segment.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. 2 * reserved_sections(sbi));
  159. }
  160. void register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_inode_info *fi = F2FS_I(inode);
  163. struct inmem_pages *new;
  164. f2fs_trace_pid(page);
  165. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  166. SetPagePrivate(page);
  167. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  168. /* add atomic page indices to the list */
  169. new->page = page;
  170. INIT_LIST_HEAD(&new->list);
  171. /* increase reference count with clean state */
  172. mutex_lock(&fi->inmem_lock);
  173. get_page(page);
  174. list_add_tail(&new->list, &fi->inmem_pages);
  175. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  176. mutex_unlock(&fi->inmem_lock);
  177. trace_f2fs_register_inmem_page(page, INMEM);
  178. }
  179. static int __revoke_inmem_pages(struct inode *inode,
  180. struct list_head *head, bool drop, bool recover)
  181. {
  182. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  183. struct inmem_pages *cur, *tmp;
  184. int err = 0;
  185. list_for_each_entry_safe(cur, tmp, head, list) {
  186. struct page *page = cur->page;
  187. if (drop)
  188. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  189. lock_page(page);
  190. if (recover) {
  191. struct dnode_of_data dn;
  192. struct node_info ni;
  193. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  194. retry:
  195. set_new_dnode(&dn, inode, NULL, NULL, 0);
  196. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  197. if (err) {
  198. if (err == -ENOMEM) {
  199. congestion_wait(BLK_RW_ASYNC, HZ/50);
  200. cond_resched();
  201. goto retry;
  202. }
  203. err = -EAGAIN;
  204. goto next;
  205. }
  206. get_node_info(sbi, dn.nid, &ni);
  207. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  208. cur->old_addr, ni.version, true, true);
  209. f2fs_put_dnode(&dn);
  210. }
  211. next:
  212. /* we don't need to invalidate this in the sccessful status */
  213. if (drop || recover)
  214. ClearPageUptodate(page);
  215. set_page_private(page, 0);
  216. ClearPagePrivate(page);
  217. f2fs_put_page(page, 1);
  218. list_del(&cur->list);
  219. kmem_cache_free(inmem_entry_slab, cur);
  220. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  221. }
  222. return err;
  223. }
  224. void drop_inmem_pages(struct inode *inode)
  225. {
  226. struct f2fs_inode_info *fi = F2FS_I(inode);
  227. mutex_lock(&fi->inmem_lock);
  228. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  229. mutex_unlock(&fi->inmem_lock);
  230. clear_inode_flag(inode, FI_ATOMIC_FILE);
  231. clear_inode_flag(inode, FI_HOT_DATA);
  232. stat_dec_atomic_write(inode);
  233. }
  234. void drop_inmem_page(struct inode *inode, struct page *page)
  235. {
  236. struct f2fs_inode_info *fi = F2FS_I(inode);
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct list_head *head = &fi->inmem_pages;
  239. struct inmem_pages *cur = NULL;
  240. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  241. mutex_lock(&fi->inmem_lock);
  242. list_for_each_entry(cur, head, list) {
  243. if (cur->page == page)
  244. break;
  245. }
  246. f2fs_bug_on(sbi, !cur || cur->page != page);
  247. list_del(&cur->list);
  248. mutex_unlock(&fi->inmem_lock);
  249. dec_page_count(sbi, F2FS_INMEM_PAGES);
  250. kmem_cache_free(inmem_entry_slab, cur);
  251. ClearPageUptodate(page);
  252. set_page_private(page, 0);
  253. ClearPagePrivate(page);
  254. f2fs_put_page(page, 0);
  255. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  256. }
  257. static int __commit_inmem_pages(struct inode *inode,
  258. struct list_head *revoke_list)
  259. {
  260. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  261. struct f2fs_inode_info *fi = F2FS_I(inode);
  262. struct inmem_pages *cur, *tmp;
  263. struct f2fs_io_info fio = {
  264. .sbi = sbi,
  265. .type = DATA,
  266. .op = REQ_OP_WRITE,
  267. .op_flags = REQ_SYNC | REQ_PRIO,
  268. .io_type = FS_DATA_IO,
  269. };
  270. pgoff_t last_idx = ULONG_MAX;
  271. int err = 0;
  272. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  273. struct page *page = cur->page;
  274. lock_page(page);
  275. if (page->mapping == inode->i_mapping) {
  276. trace_f2fs_commit_inmem_page(page, INMEM);
  277. set_page_dirty(page);
  278. f2fs_wait_on_page_writeback(page, DATA, true);
  279. if (clear_page_dirty_for_io(page)) {
  280. inode_dec_dirty_pages(inode);
  281. remove_dirty_inode(inode);
  282. }
  283. retry:
  284. fio.page = page;
  285. fio.old_blkaddr = NULL_ADDR;
  286. fio.encrypted_page = NULL;
  287. fio.need_lock = LOCK_DONE;
  288. err = do_write_data_page(&fio);
  289. if (err) {
  290. if (err == -ENOMEM) {
  291. congestion_wait(BLK_RW_ASYNC, HZ/50);
  292. cond_resched();
  293. goto retry;
  294. }
  295. unlock_page(page);
  296. break;
  297. }
  298. /* record old blkaddr for revoking */
  299. cur->old_addr = fio.old_blkaddr;
  300. last_idx = page->index;
  301. }
  302. unlock_page(page);
  303. list_move_tail(&cur->list, revoke_list);
  304. }
  305. if (last_idx != ULONG_MAX)
  306. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  307. if (!err)
  308. __revoke_inmem_pages(inode, revoke_list, false, false);
  309. return err;
  310. }
  311. int commit_inmem_pages(struct inode *inode)
  312. {
  313. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  314. struct f2fs_inode_info *fi = F2FS_I(inode);
  315. struct list_head revoke_list;
  316. int err;
  317. INIT_LIST_HEAD(&revoke_list);
  318. f2fs_balance_fs(sbi, true);
  319. f2fs_lock_op(sbi);
  320. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  321. mutex_lock(&fi->inmem_lock);
  322. err = __commit_inmem_pages(inode, &revoke_list);
  323. if (err) {
  324. int ret;
  325. /*
  326. * try to revoke all committed pages, but still we could fail
  327. * due to no memory or other reason, if that happened, EAGAIN
  328. * will be returned, which means in such case, transaction is
  329. * already not integrity, caller should use journal to do the
  330. * recovery or rewrite & commit last transaction. For other
  331. * error number, revoking was done by filesystem itself.
  332. */
  333. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  334. if (ret)
  335. err = ret;
  336. /* drop all uncommitted pages */
  337. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  338. }
  339. mutex_unlock(&fi->inmem_lock);
  340. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  341. f2fs_unlock_op(sbi);
  342. return err;
  343. }
  344. /*
  345. * This function balances dirty node and dentry pages.
  346. * In addition, it controls garbage collection.
  347. */
  348. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  349. {
  350. #ifdef CONFIG_F2FS_FAULT_INJECTION
  351. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  352. f2fs_show_injection_info(FAULT_CHECKPOINT);
  353. f2fs_stop_checkpoint(sbi, false);
  354. }
  355. #endif
  356. /* balance_fs_bg is able to be pending */
  357. if (need && excess_cached_nats(sbi))
  358. f2fs_balance_fs_bg(sbi);
  359. /*
  360. * We should do GC or end up with checkpoint, if there are so many dirty
  361. * dir/node pages without enough free segments.
  362. */
  363. if (has_not_enough_free_secs(sbi, 0, 0)) {
  364. mutex_lock(&sbi->gc_mutex);
  365. f2fs_gc(sbi, false, false, NULL_SEGNO);
  366. }
  367. }
  368. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  369. {
  370. /* try to shrink extent cache when there is no enough memory */
  371. if (!available_free_memory(sbi, EXTENT_CACHE))
  372. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  373. /* check the # of cached NAT entries */
  374. if (!available_free_memory(sbi, NAT_ENTRIES))
  375. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  376. if (!available_free_memory(sbi, FREE_NIDS))
  377. try_to_free_nids(sbi, MAX_FREE_NIDS);
  378. else
  379. build_free_nids(sbi, false, false);
  380. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  381. return;
  382. /* checkpoint is the only way to shrink partial cached entries */
  383. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  384. !available_free_memory(sbi, INO_ENTRIES) ||
  385. excess_prefree_segs(sbi) ||
  386. excess_dirty_nats(sbi) ||
  387. f2fs_time_over(sbi, CP_TIME)) {
  388. if (test_opt(sbi, DATA_FLUSH)) {
  389. struct blk_plug plug;
  390. blk_start_plug(&plug);
  391. sync_dirty_inodes(sbi, FILE_INODE);
  392. blk_finish_plug(&plug);
  393. }
  394. f2fs_sync_fs(sbi->sb, true);
  395. stat_inc_bg_cp_count(sbi->stat_info);
  396. }
  397. }
  398. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  399. struct block_device *bdev)
  400. {
  401. struct bio *bio = f2fs_bio_alloc(0);
  402. int ret;
  403. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  404. bio_set_dev(bio, bdev);
  405. ret = submit_bio_wait(bio);
  406. bio_put(bio);
  407. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  408. test_opt(sbi, FLUSH_MERGE), ret);
  409. return ret;
  410. }
  411. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  412. {
  413. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  414. int i;
  415. if (!sbi->s_ndevs || ret)
  416. return ret;
  417. for (i = 1; i < sbi->s_ndevs; i++) {
  418. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  419. if (ret)
  420. break;
  421. }
  422. return ret;
  423. }
  424. static int issue_flush_thread(void *data)
  425. {
  426. struct f2fs_sb_info *sbi = data;
  427. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  428. wait_queue_head_t *q = &fcc->flush_wait_queue;
  429. repeat:
  430. if (kthread_should_stop())
  431. return 0;
  432. sb_start_intwrite(sbi->sb);
  433. if (!llist_empty(&fcc->issue_list)) {
  434. struct flush_cmd *cmd, *next;
  435. int ret;
  436. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  437. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  438. ret = submit_flush_wait(sbi);
  439. atomic_inc(&fcc->issued_flush);
  440. llist_for_each_entry_safe(cmd, next,
  441. fcc->dispatch_list, llnode) {
  442. cmd->ret = ret;
  443. complete(&cmd->wait);
  444. }
  445. fcc->dispatch_list = NULL;
  446. }
  447. sb_end_intwrite(sbi->sb);
  448. wait_event_interruptible(*q,
  449. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  450. goto repeat;
  451. }
  452. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  453. {
  454. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  455. struct flush_cmd cmd;
  456. int ret;
  457. if (test_opt(sbi, NOBARRIER))
  458. return 0;
  459. if (!test_opt(sbi, FLUSH_MERGE)) {
  460. ret = submit_flush_wait(sbi);
  461. atomic_inc(&fcc->issued_flush);
  462. return ret;
  463. }
  464. if (atomic_inc_return(&fcc->issing_flush) == 1) {
  465. ret = submit_flush_wait(sbi);
  466. atomic_dec(&fcc->issing_flush);
  467. atomic_inc(&fcc->issued_flush);
  468. return ret;
  469. }
  470. init_completion(&cmd.wait);
  471. llist_add(&cmd.llnode, &fcc->issue_list);
  472. /* update issue_list before we wake up issue_flush thread */
  473. smp_mb();
  474. if (waitqueue_active(&fcc->flush_wait_queue))
  475. wake_up(&fcc->flush_wait_queue);
  476. if (fcc->f2fs_issue_flush) {
  477. wait_for_completion(&cmd.wait);
  478. atomic_dec(&fcc->issing_flush);
  479. } else {
  480. struct llist_node *list;
  481. list = llist_del_all(&fcc->issue_list);
  482. if (!list) {
  483. wait_for_completion(&cmd.wait);
  484. atomic_dec(&fcc->issing_flush);
  485. } else {
  486. struct flush_cmd *tmp, *next;
  487. ret = submit_flush_wait(sbi);
  488. llist_for_each_entry_safe(tmp, next, list, llnode) {
  489. if (tmp == &cmd) {
  490. cmd.ret = ret;
  491. atomic_dec(&fcc->issing_flush);
  492. continue;
  493. }
  494. tmp->ret = ret;
  495. complete(&tmp->wait);
  496. }
  497. }
  498. }
  499. return cmd.ret;
  500. }
  501. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  502. {
  503. dev_t dev = sbi->sb->s_bdev->bd_dev;
  504. struct flush_cmd_control *fcc;
  505. int err = 0;
  506. if (SM_I(sbi)->fcc_info) {
  507. fcc = SM_I(sbi)->fcc_info;
  508. if (fcc->f2fs_issue_flush)
  509. return err;
  510. goto init_thread;
  511. }
  512. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  513. if (!fcc)
  514. return -ENOMEM;
  515. atomic_set(&fcc->issued_flush, 0);
  516. atomic_set(&fcc->issing_flush, 0);
  517. init_waitqueue_head(&fcc->flush_wait_queue);
  518. init_llist_head(&fcc->issue_list);
  519. SM_I(sbi)->fcc_info = fcc;
  520. if (!test_opt(sbi, FLUSH_MERGE))
  521. return err;
  522. init_thread:
  523. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  524. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  525. if (IS_ERR(fcc->f2fs_issue_flush)) {
  526. err = PTR_ERR(fcc->f2fs_issue_flush);
  527. kfree(fcc);
  528. SM_I(sbi)->fcc_info = NULL;
  529. return err;
  530. }
  531. return err;
  532. }
  533. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  534. {
  535. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  536. if (fcc && fcc->f2fs_issue_flush) {
  537. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  538. fcc->f2fs_issue_flush = NULL;
  539. kthread_stop(flush_thread);
  540. }
  541. if (free) {
  542. kfree(fcc);
  543. SM_I(sbi)->fcc_info = NULL;
  544. }
  545. }
  546. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  547. enum dirty_type dirty_type)
  548. {
  549. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  550. /* need not be added */
  551. if (IS_CURSEG(sbi, segno))
  552. return;
  553. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  554. dirty_i->nr_dirty[dirty_type]++;
  555. if (dirty_type == DIRTY) {
  556. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  557. enum dirty_type t = sentry->type;
  558. if (unlikely(t >= DIRTY)) {
  559. f2fs_bug_on(sbi, 1);
  560. return;
  561. }
  562. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  563. dirty_i->nr_dirty[t]++;
  564. }
  565. }
  566. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  567. enum dirty_type dirty_type)
  568. {
  569. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  570. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  571. dirty_i->nr_dirty[dirty_type]--;
  572. if (dirty_type == DIRTY) {
  573. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  574. enum dirty_type t = sentry->type;
  575. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  576. dirty_i->nr_dirty[t]--;
  577. if (get_valid_blocks(sbi, segno, true) == 0)
  578. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  579. dirty_i->victim_secmap);
  580. }
  581. }
  582. /*
  583. * Should not occur error such as -ENOMEM.
