - region->vm_start;
  96. }
  97. }
  98. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  99. >> PAGE_SHIFT;
  100. *data = (PAGE_ALIGN(mm->start_stack) - (mm->start_data & PAGE_MASK))
  101. >> PAGE_SHIFT;
  102. up_read(&mm->mmap_sem);
  103. size >>= PAGE_SHIFT;
  104. size += *text + *data;
  105. *resident = size;
  106. return size;
  107. }
  108. static int is_stack(struct vm_area_struct *vma)
  109. {
  110. struct mm_struct *mm = vma->vm_mm;
  111. /*
  112. * We make no effort to guess what a given thread considers to be
  113. * its "stack". It's not even well-defined for programs written
  114. * languages like Go.
  115. */
  116. return vma->vm_start <= mm->start_stack &&
  117. vma->vm_end >= mm->start_stack;
  118. }
  119. /*
  120. * display a single VMA to a sequenced file
  121. */
  122. static int nommu_vma_show(struct seq_file *m, struct vm_area_struct *vma,
  123. int is_pid)
  124. {
  125. struct mm_struct *mm = vma->vm_mm;
  126. unsigned long ino = 0;
  127. struct file *file;
  128. dev_t dev = 0;
  129. int flags;
  130. unsigned long long pgoff = 0;
  131. flags = vma->vm_flags;
  132. file = vma->vm_file;
  133. if (file) {
  134. struct inode *inode = file_inode(vma->vm_file);
  135. dev = inode->i_sb->s_dev;
  136. ino = inode->i_ino;
  137. pgoff = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
  138. }
  139. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  140. seq_printf(m,
  141. "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  142. vma->vm_start,
  143. vma->vm_end,
  144. flags & VM_READ ? 'r' : '-',
  145. flags & VM_WRITE ? 'w' : '-',
  146. flags & VM_EXEC ? 'x' : '-',
  147. flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
  148. pgoff,
  149. MAJOR(dev), MINOR(dev), ino);
  150. if (file) {
  151. seq_pad(m, ' ');
  152. seq_file_path(m, file, "");
  153. } else if (mm && is_stack(vma)) {
  154. seq_pad(m, ' ');
  155. seq_printf(m, "[stack]");
  156. }
  157. seq_putc(m, '\n');
  158. return 0;
  159. }
  160. /*
  161. * display mapping lines for a particular process's /proc/pid/maps
  162. */
  163. static int show_map(struct seq_file *m, void *_p, int is_pid)
  164. {
  165. struct rb_node *p = _p;
  166. return nommu_vma_show(m, rb_entry(p, struct vm_area_struct, vm_rb),
  167. is_pid);
  168. }
  169. static int show_pid_map(struct seq_file *m, void *_p)
  170. {
  171. return show_map(m, _p, 1);
  172. }
  173. static int show_tid_map(struct seq_file *m, void *_p)
  174. {
  175. return show_map(m, _p, 0);
  176. }
  177. static void *m_start(struct seq_file *m, loff_t *pos)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. struct mm_struct *mm;
  181. struct rb_node *p;
  182. loff_t n = *pos;
  183. /* pin the task and mm whilst we play with them */
  184. priv->task = get_proc_task(priv->inode);
  185. if (!priv->task)
  186. return ERR_PTR(-ESRCH);
  187. mm = priv->mm;
  188. if (!mm || !mmget_not_zero(mm))
  189. return NULL;
  190. down_read(&mm->mmap_sem);
  191. /* start from the Nth VMA */
  192. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p))
  193. if (n-- == 0)
  194. return p;
  195. up_read(&mm->mmap_sem);
  196. mmput(mm);
  197. return NULL;
  198. }
  199. static void m_stop(struct seq_file *m, void *_vml)
  200. {
  201. struct proc_maps_private *priv = m->private;
  202. if (!IS_ERR_OR_NULL(_vml)) {
  203. up_read(&priv->mm->mmap_sem);
  204. mmput(priv->mm);
  205. }
  206. if (priv->task) {
  207. put_task_struct(priv->task);
  208. priv->task = NULL;
  209. }
  210. }
  211. static void *m_next(struct seq_file *m, void *_p, loff_t *pos)
  212. {
  213. struct rb_node *p = _p;
  214. (*pos)++;
  215. return p ? rb_next(p) : NULL;
  216. }
  217. static const struct seq_operations proc_pid_maps_ops = {
  218. .start = m_start,
  219. .next = m_next,
  220. .stop = m_stop,
  221. .show = show_pid_map
  222. };
  223. static const struct seq_operations proc_tid_maps_ops = {
  224. .start = m_start,
  225. .next = m_next,
  226. .stop = m_stop,
  227. .show = show_tid_map
  228. };
  229. static int maps_open(struct inode *inode, struct file *file,
  230. const struct seq_operations *ops)
  231. {
  232. struct proc_maps_private *priv;
  233. priv = __seq_open_private(file, ops, sizeof(*priv));
  234. if (!priv)
  235. return -ENOMEM;
  236. priv->inode = inode;
  237. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  238. if (IS_ERR(priv->mm)) {
  239. int err = PTR_ERR(priv->mm);
  240. seq_release_private(inode, file);
  241. return err;
  242. }
  243. return 0;
  244. }
  245. static int map_release(struct inode *inode, struct file *file)
  246. {
  247. struct seq_file *seq = file->private_data;
  248. struct proc_maps_private *priv = seq->private;
  249. if (priv->mm)
  250. mmdrop(priv->mm);
  251. return seq_release_private(inode, file);
  252. }
  253. static int pid_maps_open(struct inode *inode, struct file *file)
  254. {
  255. return maps_open(inode, file, &proc_pid_maps_ops);
  256. }
  257. static int tid_maps_open(struct inode *inode, struct file *file)
  258. {
  259. return maps_open(inode, file, &proc_tid_maps_ops);
  260. }
  261. const struct file_operations proc_pid_maps_operations = {
  262. .open = pid_maps_open,
  263. .read = seq_read,
  264. .llseek = seq_lseek,
  265. .release = map_release,
  266. };
  267. const struct file_operations proc_tid_maps_operations = {
  268. .open = tid_maps_open,
  269. .read = seq_read,
  270. .llseek = seq_lseek,
  271. .release = map_release,
  272. };