task_mmu.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/sched/mm.h>
  15. #include <linux/swapops.h>
  16. #include <linux/mmu_notifier.h>
  17. #include <linux/page_idle.h>
  18. #include <linux/shmem_fs.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/elf.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. #include "internal.h"
  24. void task_mem(struct seq_file *m, struct mm_struct *mm)
  25. {
  26. unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  27. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  28. anon = get_mm_counter(mm, MM_ANONPAGES);
  29. file = get_mm_counter(mm, MM_FILEPAGES);
  30. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  31. /*
  32. * Note: to minimize their overhead, mm maintains hiwater_vm and
  33. * hiwater_rss only when about to *lower* total_vm or rss. Any
  34. * collector of these hiwater stats must therefore get total_vm
  35. * and rss too, which will usually be the higher. Barriers? not
  36. * worth the effort, such snapshots can always be inconsistent.
  37. */
  38. hiwater_vm = total_vm = mm->total_vm;
  39. if (hiwater_vm < mm->hiwater_vm)
  40. hiwater_vm = mm->hiwater_vm;
  41. hiwater_rss = total_rss = anon + file + shmem;
  42. if (hiwater_rss < mm->hiwater_rss)
  43. hiwater_rss = mm->hiwater_rss;
  44. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  45. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  46. swap = get_mm_counter(mm, MM_SWAPENTS);
  47. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  48. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  49. seq_printf(m,
  50. "VmPeak:\t%8lu kB\n"
  51. "VmSize:\t%8lu kB\n"
  52. "VmLck:\t%8lu kB\n"
  53. "VmPin:\t%8lu kB\n"
  54. "VmHWM:\t%8lu kB\n"
  55. "VmRSS:\t%8lu kB\n"
  56. "RssAnon:\t%8lu kB\n"
  57. "RssFile:\t%8lu kB\n"
  58. "RssShmem:\t%8lu kB\n"
  59. "VmData:\t%8lu kB\n"
  60. "VmStk:\t%8lu kB\n"
  61. "VmExe:\t%8lu kB\n"
  62. "VmLib:\t%8lu kB\n"
  63. "VmPTE:\t%8lu kB\n"
  64. "VmPMD:\t%8lu kB\n"
  65. "VmSwap:\t%8lu kB\n",
  66. hiwater_vm << (PAGE_SHIFT-10),
  67. total_vm << (PAGE_SHIFT-10),
  68. mm->locked_vm << (PAGE_SHIFT-10),
  69. mm->pinned_vm << (PAGE_SHIFT-10),
  70. hiwater_rss << (PAGE_SHIFT-10),
  71. total_rss << (PAGE_SHIFT-10),
  72. anon << (PAGE_SHIFT-10),
  73. file << (PAGE_SHIFT-10),
  74. shmem << (PAGE_SHIFT-10),
  75. mm->data_vm << (PAGE_SHIFT-10),
  76. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  77. ptes >> 10,
  78. pmds >> 10,
  79. swap << (PAGE_SHIFT-10));
  80. hugetlb_report_usage(m, mm);
  81. }
  82. unsigned long task_vsize(struct mm_struct *mm)
  83. {
  84. return PAGE_SIZE * mm->total_vm;
  85. }
  86. unsigned long task_statm(struct mm_struct *mm,
  87. unsigned long *shared, unsigned long *text,
  88. unsigned long *data, unsigned long *resident)
  89. {
  90. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  91. get_mm_counter(mm, MM_SHMEMPAGES);
  92. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  93. >> PAGE_SHIFT;
  94. *data = mm->data_vm + mm->stack_vm;
  95. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  96. return mm->total_vm;
  97. }
  98. #ifdef CONFIG_NUMA
  99. /*
  100. * Save get_task_policy() for show_numa_map().
  101. */
  102. static void hold_task_mempolicy(struct proc_maps_private *priv)
  103. {
  104. struct task_struct *task = priv->task;
  105. task_lock(task);
  106. priv->task_mempolicy = get_task_policy(task);
  107. mpol_get(priv->task_mempolicy);
  108. task_unlock(task);
  109. }
  110. static void release_task_mempolicy(struct proc_maps_private *priv)
  111. {
  112. mpol_put(priv->task_mempolicy);
  113. }
  114. #else
  115. static void hold_task_mempolicy(struct proc_maps_private *priv)
  116. {
  117. }
  118. static void release_task_mempolicy(struct proc_maps_private *priv)
  119. {
  120. }
  121. #endif
  122. static void vma_stop(struct proc_maps_private *priv)
  123. {
  124. struct mm_struct *mm = priv->mm;
  125. release_task_mempolicy(priv);
  126. up_read(&mm->mmap_sem);
  127. mmput(mm);
  128. }
  129. static struct vm_area_struct *
  130. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  131. {
  132. if (vma == priv->tail_vma)
  133. return NULL;
  134. return vma->vm_next ?: priv->tail_vma;
  135. }
  136. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  137. {
  138. if (m->count < m->size) /* vma is copied successfully */
  139. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  140. }
  141. static void *m_start(struct seq_file *m, loff_t *ppos)
  142. {
  143. struct proc_maps_private *priv = m->private;
  144. unsigned long last_addr = m->version;
  145. struct mm_struct *mm;
  146. struct vm_area_struct *vma;
  147. unsigned int pos = *ppos;
  148. /* See m_cache_vma(). Zero at the start or after lseek. */
  149. if (last_addr == -1UL)
  150. return NULL;
  151. priv->task = get_proc_task(priv->inode);
  152. if (!priv->task)
  153. return ERR_PTR(-ESRCH);
  154. mm = priv->mm;
  155. if (!mm || !mmget_not_zero(mm))
  156. return NULL;
  157. down_read(&mm->mmap_sem);
  158. hold_task_mempolicy(priv);
  159. priv->tail_vma = get_gate_vma(mm);
  160. if (last_addr) {
  161. vma = find_vma(mm, last_addr - 1);
  162. if (vma && vma->vm_start <= last_addr)
  163. vma = m_next_vma(priv, vma);
  164. if (vma)
  165. return vma;
  166. }
  167. m->version = 0;
  168. if (pos < mm->map_count) {
  169. for (vma = mm->mmap; pos; pos--) {
  170. m->version = vma->vm_start;
  171. vma = vma->vm_next;
  172. }
  173. return vma;
  174. }
  175. /* we do not bother to update m->version in this case */
  176. if (pos == mm->map_count && priv->tail_vma)
  177. return priv->tail_vma;
  178. vma_stop(priv);
  179. return NULL;
  180. }
  181. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  182. {
  183. struct proc_maps_private *priv = m->private;
  184. struct vm_area_struct *next;
  185. (*pos)++;
  186. next = m_next_vma(priv, v);
  187. if (!next)
  188. vma_stop(priv);
  189. return next;
  190. }
  191. static void m_stop(struct seq_file *m, void *v)
  192. {
  193. struct proc_maps_private *priv = m->private;
  194. if (!IS_ERR_OR_NULL(v))
  195. vma_stop(priv);
  196. if (priv->task) {
  197. put_task_struct(priv->task);
  198. priv->task = NULL;
  199. }
  200. }
  201. static int proc_maps_open(struct inode *inode, struct file *file,
  202. const struct seq_operations *ops, int psize)
  203. {
  204. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  205. if (!priv)
  206. return -ENOMEM;
  207. priv->inode = inode;
  208. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  209. if (IS_ERR(priv->mm)) {
  210. int err = PTR_ERR(priv->mm);
  211. seq_release_private(inode, file);
  212. return err;
  213. }
  214. return 0;
  215. }
  216. static int proc_map_release(struct inode *inode, struct file *file)
  217. {
  218. struct seq_file *seq = file->private_data;
  219. struct proc_maps_private *priv = seq->private;
  220. if (priv->mm)
  221. mmdrop(priv->mm);
  222. kfree(priv->rollup);
  223. return seq_release_private(inode, file);
  224. }
  225. static int do_maps_open(struct inode *inode, struct file *file,
  226. const struct seq_operations *ops)
  227. {
  228. return proc_maps_open(inode, file, ops,
  229. sizeof(struct proc_maps_private));
  230. }
  231. /*
  232. * Indicate if the VMA is a stack for the given task; for
  233. * /proc/PID/maps that is the stack of the main task.