  584. * Adding dirty entry into seglist is not critical operation.
  585. * If a given segment is one of current working segments, it won't be added.
  586. */
  587. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  588. {
  589. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  590. unsigned short valid_blocks;
  591. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  592. return;
  593. mutex_lock(&dirty_i->seglist_lock);
  594. valid_blocks = get_valid_blocks(sbi, segno, false);
  595. if (valid_blocks == 0) {
  596. __locate_dirty_segment(sbi, segno, PRE);
  597. __remove_dirty_segment(sbi, segno, DIRTY);
  598. } else if (valid_blocks < sbi->blocks_per_seg) {
  599. __locate_dirty_segment(sbi, segno, DIRTY);
  600. } else {
  601. /* Recovery routine with SSR needs this */
  602. __remove_dirty_segment(sbi, segno, DIRTY);
  603. }
  604. mutex_unlock(&dirty_i->seglist_lock);
  605. }
  606. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  607. struct block_device *bdev, block_t lstart,
  608. block_t start, block_t len)
  609. {
  610. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  611. struct list_head *pend_list;
  612. struct discard_cmd *dc;
  613. f2fs_bug_on(sbi, !len);
  614. pend_list = &dcc->pend_list[plist_idx(len)];
  615. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  616. INIT_LIST_HEAD(&dc->list);
  617. dc->bdev = bdev;
  618. dc->lstart = lstart;
  619. dc->start = start;
  620. dc->len = len;
  621. dc->ref = 0;
  622. dc->state = D_PREP;
  623. dc->error = 0;
  624. init_completion(&dc->wait);
  625. list_add_tail(&dc->list, pend_list);
  626. atomic_inc(&dcc->discard_cmd_cnt);
  627. dcc->undiscard_blks += len;
  628. return dc;
  629. }
  630. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  631. struct block_device *bdev, block_t lstart,
  632. block_t start, block_t len,
  633. struct rb_node *parent, struct rb_node **p)
  634. {
  635. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  636. struct discard_cmd *dc;
  637. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  638. rb_link_node(&dc->rb_node, parent, p);
  639. rb_insert_color(&dc->rb_node, &dcc->root);
  640. return dc;
  641. }
  642. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  643. struct discard_cmd *dc)
  644. {
  645. if (dc->state == D_DONE)
  646. atomic_dec(&dcc->issing_discard);
  647. list_del(&dc->list);
  648. rb_erase(&dc->rb_node, &dcc->root);
  649. dcc->undiscard_blks -= dc->len;
  650. kmem_cache_free(discard_cmd_slab, dc);
  651. atomic_dec(&dcc->discard_cmd_cnt);
  652. }
  653. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  654. struct discard_cmd *dc)
  655. {
  656. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  657. f2fs_bug_on(sbi, dc->ref);
  658. if (dc->error == -EOPNOTSUPP)
  659. dc->error = 0;
  660. if (dc->error)
  661. f2fs_msg(sbi->sb, KERN_INFO,
  662. "Issue discard(%u, %u, %u) failed, ret: %d",
  663. dc->lstart, dc->start, dc->len, dc->error);
  664. __detach_discard_cmd(dcc, dc);
  665. }
  666. static void f2fs_submit_discard_endio(struct bio *bio)
  667. {
  668. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  669. dc->error = blk_status_to_errno(bio->bi_status);
  670. dc->state = D_DONE;
  671. complete_all(&dc->wait);
  672. bio_put(bio);
  673. }
  674. void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  675. block_t start, block_t end)
  676. {
  677. #ifdef CONFIG_F2FS_CHECK_FS
  678. struct seg_entry *sentry;
  679. unsigned int segno;
  680. block_t blk = start;
  681. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  682. unsigned long *map;
  683. while (blk < end) {
  684. segno = GET_SEGNO(sbi, blk);
  685. sentry = get_seg_entry(sbi, segno);
  686. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  687. if (end < START_BLOCK(sbi, segno + 1))
  688. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  689. else
  690. size = max_blocks;
  691. map = (unsigned long *)(sentry->cur_valid_map);
  692. offset = __find_rev_next_bit(map, size, offset);
  693. f2fs_bug_on(sbi, offset != size);
  694. blk = START_BLOCK(sbi, segno + 1);
  695. }
  696. #endif
  697. }
  698. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  699. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  700. struct discard_cmd *dc)
  701. {
  702. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  703. struct bio *bio = NULL;
  704. if (dc->state != D_PREP)
  705. return;
  706. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  707. dc->error = __blkdev_issue_discard(dc->bdev,
  708. SECTOR_FROM_BLOCK(dc->start),
  709. SECTOR_FROM_BLOCK(dc->len),
  710. GFP_NOFS, 0, &bio);
  711. if (!dc->error) {
  712. /* should keep before submission to avoid D_DONE right away */
  713. dc->state = D_SUBMIT;
  714. atomic_inc(&dcc->issued_discard);
  715. atomic_inc(&dcc->issing_discard);
  716. if (bio) {
  717. bio->bi_private = dc;
  718. bio->bi_end_io = f2fs_submit_discard_endio;
  719. bio->bi_opf |= REQ_SYNC;
  720. submit_bio(bio);
  721. list_move_tail(&dc->list, &dcc->wait_list);
  722. __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
  723. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  724. }
  725. } else {
  726. __remove_discard_cmd(sbi, dc);
  727. }
  728. }
  729. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  730. struct block_device *bdev, block_t lstart,
  731. block_t start, block_t len,
  732. struct rb_node **insert_p,
  733. struct rb_node *insert_parent)
  734. {
  735. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  736. struct rb_node **p = &dcc->root.rb_node;
  737. struct rb_node *parent = NULL;
  738. struct discard_cmd *dc = NULL;
  739. if (insert_p && insert_parent) {
  740. parent = insert_parent;
  741. p = insert_p;
  742. goto do_insert;
  743. }
  744. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  745. do_insert:
  746. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  747. if (!dc)
  748. return NULL;
  749. return dc;
  750. }
  751. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  752. struct discard_cmd *dc)
  753. {
  754. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  755. }
  756. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  757. struct discard_cmd *dc, block_t blkaddr)
  758. {
  759. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  760. struct discard_info di = dc->di;
  761. bool modified = false;
  762. if (dc->state == D_DONE || dc->len == 1) {
  763. __remove_discard_cmd(sbi, dc);
  764. return;
  765. }
  766. dcc->undiscard_blks -= di.len;
  767. if (blkaddr > di.lstart) {
  768. dc->len = blkaddr - dc->lstart;
  769. dcc->undiscard_blks += dc->len;
  770. __relocate_discard_cmd(dcc, dc);
  771. modified = true;
  772. }
  773. if (blkaddr < di.lstart + di.len - 1) {
  774. if (modified) {
  775. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  776. di.start + blkaddr + 1 - di.lstart,
  777. di.lstart + di.len - 1 - blkaddr,
  778. NULL, NULL);
  779. } else {
  780. dc->lstart++;
  781. dc->len--;
  782. dc->start++;
  783. dcc->undiscard_blks += dc->len;
  784. __relocate_discard_cmd(dcc, dc);
  785. }
  786. }
  787. }
  788. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  789. struct block_device *bdev, block_t lstart,
  790. block_t start, block_t len)
  791. {
  792. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  793. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  794. struct discard_cmd *dc;
  795. struct discard_info di = {0};
  796. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  797. block_t end = lstart + len;
  798. mutex_lock(&dcc->cmd_lock);
  799. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  800. NULL, lstart,
  801. (struct rb_entry **)&prev_dc,
  802. (struct rb_entry **)&next_dc,
  803. &insert_p, &insert_parent, true);
  804. if (dc)
  805. prev_dc = dc;
  806. if (!prev_dc) {
  807. di.lstart = lstart;
  808. di.len = next_dc ? next_dc->lstart - lstart : len;
  809. di.len = min(di.len, len);
  810. di.start = start;
  811. }
  812. while (1) {
  813. struct rb_node *node;
  814. bool merged = false;
  815. struct discard_cmd *tdc = NULL;
  816. if (prev_dc) {
  817. di.lstart = prev_dc->lstart + prev_dc->len;
  818. if (di.lstart < lstart)
  819. di.lstart = lstart;
  820. if (di.lstart >= end)
  821. break;
  822. if (!next_dc || next_dc->lstart > end)
  823. di.len = end - di.lstart;
  824. else
  825. di.len = next_dc->lstart - di.lstart;
  826. di.start = start + di.lstart - lstart;
  827. }
  828. if (!di.len)
  829. goto next;
  830. if (prev_dc && prev_dc->state == D_PREP &&
  831. prev_dc->bdev == bdev &&
  832. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  833. prev_dc->di.len += di.len;
  834. dcc->undiscard_blks += di.len;
  835. __relocate_discard_cmd(dcc, prev_dc);
  836. di = prev_dc->di;
  837. tdc = prev_dc;
  838. merged = true;
  839. }
  840. if (next_dc && next_dc->state == D_PREP &&
  841. next_dc->bdev == bdev &&
  842. __is_discard_front_mergeable(&di, &next_dc->di)) {
  843. next_dc->di.lstart = di.lstart;
  844. next_dc->di.len += di.len;
  845. next_dc->di.start = di.start;
  846. dcc->undiscard_blks += di.len;
  847. __relocate_discard_cmd(dcc, next_dc);
  848. if (tdc)
  849. __remove_discard_cmd(sbi, tdc);
  850. merged = true;
  851. }
  852. if (!merged) {
  853. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  854. di.len, NULL, NULL);
  855. }
  856. next:
  857. prev_dc = next_dc;
  858. if (!prev_dc)
  859. break;
  860. node = rb_next(&prev_dc->rb_node);
  861. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  862. }
  863. mutex_unlock(&dcc->cmd_lock);
  864. }
  865. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  866. struct block_device *bdev, block_t blkstart, block_t blklen)
  867. {
  868. block_t lblkstart = blkstart;
  869. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  870. if (sbi->s_ndevs) {
  871. int devi = f2fs_target_device_index(sbi, blkstart);
  872. blkstart -= FDEV(devi).start_blk;
  873. }
  874. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  875. return 0;
  876. }
  877. static int __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
  878. {
  879. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  880. struct list_head *pend_list;
  881. struct discard_cmd *dc, *tmp;
  882. struct blk_plug plug;
  883. int iter = 0, issued = 0;
  884. int i;
  885. bool io_interrupted = false;
  886. mutex_lock(&dcc->cmd_lock);
  887. f2fs_bug_on(sbi,
  888. !__check_rb_tree_consistence(sbi, &dcc->root));
  889. blk_start_plug(&plug);
  890. for (i = MAX_PLIST_NUM - 1;
  891. i >= 0 && plist_issue(dcc->pend_list_tag[i]); i--) {
  892. pend_list = &dcc->pend_list[i];
  893. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  894. f2fs_bug_on(sbi, dc->state != D_PREP);
