inode.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/writeback.h>
  16. #include "f2fs.h"
  17. #include "node.h"
  18. #include "segment.h"
  19. #include <trace/events/f2fs.h>
  20. void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
  21. {
  22. if (f2fs_inode_dirtied(inode, sync))
  23. return;
  24. mark_inode_dirty_sync(inode);
  25. }
  26. void f2fs_set_inode_flags(struct inode *inode)
  27. {
  28. unsigned int flags = F2FS_I(inode)->i_flags;
  29. unsigned int new_fl = 0;
  30. if (flags & FS_SYNC_FL)
  31. new_fl |= S_SYNC;
  32. if (flags & FS_APPEND_FL)
  33. new_fl |= S_APPEND;
  34. if (flags & FS_IMMUTABLE_FL)
  35. new_fl |= S_IMMUTABLE;
  36. if (flags & FS_NOATIME_FL)
  37. new_fl |= S_NOATIME;
  38. if (flags & FS_DIRSYNC_FL)
  39. new_fl |= S_DIRSYNC;
  40. inode_set_flags(inode, new_fl,
  41. S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  42. }
  43. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  44. {
  45. int extra_size = get_extra_isize(inode);
  46. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  47. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  48. if (ri->i_addr[extra_size])
  49. inode->i_rdev = old_decode_dev(
  50. le32_to_cpu(ri->i_addr[extra_size]));
  51. else
  52. inode->i_rdev = new_decode_dev(
  53. le32_to_cpu(ri->i_addr[extra_size + 1]));
  54. }
  55. }
  56. static bool __written_first_block(struct f2fs_inode *ri)
  57. {
  58. block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
  59. if (addr != NEW_ADDR && addr != NULL_ADDR)
  60. return true;
  61. return false;
  62. }
  63. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  64. {
  65. int extra_size = get_extra_isize(inode);
  66. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  67. if (old_valid_dev(inode->i_rdev)) {
  68. ri->i_addr[extra_size] =
  69. cpu_to_le32(old_encode_dev(inode->i_rdev));
  70. ri->i_addr[extra_size + 1] = 0;
  71. } else {
  72. ri->i_addr[extra_size] = 0;
  73. ri->i_addr[extra_size + 1] =
  74. cpu_to_le32(new_encode_dev(inode->i_rdev));
  75. ri->i_addr[extra_size + 2] = 0;
  76. }
  77. }
  78. }
  79. static void __recover_inline_status(struct inode *inode, struct page *ipage)
  80. {
  81. void *inline_data = inline_data_addr(inode, ipage);
  82. __le32 *start = inline_data;
  83. __le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
  84. while (start < end) {
  85. if (*start++) {
  86. f2fs_wait_on_page_writeback(ipage, NODE, true);
  87. set_inode_flag(inode, FI_DATA_EXIST);
  88. set_raw_inline(inode, F2FS_INODE(ipage));
  89. set_page_dirty(ipage);
  90. return;
  91. }
  92. }
  93. return;
  94. }
  95. static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
  96. {
  97. struct f2fs_inode *ri = &F2FS_NODE(page)->i;
  98. int extra_isize = le32_to_cpu(ri->i_extra_isize);
  99. if (!f2fs_sb_has_inode_chksum(sbi->sb))
  100. return false;
  101. if (!RAW_IS_INODE(F2FS_NODE(page)) || !(ri->i_inline & F2FS_EXTRA_ATTR))
  102. return false;
  103. if (!F2FS_FITS_IN_INODE(ri, extra_isize, i_inode_checksum))
  104. return false;
  105. return true;
  106. }
  107. static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
  108. {
  109. struct f2fs_node *node = F2FS_NODE(page);
  110. struct f2fs_inode *ri = &node->i;
  111. __le32 ino = node->footer.ino;
  112. __le32 gen = ri->i_generation;
  113. __u32 chksum, chksum_seed;
  114. __u32 dummy_cs = 0;
  115. unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
  116. unsigned int cs_size = sizeof(dummy_cs);
  117. chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino,
  118. sizeof(ino));
  119. chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen));
  120. chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset);
  121. chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size);
  122. offset += cs_size;
  123. chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset,
  124. F2FS_BLKSIZE - offset);
  125. return chksum;
  126. }
  127. bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page)
  128. {
  129. struct f2fs_inode *ri;
  130. __u32 provided, calculated;
  131. if (!f2fs_enable_inode_chksum(sbi, page) ||
  132. PageDirty(page) || PageWriteback(page))
  133. return true;
  134. ri = &F2FS_NODE(page)->i;
  135. provided = le32_to_cpu(ri->i_inode_checksum);
  136. calculated = f2fs_inode_chksum(sbi, page);
  137. if (provided != calculated)
  138. f2fs_msg(sbi->sb, KERN_WARNING,
  139. "checksum invalid, ino = %x, %x vs. %x",
  140. ino_of_node(page), provided, calculated);