  234. */
  235. static int is_stack(struct vm_area_struct *vma)
  236. {
  237. /*
  238. * We make no effort to guess what a given thread considers to be
  239. * its "stack". It's not even well-defined for programs written
  240. * languages like Go.
  241. */
  242. return vma->vm_start <= vma->vm_mm->start_stack &&
  243. vma->vm_end >= vma->vm_mm->start_stack;
  244. }
  245. static void show_vma_header_prefix(struct seq_file *m,
  246. unsigned long start, unsigned long end,
  247. vm_flags_t flags, unsigned long long pgoff,
  248. dev_t dev, unsigned long ino)
  249. {
  250. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  251. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  252. start,
  253. end,
  254. flags & VM_READ ? 'r' : '-',
  255. flags & VM_WRITE ? 'w' : '-',
  256. flags & VM_EXEC ? 'x' : '-',
  257. flags & VM_MAYSHARE ? 's' : 'p',
  258. pgoff,
  259. MAJOR(dev), MINOR(dev), ino);
  260. }
  261. static void
  262. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  263. {
  264. struct mm_struct *mm = vma->vm_mm;
  265. struct file *file = vma->vm_file;
  266. vm_flags_t flags = vma->vm_flags;
  267. unsigned long ino = 0;
  268. unsigned long long pgoff = 0;
  269. unsigned long start, end;
  270. dev_t dev = 0;
  271. const char *name = NULL;
  272. if (file) {
  273. struct inode *inode = file_inode(vma->vm_file);
  274. dev = inode->i_sb->s_dev;
  275. ino = inode->i_ino;
  276. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  277. }
  278. start = vma->vm_start;
  279. end = vma->vm_end;
  280. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  281. /*
  282. * Print the dentry name for named mappings, and a
  283. * special [heap] marker for the heap:
  284. */
  285. if (file) {
  286. seq_pad(m, ' ');
  287. seq_file_path(m, file, "\n");
  288. goto done;
  289. }
  290. if (vma->vm_ops && vma->vm_ops->name) {
  291. name = vma->vm_ops->name(vma);
  292. if (name)
  293. goto done;
  294. }
  295. name = arch_vma_name(vma);
  296. if (!name) {
  297. if (!mm) {
  298. name = "[vdso]";
  299. goto done;
  300. }
  301. if (vma->vm_start <= mm->brk &&
  302. vma->vm_end >= mm->start_brk) {
  303. name = "[heap]";
  304. goto done;
  305. }
  306. if (is_stack(vma))
  307. name = "[stack]";
  308. }
  309. done:
  310. if (name) {
  311. seq_pad(m, ' ');
  312. seq_puts(m, name);
  313. }
  314. seq_putc(m, '\n');
  315. }
  316. static int show_map(struct seq_file *m, void *v, int is_pid)
  317. {
  318. show_map_vma(m, v, is_pid);
  319. m_cache_vma(m, v);
  320. return 0;
  321. }
  322. static int show_pid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 1);
  325. }
  326. static int show_tid_map(struct seq_file *m, void *v)
  327. {
  328. return show_map(m, v, 0);
  329. }
  330. static const struct seq_operations proc_pid_maps_op = {
  331. .start = m_start,
  332. .next = m_next,
  333. .stop = m_stop,
  334. .show = show_pid_map
  335. };
  336. static const struct seq_operations proc_tid_maps_op = {
  337. .start = m_start,
  338. .next = m_next,
  339. .stop = m_stop,
  340. .show = show_tid_map
  341. };
  342. static int pid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_pid_maps_op);
  345. }
  346. static int tid_maps_open(struct inode *inode, struct file *file)
  347. {
  348. return do_maps_open(inode, file, &proc_tid_maps_op);
  349. }
  350. const struct file_operations proc_pid_maps_operations = {
  351. .open = pid_maps_open,
  352. .read = seq_read,
  353. .llseek = seq_lseek,
  354. .release = proc_map_release,
  355. };
  356. const struct file_operations proc_tid_maps_operations = {
  357. .open = tid_maps_open,
  358. .read = seq_read,
  359. .llseek = seq_lseek,
  360. .release = proc_map_release,
  361. };
  362. /*
  363. * Proportional Set Size(PSS): my share of RSS.
  364. *
  365. * PSS of a process is the count of pages it has in memory, where each
  366. * page is divided by the number of processes sharing it. So if a
  367. * process has 1000 pages all to itself, and 1000 shared with one other
  368. * process, its PSS will be 1500.
  369. *
  370. * To keep (accumulated) division errors low, we adopt a 64bit
  371. * fixed-point pss counter to minimize division errors. So (pss >>
  372. * PSS_SHIFT) would be the real byte count.
  373. *
  374. * A shift of 12 before division means (assuming 4K page size):
  375. * - 1M 3-user-pages add up to 8KB errors;
  376. * - supports mapcount up to 2^24, or 16M;
  377. * - supports PSS up to 2^52 bytes, or 4PB.
  378. */
  379. #define PSS_SHIFT 12
  380. #ifdef CONFIG_PROC_PAGE_MONITOR
  381. struct mem_size_stats {
  382. bool first;
  383. unsigned long resident;
  384. unsigned long shared_clean;
  385. unsigned long shared_dirty;
  386. unsigned long private_clean;
  387. unsigned long private_dirty;
  388. unsigned long referenced;
  389. unsigned long anonymous;
  390. unsigned long lazyfree;
  391. unsigned long anonymous_thp;
  392. unsigned long shmem_thp;
  393. unsigned long swap;
  394. unsigned long shared_hugetlb;
  395. unsigned long private_hugetlb;
  396. unsigned long first_vma_start;
  397. u64 pss;
  398. u64 pss_locked;
  399. u64 swap_pss;
  400. bool check_shmem_swap;
  401. };
  402. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  403. bool compound, bool young, bool dirty)
  404. {
  405. int i, nr = compound ? 1 << compound_order(page) : 1;
  406. unsigned long size = nr * PAGE_SIZE;
  407. if (PageAnon(page)) {
  408. mss->anonymous += size;
  409. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  410. mss->lazyfree += size;
  411. }
  412. mss->resident += size;
  413. /* Accumulate the size in pages that have been accessed. */
  414. if (young || page_is_young(page) || PageReferenced(page))
  415. mss->referenced += size;
  416. /*
  417. * page_count(page) == 1 guarantees the page is mapped exactly once.