  895. /* Hurry up to finish fstrim */
  896. if (dcc->pend_list_tag[i] & P_TRIM) {
  897. __submit_discard_cmd(sbi, dc);
  898. issued++;
  899. if (fatal_signal_pending(current))
  900. break;
  901. continue;
  902. }
  903. if (!issue_cond) {
  904. __submit_discard_cmd(sbi, dc);
  905. issued++;
  906. continue;
  907. }
  908. if (is_idle(sbi)) {
  909. __submit_discard_cmd(sbi, dc);
  910. issued++;
  911. } else {
  912. io_interrupted = true;
  913. }
  914. if (++iter >= DISCARD_ISSUE_RATE)
  915. goto out;
  916. }
  917. if (list_empty(pend_list) && dcc->pend_list_tag[i] & P_TRIM)
  918. dcc->pend_list_tag[i] &= (~P_TRIM);
  919. }
  920. out:
  921. blk_finish_plug(&plug);
  922. mutex_unlock(&dcc->cmd_lock);
  923. if (!issued && io_interrupted)
  924. issued = -1;
  925. return issued;
  926. }
  927. static void __drop_discard_cmd(struct f2fs_sb_info *sbi)
  928. {
  929. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  930. struct list_head *pend_list;
  931. struct discard_cmd *dc, *tmp;
  932. int i;
  933. mutex_lock(&dcc->cmd_lock);
  934. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  935. pend_list = &dcc->pend_list[i];
  936. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  937. f2fs_bug_on(sbi, dc->state != D_PREP);
  938. __remove_discard_cmd(sbi, dc);
  939. }
  940. }
  941. mutex_unlock(&dcc->cmd_lock);
  942. }
  943. static void __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  944. struct discard_cmd *dc)
  945. {
  946. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  947. wait_for_completion_io(&dc->wait);
  948. mutex_lock(&dcc->cmd_lock);
  949. f2fs_bug_on(sbi, dc->state != D_DONE);
  950. dc->ref--;
  951. if (!dc->ref)
  952. __remove_discard_cmd(sbi, dc);
  953. mutex_unlock(&dcc->cmd_lock);
  954. }
  955. static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
  956. {
  957. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  958. struct list_head *wait_list = &(dcc->wait_list);
  959. struct discard_cmd *dc, *tmp;
  960. bool need_wait;
  961. next:
  962. need_wait = false;
  963. mutex_lock(&dcc->cmd_lock);
  964. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  965. if (!wait_cond || (dc->state == D_DONE && !dc->ref)) {
  966. wait_for_completion_io(&dc->wait);
  967. __remove_discard_cmd(sbi, dc);
  968. } else {
  969. dc->ref++;
  970. need_wait = true;
  971. break;
  972. }
  973. }
  974. mutex_unlock(&dcc->cmd_lock);
  975. if (need_wait) {
  976. __wait_one_discard_bio(sbi, dc);
  977. goto next;
  978. }
  979. }
  980. /* This should be covered by global mutex, &sit_i->sentry_lock */
  981. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  982. {
  983. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  984. struct discard_cmd *dc;
  985. bool need_wait = false;
  986. mutex_lock(&dcc->cmd_lock);
  987. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  988. if (dc) {
  989. if (dc->state == D_PREP) {
  990. __punch_discard_cmd(sbi, dc, blkaddr);
  991. } else {
  992. dc->ref++;
  993. need_wait = true;
  994. }
  995. }
  996. mutex_unlock(&dcc->cmd_lock);
  997. if (need_wait)
  998. __wait_one_discard_bio(sbi, dc);
  999. }
  1000. void stop_discard_thread(struct f2fs_sb_info *sbi)
  1001. {
  1002. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1003. if (dcc && dcc->f2fs_issue_discard) {
  1004. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1005. dcc->f2fs_issue_discard = NULL;
  1006. kthread_stop(discard_thread);
  1007. }
  1008. }
  1009. /* This comes from f2fs_put_super and f2fs_trim_fs */
  1010. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1011. {
  1012. __issue_discard_cmd(sbi, false);
  1013. __drop_discard_cmd(sbi);
  1014. __wait_discard_cmd(sbi, false);
  1015. }
  1016. static void mark_discard_range_all(struct f2fs_sb_info *sbi)
  1017. {
  1018. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1019. int i;
  1020. mutex_lock(&dcc->cmd_lock);
  1021. for (i = 0; i < MAX_PLIST_NUM; i++)
  1022. dcc->pend_list_tag[i] |= P_TRIM;
  1023. mutex_unlock(&dcc->cmd_lock);
  1024. }
  1025. static int issue_discard_thread(void *data)
  1026. {
  1027. struct f2fs_sb_info *sbi = data;
  1028. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1029. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1030. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1031. int issued;
  1032. set_freezable();
  1033. do {
  1034. wait_event_interruptible_timeout(*q,
  1035. kthread_should_stop() || freezing(current) ||
  1036. dcc->discard_wake,
  1037. msecs_to_jiffies(wait_ms));
  1038. if (try_to_freeze())
  1039. continue;
  1040. if (kthread_should_stop())
  1041. return 0;
  1042. if (dcc->discard_wake) {
  1043. dcc->discard_wake = 0;
  1044. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  1045. mark_discard_range_all(sbi);
  1046. }
  1047. sb_start_intwrite(sbi->sb);
  1048. issued = __issue_discard_cmd(sbi, true);
  1049. if (issued) {
  1050. __wait_discard_cmd(sbi, true);
  1051. wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1052. } else {
  1053. wait_ms = DEF_MAX_DISCARD_ISSUE_TIME;
  1054. }
  1055. sb_end_intwrite(sbi->sb);
  1056. } while (!kthread_should_stop());
  1057. return 0;
  1058. }
  1059. #ifdef CONFIG_BLK_DEV_ZONED
  1060. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1061. struct block_device *bdev, block_t blkstart, block_t blklen)
  1062. {
  1063. sector_t sector, nr_sects;
  1064. block_t lblkstart = blkstart;
  1065. int devi = 0;
  1066. if (sbi->s_ndevs) {
  1067. devi = f2fs_target_device_index(sbi, blkstart);
  1068. blkstart -= FDEV(devi).start_blk;
  1069. }
  1070. /*
  1071. * We need to know the type of the zone: for conventional zones,
  1072. * use regular discard if the drive supports it. For sequential
  1073. * zones, reset the zone write pointer.
  1074. */
  1075. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1076. case BLK_ZONE_TYPE_CONVENTIONAL:
  1077. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1078. return 0;
  1079. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1080. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1081. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1082. sector = SECTOR_FROM_BLOCK(blkstart);
  1083. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1084. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1085. nr_sects != bdev_zone_sectors(bdev)) {
  1086. f2fs_msg(sbi->sb, KERN_INFO,
  1087. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1088. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1089. blkstart, blklen);
  1090. return -EIO;
  1091. }
  1092. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1093. return blkdev_reset_zones(bdev, sector,
  1094. nr_sects, GFP_NOFS);
  1095. default:
  1096. /* Unknown zone type: broken device ? */
  1097. return -EIO;
  1098. }
  1099. }
  1100. #endif
  1101. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1102. struct block_device *bdev, block_t blkstart, block_t blklen)
  1103. {
  1104. #ifdef CONFIG_BLK_DEV_ZONED
  1105. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  1106. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1107. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1108. #endif
  1109. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1110. }
  1111. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1112. block_t blkstart, block_t blklen)
  1113. {
  1114. sector_t start = blkstart, len = 0;
  1115. struct block_device *bdev;
  1116. struct seg_entry *se;
  1117. unsigned int offset;
  1118. block_t i;
  1119. int err = 0;
  1120. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1121. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1122. if (i != start) {
  1123. struct block_device *bdev2 =
  1124. f2fs_target_device(sbi, i, NULL);
  1125. if (bdev2 != bdev) {
  1126. err = __issue_discard_async(sbi, bdev,
  1127. start, len);
  1128. if (err)
  1129. return err;
  1130. bdev = bdev2;
  1131. start = i;
  1132. len = 0;
  1133. }
  1134. }
  1135. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1136. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1137. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1138. sbi->discard_blks--;
  1139. }
  1140. if (len)
  1141. err = __issue_discard_async(sbi, bdev, start, len);
  1142. return err;
  1143. }
  1144. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1145. bool check_only)
  1146. {
  1147. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1148. int max_blocks = sbi->blocks_per_seg;
  1149. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1150. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1151. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1152. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1153. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1154. unsigned int start = 0, end = -1;
  1155. bool force = (cpc->reason & CP_DISCARD);
  1156. struct discard_entry *de = NULL;
  1157. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1158. int i;
  1159. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1160. return false;
  1161. if (!force) {
  1162. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1163. SM_I(sbi)->dcc_info->nr_discards >=
  1164. SM_I(sbi)->dcc_info->max_discards)
  1165. return false;
  1166. }
  1167. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1168. for (i = 0; i < entries; i++)
  1169. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1170. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1171. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1172. SM_I(sbi)->dcc_info->max_discards) {
  1173. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1174. if (start >= max_blocks)
  1175. break;
  1176. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1177. if (force && start && end != max_blocks
  1178. && (end - start) < cpc->trim_minlen)
  1179. continue;
  1180. if (check_only)
  1181. return true;
  1182. if (!de) {
  1183. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1184. GFP_F2FS_ZERO);
  1185. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1186. list_add_tail(&de->list, head);
  1187. }
  1188. for (i = start; i < end; i++)
  1189. __set_bit_le(i, (void *)de->discard_map);
  1190. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1191. }
  1192. return false;
  1193. }
  1194. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1195. {
  1196. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1197. struct discard_entry *entry, *this;
  1198. /* drop caches */
  1199. list_for_each_entry_safe(entry, this, head, list) {
  1200. list_del(&entry->list);
  1201. kmem_cache_free(discard_entry_slab, entry);
  1202. }
  1203. }
  1204. /*
  1205. * Should call clear_prefree_segments after checkpoint is done.