  141. return provided == calculated;
  142. }
  143. void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page)
  144. {
  145. struct f2fs_inode *ri = &F2FS_NODE(page)->i;
  146. if (!f2fs_enable_inode_chksum(sbi, page))
  147. return;
  148. ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page));
  149. }
  150. static int do_read_inode(struct inode *inode)
  151. {
  152. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  153. struct f2fs_inode_info *fi = F2FS_I(inode);
  154. struct page *node_page;
  155. struct f2fs_inode *ri;
  156. projid_t i_projid;
  157. /* Check if ino is within scope */
  158. if (check_nid_range(sbi, inode->i_ino)) {
  159. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  160. (unsigned long) inode->i_ino);
  161. WARN_ON(1);
  162. return -EINVAL;
  163. }
  164. node_page = get_node_page(sbi, inode->i_ino);
  165. if (IS_ERR(node_page))
  166. return PTR_ERR(node_page);
  167. ri = F2FS_INODE(node_page);
  168. inode->i_mode = le16_to_cpu(ri->i_mode);
  169. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  170. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  171. set_nlink(inode, le32_to_cpu(ri->i_links));
  172. inode->i_size = le64_to_cpu(ri->i_size);
  173. inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
  174. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  175. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  176. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  177. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  178. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  179. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  180. inode->i_generation = le32_to_cpu(ri->i_generation);
  181. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  182. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  183. fi->i_flags = le32_to_cpu(ri->i_flags);
  184. fi->flags = 0;
  185. fi->i_advise = ri->i_advise;
  186. fi->i_pino = le32_to_cpu(ri->i_pino);
  187. fi->i_dir_level = ri->i_dir_level;
  188. if (f2fs_init_extent_tree(inode, &ri->i_ext))
  189. set_page_dirty(node_page);
  190. get_inline_info(inode, ri);
  191. fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
  192. le16_to_cpu(ri->i_extra_isize) : 0;
  193. /* check data exist */
  194. if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  195. __recover_inline_status(inode, node_page);
  196. /* get rdev by using inline_info */
  197. __get_inode_rdev(inode, ri);
  198. if (__written_first_block(ri))
  199. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  200. if (!need_inode_block_update(sbi, inode->i_ino))
  201. fi->last_disk_size = inode->i_size;
  202. if (fi->i_flags & FS_PROJINHERIT_FL)
  203. set_inode_flag(inode, FI_PROJ_INHERIT);
  204. if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) &&
  205. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
  206. i_projid = (projid_t)le32_to_cpu(ri->i_projid);
  207. else
  208. i_projid = F2FS_DEF_PROJID;
  209. fi->i_projid = make_kprojid(&init_user_ns, i_projid);
  210. f2fs_put_page(node_page, 1);
  211. stat_inc_inline_xattr(inode);
  212. stat_inc_inline_inode(inode);
  213. stat_inc_inline_dir(inode);
  214. return 0;
  215. }
  216. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  217. {
  218. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  219. struct inode *inode;
  220. int ret = 0;
  221. inode = iget_locked(sb, ino);
  222. if (!inode)
  223. return ERR_PTR(-ENOMEM);
  224. if (!(inode->i_state & I_NEW)) {
  225. trace_f2fs_iget(inode);
  226. return inode;
  227. }
  228. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  229. goto make_now;
  230. ret = do_read_inode(inode);
  231. if (ret)
  232. goto bad_inode;
  233. make_now:
  234. if (ino == F2FS_NODE_INO(sbi)) {
  235. inode->i_mapping->a_ops = &f2fs_node_aops;
  236. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  237. } else if (ino == F2FS_META_INO(sbi)) {
  238. inode->i_mapping->a_ops = &f2fs_meta_aops;
  239. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  240. } else if (S_ISREG(inode->i_mode)) {
  241. inode->i_op = &f2fs_file_inode_operations;
  242. inode->i_fop = &f2fs_file_operations;
  243. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  244. } else if (S_ISDIR(inode->i_mode)) {
  245. inode->i_op = &f2fs_dir_inode_operations;
  246. inode->i_fop = &f2fs_dir_operations;
  247. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  248. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  249. } else if (S_ISLNK(inode->i_mode)) {