  418. * If any subpage of the compound page mapped with PTE it would elevate
  419. * page_count().
  420. */
  421. if (page_count(page) == 1) {
  422. if (dirty || PageDirty(page))
  423. mss->private_dirty += size;
  424. else
  425. mss->private_clean += size;
  426. mss->pss += (u64)size << PSS_SHIFT;
  427. return;
  428. }
  429. for (i = 0; i < nr; i++, page++) {
  430. int mapcount = page_mapcount(page);
  431. if (mapcount >= 2) {
  432. if (dirty || PageDirty(page))
  433. mss->shared_dirty += PAGE_SIZE;
  434. else
  435. mss->shared_clean += PAGE_SIZE;
  436. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  437. } else {
  438. if (dirty || PageDirty(page))
  439. mss->private_dirty += PAGE_SIZE;
  440. else
  441. mss->private_clean += PAGE_SIZE;
  442. mss->pss += PAGE_SIZE << PSS_SHIFT;
  443. }
  444. }
  445. }
  446. #ifdef CONFIG_SHMEM
  447. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  448. struct mm_walk *walk)
  449. {
  450. struct mem_size_stats *mss = walk->private;
  451. mss->swap += shmem_partial_swap_usage(
  452. walk->vma->vm_file->f_mapping, addr, end);
  453. return 0;
  454. }
  455. #endif
  456. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  457. struct mm_walk *walk)
  458. {
  459. struct mem_size_stats *mss = walk->private;
  460. struct vm_area_struct *vma = walk->vma;
  461. struct page *page = NULL;
  462. if (pte_present(*pte)) {
  463. page = vm_normal_page(vma, addr, *pte);
  464. } else if (is_swap_pte(*pte)) {
  465. swp_entry_t swpent = pte_to_swp_entry(*pte);
  466. if (!non_swap_entry(swpent)) {
  467. int mapcount;
  468. mss->swap += PAGE_SIZE;
  469. mapcount = swp_swapcount(swpent);
  470. if (mapcount >= 2) {
  471. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  472. do_div(pss_delta, mapcount);
  473. mss->swap_pss += pss_delta;
  474. } else {
  475. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  476. }
  477. } else if (is_migration_entry(swpent))
  478. page = migration_entry_to_page(swpent);
  479. else if (is_device_private_entry(swpent))
  480. page = device_private_entry_to_page(swpent);
  481. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  482. && pte_none(*pte))) {
  483. page = find_get_entry(vma->vm_file->f_mapping,
  484. linear_page_index(vma, addr));
  485. if (!page)
  486. return;
  487. if (radix_tree_exceptional_entry(page))
  488. mss->swap += PAGE_SIZE;
  489. else
  490. put_page(page);
  491. return;
  492. }
  493. if (!page)
  494. return;
  495. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  496. }
  497. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  498. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  499. struct mm_walk *walk)
  500. {
  501. struct mem_size_stats *mss = walk->private;
  502. struct vm_area_struct *vma = walk->vma;
  503. struct page *page;
  504. /* FOLL_DUMP will return -EFAULT on huge zero page */
  505. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  506. if (IS_ERR_OR_NULL(page))
  507. return;
  508. if (PageAnon(page))
  509. mss->anonymous_thp += HPAGE_PMD_SIZE;
  510. else if (PageSwapBacked(page))
  511. mss->shmem_thp += HPAGE_PMD_SIZE;
  512. else if (is_zone_device_page(page))
  513. /* pass */;
  514. else
  515. VM_BUG_ON_PAGE(1, page);
  516. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  517. }
  518. #else
  519. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  520. struct mm_walk *walk)
  521. {
  522. }
  523. #endif
  524. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  525. struct mm_walk *walk)
  526. {
  527. struct vm_area_struct *vma = walk->vma;
  528. pte_t *pte;
  529. spinlock_t *ptl;
  530. ptl = pmd_trans_huge_lock(pmd, vma);
  531. if (ptl) {
  532. if (pmd_present(*pmd))
  533. smaps_pmd_entry(pmd, addr, walk);
  534. spin_unlock(ptl);
  535. goto out;
  536. }
  537. if (pmd_trans_unstable(pmd))
  538. goto out;
  539. /*
  540. * The mmap_sem held all the way back in m_start() is what
  541. * keeps khugepaged out of here and from collapsing things
  542. * in here.
  543. */
  544. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  545. for (; addr != end; pte++, addr += PAGE_SIZE)
  546. smaps_pte_entry(pte, addr, walk);
  547. pte_unmap_unlock(pte - 1, ptl);
  548. out:
  549. cond_resched();
  550. return 0;
  551. }
  552. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  553. {
  554. /*
  555. * Don't forget to update Documentation/ on changes.
  556. */
  557. static const char mnemonics[BITS_PER_LONG][2] = {
  558. /*
  559. * In case if we meet a flag we don't know about.
  560. */
  561. [0 ... (BITS_PER_LONG-1)] = "??",
  562. [ilog2(VM_READ)] = "rd",
  563. [ilog2(VM_WRITE)] = "wr",
  564. [ilog2(VM_EXEC)] = "ex",
  565. [ilog2(VM_SHARED)] = "sh",
  566. [ilog2(VM_MAYREAD)] = "mr",
  567. [ilog2(VM_MAYWRITE)] = "mw",
  568. [ilog2(VM_MAYEXEC)] = "me",
  569. [ilog2(VM_MAYSHARE)] = "ms",
  570. [ilog2(VM_GROWSDOWN)] = "gd",
  571. [ilog2(VM_PFNMAP)] = "pf",
  572. [ilog2(VM_DENYWRITE)] = "dw",
  573. #ifdef CONFIG_X86_INTEL_MPX
  574. [ilog2(VM_MPX)] = "mp",
  575. #endif
  576. [ilog2(VM_LOCKED)] = "lo",
  577. [ilog2(VM_IO)] = "io",
  578. [ilog2(VM_SEQ_READ)] = "sr",
  579. [ilog2(VM_RAND_READ)] = "rr",
  580. [ilog2(VM_DONTCOPY)] = "dc",
  581. [ilog2(VM_DONTEXPAND)] = "de",
  582. [ilog2(VM_ACCOUNT)] = "ac",
  583. [ilog2(VM_NORESERVE)] = "nr",
  584. [ilog2(VM_HUGETLB)] = "ht",
  585. [ilog2(VM_ARCH_1)] = "ar",
  586. [ilog2(VM_WIPEONFORK)] = "wf",
  587. [ilog2(VM_DONTDUMP)] = "dd",
  588. #ifdef CONFIG_MEM_SOFT_DIRTY
  589. [ilog2(VM_SOFTDIRTY)] = "sd",
  590. #endif
  591. [ilog2(VM_MIXEDMAP)] = "mm",
  592. [ilog2(VM_HUGEPAGE)] = "hg",
  593. [ilog2(VM_NOHUGEPAGE)] = "nh",
  594. [ilog2(VM_MERGEABLE)] = "mg",
  595. [ilog2(VM_UFFD_MISSING)]= "um",
  596. [ilog2(VM_UFFD_WP)] = "uw",
  597. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  598. /* These come out via ProtectionKey: */
  599. [ilog2(VM_PKEY_BIT0)] = "",
  600. [ilog2(VM_PKEY_BIT1)] = "",
  601. [ilog2(VM_PKEY_BIT2)] = "",
  602. [ilog2(VM_PKEY_BIT3)] = "",
  603. #endif
  604. };
  605. size_t i;
  606. seq_puts(m, "VmFlags: ");
  607. for (i = 0; i < BITS_PER_LONG; i++) {
  608. if (!mnemonics[i][0])
  609. continue;
  610. if (vma->vm_flags & (1UL << i)) {
  611. seq_printf(m, "%c%c ",
  612. mnemonics[i][0], mnemonics[i][1]);
  613. }
  614. }
  615. seq_putc(m, '\n');
  616. }
  617. #ifdef CONFIG_HUGETLB_PAGE
  618. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  619. unsigned long addr, unsigned long end,
  620. struct mm_walk *walk)
  621. {
  622. struct mem_size_stats *mss = walk->private;
  623. struct vm_area_struct *vma = walk->vma;
  624. struct page *page = NULL;
  625. if (pte_present(*pte)) {
  626. page = vm_normal_page(vma, addr, *pte);
  627. } else if (is_swap_pte(*pte)) {
  628. swp_entry_t swpent = pte_to_swp_entry(*pte);
  629. if (is_migration_entry(swpent))
  630. page = migration_entry_to_page(swpent);