  1206. */
  1207. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1208. {
  1209. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1210. unsigned int segno;
  1211. mutex_lock(&dirty_i->seglist_lock);
  1212. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1213. __set_test_and_free(sbi, segno);
  1214. mutex_unlock(&dirty_i->seglist_lock);
  1215. }
  1216. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1217. {
  1218. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1219. struct list_head *head = &dcc->entry_list;
  1220. struct discard_entry *entry, *this;
  1221. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1222. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1223. unsigned int start = 0, end = -1;
  1224. unsigned int secno, start_segno;
  1225. bool force = (cpc->reason & CP_DISCARD);
  1226. mutex_lock(&dirty_i->seglist_lock);
  1227. while (1) {
  1228. int i;
  1229. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1230. if (start >= MAIN_SEGS(sbi))
  1231. break;
  1232. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1233. start + 1);
  1234. for (i = start; i < end; i++)
  1235. clear_bit(i, prefree_map);
  1236. dirty_i->nr_dirty[PRE] -= end - start;
  1237. if (!test_opt(sbi, DISCARD))
  1238. continue;
  1239. if (force && start >= cpc->trim_start &&
  1240. (end - 1) <= cpc->trim_end)
  1241. continue;
  1242. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1243. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1244. (end - start) << sbi->log_blocks_per_seg);
  1245. continue;
  1246. }
  1247. next:
  1248. secno = GET_SEC_FROM_SEG(sbi, start);
  1249. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1250. if (!IS_CURSEC(sbi, secno) &&
  1251. !get_valid_blocks(sbi, start, true))
  1252. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1253. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1254. start = start_segno + sbi->segs_per_sec;
  1255. if (start < end)
  1256. goto next;
  1257. else
  1258. end = start - 1;
  1259. }
  1260. mutex_unlock(&dirty_i->seglist_lock);
  1261. /* send small discards */
  1262. list_for_each_entry_safe(entry, this, head, list) {
  1263. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1264. bool is_valid = test_bit_le(0, entry->discard_map);
  1265. find_next:
  1266. if (is_valid) {
  1267. next_pos = find_next_zero_bit_le(entry->discard_map,
  1268. sbi->blocks_per_seg, cur_pos);
  1269. len = next_pos - cur_pos;
  1270. if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
  1271. (force && len < cpc->trim_minlen))
  1272. goto skip;
  1273. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1274. len);
  1275. cpc->trimmed += len;
  1276. total_len += len;
  1277. } else {
  1278. next_pos = find_next_bit_le(entry->discard_map,
  1279. sbi->blocks_per_seg, cur_pos);
  1280. }
  1281. skip:
  1282. cur_pos = next_pos;
  1283. is_valid = !is_valid;
  1284. if (cur_pos < sbi->blocks_per_seg)
  1285. goto find_next;
  1286. list_del(&entry->list);
  1287. dcc->nr_discards -= total_len;
  1288. kmem_cache_free(discard_entry_slab, entry);
  1289. }
  1290. wake_up_discard_thread(sbi, false);
  1291. }
  1292. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1293. {
  1294. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1295. struct discard_cmd_control *dcc;
  1296. int err = 0, i;
  1297. if (SM_I(sbi)->dcc_info) {
  1298. dcc = SM_I(sbi)->dcc_info;
  1299. goto init_thread;
  1300. }
  1301. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1302. if (!dcc)
  1303. return -ENOMEM;
  1304. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1305. INIT_LIST_HEAD(&dcc->entry_list);
  1306. for (i = 0; i < MAX_PLIST_NUM; i++) {
  1307. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1308. if (i >= dcc->discard_granularity - 1)
  1309. dcc->pend_list_tag[i] |= P_ACTIVE;
  1310. }
  1311. INIT_LIST_HEAD(&dcc->wait_list);
  1312. mutex_init(&dcc->cmd_lock);
  1313. atomic_set(&dcc->issued_discard, 0);
  1314. atomic_set(&dcc->issing_discard, 0);
  1315. atomic_set(&dcc->discard_cmd_cnt, 0);
  1316. dcc->nr_discards = 0;
  1317. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1318. dcc->undiscard_blks = 0;
  1319. dcc->root = RB_ROOT;
  1320. init_waitqueue_head(&dcc->discard_wait_queue);
  1321. SM_I(sbi)->dcc_info = dcc;
  1322. init_thread:
  1323. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1324. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1325. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1326. err = PTR_ERR(dcc->f2fs_issue_discard);
  1327. kfree(dcc);
  1328. SM_I(sbi)->dcc_info = NULL;
  1329. return err;
  1330. }
  1331. return err;
  1332. }
  1333. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1334. {
  1335. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1336. if (!dcc)
  1337. return;
  1338. stop_discard_thread(sbi);
  1339. kfree(dcc);
  1340. SM_I(sbi)->dcc_info = NULL;
  1341. }
  1342. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1343. {
  1344. struct sit_info *sit_i = SIT_I(sbi);
  1345. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1346. sit_i->dirty_sentries++;
  1347. return false;
  1348. }
  1349. return true;
  1350. }
  1351. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1352. unsigned int segno, int modified)
  1353. {
  1354. struct seg_entry *se = get_seg_entry(sbi, segno);
  1355. se->type = type;
  1356. if (modified)
  1357. __mark_sit_entry_dirty(sbi, segno);
  1358. }
  1359. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1360. {
  1361. struct seg_entry *se;
  1362. unsigned int segno, offset;
  1363. long int new_vblocks;
  1364. bool exist;
  1365. #ifdef CONFIG_F2FS_CHECK_FS
  1366. bool mir_exist;
  1367. #endif
  1368. segno = GET_SEGNO(sbi, blkaddr);
  1369. se = get_seg_entry(sbi, segno);
  1370. new_vblocks = se->valid_blocks + del;
  1371. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1372. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1373. (new_vblocks > sbi->blocks_per_seg)));
  1374. se->valid_blocks = new_vblocks;
  1375. se->mtime = get_mtime(sbi);
  1376. SIT_I(sbi)->max_mtime = se->mtime;
  1377. /* Update valid block bitmap */
  1378. if (del > 0) {
  1379. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1380. #ifdef CONFIG_F2FS_CHECK_FS
  1381. mir_exist = f2fs_test_and_set_bit(offset,
  1382. se->cur_valid_map_mir);
  1383. if (unlikely(exist != mir_exist)) {
  1384. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1385. "when setting bitmap, blk:%u, old bit:%d",
  1386. blkaddr, exist);
  1387. f2fs_bug_on(sbi, 1);
  1388. }
  1389. #endif
  1390. if (unlikely(exist)) {
  1391. f2fs_msg(sbi->sb, KERN_ERR,
  1392. "Bitmap was wrongly set, blk:%u", blkaddr);
  1393. f2fs_bug_on(sbi, 1);
  1394. se->valid_blocks--;
  1395. del = 0;
  1396. }
  1397. if (f2fs_discard_en(sbi) &&
  1398. !f2fs_test_and_set_bit(offset, se->discard_map))
  1399. sbi->discard_blks--;
  1400. /* don't overwrite by SSR to keep node chain */
  1401. if (se->type == CURSEG_WARM_NODE) {
  1402. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1403. se->ckpt_valid_blocks++;
  1404. }
  1405. } else {
  1406. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1407. #ifdef CONFIG_F2FS_CHECK_FS
  1408. mir_exist = f2fs_test_and_clear_bit(offset,
  1409. se->cur_valid_map_mir);
  1410. if (unlikely(exist != mir_exist)) {
  1411. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1412. "when clearing bitmap, blk:%u, old bit:%d",
  1413. blkaddr, exist);
  1414. f2fs_bug_on(sbi, 1);
  1415. }
  1416. #endif
  1417. if (unlikely(!exist)) {
  1418. f2fs_msg(sbi->sb, KERN_ERR,
  1419. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1420. f2fs_bug_on(sbi, 1);
  1421. se->valid_blocks++;
  1422. del = 0;
  1423. }
  1424. if (f2fs_discard_en(sbi) &&
  1425. f2fs_test_and_clear_bit(offset, se->discard_map))
  1426. sbi->discard_blks++;
  1427. }
  1428. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1429. se->ckpt_valid_blocks += del;
  1430. __mark_sit_entry_dirty(sbi, segno);
  1431. /* update total number of valid blocks to be written in ckpt area */
  1432. SIT_I(sbi)->written_valid_blocks += del;
  1433. if (sbi->segs_per_sec > 1)
  1434. get_sec_entry(sbi, segno)->valid_blocks += del;
  1435. }
  1436. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1437. {
  1438. update_sit_entry(sbi, new, 1);
  1439. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1440. update_sit_entry(sbi, old, -1);
  1441. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1442. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1443. }
  1444. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1445. {
  1446. unsigned int segno = GET_SEGNO(sbi, addr);
  1447. struct sit_info *sit_i = SIT_I(sbi);
  1448. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1449. if (addr == NEW_ADDR)
  1450. return;
  1451. /* add it into sit main buffer */
  1452. mutex_lock(&sit_i->sentry_lock);
  1453. update_sit_entry(sbi, addr, -1);
  1454. /* add it into dirty seglist */
  1455. locate_dirty_segment(sbi, segno);
  1456. mutex_unlock(&sit_i->sentry_lock);
  1457. }
  1458. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1459. {
  1460. struct sit_info *sit_i = SIT_I(sbi);
  1461. unsigned int segno, offset;
  1462. struct seg_entry *se;
  1463. bool is_cp = false;
  1464. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1465. return true;
  1466. mutex_lock(&sit_i->sentry_lock);
  1467. segno = GET_SEGNO(sbi, blkaddr);
  1468. se = get_seg_entry(sbi, segno);
  1469. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1470. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1471. is_cp = true;
  1472. mutex_unlock(&sit_i->sentry_lock);
  1473. return is_cp;
  1474. }
  1475. /*
  1476. * This function should be resided under the curseg_mutex lock
  1477. */
  1478. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1479. struct f2fs_summary *sum)
  1480. {
  1481. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1482. void *addr = curseg->sum_blk;
  1483. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1484. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1485. }
  1486. /*
  1487. * Calculate the number of current summary pages for writing
  1488. */
  1489. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1490. {
  1491. int valid_sum_count = 0;
  1492. int i, sum_in_page;
  1493. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1494. if (sbi->ckpt->alloc_type[i] == SSR)
  1495. valid_sum_count += sbi->blocks_per_seg;
  1496. else {
  1497. if (for_ra)
  1498. valid_sum_count += le16_to_cpu(
  1499. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1500. else
  1501. valid_sum_count += curseg_blkoff(sbi, i);
  1502. }
  1503. }
  1504. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1505. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1506. if (valid_sum_count <= sum_in_page)
  1507. return 1;
  1508. else if ((valid_sum_count - sum_in_page) <=
  1509. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1510. return 2;
  1511. return 3;
  1512. }
  1513. /*
  1514. * Caller should put this summary page
  1515. */
  1516. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1517. {
  1518. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1519. }
  1520. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1521. {
  1522. struct page *page = grab_meta_page(sbi, blk_addr);
  1523. void *dst = page_address(page);
  1524. if (src)
  1525. memcpy(dst, src, PAGE_SIZE);
  1526. else
  1527. memset(dst, 0, PAGE_SIZE);
  1528. set_page_dirty(page);
  1529. f2fs_put_page(page, 1);
  1530. }
  1531. static void write_sum_page(struct f2fs_sb_info *sbi,
  1532. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1533. {
  1534. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1535. }
  1536. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1537. int type, block_t blk_addr)
  1538. {
  1539. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1540. struct page *page = grab_meta_page(sbi, blk_addr);
  1541. struct f2fs_summary_block *src = curseg->sum_blk;
  1542. struct f2fs_summary_block *dst;
  1543. dst = (struct f2fs_summary_block *)page_address(page);
  1544. mutex_lock(&curseg->curseg_mutex);
  1545. down_read(&curseg->journal_rwsem);
  1546. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1547. up_read(&curseg->journal_rwsem);
  1548. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1549. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1550. mutex_unlock(&curseg->curseg_mutex);
  1551. set_page_dirty(page);
  1552. f2fs_put_page(page, 1);
  1553. }
  1554. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1555. {
  1556. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1557. unsigned int segno = curseg->segno + 1;
  1558. struct free_segmap_info *free_i = FREE_I(sbi);
  1559. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1560. return !test_bit(segno, free_i->free_segmap);
  1561. return 0;
  1562. }
  1563. /*
  1564. * Find a new segment from the free segments bitmap to right order
  1565. * This function should be returned with success, otherwise BUG
  1566. */
  1567. static void get_new_segment(struct f2fs_sb_info *sbi,
  1568. unsigned int *newseg, bool new_sec, int dir)
  1569. {
  1570. struct free_segmap_info *free_i = FREE_I(sbi);
  1571. unsigned int segno, secno, zoneno;
  1572. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1573. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1574. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1575. unsigned int left_start = hint;
  1576. bool init = true;
  1577. int go_left = 0;
  1578. int i;
  1579. spin_lock(&free_i->segmap_lock);
  1580. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1581. segno = find_next_zero_bit(free_i->free_segmap,
  1582. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1583. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1584. goto got_it;
  1585. }
  1586. find_other_zone:
  1587. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1588. if (secno >= MAIN_SECS(sbi)) {
  1589. if (dir == ALLOC_RIGHT) {
  1590. secno = find_next_zero_bit(free_i->free_secmap,
  1591. MAIN_SECS(sbi), 0);
  1592. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1593. } else {
  1594. go_left = 1;
  1595. left_start = hint - 1;
  1596. }
  1597. }
  1598. if (go_left == 0)
  1599. goto skip_left;
  1600. while (test_bit(left_start, free_i->free_secmap)) {
  1601. if (left_start > 0) {
  1602. left_start--;
  1603. continue;
  1604. }
  1605. left_start = find_next_zero_bit(free_i->free_secmap,
  1606. MAIN_SECS(sbi), 0);
  1607. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1608. break;
  1609. }
  1610. secno = left_start;
  1611. skip_left:
  1612. hint = secno;
  1613. segno = GET_SEG_FROM_SEC(sbi, secno);
  1614. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1615. /* give up on finding another zone */
  1616. if (!init)
  1617. goto got_it;
  1618. if (sbi->secs_per_zone == 1)
  1619. goto got_it;
  1620. if (zoneno == old_zoneno)
  1621. goto got_it;
  1622. if (dir == ALLOC_LEFT) {
  1623. if (!go_left && zoneno + 1 >= total_zones)
  1624. goto got_it;
  1625. if (go_left && zoneno == 0)
  1626. goto got_it;
  1627. }
  1628. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1629. if (CURSEG_I(sbi, i)->zone == zoneno)
  1630. break;
  1631. if (i < NR_CURSEG_TYPE) {
  1632. /* zone is in user, try another */
  1633. if (go_left)
  1634. hint = zoneno * sbi->secs_per_zone - 1;
  1635. else if (zoneno + 1 >= total_zones)
  1636. hint = 0;
  1637. else
  1638. hint = (zoneno + 1) * sbi->secs_per_zone;
  1639. init = false;
  1640. goto find_other_zone;
  1641. }
  1642. got_it:
  1643. /* set it as dirty segment in free segmap */
  1644. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1645. __set_inuse(sbi, segno);
  1646. *newseg = segno;
  1647. spin_unlock(&free_i->segmap_lock);
  1648. }
  1649. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1650. {
  1651. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1652. struct summary_footer *sum_footer;
  1653. curseg->segno = curseg->next_segno;
  1654. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1655. curseg->next_blkoff = 0;
  1656. curseg->next_segno = NULL_SEGNO;
  1657. sum_footer = &(curseg->sum_blk->footer);
  1658. memset(sum_footer, 0, sizeof(struct summary_footer));
  1659. if (IS_DATASEG(type))
  1660. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1661. if (IS_NODESEG(type))
  1662. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1663. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1664. }
  1665. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1666. {
  1667. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1668. if (sbi->segs_per_sec != 1)
  1669. return CURSEG_I(sbi, type)->segno;
  1670. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1671. return 0;
  1672. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1673. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1674. return CURSEG_I(sbi, type)->segno;
  1675. }
  1676. /*
  1677. * Allocate a current working segment.