  250. if (f2fs_encrypted_inode(inode))
  251. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  252. else
  253. inode->i_op = &f2fs_symlink_inode_operations;
  254. inode_nohighmem(inode);
  255. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  256. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  257. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  258. inode->i_op = &f2fs_special_inode_operations;
  259. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  260. } else {
  261. ret = -EIO;
  262. goto bad_inode;
  263. }
  264. f2fs_set_inode_flags(inode);
  265. unlock_new_inode(inode);
  266. trace_f2fs_iget(inode);
  267. return inode;
  268. bad_inode:
  269. iget_failed(inode);
  270. trace_f2fs_iget_exit(inode, ret);
  271. return ERR_PTR(ret);
  272. }
  273. struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
  274. {
  275. struct inode *inode;
  276. retry:
  277. inode = f2fs_iget(sb, ino);
  278. if (IS_ERR(inode)) {
  279. if (PTR_ERR(inode) == -ENOMEM) {
  280. congestion_wait(BLK_RW_ASYNC, HZ/50);
  281. goto retry;
  282. }
  283. }
  284. return inode;
  285. }
  286. int update_inode(struct inode *inode, struct page *node_page)
  287. {
  288. struct f2fs_inode *ri;
  289. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  290. f2fs_inode_synced(inode);
  291. f2fs_wait_on_page_writeback(node_page, NODE, true);
  292. ri = F2FS_INODE(node_page);
  293. ri->i_mode = cpu_to_le16(inode->i_mode);
  294. ri->i_advise = F2FS_I(inode)->i_advise;
  295. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  296. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  297. ri->i_links = cpu_to_le32(inode->i_nlink);
  298. ri->i_size = cpu_to_le64(i_size_read(inode));
  299. ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
  300. if (et) {
  301. read_lock(&et->lock);
  302. set_raw_extent(&et->largest, &ri->i_ext);
  303. read_unlock(&et->lock);
  304. } else {
  305. memset(&ri->i_ext, 0, sizeof(ri->i_ext));
  306. }
  307. set_raw_inline(inode, ri);
  308. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  309. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  310. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  311. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  312. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  313. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  314. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  315. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  316. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  317. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  318. ri->i_generation = cpu_to_le32(inode->i_generation);
  319. ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  320. if (f2fs_has_extra_attr(inode)) {
  321. ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
  322. if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) &&
  323. F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
  324. i_projid)) {
  325. projid_t i_projid;
  326. i_projid = from_kprojid(&init_user_ns,
  327. F2FS_I(inode)->i_projid);
  328. ri->i_projid = cpu_to_le32(i_projid);
  329. }
  330. }
  331. __set_inode_rdev(inode, ri);
  332. set_cold_node(inode, node_page);
  333. /* deleted inode */
  334. if (inode->i_nlink == 0)
  335. clear_inline_node(node_page);
  336. return set_page_dirty(node_page);
  337. }
  338. int update_inode_page(struct inode *inode)
  339. {
  340. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  341. struct page *node_page;
  342. int ret = 0;
  343. retry:
  344. node_page = get_node_page(sbi, inode->i_ino);
  345. if (IS_ERR(node_page)) {
  346. int err = PTR_ERR(node_page);
  347. if (err == -ENOMEM) {
  348. cond_resched();
  349. goto retry;
  350. } else if (err != -ENOENT) {
  351. f2fs_stop_checkpoint(sbi, false);
  352. }
  353. return 0;
  354. }
  355. ret = update_inode(inode, node_page);
  356. f2fs_put_page(node_page, 1);
  357. return ret;
  358. }
  359. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  360. {
  361. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  362. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  363. inode->i_ino == F2FS_META_INO(sbi))
  364. return 0;
  365. if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
  366. return 0;
  367. /*
  368. * We need to balance fs here to prevent from producing dirty node pages
  369. * during the urgent cleaning time when runing out of free sections.