  631. else if (is_device_private_entry(swpent))
  632. page = device_private_entry_to_page(swpent);
  633. }
  634. if (page) {
  635. int mapcount = page_mapcount(page);
  636. if (mapcount >= 2)
  637. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  638. else
  639. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  640. }
  641. return 0;
  642. }
  643. #endif /* HUGETLB_PAGE */
  644. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  645. {
  646. }
  647. static int show_smap(struct seq_file *m, void *v, int is_pid)
  648. {
  649. struct proc_maps_private *priv = m->private;
  650. struct vm_area_struct *vma = v;
  651. struct mem_size_stats mss_stack;
  652. struct mem_size_stats *mss;
  653. struct mm_walk smaps_walk = {
  654. .pmd_entry = smaps_pte_range,
  655. #ifdef CONFIG_HUGETLB_PAGE
  656. .hugetlb_entry = smaps_hugetlb_range,
  657. #endif
  658. .mm = vma->vm_mm,
  659. };
  660. int ret = 0;
  661. bool rollup_mode;
  662. bool last_vma;
  663. if (priv->rollup) {
  664. rollup_mode = true;
  665. mss = priv->rollup;
  666. if (mss->first) {
  667. mss->first_vma_start = vma->vm_start;
  668. mss->first = false;
  669. }
  670. last_vma = !m_next_vma(priv, vma);
  671. } else {
  672. rollup_mode = false;
  673. memset(&mss_stack, 0, sizeof(mss_stack));
  674. mss = &mss_stack;
  675. }
  676. smaps_walk.private = mss;
  677. #ifdef CONFIG_SHMEM
  678. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  679. /*
  680. * For shared or readonly shmem mappings we know that all
  681. * swapped out pages belong to the shmem object, and we can
  682. * obtain the swap value much more efficiently. For private
  683. * writable mappings, we might have COW pages that are
  684. * not affected by the parent swapped out pages of the shmem
  685. * object, so we have to distinguish them during the page walk.
  686. * Unless we know that the shmem object (or the part mapped by
  687. * our VMA) has no swapped out pages at all.
  688. */
  689. unsigned long shmem_swapped = shmem_swap_usage(vma);
  690. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  691. !(vma->vm_flags & VM_WRITE)) {
  692. mss->swap = shmem_swapped;
  693. } else {
  694. mss->check_shmem_swap = true;
  695. smaps_walk.pte_hole = smaps_pte_hole;
  696. }
  697. }
  698. #endif
  699. /* mmap_sem is held in m_start */
  700. walk_page_vma(vma, &smaps_walk);
  701. if (vma->vm_flags & VM_LOCKED)
  702. mss->pss_locked += mss->pss;
  703. if (!rollup_mode) {
  704. show_map_vma(m, vma, is_pid);
  705. } else if (last_vma) {
  706. show_vma_header_prefix(
  707. m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
  708. seq_pad(m, ' ');
  709. seq_puts(m, "[rollup]\n");
  710. } else {
  711. ret = SEQ_SKIP;
  712. }
  713. if (!rollup_mode)
  714. seq_printf(m,
  715. "Size: %8lu kB\n"
  716. "KernelPageSize: %8lu kB\n"
  717. "MMUPageSize: %8lu kB\n",
  718. (vma->vm_end - vma->vm_start) >> 10,
  719. vma_kernel_pagesize(vma) >> 10,
  720. vma_mmu_pagesize(vma) >> 10);
  721. if (!rollup_mode || last_vma)
  722. seq_printf(m,
  723. "Rss: %8lu kB\n"
  724. "Pss: %8lu kB\n"
  725. "Shared_Clean: %8lu kB\n"
  726. "Shared_Dirty: %8lu kB\n"
  727. "Private_Clean: %8lu kB\n"
  728. "Private_Dirty: %8lu kB\n"
  729. "Referenced: %8lu kB\n"
  730. "Anonymous: %8lu kB\n"
  731. "LazyFree: %8lu kB\n"
  732. "AnonHugePages: %8lu kB\n"
  733. "ShmemPmdMapped: %8lu kB\n"
  734. "Shared_Hugetlb: %8lu kB\n"
  735. "Private_Hugetlb: %7lu kB\n"
  736. "Swap: %8lu kB\n"
  737. "SwapPss: %8lu kB\n"
  738. "Locked: %8lu kB\n",
  739. mss->resident >> 10,
  740. (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
  741. mss->shared_clean >> 10,
  742. mss->shared_dirty >> 10,
  743. mss->private_clean >> 10,
  744. mss->private_dirty >> 10,
  745. mss->referenced >> 10,
  746. mss->anonymous >> 10,
  747. mss->lazyfree >> 10,
  748. mss->anonymous_thp >> 10,
  749. mss->shmem_thp >> 10,
  750. mss->shared_hugetlb >> 10,
  751. mss->private_hugetlb >> 10,
  752. mss->swap >> 10,
  753. (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
  754. (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
  755. if (!rollup_mode) {
  756. arch_show_smap(m, vma);
  757. show_smap_vma_flags(m, vma);
  758. }
  759. m_cache_vma(m, vma);
  760. return ret;
  761. }
  762. static int show_pid_smap(struct seq_file *m, void *v)
  763. {
  764. return show_smap(m, v, 1);
  765. }
  766. static int show_tid_smap(struct seq_file *m, void *v)
  767. {
  768. return show_smap(m, v, 0);
  769. }
  770. static const struct seq_operations proc_pid_smaps_op = {
  771. .start = m_start,
  772. .next = m_next,
  773. .stop = m_stop,
  774. .show = show_pid_smap
  775. };
  776. static const struct seq_operations proc_tid_smaps_op = {
  777. .start = m_start,
  778. .next = m_next,
  779. .stop = m_stop,
  780. .show = show_tid_smap
  781. };
  782. static int pid_smaps_open(struct inode *inode, struct file *file)
  783. {
  784. return do_maps_open(inode, file, &proc_pid_smaps_op);
  785. }
  786. static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
  787. {
  788. struct seq_file *seq;
  789. struct proc_maps_private *priv;
  790. int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
  791. if (ret < 0)
  792. return ret;
  793. seq = file->private_data;
  794. priv = seq->private;
  795. priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
  796. if (!priv->rollup) {
  797. proc_map_release(inode, file);
  798. return -ENOMEM;
  799. }
  800. priv->rollup->first = true;
  801. return 0;
  802. }
  803. static int tid_smaps_open(struct inode *inode, struct file *file)
  804. {
  805. return do_maps_open(inode, file, &proc_tid_smaps_op);
  806. }
  807. const struct file_operations proc_pid_smaps_operations = {
  808. .open = pid_smaps_open,
  809. .read = seq_read,
  810. .llseek = seq_lseek,
  811. .release = proc_map_release,
  812. };
  813. const struct file_operations proc_pid_smaps_rollup_operations = {
  814. .open = pid_smaps_rollup_open,
  815. .read = seq_read,
  816. .llseek = seq_lseek,
  817. .release = proc_map_release,
  818. };
  819. const struct file_operations proc_tid_smaps_operations = {
  820. .open = tid_smaps_open,
  821. .read = seq_read,
  822. .llseek = seq_lseek,
  823. .release = proc_map_release,
  824. };
  825. enum clear_refs_types {
  826. CLEAR_REFS_ALL = 1,
  827. CLEAR_REFS_ANON,
  828. CLEAR_REFS_MAPPED,
  829. CLEAR_REFS_SOFT_DIRTY,
  830. CLEAR_REFS_MM_HIWATER_RSS,
  831. CLEAR_REFS_LAST,
  832. };
  833. struct clear_refs_private {
  834. enum clear_refs_types type;
  835. };
  836. #ifdef CONFIG_MEM_SOFT_DIRTY
  837. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  838. unsigned long addr, pte_t *pte)
  839. {
  840. /*
  841. * The soft-dirty tracker uses #PF-s to catch writes
  842. * to pages, so write-protect the pte as well. See the
  843. * Documentation/vm/soft-dirty.txt for full description
  844. * of how soft-dirty works.