  1678. * This function always allocates a free segment in LFS manner.
  1679. */
  1680. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1681. {
  1682. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1683. unsigned int segno = curseg->segno;
  1684. int dir = ALLOC_LEFT;
  1685. write_sum_page(sbi, curseg->sum_blk,
  1686. GET_SUM_BLOCK(sbi, segno));
  1687. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1688. dir = ALLOC_RIGHT;
  1689. if (test_opt(sbi, NOHEAP))
  1690. dir = ALLOC_RIGHT;
  1691. segno = __get_next_segno(sbi, type);
  1692. get_new_segment(sbi, &segno, new_sec, dir);
  1693. curseg->next_segno = segno;
  1694. reset_curseg(sbi, type, 1);
  1695. curseg->alloc_type = LFS;
  1696. }
  1697. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1698. struct curseg_info *seg, block_t start)
  1699. {
  1700. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1701. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1702. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1703. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1704. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1705. int i, pos;
  1706. for (i = 0; i < entries; i++)
  1707. target_map[i] = ckpt_map[i] | cur_map[i];
  1708. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1709. seg->next_blkoff = pos;
  1710. }
  1711. /*
  1712. * If a segment is written by LFS manner, next block offset is just obtained
  1713. * by increasing the current block offset. However, if a segment is written by
  1714. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1715. */
  1716. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1717. struct curseg_info *seg)
  1718. {
  1719. if (seg->alloc_type == SSR)
  1720. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1721. else
  1722. seg->next_blkoff++;
  1723. }
  1724. /*
  1725. * This function always allocates a used segment(from dirty seglist) by SSR
  1726. * manner, so it should recover the existing segment information of valid blocks
  1727. */
  1728. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  1729. {
  1730. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1731. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1732. unsigned int new_segno = curseg->next_segno;
  1733. struct f2fs_summary_block *sum_node;
  1734. struct page *sum_page;
  1735. write_sum_page(sbi, curseg->sum_blk,
  1736. GET_SUM_BLOCK(sbi, curseg->segno));
  1737. __set_test_and_inuse(sbi, new_segno);
  1738. mutex_lock(&dirty_i->seglist_lock);
  1739. __remove_dirty_segment(sbi, new_segno, PRE);
  1740. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1741. mutex_unlock(&dirty_i->seglist_lock);
  1742. reset_curseg(sbi, type, 1);
  1743. curseg->alloc_type = SSR;
  1744. __next_free_blkoff(sbi, curseg, 0);
  1745. sum_page = get_sum_page(sbi, new_segno);
  1746. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1747. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1748. f2fs_put_page(sum_page, 1);
  1749. }
  1750. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1751. {
  1752. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1753. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1754. unsigned segno = NULL_SEGNO;
  1755. int i, cnt;
  1756. bool reversed = false;
  1757. /* need_SSR() already forces to do this */
  1758. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1759. curseg->next_segno = segno;
  1760. return 1;
  1761. }
  1762. /* For node segments, let's do SSR more intensively */
  1763. if (IS_NODESEG(type)) {
  1764. if (type >= CURSEG_WARM_NODE) {
  1765. reversed = true;
  1766. i = CURSEG_COLD_NODE;
  1767. } else {
  1768. i = CURSEG_HOT_NODE;
  1769. }
  1770. cnt = NR_CURSEG_NODE_TYPE;
  1771. } else {
  1772. if (type >= CURSEG_WARM_DATA) {
  1773. reversed = true;
  1774. i = CURSEG_COLD_DATA;
  1775. } else {
  1776. i = CURSEG_HOT_DATA;
  1777. }
  1778. cnt = NR_CURSEG_DATA_TYPE;
  1779. }
  1780. for (; cnt-- > 0; reversed ? i-- : i++) {
  1781. if (i == type)
  1782. continue;
  1783. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1784. curseg->next_segno = segno;
  1785. return 1;
  1786. }
  1787. }
  1788. return 0;
  1789. }
  1790. /*
  1791. * flush out current segment and replace it with new segment
  1792. * This function should be returned with success, otherwise BUG
  1793. */
  1794. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1795. int type, bool force)
  1796. {
  1797. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1798. if (force)
  1799. new_curseg(sbi, type, true);
  1800. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1801. type == CURSEG_WARM_NODE)
  1802. new_curseg(sbi, type, false);
  1803. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1804. new_curseg(sbi, type, false);
  1805. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1806. change_curseg(sbi, type);
  1807. else
  1808. new_curseg(sbi, type, false);
  1809. stat_inc_seg_type(sbi, curseg);
  1810. }
  1811. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1812. {
  1813. struct curseg_info *curseg;
  1814. unsigned int old_segno;
  1815. int i;
  1816. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1817. curseg = CURSEG_I(sbi, i);
  1818. old_segno = curseg->segno;
  1819. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1820. locate_dirty_segment(sbi, old_segno);
  1821. }
  1822. }
  1823. static const struct segment_allocation default_salloc_ops = {
  1824. .allocate_segment = allocate_segment_by_default,
  1825. };
  1826. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1827. {
  1828. __u64 trim_start = cpc->trim_start;
  1829. bool has_candidate = false;
  1830. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1831. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1832. if (add_discard_addrs(sbi, cpc, true)) {
  1833. has_candidate = true;
  1834. break;
  1835. }
  1836. }
  1837. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1838. cpc->trim_start = trim_start;
  1839. return has_candidate;
  1840. }
  1841. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1842. {
  1843. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1844. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1845. unsigned int start_segno, end_segno;
  1846. struct cp_control cpc;
  1847. int err = 0;
  1848. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1849. return -EINVAL;
  1850. cpc.trimmed = 0;
  1851. if (end <= MAIN_BLKADDR(sbi))
  1852. goto out;
  1853. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1854. f2fs_msg(sbi->sb, KERN_WARNING,
  1855. "Found FS corruption, run fsck to fix.");
  1856. goto out;
  1857. }
  1858. /* start/end segment number in main_area */
  1859. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1860. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1861. GET_SEGNO(sbi, end);
  1862. cpc.reason = CP_DISCARD;
  1863. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1864. /* do checkpoint to issue discard commands safely */
  1865. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1866. cpc.trim_start = start_segno;
  1867. if (sbi->discard_blks == 0)
  1868. break;
  1869. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1870. cpc.trim_end = end_segno;
  1871. else
  1872. cpc.trim_end = min_t(unsigned int,
  1873. rounddown(start_segno +
  1874. BATCHED_TRIM_SEGMENTS(sbi),
  1875. sbi->segs_per_sec) - 1, end_segno);
  1876. mutex_lock(&sbi->gc_mutex);
  1877. err = write_checkpoint(sbi, &cpc);
  1878. mutex_unlock(&sbi->gc_mutex);
  1879. if (err)
  1880. break;
  1881. schedule();
  1882. }
  1883. /* It's time to issue all the filed discards */
  1884. mark_discard_range_all(sbi);
  1885. f2fs_wait_discard_bios(sbi);
  1886. out:
  1887. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1888. return err;
  1889. }
  1890. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1891. {
  1892. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1893. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1894. return true;
  1895. return false;
  1896. }
  1897. static int __get_segment_type_2(struct f2fs_io_info *fio)
  1898. {
  1899. if (fio->type == DATA)
  1900. return CURSEG_HOT_DATA;
  1901. else
  1902. return CURSEG_HOT_NODE;
  1903. }
  1904. static int __get_segment_type_4(struct f2fs_io_info *fio)
  1905. {
  1906. if (fio->type == DATA) {
  1907. struct inode *inode = fio->page->mapping->host;
  1908. if (S_ISDIR(inode->i_mode))
  1909. return CURSEG_HOT_DATA;
  1910. else
  1911. return CURSEG_COLD_DATA;
  1912. } else {
  1913. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  1914. return CURSEG_WARM_NODE;
  1915. else
  1916. return CURSEG_COLD_NODE;
  1917. }
  1918. }
  1919. static int __get_segment_type_6(struct f2fs_io_info *fio)
  1920. {
  1921. if (fio->type == DATA) {
  1922. struct inode *inode = fio->page->mapping->host;
  1923. if (is_cold_data(fio->page) || file_is_cold(inode))
  1924. return CURSEG_COLD_DATA;
  1925. if (is_inode_flag_set(inode, FI_HOT_DATA))
  1926. return CURSEG_HOT_DATA;
  1927. return CURSEG_WARM_DATA;
  1928. } else {
  1929. if (IS_DNODE(fio->page))
  1930. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  1931. CURSEG_HOT_NODE;
  1932. return CURSEG_COLD_NODE;
  1933. }
  1934. }
  1935. static int __get_segment_type(struct f2fs_io_info *fio)
  1936. {
  1937. int type = 0;
  1938. switch (fio->sbi->active_logs) {
  1939. case 2:
  1940. type = __get_segment_type_2(fio);
  1941. break;
  1942. case 4:
  1943. type = __get_segment_type_4(fio);
  1944. break;
  1945. case 6:
  1946. type = __get_segment_type_6(fio);
  1947. break;
  1948. default:
  1949. f2fs_bug_on(fio->sbi, true);
  1950. }
  1951. if (IS_HOT(type))
  1952. fio->temp = HOT;
  1953. else if (IS_WARM(type))
  1954. fio->temp = WARM;
  1955. else
  1956. fio->temp = COLD;
  1957. return type;
  1958. }
  1959. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1960. block_t old_blkaddr, block_t *new_blkaddr,
  1961. struct f2fs_summary *sum, int type,
  1962. struct f2fs_io_info *fio, bool add_list)
  1963. {
  1964. struct sit_info *sit_i = SIT_I(sbi);
  1965. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1966. mutex_lock(&curseg->curseg_mutex);
  1967. mutex_lock(&sit_i->sentry_lock);
  1968. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1969. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1970. /*
  1971. * __add_sum_entry should be resided under the curseg_mutex
  1972. * because, this function updates a summary entry in the
  1973. * current summary block.