  845. */
  846. pte_t ptent = *pte;
  847. if (pte_present(ptent)) {
  848. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  849. ptent = pte_wrprotect(ptent);
  850. ptent = pte_clear_soft_dirty(ptent);
  851. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  852. } else if (is_swap_pte(ptent)) {
  853. ptent = pte_swp_clear_soft_dirty(ptent);
  854. set_pte_at(vma->vm_mm, addr, pte, ptent);
  855. }
  856. }
  857. #else
  858. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  859. unsigned long addr, pte_t *pte)
  860. {
  861. }
  862. #endif
  863. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  864. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  865. unsigned long addr, pmd_t *pmdp)
  866. {
  867. pmd_t pmd = *pmdp;
  868. if (pmd_present(pmd)) {
  869. /* See comment in change_huge_pmd() */
  870. pmdp_invalidate(vma, addr, pmdp);
  871. if (pmd_dirty(*pmdp))
  872. pmd = pmd_mkdirty(pmd);
  873. if (pmd_young(*pmdp))
  874. pmd = pmd_mkyoung(pmd);
  875. pmd = pmd_wrprotect(pmd);
  876. pmd = pmd_clear_soft_dirty(pmd);
  877. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  878. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  879. pmd = pmd_swp_clear_soft_dirty(pmd);
  880. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  881. }
  882. }
  883. #else
  884. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  885. unsigned long addr, pmd_t *pmdp)
  886. {
  887. }
  888. #endif
  889. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  890. unsigned long end, struct mm_walk *walk)
  891. {
  892. struct clear_refs_private *cp = walk->private;
  893. struct vm_area_struct *vma = walk->vma;
  894. pte_t *pte, ptent;
  895. spinlock_t *ptl;
  896. struct page *page;
  897. ptl = pmd_trans_huge_lock(pmd, vma);
  898. if (ptl) {
  899. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  900. clear_soft_dirty_pmd(vma, addr, pmd);
  901. goto out;
  902. }
  903. if (!pmd_present(*pmd))
  904. goto out;
  905. page = pmd_page(*pmd);
  906. /* Clear accessed and referenced bits. */
  907. pmdp_test_and_clear_young(vma, addr, pmd);
  908. test_and_clear_page_young(page);
  909. ClearPageReferenced(page);
  910. out:
  911. spin_unlock(ptl);
  912. return 0;
  913. }
  914. if (pmd_trans_unstable(pmd))
  915. return 0;
  916. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  917. for (; addr != end; pte++, addr += PAGE_SIZE) {
  918. ptent = *pte;
  919. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  920. clear_soft_dirty(vma, addr, pte);
  921. continue;
  922. }
  923. if (!pte_present(ptent))
  924. continue;
  925. page = vm_normal_page(vma, addr, ptent);
  926. if (!page)
  927. continue;
  928. /* Clear accessed and referenced bits. */
  929. ptep_test_and_clear_young(vma, addr, pte);
  930. test_and_clear_page_young(page);
  931. ClearPageReferenced(page);
  932. }
  933. pte_unmap_unlock(pte - 1, ptl);
  934. cond_resched();
  935. return 0;
  936. }
  937. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  938. struct mm_walk *walk)
  939. {
  940. struct clear_refs_private *cp = walk->private;
  941. struct vm_area_struct *vma = walk->vma;
  942. if (vma->vm_flags & VM_PFNMAP)
  943. return 1;
  944. /*
  945. * Writing 1 to /proc/pid/clear_refs affects all pages.
  946. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  947. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  948. * Writing 4 to /proc/pid/clear_refs affects all pages.
  949. */
  950. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  951. return 1;
  952. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  953. return 1;
  954. return 0;
  955. }
  956. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  957. size_t count, loff_t *ppos)
  958. {
  959. struct task_struct *task;
  960. char buffer[PROC_NUMBUF];
  961. struct mm_struct *mm;
  962. struct vm_area_struct *vma;
  963. enum clear_refs_types type;
  964. struct mmu_gather tlb;
  965. int itype;
  966. int rv;
  967. memset(buffer, 0, sizeof(buffer));
  968. if (count > sizeof(buffer) - 1)
  969. count = sizeof(buffer) - 1;
  970. if (copy_from_user(buffer, buf, count))
  971. return -EFAULT;
  972. rv = kstrtoint(strstrip(buffer), 10, &itype);
  973. if (rv < 0)
  974. return rv;
  975. type = (enum clear_refs_types)itype;
  976. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  977. return -EINVAL;
  978. task = get_proc_task(file_inode(file));
  979. if (!task)
  980. return -ESRCH;
  981. mm = get_task_mm(task);
  982. if (mm) {
  983. struct clear_refs_private cp = {
  984. .type = type,
  985. };
  986. struct mm_walk clear_refs_walk = {
  987. .pmd_entry = clear_refs_pte_range,
  988. .test_walk = clear_refs_test_walk,
  989. .mm = mm,
  990. .private = &cp,
  991. };
  992. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  993. if (down_write_killable(&mm->mmap_sem)) {
  994. count = -EINTR;
  995. goto out_mm;
  996. }
  997. /*
  998. * Writing 5 to /proc/pid/clear_refs resets the peak
  999. * resident set size to this mm's current rss value.