  1974. */
  1975. __add_sum_entry(sbi, type, sum);
  1976. __refresh_next_blkoff(sbi, curseg);
  1977. stat_inc_block_count(sbi, curseg);
  1978. if (!__has_curseg_space(sbi, type))
  1979. sit_i->s_ops->allocate_segment(sbi, type, false);
  1980. /*
  1981. * SIT information should be updated after segment allocation,
  1982. * since we need to keep dirty segments precisely under SSR.
  1983. */
  1984. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1985. mutex_unlock(&sit_i->sentry_lock);
  1986. if (page && IS_NODESEG(type)) {
  1987. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1988. f2fs_inode_chksum_set(sbi, page);
  1989. }
  1990. if (add_list) {
  1991. struct f2fs_bio_info *io;
  1992. INIT_LIST_HEAD(&fio->list);
  1993. fio->in_list = true;
  1994. io = sbi->write_io[fio->type] + fio->temp;
  1995. spin_lock(&io->io_lock);
  1996. list_add_tail(&fio->list, &io->io_list);
  1997. spin_unlock(&io->io_lock);
  1998. }
  1999. mutex_unlock(&curseg->curseg_mutex);
  2000. }
  2001. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2002. {
  2003. int type = __get_segment_type(fio);
  2004. int err;
  2005. reallocate:
  2006. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2007. &fio->new_blkaddr, sum, type, fio, true);
  2008. /* writeout dirty page into bdev */
  2009. err = f2fs_submit_page_write(fio);
  2010. if (err == -EAGAIN) {
  2011. fio->old_blkaddr = fio->new_blkaddr;
  2012. goto reallocate;
  2013. }
  2014. }
  2015. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2016. enum iostat_type io_type)
  2017. {
  2018. struct f2fs_io_info fio = {
  2019. .sbi = sbi,
  2020. .type = META,
  2021. .op = REQ_OP_WRITE,
  2022. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2023. .old_blkaddr = page->index,
  2024. .new_blkaddr = page->index,
  2025. .page = page,
  2026. .encrypted_page = NULL,
  2027. .in_list = false,
  2028. };
  2029. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2030. fio.op_flags &= ~REQ_META;
  2031. set_page_writeback(page);
  2032. f2fs_submit_page_write(&fio);
  2033. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2034. }
  2035. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2036. {
  2037. struct f2fs_summary sum;
  2038. set_summary(&sum, nid, 0, 0);
  2039. do_write_page(&sum, fio);
  2040. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2041. }
  2042. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  2043. {
  2044. struct f2fs_sb_info *sbi = fio->sbi;
  2045. struct f2fs_summary sum;
  2046. struct node_info ni;
  2047. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2048. get_node_info(sbi, dn->nid, &ni);
  2049. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  2050. do_write_page(&sum, fio);
  2051. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2052. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2053. }
  2054. int rewrite_data_page(struct f2fs_io_info *fio)
  2055. {
  2056. int err;
  2057. fio->new_blkaddr = fio->old_blkaddr;
  2058. stat_inc_inplace_blocks(fio->sbi);
  2059. err = f2fs_submit_page_bio(fio);
  2060. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2061. return err;
  2062. }
  2063. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2064. block_t old_blkaddr, block_t new_blkaddr,
  2065. bool recover_curseg, bool recover_newaddr)
  2066. {
  2067. struct sit_info *sit_i = SIT_I(sbi);
  2068. struct curseg_info *curseg;
  2069. unsigned int segno, old_cursegno;
  2070. struct seg_entry *se;
  2071. int type;
  2072. unsigned short old_blkoff;
  2073. segno = GET_SEGNO(sbi, new_blkaddr);
  2074. se = get_seg_entry(sbi, segno);
  2075. type = se->type;
  2076. if (!recover_curseg) {
  2077. /* for recovery flow */
  2078. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2079. if (old_blkaddr == NULL_ADDR)
  2080. type = CURSEG_COLD_DATA;
  2081. else
  2082. type = CURSEG_WARM_DATA;
  2083. }
  2084. } else {
  2085. if (!IS_CURSEG(sbi, segno))
  2086. type = CURSEG_WARM_DATA;
  2087. }
  2088. curseg = CURSEG_I(sbi, type);
  2089. mutex_lock(&curseg->curseg_mutex);
  2090. mutex_lock(&sit_i->sentry_lock);
  2091. old_cursegno = curseg->segno;
  2092. old_blkoff = curseg->next_blkoff;
  2093. /* change the current segment */
  2094. if (segno != curseg->segno) {
  2095. curseg->next_segno = segno;
  2096. change_curseg(sbi, type);
  2097. }
  2098. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2099. __add_sum_entry(sbi, type, sum);
  2100. if (!recover_curseg || recover_newaddr)
  2101. update_sit_entry(sbi, new_blkaddr, 1);
  2102. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2103. update_sit_entry(sbi, old_blkaddr, -1);
  2104. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2105. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2106. locate_dirty_segment(sbi, old_cursegno);
  2107. if (recover_curseg) {
  2108. if (old_cursegno != curseg->segno) {
  2109. curseg->next_segno = old_cursegno;
  2110. change_curseg(sbi, type);
  2111. }
  2112. curseg->next_blkoff = old_blkoff;
  2113. }
  2114. mutex_unlock(&sit_i->sentry_lock);
  2115. mutex_unlock(&curseg->curseg_mutex);
  2116. }
  2117. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2118. block_t old_addr, block_t new_addr,
  2119. unsigned char version, bool recover_curseg,
  2120. bool recover_newaddr)
  2121. {
  2122. struct f2fs_summary sum;
  2123. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2124. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  2125. recover_curseg, recover_newaddr);
  2126. f2fs_update_data_blkaddr(dn, new_addr);
  2127. }
  2128. void f2fs_wait_on_page_writeback(struct page *page,
  2129. enum page_type type, bool ordered)
  2130. {
  2131. if (PageWriteback(page)) {
  2132. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2133. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2134. 0, page->index, type);
  2135. if (ordered)
  2136. wait_on_page_writeback(page);
  2137. else
  2138. wait_for_stable_page(page);
  2139. }
  2140. }
  2141. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2142. {
  2143. struct page *cpage;
  2144. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  2145. return;
  2146. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2147. if (cpage) {
  2148. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2149. f2fs_put_page(cpage, 1);
  2150. }
  2151. }
  2152. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2153. {
  2154. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2155. struct curseg_info *seg_i;
  2156. unsigned char *kaddr;
  2157. struct page *page;
  2158. block_t start;
  2159. int i, j, offset;
  2160. start = start_sum_block(sbi);
  2161. page = get_meta_page(sbi, start++);
  2162. kaddr = (unsigned char *)page_address(page);
  2163. /* Step 1: restore nat cache */
  2164. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2165. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2166. /* Step 2: restore sit cache */
  2167. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2168. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2169. offset = 2 * SUM_JOURNAL_SIZE;
  2170. /* Step 3: restore summary entries */
  2171. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2172. unsigned short blk_off;
  2173. unsigned int segno;
  2174. seg_i = CURSEG_I(sbi, i);
  2175. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2176. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2177. seg_i->next_segno = segno;
  2178. reset_curseg(sbi, i, 0);
  2179. seg_i->alloc_type = ckpt->alloc_type[i];
  2180. seg_i->next_blkoff = blk_off;
  2181. if (seg_i->alloc_type == SSR)
  2182. blk_off = sbi->blocks_per_seg;
  2183. for (j = 0; j < blk_off; j++) {
  2184. struct f2fs_summary *s;
  2185. s = (struct f2fs_summary *)(kaddr + offset);
  2186. seg_i->sum_blk->entries[j] = *s;
  2187. offset += SUMMARY_SIZE;
  2188. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2189. SUM_FOOTER_SIZE)
  2190. continue;
  2191. f2fs_put_page(page, 1);
  2192. page = NULL;
  2193. page = get_meta_page(sbi, start++);
  2194. kaddr = (unsigned char *)page_address(page);
  2195. offset = 0;
  2196. }
  2197. }
  2198. f2fs_put_page(page, 1);
  2199. return 0;
  2200. }
  2201. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2202. {
  2203. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2204. struct f2fs_summary_block *sum;
  2205. struct curseg_info *curseg;
  2206. struct page *new;
  2207. unsigned short blk_off;
  2208. unsigned int segno = 0;
  2209. block_t blk_addr = 0;
  2210. /* get segment number and block addr */
  2211. if (IS_DATASEG(type)) {
  2212. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2213. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2214. CURSEG_HOT_DATA]);
  2215. if (__exist_node_summaries(sbi))
  2216. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2217. else
  2218. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2219. } else {
  2220. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2221. CURSEG_HOT_NODE]);
  2222. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2223. CURSEG_HOT_NODE]);
  2224. if (__exist_node_summaries(sbi))
  2225. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2226. type - CURSEG_HOT_NODE);
  2227. else
  2228. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2229. }
  2230. new = get_meta_page(sbi, blk_addr);
  2231. sum = (struct f2fs_summary_block *)page_address(new);
  2232. if (IS_NODESEG(type)) {
  2233. if (__exist_node_summaries(sbi)) {
  2234. struct f2fs_summary *ns = &sum->entries[0];
  2235. int i;
  2236. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2237. ns->version = 0;
  2238. ns->ofs_in_node = 0;
  2239. }
  2240. } else {
  2241. int err;
  2242. err = restore_node_summary(sbi, segno, sum);
  2243. if (err) {
  2244. f2fs_put_page(new, 1);
  2245. return err;
  2246. }
  2247. }
  2248. }
  2249. /* set uncompleted segment to curseg */
  2250. curseg = CURSEG_I(sbi, type);
  2251. mutex_lock(&curseg->curseg_mutex);
  2252. /* update journal info */
  2253. down_write(&curseg->journal_rwsem);
  2254. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2255. up_write(&curseg->journal_rwsem);
  2256. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2257. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2258. curseg->next_segno = segno;
  2259. reset_curseg(sbi, type, 0);
  2260. curseg->alloc_type = ckpt->alloc_type[type];
  2261. curseg->next_blkoff = blk_off;
  2262. mutex_unlock(&curseg->curseg_mutex);
  2263. f2fs_put_page(new, 1);
  2264. return 0;
  2265. }
  2266. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2267. {
  2268. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2269. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2270. int type = CURSEG_HOT_DATA;
  2271. int err;
  2272. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2273. int npages = npages_for_summary_flush(sbi, true);
  2274. if (npages >= 2)
  2275. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2276. META_CP, true);
  2277. /* restore for compacted data summary */
  2278. if (read_compacted_summaries(sbi))
  2279. return -EINVAL;
  2280. type = CURSEG_HOT_NODE;
  2281. }
  2282. if (__exist_node_summaries(sbi))
  2283. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2284. NR_CURSEG_TYPE - type, META_CP, true);
  2285. for (; type <= CURSEG_COLD_NODE; type++) {
  2286. err = read_normal_summaries(sbi, type);
  2287. if (err)
  2288. return err;
  2289. }
  2290. /* sanity check for summary blocks */
  2291. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2292. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2293. return -EINVAL;
  2294. return 0;
  2295. }
  2296. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2297. {
  2298. struct page *page;
  2299. unsigned char *kaddr;
  2300. struct f2fs_summary *summary;
  2301. struct curseg_info *seg_i;
  2302. int written_size = 0;
  2303. int i, j;
  2304. page = grab_meta_page(sbi, blkaddr++);
  2305. kaddr = (unsigned char *)page_address(page);
  2306. /* Step 1: write nat cache */
  2307. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2308. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2309. written_size += SUM_JOURNAL_SIZE;
  2310. /* Step 2: write sit cache */
  2311. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2312. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2313. written_size += SUM_JOURNAL_SIZE;
  2314. /* Step 3: write summary entries */
  2315. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2316. unsigned short blkoff;
  2317. seg_i = CURSEG_I(sbi, i);
  2318. if (sbi->ckpt->alloc_type[i] == SSR)
  2319. blkoff = sbi->blocks_per_seg;
  2320. else
  2321. blkoff = curseg_blkoff(sbi, i);
  2322. for (j = 0; j < blkoff; j++) {
  2323. if (!page) {
  2324. page = grab_meta_page(sbi, blkaddr++);
  2325. kaddr = (unsigned char *)page_address(page);
  2326. written_size = 0;
  2327. }
  2328. summary = (struct f2fs_summary *)(kaddr + written_size);
  2329. *summary = seg_i->sum_blk->entries[j];