  1000. */
  1001. reset_mm_hiwater_rss(mm);
  1002. up_write(&mm->mmap_sem);
  1003. goto out_mm;
  1004. }
  1005. down_read(&mm->mmap_sem);
  1006. tlb_gather_mmu(&tlb, mm, 0, -1);
  1007. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1008. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1009. if (!(vma->vm_flags & VM_SOFTDIRTY))
  1010. continue;
  1011. up_read(&mm->mmap_sem);
  1012. if (down_write_killable(&mm->mmap_sem)) {
  1013. count = -EINTR;
  1014. goto out_mm;
  1015. }
  1016. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1017. vma->vm_flags &= ~VM_SOFTDIRTY;
  1018. vma_set_page_prot(vma);
  1019. }
  1020. downgrade_write(&mm->mmap_sem);
  1021. break;
  1022. }
  1023. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1024. }
  1025. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1026. if (type == CLEAR_REFS_SOFT_DIRTY)
  1027. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1028. tlb_finish_mmu(&tlb, 0, -1);
  1029. up_read(&mm->mmap_sem);
  1030. out_mm:
  1031. mmput(mm);
  1032. }
  1033. put_task_struct(task);
  1034. return count;
  1035. }
  1036. const struct file_operations proc_clear_refs_operations = {
  1037. .write = clear_refs_write,
  1038. .llseek = noop_llseek,
  1039. };
  1040. typedef struct {
  1041. u64 pme;
  1042. } pagemap_entry_t;
  1043. struct pagemapread {
  1044. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1045. pagemap_entry_t *buffer;
  1046. bool show_pfn;
  1047. };
  1048. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1049. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1050. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1051. #define PM_PFRAME_BITS 55
  1052. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1053. #define PM_SOFT_DIRTY BIT_ULL(55)
  1054. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1055. #define PM_FILE BIT_ULL(61)
  1056. #define PM_SWAP BIT_ULL(62)
  1057. #define PM_PRESENT BIT_ULL(63)
  1058. #define PM_END_OF_BUFFER 1
  1059. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1060. {
  1061. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1062. }
  1063. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1064. struct pagemapread *pm)
  1065. {
  1066. pm->buffer[pm->pos++] = *pme;
  1067. if (pm->pos >= pm->len)
  1068. return PM_END_OF_BUFFER;
  1069. return 0;
  1070. }
  1071. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1072. struct mm_walk *walk)
  1073. {
  1074. struct pagemapread *pm = walk->private;
  1075. unsigned long addr = start;
  1076. int err = 0;
  1077. while (addr < end) {
  1078. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1079. pagemap_entry_t pme = make_pme(0, 0);
  1080. /* End of address space hole, which we mark as non-present. */
  1081. unsigned long hole_end;
  1082. if (vma)
  1083. hole_end = min(end, vma->vm_start);
  1084. else
  1085. hole_end = end;
  1086. for (; addr < hole_end; addr += PAGE_SIZE) {
  1087. err = add_to_pagemap(addr, &pme, pm);
  1088. if (err)
  1089. goto out;
  1090. }
  1091. if (!vma)
  1092. break;
  1093. /* Addresses in the VMA. */
  1094. if (vma->vm_flags & VM_SOFTDIRTY)
  1095. pme = make_pme(0, PM_SOFT_DIRTY);
  1096. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1097. err = add_to_pagemap(addr, &pme, pm);
  1098. if (err)
  1099. goto out;
  1100. }
  1101. }
  1102. out:
  1103. return err;
  1104. }
  1105. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1106. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1107. {
  1108. u64 frame = 0, flags = 0;
  1109. struct page *page = NULL;
  1110. if (pte_present(pte)) {
  1111. if (pm->show_pfn)
  1112. frame = pte_pfn(pte);
  1113. flags |= PM_PRESENT;
  1114. page = _vm_normal_page(vma, addr, pte, true);
  1115. if (pte_soft_dirty(pte))
  1116. flags |= PM_SOFT_DIRTY;
  1117. } else if (is_swap_pte(pte)) {
  1118. swp_entry_t entry;
  1119. if (pte_swp_soft_dirty(pte))
  1120. flags |= PM_SOFT_DIRTY;
  1121. entry = pte_to_swp_entry(pte);
  1122. frame = swp_type(entry) |
  1123. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1124. flags |= PM_SWAP;
  1125. if (is_migration_entry(entry))
  1126. page = migration_entry_to_page(entry);
  1127. if (is_device_private_entry(entry))
  1128. page = device_private_entry_to_page(entry);
  1129. }
  1130. if (page && !PageAnon(page))
  1131. flags |= PM_FILE;
  1132. if (page && page_mapcount(page) == 1)
  1133. flags |= PM_MMAP_EXCLUSIVE;
  1134. if (vma->vm_flags & VM_SOFTDIRTY)
  1135. flags |= PM_SOFT_DIRTY;
  1136. return make_pme(frame, flags);
  1137. }
  1138. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1139. struct mm_walk *walk)
  1140. {
  1141. struct vm_area_struct *vma = walk->vma;
  1142. struct pagemapread *pm = walk->private;
  1143. spinlock_t *ptl;
  1144. pte_t *pte, *orig_pte;
  1145. int err = 0;
  1146. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1147. ptl = pmd_trans_huge_lock(pmdp, vma);
  1148. if (ptl) {
  1149. u64 flags = 0, frame = 0;
  1150. pmd_t pmd = *pmdp;
  1151. struct page *page = NULL;
  1152. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  1153. flags |= PM_SOFT_DIRTY;
  1154. if (pmd_present(pmd)) {
  1155. page = pmd_page(pmd);
  1156. flags |= PM_PRESENT;
  1157. if (pm->show_pfn)
  1158. frame = pmd_pfn(pmd) +
  1159. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1160. }
  1161. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1162. else if (is_swap_pmd(pmd)) {
  1163. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1164. frame = swp_type(entry) |
  1165. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1166. flags |= PM_SWAP;
  1167. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1168. page = migration_entry_to_page(entry);
  1169. }
  1170. #endif
  1171. if (page && page_mapcount(page) == 1)
  1172. flags |= PM_MMAP_EXCLUSIVE;
  1173. for (; addr != end; addr += PAGE_SIZE) {
  1174. pagemap_entry_t pme = make_pme(frame, flags);
  1175. err = add_to_pagemap(addr, &pme, pm);
  1176. if (err)
  1177. break;
  1178. if (pm->show_pfn && (flags & PM_PRESENT))
  1179. frame++;
  1180. }
  1181. spin_unlock(ptl);
  1182. return err;
  1183. }
  1184. if (pmd_trans_unstable(pmdp))
  1185. return 0;
  1186. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1187. /*
  1188. * We can assume that @vma always points to a valid one and @end never
  1189. * goes beyond vma->vm_end.
  1190. */
  1191. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1192. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1193. pagemap_entry_t pme;
  1194. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1195. err = add_to_pagemap(addr, &pme, pm);
  1196. if (err)
  1197. break;
  1198. }
  1199. pte_unmap_unlock(orig_pte, ptl);
  1200. cond_resched();
  1201. return err;
  1202. }
  1203. #ifdef CONFIG_HUGETLB_PAGE
  1204. /* This function walks within one hugetlb entry in the single call */
  1205. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1206. unsigned long addr, unsigned long end,
  1207. struct mm_walk *walk)
  1208. {
  1209. struct pagemapread *pm = walk->private;
  1210. struct vm_area_struct *vma = walk->vma;
  1211. u64 flags = 0, frame = 0;
  1212. int err = 0;
  1213. pte_t pte;
  1214. if (vma->vm_flags & VM_SOFTDIRTY)
  1215. flags |= PM_SOFT_DIRTY;
  1216. pte = huge_ptep_get(ptep);
  1217. if (pte_present(pte)) {
  1218. struct page *page = pte_page(pte);
  1219. if (!PageAnon(page))
  1220. flags |= PM_FILE;
  1221. if (page_mapcount(page) == 1)
  1222. flags |= PM_MMAP_EXCLUSIVE;
  1223. flags |= PM_PRESENT;
  1224. if (pm->show_pfn)
  1225. frame = pte_pfn(pte) +
  1226. ((addr & ~hmask) >> PAGE_SHIFT);
  1227. }
  1228. for (; addr != end; addr += PAGE_SIZE) {
  1229. pagemap_entry_t pme = make_pme(frame, flags);
  1230. err = add_to_pagemap(addr, &pme, pm);
  1231. if (err)
  1232. return err;
  1233. if (pm->show_pfn && (flags & PM_PRESENT))
  1234. frame++;
  1235. }
  1236. cond_resched();
  1237. return err;
  1238. }
  1239. #endif /* HUGETLB_PAGE */
  1240. /*
  1241. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1242. *
  1243. * For each page in the address space, this file contains one 64-bit entry
  1244. * consisting of the following:
  1245. *
  1246. * Bits 0-54 page frame number (PFN) if present
  1247. * Bits 0-4 swap type if swapped
  1248. * Bits 5-54 swap offset if swapped
  1249. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1250. * Bit 56 page exclusively mapped
  1251. * Bits 57-60 zero
  1252. * Bit 61 page is file-page or shared-anon
  1253. * Bit 62 page swapped
  1254. * Bit 63 page present
  1255. *
  1256. * If the page is not present but in swap, then the PFN contains an
  1257. * encoding of the swap file number and the page's offset into the
  1258. * swap. Unmapped pages return a null PFN. This allows determining
  1259. * precisely which pages are mapped (or in swap) and comparing mapped
  1260. * pages between processes.
  1261. *
  1262. * Efficient users of this interface will use /proc/pid/maps to
  1263. * determine which areas of memory are actually mapped and llseek to
  1264. * skip over unmapped regions.
  1265. */
  1266. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1267. size_t count, loff_t *ppos)
  1268. {
  1269. struct mm_struct *mm = file->private_data;
  1270. struct pagemapread pm;
  1271. struct mm_walk pagemap_walk = {};
  1272. unsigned long src;
  1273. unsigned long svpfn;
  1274. unsigned long start_vaddr;
  1275. unsigned long end_vaddr;
  1276. int ret = 0, copied = 0;
  1277. if (!mm || !mmget_not_zero(mm))
  1278. goto out;
  1279. ret = -EINVAL;
  1280. /* file position must be aligned */
  1281. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1282. goto out_mm;
  1283. ret = 0;
  1284. if (!count)
  1285. goto out_mm;
  1286. /* do not disclose physical addresses: attack vector */
  1287. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1288. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1289. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
  1290. ret = -ENOMEM;
  1291. if (!pm.buffer)
  1292. goto out_mm;
  1293. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1294. pagemap_walk.pte_hole = pagemap_pte_hole;
  1295. #ifdef CONFIG_HUGETLB_PAGE
  1296. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1297. #endif
  1298. pagemap_walk.mm = mm;
  1299. pagemap_walk.private = &pm;
  1300. src = *ppos;
  1301. svpfn = src / PM_ENTRY_BYTES;
  1302. start_vaddr = svpfn << PAGE_SHIFT;
  1303. end_vaddr = mm->task_size;
  1304. /* watch out for wraparound */
  1305. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1306. start_vaddr = end_vaddr;
  1307. /*
  1308. * The odds are that this will stop walking way
  1309. * before end_vaddr, because the length of the
  1310. * user buffer is tracked in "pm", and the walk
  1311. * will stop when we hit the end of the buffer.
  1312. */
  1313. ret = 0;
  1314. while (count && (start_vaddr < end_vaddr)) {
  1315. int len;
  1316. unsigned long end;
  1317. pm.pos = 0;
  1318. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1319. /* overflow ? */
  1320. if (end < start_vaddr || end > end_vaddr)
  1321. end = end_vaddr;
  1322. down_read(&mm->mmap_sem);
  1323. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1324. up_read(&mm->mmap_sem);
  1325. start_vaddr = end;
  1326. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1327. if (copy_to_user(buf, pm.buffer, len)) {
  1328. ret = -EFAULT;
  1329. goto out_free;
  1330. }
  1331. copied += len;
  1332. buf += len;
  1333. count -= len;
  1334. }
  1335. *ppos += copied;
  1336. if (!ret || ret == PM_END_OF_BUFFER)
  1337. ret = copied;
  1338. out_free:
  1339. kfree(pm.buffer);
  1340. out_mm:
  1341. mmput(mm);
  1342. out:
  1343. return ret;
  1344. }
  1345. static int pagemap_open(struct inode *inode, struct file *file)
  1346. {
  1347. struct mm_struct *mm;
  1348. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1349. if (IS_ERR(mm))
  1350. return PTR_ERR(mm);
  1351. file->private_data = mm;
  1352. return 0;
  1353. }
  1354. static int pagemap_release(struct inode *inode, struct file *file)
  1355. {
  1356. struct mm_struct *mm = file->private_data;
  1357. if (mm)
  1358. mmdrop(mm);
  1359. return 0;
  1360. }
  1361. const struct file_operations proc_pagemap_operations = {
  1362. .llseek = mem_lseek, /* borrow this */
  1363. .read = pagemap_read,
  1364. .open = pagemap_open,
  1365. .release = pagemap_release,
  1366. };
  1367. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1368. #ifdef CONFIG_NUMA
  1369. struct numa_maps {
  1370. unsigned long pages;
  1371. unsigned long anon;
  1372. unsigned long active;
  1373. unsigned long writeback;
  1374. unsigned long mapcount_max;
  1375. unsigned long dirty;
  1376. unsigned long swapcache;
  1377. unsigned long node[MAX_NUMNODES];
  1378. };
  1379. struct numa_maps_private {
  1380. struct proc_maps_private proc_maps;
  1381. struct numa_maps md;
  1382. };
  1383. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1384. unsigned long nr_pages)
  1385. {
  1386. int count = page_mapcount(page);
  1387. md->pages += nr_pages;
  1388. if (pte_dirty || PageDirty(page))
  1389. md->dirty += nr_pages;
  1390. if (PageSwapCache(page))
  1391. md->swapcache += nr_pages;
  1392. if (PageActive(page) || PageUnevictable(page))
  1393. md->active += nr_pages;
  1394. if (PageWriteback(page))
  1395. md->writeback += nr_pages;