  2330. written_size += SUMMARY_SIZE;
  2331. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2332. SUM_FOOTER_SIZE)
  2333. continue;
  2334. set_page_dirty(page);
  2335. f2fs_put_page(page, 1);
  2336. page = NULL;
  2337. }
  2338. }
  2339. if (page) {
  2340. set_page_dirty(page);
  2341. f2fs_put_page(page, 1);
  2342. }
  2343. }
  2344. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2345. block_t blkaddr, int type)
  2346. {
  2347. int i, end;
  2348. if (IS_DATASEG(type))
  2349. end = type + NR_CURSEG_DATA_TYPE;
  2350. else
  2351. end = type + NR_CURSEG_NODE_TYPE;
  2352. for (i = type; i < end; i++)
  2353. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2354. }
  2355. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2356. {
  2357. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2358. write_compacted_summaries(sbi, start_blk);
  2359. else
  2360. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2361. }
  2362. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2363. {
  2364. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2365. }
  2366. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2367. unsigned int val, int alloc)
  2368. {
  2369. int i;
  2370. if (type == NAT_JOURNAL) {
  2371. for (i = 0; i < nats_in_cursum(journal); i++) {
  2372. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2373. return i;
  2374. }
  2375. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2376. return update_nats_in_cursum(journal, 1);
  2377. } else if (type == SIT_JOURNAL) {
  2378. for (i = 0; i < sits_in_cursum(journal); i++)
  2379. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2380. return i;
  2381. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2382. return update_sits_in_cursum(journal, 1);
  2383. }
  2384. return -1;
  2385. }
  2386. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2387. unsigned int segno)
  2388. {
  2389. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2390. }
  2391. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2392. unsigned int start)
  2393. {
  2394. struct sit_info *sit_i = SIT_I(sbi);
  2395. struct page *src_page, *dst_page;
  2396. pgoff_t src_off, dst_off;
  2397. void *src_addr, *dst_addr;
  2398. src_off = current_sit_addr(sbi, start);
  2399. dst_off = next_sit_addr(sbi, src_off);
  2400. /* get current sit block page without lock */
  2401. src_page = get_meta_page(sbi, src_off);
  2402. dst_page = grab_meta_page(sbi, dst_off);
  2403. f2fs_bug_on(sbi, PageDirty(src_page));
  2404. src_addr = page_address(src_page);
  2405. dst_addr = page_address(dst_page);
  2406. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2407. set_page_dirty(dst_page);
  2408. f2fs_put_page(src_page, 1);
  2409. set_to_next_sit(sit_i, start);
  2410. return dst_page;
  2411. }
  2412. static struct sit_entry_set *grab_sit_entry_set(void)
  2413. {
  2414. struct sit_entry_set *ses =
  2415. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2416. ses->entry_cnt = 0;
  2417. INIT_LIST_HEAD(&ses->set_list);
  2418. return ses;
  2419. }
  2420. static void release_sit_entry_set(struct sit_entry_set *ses)
  2421. {
  2422. list_del(&ses->set_list);
  2423. kmem_cache_free(sit_entry_set_slab, ses);
  2424. }
  2425. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2426. struct list_head *head)
  2427. {
  2428. struct sit_entry_set *next = ses;
  2429. if (list_is_last(&ses->set_list, head))
  2430. return;
  2431. list_for_each_entry_continue(next, head, set_list)
  2432. if (ses->entry_cnt <= next->entry_cnt)
  2433. break;
  2434. list_move_tail(&ses->set_list, &next->set_list);
  2435. }
  2436. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2437. {
  2438. struct sit_entry_set *ses;
  2439. unsigned int start_segno = START_SEGNO(segno);
  2440. list_for_each_entry(ses, head, set_list) {
  2441. if (ses->start_segno == start_segno) {
  2442. ses->entry_cnt++;
  2443. adjust_sit_entry_set(ses, head);
  2444. return;
  2445. }
  2446. }
  2447. ses = grab_sit_entry_set();
  2448. ses->start_segno = start_segno;
  2449. ses->entry_cnt++;
  2450. list_add(&ses->set_list, head);
  2451. }
  2452. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2453. {
  2454. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2455. struct list_head *set_list = &sm_info->sit_entry_set;
  2456. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2457. unsigned int segno;
  2458. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2459. add_sit_entry(segno, set_list);
  2460. }
  2461. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2462. {
  2463. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2464. struct f2fs_journal *journal = curseg->journal;
  2465. int i;
  2466. down_write(&curseg->journal_rwsem);
  2467. for (i = 0; i < sits_in_cursum(journal); i++) {
  2468. unsigned int segno;
  2469. bool dirtied;
  2470. segno = le32_to_cpu(segno_in_journal(journal, i));
  2471. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2472. if (!dirtied)
  2473. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2474. }
  2475. update_sits_in_cursum(journal, -i);
  2476. up_write(&curseg->journal_rwsem);
  2477. }
  2478. /*
  2479. * CP calls this function, which flushes SIT entries including sit_journal,
  2480. * and moves prefree segs to free segs.
  2481. */
  2482. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2483. {
  2484. struct sit_info *sit_i = SIT_I(sbi);
  2485. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2486. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2487. struct f2fs_journal *journal = curseg->journal;
  2488. struct sit_entry_set *ses, *tmp;
  2489. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2490. bool to_journal = true;
  2491. struct seg_entry *se;
  2492. mutex_lock(&sit_i->sentry_lock);
  2493. if (!sit_i->dirty_sentries)
  2494. goto out;
  2495. /*
  2496. * add and account sit entries of dirty bitmap in sit entry
  2497. * set temporarily
  2498. */
  2499. add_sits_in_set(sbi);
  2500. /*
  2501. * if there are no enough space in journal to store dirty sit
  2502. * entries, remove all entries from journal and add and account
  2503. * them in sit entry set.
  2504. */
  2505. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2506. remove_sits_in_journal(sbi);
  2507. /*
  2508. * there are two steps to flush sit entries:
  2509. * #1, flush sit entries to journal in current cold data summary block.
  2510. * #2, flush sit entries to sit page.
  2511. */
  2512. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2513. struct page *page = NULL;
  2514. struct f2fs_sit_block *raw_sit = NULL;
  2515. unsigned int start_segno = ses->start_segno;
  2516. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2517. (unsigned long)MAIN_SEGS(sbi));
  2518. unsigned int segno = start_segno;
  2519. if (to_journal &&
  2520. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2521. to_journal = false;
  2522. if (to_journal) {
  2523. down_write(&curseg->journal_rwsem);
  2524. } else {
  2525. page = get_next_sit_page(sbi, start_segno);
  2526. raw_sit = page_address(page);
  2527. }
  2528. /* flush dirty sit entries in region of current sit set */
  2529. for_each_set_bit_from(segno, bitmap, end) {
  2530. int offset, sit_offset;
  2531. se = get_seg_entry(sbi, segno);
  2532. /* add discard candidates */
  2533. if (!(cpc->reason & CP_DISCARD)) {
  2534. cpc->trim_start = segno;
  2535. add_discard_addrs(sbi, cpc, false);
  2536. }
  2537. if (to_journal) {
  2538. offset = lookup_journal_in_cursum(journal,
  2539. SIT_JOURNAL, segno, 1);
  2540. f2fs_bug_on(sbi, offset < 0);
  2541. segno_in_journal(journal, offset) =
  2542. cpu_to_le32(segno);
  2543. seg_info_to_raw_sit(se,
  2544. &sit_in_journal(journal, offset));
  2545. } else {
  2546. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2547. seg_info_to_raw_sit(se,
  2548. &raw_sit->entries[sit_offset]);
  2549. }
  2550. __clear_bit(segno, bitmap);
  2551. sit_i->dirty_sentries--;
  2552. ses->entry_cnt--;
  2553. }
  2554. if (to_journal)
  2555. up_write(&curseg->journal_rwsem);
  2556. else
  2557. f2fs_put_page(page, 1);
  2558. f2fs_bug_on(sbi, ses->entry_cnt);
  2559. release_sit_entry_set(ses);
  2560. }
  2561. f2fs_bug_on(sbi, !list_empty(head));
  2562. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2563. out:
  2564. if (cpc->reason & CP_DISCARD) {
  2565. __u64 trim_start = cpc->trim_start;
  2566. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2567. add_discard_addrs(sbi, cpc, false);
  2568. cpc->trim_start = trim_start;
  2569. }
  2570. mutex_unlock(&sit_i->sentry_lock);
  2571. set_prefree_as_free_segments(sbi);
  2572. }
  2573. static int build_sit_info(struct f2fs_sb_info *sbi)
  2574. {
  2575. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2576. struct sit_info *sit_i;
  2577. unsigned int sit_segs, start;
  2578. char *src_bitmap;
  2579. unsigned int bitmap_size;
  2580. /* allocate memory for SIT information */
  2581. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2582. if (!sit_i)
  2583. return -ENOMEM;
  2584. SM_I(sbi)->sit_info = sit_i;
  2585. sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
  2586. sizeof(struct seg_entry), GFP_KERNEL);
  2587. if (!sit_i->sentries)
  2588. return -ENOMEM;
  2589. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2590. sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2591. if (!sit_i->dirty_sentries_bitmap)
  2592. return -ENOMEM;
  2593. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2594. sit_i->sentries[start].cur_valid_map
  2595. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2596. sit_i->sentries[start].ckpt_valid_map
  2597. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2598. if (!sit_i->sentries[start].cur_valid_map ||
  2599. !sit_i->sentries[start].ckpt_valid_map)
  2600. return -ENOMEM;
  2601. #ifdef CONFIG_F2FS_CHECK_FS
  2602. sit_i->sentries[start].cur_valid_map_mir
  2603. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2604. if (!sit_i->sentries[start].cur_valid_map_mir)
  2605. return -ENOMEM;
  2606. #endif
  2607. if (f2fs_discard_en(sbi)) {
  2608. sit_i->sentries[start].discard_map
  2609. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2610. if (!sit_i->sentries[start].discard_map)
  2611. return -ENOMEM;
  2612. }
  2613. }
  2614. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2615. if (!sit_i->tmp_map)
  2616. return -ENOMEM;
  2617. if (sbi->segs_per_sec > 1) {
  2618. sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
  2619. sizeof(struct sec_entry), GFP_KERNEL);
  2620. if (!sit_i->sec_entries)
  2621. return -ENOMEM;
  2622. }
  2623. /* get information related with SIT */
  2624. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2625. /* setup SIT bitmap from ckeckpoint pack */
  2626. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2627. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2628. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2629. if (!sit_i->sit_bitmap)
  2630. return -ENOMEM;
  2631. #ifdef CONFIG_F2FS_CHECK_FS
  2632. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2633. if (!sit_i->sit_bitmap_mir)
  2634. return -ENOMEM;
  2635. #endif
  2636. /* init SIT information */
  2637. sit_i->s_ops = &default_salloc_ops;
  2638. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2639. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2640. sit_i->written_valid_blocks = 0;
  2641. sit_i->bitmap_size = bitmap_size;
  2642. sit_i->dirty_sentries = 0;
  2643. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2644. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2645. sit_i->mounted_time = ktime_get_real_seconds();
  2646. mutex_init(&sit_i->sentry_lock);
  2647. return 0;
  2648. }
  2649. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2650. {
  2651. struct free_segmap_info *free_i;
  2652. unsigned int bitmap_size, sec_bitmap_size;
  2653. /* allocate memory for free segmap information */
  2654. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2655. if (!free_i)
  2656. return -ENOMEM;
  2657. SM_I(sbi)->free_info = free_i;
  2658. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2659. free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
  2660. if (!free_i->free_segmap)
  2661. return -ENOMEM;
  2662. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2663. free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2664. if (!free_i->free_secmap)
  2665. return -ENOMEM;
  2666. /* set all segments as dirty temporarily */
  2667. memset(free_i->free_segmap, 0xff, bitmap_size);
  2668. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2669. /* init free segmap information */
  2670. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2671. free_i->free_segments = 0;
  2672. free_i->free_sections = 0;
  2673. spin_lock_init(&free_i->segmap_lock);
  2674. return 0;
  2675. }
  2676. static int build_curseg(struct f2fs_sb_info *sbi)
  2677. {
  2678. struct curseg_info *array;