  1396. if (PageAnon(page))
  1397. md->anon += nr_pages;
  1398. if (count > md->mapcount_max)
  1399. md->mapcount_max = count;
  1400. md->node[page_to_nid(page)] += nr_pages;
  1401. }
  1402. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1403. unsigned long addr)
  1404. {
  1405. struct page *page;
  1406. int nid;
  1407. if (!pte_present(pte))
  1408. return NULL;
  1409. page = vm_normal_page(vma, addr, pte);
  1410. if (!page)
  1411. return NULL;
  1412. if (PageReserved(page))
  1413. return NULL;
  1414. nid = page_to_nid(page);
  1415. if (!node_isset(nid, node_states[N_MEMORY]))
  1416. return NULL;
  1417. return page;
  1418. }
  1419. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1420. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1421. struct vm_area_struct *vma,
  1422. unsigned long addr)
  1423. {
  1424. struct page *page;
  1425. int nid;
  1426. if (!pmd_present(pmd))
  1427. return NULL;
  1428. page = vm_normal_page_pmd(vma, addr, pmd);
  1429. if (!page)
  1430. return NULL;
  1431. if (PageReserved(page))
  1432. return NULL;
  1433. nid = page_to_nid(page);
  1434. if (!node_isset(nid, node_states[N_MEMORY]))
  1435. return NULL;
  1436. return page;
  1437. }
  1438. #endif
  1439. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1440. unsigned long end, struct mm_walk *walk)
  1441. {
  1442. struct numa_maps *md = walk->private;
  1443. struct vm_area_struct *vma = walk->vma;
  1444. spinlock_t *ptl;
  1445. pte_t *orig_pte;
  1446. pte_t *pte;
  1447. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1448. ptl = pmd_trans_huge_lock(pmd, vma);
  1449. if (ptl) {
  1450. struct page *page;
  1451. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1452. if (page)
  1453. gather_stats(page, md, pmd_dirty(*pmd),
  1454. HPAGE_PMD_SIZE/PAGE_SIZE);
  1455. spin_unlock(ptl);
  1456. return 0;
  1457. }
  1458. if (pmd_trans_unstable(pmd))
  1459. return 0;
  1460. #endif
  1461. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1462. do {
  1463. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1464. if (!page)
  1465. continue;
  1466. gather_stats(page, md, pte_dirty(*pte), 1);
  1467. } while (pte++, addr += PAGE_SIZE, addr != end);
  1468. pte_unmap_unlock(orig_pte, ptl);
  1469. cond_resched();
  1470. return 0;
  1471. }
  1472. #ifdef CONFIG_HUGETLB_PAGE
  1473. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1474. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1475. {
  1476. pte_t huge_pte = huge_ptep_get(pte);
  1477. struct numa_maps *md;
  1478. struct page *page;
  1479. if (!pte_present(huge_pte))
  1480. return 0;
  1481. page = pte_page(huge_pte);
  1482. if (!page)
  1483. return 0;
  1484. md = walk->private;
  1485. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1486. return 0;
  1487. }
  1488. #else
  1489. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1490. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1491. {
  1492. return 0;
  1493. }
  1494. #endif
  1495. /*
  1496. * Display pages allocated per node and memory policy via /proc.
  1497. */
  1498. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1499. {
  1500. struct numa_maps_private *numa_priv = m->private;
  1501. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1502. struct vm_area_struct *vma = v;
  1503. struct numa_maps *md = &numa_priv->md;
  1504. struct file *file = vma->vm_file;
  1505. struct mm_struct *mm = vma->vm_mm;
  1506. struct mm_walk walk = {
  1507. .hugetlb_entry = gather_hugetlb_stats,
  1508. .pmd_entry = gather_pte_stats,
  1509. .private = md,
  1510. .mm = mm,
  1511. };
  1512. struct mempolicy *pol;
  1513. char buffer[64];
  1514. int nid;
  1515. if (!mm)
  1516. return 0;
  1517. /* Ensure we start with an empty set of numa_maps statistics. */
  1518. memset(md, 0, sizeof(*md));
  1519. pol = __get_vma_policy(vma, vma->vm_start);
  1520. if (pol) {
  1521. mpol_to_str(buffer, sizeof(buffer), pol);
  1522. mpol_cond_put(pol);
  1523. } else {
  1524. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1525. }
  1526. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1527. if (file) {
  1528. seq_puts(m, " file=");
  1529. seq_file_path(m, file, "\n\t= ");
  1530. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1531. seq_puts(m, " heap");
  1532. } else if (is_stack(vma)) {
  1533. seq_puts(m, " stack");
  1534. }
  1535. if (is_vm_hugetlb_page(vma))
  1536. seq_puts(m, " huge");
  1537. /* mmap_sem is held by m_start */
  1538. walk_page_vma(vma, &walk);
  1539. if (!md->pages)
  1540. goto out;
  1541. if (md->anon)
  1542. seq_printf(m, " anon=%lu", md->anon);
  1543. if (md->dirty)
  1544. seq_printf(m, " dirty=%lu", md->dirty);
  1545. if (md->pages != md->anon && md->pages != md->dirty)
  1546. seq_printf(m, " mapped=%lu", md->pages);
  1547. if (md->mapcount_max > 1)
  1548. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1549. if (md->swapcache)
  1550. seq_printf(m, " swapcache=%lu", md->swapcache);
  1551. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1552. seq_printf(m, " active=%lu", md->active);
  1553. if (md->writeback)
  1554. seq_printf(m, " writeback=%lu", md->writeback);
  1555. for_each_node_state(nid, N_MEMORY)
  1556. if (md->node[nid])
  1557. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1558. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1559. out:
  1560. seq_putc(m, '\n');
  1561. m_cache_vma(m, vma);
  1562. return 0;
  1563. }
  1564. static int show_pid_numa_map(struct seq_file *m, void *v)
  1565. {
  1566. return show_numa_map(m, v, 1);
  1567. }
  1568. static int show_tid_numa_map(struct seq_file *m, void *v)
  1569. {
  1570. return show_numa_map(m, v, 0);
  1571. }
  1572. static const struct seq_operations proc_pid_numa_maps_op = {
  1573. .start = m_start,
  1574. .next = m_next,
  1575. .stop = m_stop,
  1576. .show = show_pid_numa_map,
  1577. };
  1578. static const struct seq_operations proc_tid_numa_maps_op = {
  1579. .start = m_start,
  1580. .next = m_next,
  1581. .stop = m_stop,
  1582. .show = show_tid_numa_map,
  1583. };
  1584. static int numa_maps_open(struct inode *inode, struct file *file,
  1585. const struct seq_operations *ops)
  1586. {
  1587. return proc_maps_open(inode, file, ops,
  1588. sizeof(struct numa_maps_private));
  1589. }
  1590. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1591. {
  1592. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1593. }
  1594. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1595. {
  1596. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1597. }
  1598. const struct file_operations proc_pid_numa_maps_operations = {
  1599. .open = pid_numa_maps_open,
  1600. .read = seq_read,
  1601. .llseek = seq_lseek,
  1602. .release = proc_map_release,
  1603. };
  1604. const struct file_operations proc_tid_numa_maps_operations = {
  1605. .open = tid_numa_maps_open,
  1606. .read = seq_read,
  1607. .llseek = seq_lseek,
  1608. .release = proc_map_release,
  1609. };
  1610. #endif /* CONFIG_NUMA */