  2679. int i;
  2680. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2681. if (!array)
  2682. return -ENOMEM;
  2683. SM_I(sbi)->curseg_array = array;
  2684. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2685. mutex_init(&array[i].curseg_mutex);
  2686. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2687. if (!array[i].sum_blk)
  2688. return -ENOMEM;
  2689. init_rwsem(&array[i].journal_rwsem);
  2690. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2691. GFP_KERNEL);
  2692. if (!array[i].journal)
  2693. return -ENOMEM;
  2694. array[i].segno = NULL_SEGNO;
  2695. array[i].next_blkoff = 0;
  2696. }
  2697. return restore_curseg_summaries(sbi);
  2698. }
  2699. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2700. {
  2701. struct sit_info *sit_i = SIT_I(sbi);
  2702. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2703. struct f2fs_journal *journal = curseg->journal;
  2704. struct seg_entry *se;
  2705. struct f2fs_sit_entry sit;
  2706. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2707. unsigned int i, start, end;
  2708. unsigned int readed, start_blk = 0;
  2709. do {
  2710. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2711. META_SIT, true);
  2712. start = start_blk * sit_i->sents_per_block;
  2713. end = (start_blk + readed) * sit_i->sents_per_block;
  2714. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2715. struct f2fs_sit_block *sit_blk;
  2716. struct page *page;
  2717. se = &sit_i->sentries[start];
  2718. page = get_current_sit_page(sbi, start);
  2719. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2720. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2721. f2fs_put_page(page, 1);
  2722. check_block_count(sbi, start, &sit);
  2723. seg_info_from_raw_sit(se, &sit);
  2724. /* build discard map only one time */
  2725. if (f2fs_discard_en(sbi)) {
  2726. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2727. memset(se->discard_map, 0xff,
  2728. SIT_VBLOCK_MAP_SIZE);
  2729. } else {
  2730. memcpy(se->discard_map,
  2731. se->cur_valid_map,
  2732. SIT_VBLOCK_MAP_SIZE);
  2733. sbi->discard_blks +=
  2734. sbi->blocks_per_seg -
  2735. se->valid_blocks;
  2736. }
  2737. }
  2738. if (sbi->segs_per_sec > 1)
  2739. get_sec_entry(sbi, start)->valid_blocks +=
  2740. se->valid_blocks;
  2741. }
  2742. start_blk += readed;
  2743. } while (start_blk < sit_blk_cnt);
  2744. down_read(&curseg->journal_rwsem);
  2745. for (i = 0; i < sits_in_cursum(journal); i++) {
  2746. unsigned int old_valid_blocks;
  2747. start = le32_to_cpu(segno_in_journal(journal, i));
  2748. se = &sit_i->sentries[start];
  2749. sit = sit_in_journal(journal, i);
  2750. old_valid_blocks = se->valid_blocks;
  2751. check_block_count(sbi, start, &sit);
  2752. seg_info_from_raw_sit(se, &sit);
  2753. if (f2fs_discard_en(sbi)) {
  2754. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2755. memset(se->discard_map, 0xff,
  2756. SIT_VBLOCK_MAP_SIZE);
  2757. } else {
  2758. memcpy(se->discard_map, se->cur_valid_map,
  2759. SIT_VBLOCK_MAP_SIZE);
  2760. sbi->discard_blks += old_valid_blocks -
  2761. se->valid_blocks;
  2762. }
  2763. }
  2764. if (sbi->segs_per_sec > 1)
  2765. get_sec_entry(sbi, start)->valid_blocks +=
  2766. se->valid_blocks - old_valid_blocks;
  2767. }
  2768. up_read(&curseg->journal_rwsem);
  2769. }
  2770. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2771. {
  2772. unsigned int start;
  2773. int type;
  2774. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2775. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2776. if (!sentry->valid_blocks)
  2777. __set_free(sbi, start);
  2778. else
  2779. SIT_I(sbi)->written_valid_blocks +=
  2780. sentry->valid_blocks;
  2781. }
  2782. /* set use the current segments */
  2783. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2784. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2785. __set_test_and_inuse(sbi, curseg_t->segno);
  2786. }
  2787. }
  2788. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2789. {
  2790. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2791. struct free_segmap_info *free_i = FREE_I(sbi);
  2792. unsigned int segno = 0, offset = 0;
  2793. unsigned short valid_blocks;
  2794. while (1) {
  2795. /* find dirty segment based on free segmap */
  2796. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2797. if (segno >= MAIN_SEGS(sbi))
  2798. break;
  2799. offset = segno + 1;
  2800. valid_blocks = get_valid_blocks(sbi, segno, false);
  2801. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2802. continue;
  2803. if (valid_blocks > sbi->blocks_per_seg) {
  2804. f2fs_bug_on(sbi, 1);
  2805. continue;
  2806. }
  2807. mutex_lock(&dirty_i->seglist_lock);
  2808. __locate_dirty_segment(sbi, segno, DIRTY);
  2809. mutex_unlock(&dirty_i->seglist_lock);
  2810. }
  2811. }
  2812. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2813. {
  2814. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2815. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2816. dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2817. if (!dirty_i->victim_secmap)
  2818. return -ENOMEM;
  2819. return 0;
  2820. }
  2821. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2822. {
  2823. struct dirty_seglist_info *dirty_i;
  2824. unsigned int bitmap_size, i;
  2825. /* allocate memory for dirty segments list information */
  2826. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2827. if (!dirty_i)
  2828. return -ENOMEM;
  2829. SM_I(sbi)->dirty_info = dirty_i;
  2830. mutex_init(&dirty_i->seglist_lock);
  2831. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2832. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2833. dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
  2834. if (!dirty_i->dirty_segmap[i])
  2835. return -ENOMEM;
  2836. }
  2837. init_dirty_segmap(sbi);
  2838. return init_victim_secmap(sbi);
  2839. }
  2840. /*
  2841. * Update min, max modified time for cost-benefit GC algorithm
  2842. */
  2843. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2844. {
  2845. struct sit_info *sit_i = SIT_I(sbi);
  2846. unsigned int segno;
  2847. mutex_lock(&sit_i->sentry_lock);
  2848. sit_i->min_mtime = LLONG_MAX;
  2849. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2850. unsigned int i;
  2851. unsigned long long mtime = 0;
  2852. for (i = 0; i < sbi->segs_per_sec; i++)
  2853. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2854. mtime = div_u64(mtime, sbi->segs_per_sec);
  2855. if (sit_i->min_mtime > mtime)
  2856. sit_i->min_mtime = mtime;
  2857. }
  2858. sit_i->max_mtime = get_mtime(sbi);
  2859. mutex_unlock(&sit_i->sentry_lock);
  2860. }
  2861. int build_segment_manager(struct f2fs_sb_info *sbi)
  2862. {
  2863. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2864. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2865. struct f2fs_sm_info *sm_info;
  2866. int err;
  2867. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2868. if (!sm_info)
  2869. return -ENOMEM;
  2870. /* init sm info */
  2871. sbi->sm_info = sm_info;
  2872. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2873. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2874. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2875. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2876. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2877. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2878. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2879. sm_info->rec_prefree_segments = sm_info->main_segments *
  2880. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2881. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2882. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2883. if (!test_opt(sbi, LFS))
  2884. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2885. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2886. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2887. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  2888. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2889. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2890. if (!f2fs_readonly(sbi->sb)) {
  2891. err = create_flush_cmd_control(sbi);
  2892. if (err)
  2893. return err;
  2894. }
  2895. err = create_discard_cmd_control(sbi);
  2896. if (err)
  2897. return err;
  2898. err = build_sit_info(sbi);
  2899. if (err)
  2900. return err;
  2901. err = build_free_segmap(sbi);
  2902. if (err)
  2903. return err;
  2904. err = build_curseg(sbi);
  2905. if (err)
  2906. return err;
  2907. /* reinit free segmap based on SIT */
  2908. build_sit_entries(sbi);
  2909. init_free_segmap(sbi);
  2910. err = build_dirty_segmap(sbi);
  2911. if (err)
  2912. return err;
  2913. init_min_max_mtime(sbi);
  2914. return 0;
  2915. }
  2916. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2917. enum dirty_type dirty_type)
  2918. {
  2919. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2920. mutex_lock(&dirty_i->seglist_lock);
  2921. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2922. dirty_i->nr_dirty[dirty_type] = 0;
  2923. mutex_unlock(&dirty_i->seglist_lock);
  2924. }
  2925. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2926. {
  2927. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2928. kvfree(dirty_i->victim_secmap);
  2929. }
  2930. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2931. {
  2932. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2933. int i;
  2934. if (!dirty_i)
  2935. return;
  2936. /* discard pre-free/dirty segments list */
  2937. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2938. discard_dirty_segmap(sbi, i);
  2939. destroy_victim_secmap(sbi);
  2940. SM_I(sbi)->dirty_info = NULL;
  2941. kfree(dirty_i);
  2942. }
  2943. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2944. {
  2945. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2946. int i;
  2947. if (!array)
  2948. return;
  2949. SM_I(sbi)->curseg_array = NULL;
  2950. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2951. kfree(array[i].sum_blk);
  2952. kfree(array[i].journal);
  2953. }
  2954. kfree(array);
  2955. }
  2956. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2957. {
  2958. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2959. if (!free_i)
  2960. return;
  2961. SM_I(sbi)->free_info = NULL;
  2962. kvfree(free_i->free_segmap);
  2963. kvfree(free_i->free_secmap);
  2964. kfree(free_i);
  2965. }
  2966. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2967. {
  2968. struct sit_info *sit_i = SIT_I(sbi);
  2969. unsigned int start;
  2970. if (!sit_i)
  2971. return;
  2972. if (sit_i->sentries) {
  2973. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2974. kfree(sit_i->sentries[start].cur_valid_map);
  2975. #ifdef CONFIG_F2FS_CHECK_FS
  2976. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2977. #endif
  2978. kfree(sit_i->sentries[start].ckpt_valid_map);
  2979. kfree(sit_i->sentries[start].discard_map);
  2980. }
  2981. }
  2982. kfree(sit_i->tmp_map);
  2983. kvfree(sit_i->sentries);
  2984. kvfree(sit_i->sec_entries);
  2985. kvfree(sit_i->dirty_sentries_bitmap);
  2986. SM_I(sbi)->sit_info = NULL;
  2987. kfree(sit_i->sit_bitmap);
  2988. #ifdef CONFIG_F2FS_CHECK_FS
  2989. kfree(sit_i->sit_bitmap_mir);
  2990. #endif
  2991. kfree(sit_i);
  2992. }
  2993. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2994. {
  2995. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2996. if (!sm_info)
  2997. return;
  2998. destroy_flush_cmd_control(sbi, true);
  2999. destroy_discard_cmd_control(sbi);
  3000. destroy_dirty_segmap(sbi);
  3001. destroy_curseg(sbi);
  3002. destroy_free_segmap(sbi);
  3003. destroy_sit_info(sbi);
  3004. sbi->sm_info = NULL;
  3005. kfree(sm_info);
  3006. }
  3007. int __init create_segment_manager_caches(void)
  3008. {
  3009. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3010. sizeof(struct discard_entry));
  3011. if (!discard_entry_slab)
  3012. goto fail;
  3013. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3014. sizeof(struct discard_cmd));
  3015. if (!discard_cmd_slab)
  3016. goto destroy_discard_entry;
  3017. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3018. sizeof(struct sit_entry_set));
  3019. if (!sit_entry_set_slab)
  3020. goto destroy_discard_cmd;
  3021. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3022. sizeof(struct inmem_pages));
  3023. if (!inmem_entry_slab)
  3024. goto destroy_sit_entry_set;
  3025. return 0;
  3026. destroy_sit_entry_set:
  3027. kmem_cache_destroy(sit_entry_set_slab);
  3028. destroy_discard_cmd:
  3029. kmem_cache_destroy(discard_cmd_slab);
  3030. destroy_discard_entry:
  3031. kmem_cache_destroy(discard_entry_slab);
  3032. fail:
  3033. return -ENOMEM;
  3034. }
  3035. void destroy_segment_manager_caches(void)
  3036. {
  3037. kmem_cache_destroy(sit_entry_set_slab);
  3038. kmem_cache_destroy(discard_cmd_slab);
  3039. kmem_cache_destroy(discard_entry_slab);
  3040. kmem_cache_destroy(inmem_entry_slab);
  3041. }