  370. */
  371. update_inode_page(inode);
  372. if (wbc && wbc->nr_to_write)
  373. f2fs_balance_fs(sbi, true);
  374. return 0;
  375. }
  376. /*
  377. * Called at the last iput() if i_nlink is zero
  378. */
  379. void f2fs_evict_inode(struct inode *inode)
  380. {
  381. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  382. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  383. int err = 0;
  384. /* some remained atomic pages should discarded */
  385. if (f2fs_is_atomic_file(inode))
  386. drop_inmem_pages(inode);
  387. trace_f2fs_evict_inode(inode);
  388. truncate_inode_pages_final(&inode->i_data);
  389. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  390. inode->i_ino == F2FS_META_INO(sbi))
  391. goto out_clear;
  392. f2fs_bug_on(sbi, get_dirty_pages(inode));
  393. remove_dirty_inode(inode);
  394. f2fs_destroy_extent_tree(inode);
  395. if (inode->i_nlink || is_bad_inode(inode))
  396. goto no_delete;
  397. dquot_initialize(inode);
  398. remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
  399. remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
  400. sb_start_intwrite(inode->i_sb);
  401. set_inode_flag(inode, FI_NO_ALLOC);
  402. i_size_write(inode, 0);
  403. retry:
  404. if (F2FS_HAS_BLOCKS(inode))
  405. err = f2fs_truncate(inode);
  406. #ifdef CONFIG_F2FS_FAULT_INJECTION
  407. if (time_to_inject(sbi, FAULT_EVICT_INODE)) {
  408. f2fs_show_injection_info(FAULT_EVICT_INODE);
  409. err = -EIO;
  410. }
  411. #endif
  412. if (!err) {
  413. f2fs_lock_op(sbi);
  414. err = remove_inode_page(inode);
  415. f2fs_unlock_op(sbi);
  416. if (err == -ENOENT)
  417. err = 0;
  418. }
  419. /* give more chances, if ENOMEM case */
  420. if (err == -ENOMEM) {
  421. err = 0;
  422. goto retry;
  423. }
  424. if (err)
  425. update_inode_page(inode);
  426. dquot_free_inode(inode);
  427. sb_end_intwrite(inode->i_sb);
  428. no_delete:
  429. dquot_drop(inode);
  430. stat_dec_inline_xattr(inode);
  431. stat_dec_inline_dir(inode);
  432. stat_dec_inline_inode(inode);
  433. if (!is_set_ckpt_flags(sbi, CP_ERROR_FLAG))
  434. f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
  435. /* ino == 0, if f2fs_new_inode() was failed t*/
  436. if (inode->i_ino)
  437. invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
  438. inode->i_ino);
  439. if (xnid)
  440. invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  441. if (inode->i_nlink) {
  442. if (is_inode_flag_set(inode, FI_APPEND_WRITE))
  443. add_ino_entry(sbi, inode->i_ino, APPEND_INO);
  444. if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
  445. add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
  446. }
  447. if (is_inode_flag_set(inode, FI_FREE_NID)) {
  448. alloc_nid_failed(sbi, inode->i_ino);
  449. clear_inode_flag(inode, FI_FREE_NID);
  450. } else {
  451. f2fs_bug_on(sbi, err &&
  452. !exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
  453. }
  454. out_clear:
  455. fscrypt_put_encryption_info(inode, NULL);
  456. clear_inode(inode);
  457. }
  458. /* caller should call f2fs_lock_op() */
  459. void handle_failed_inode(struct inode *inode)
  460. {
  461. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  462. struct node_info ni;
  463. /*
  464. * clear nlink of inode in order to release resource of inode
  465. * immediately.
  466. */
  467. clear_nlink(inode);
  468. /*
  469. * we must call this to avoid inode being remained as dirty, resulting
  470. * in a panic when flushing dirty inodes in gdirty_list.
  471. */
  472. update_inode_page(inode);
  473. f2fs_inode_synced(inode);
  474. /* don't make bad inode, since it becomes a regular file. */
  475. unlock_new_inode(inode);
  476. /*
  477. * Note: we should add inode to orphan list before f2fs_unlock_op()
  478. * so we can prevent losing this orphan when encoutering checkpoint
  479. * and following suddenly power-off.
  480. */
  481. get_node_info(sbi, inode->i_ino, &ni);
  482. if (ni.blk_addr != NULL_ADDR) {
  483. int err = acquire_orphan_inode(sbi);
  484. if (err) {
  485. set_sbi_flag(sbi, SBI_NEED_FSCK);
  486. f2fs_msg(sbi->sb, KERN_WARNING,
  487. "Too many orphan inodes, run fsck to fix.");
  488. } else {
  489. add_orphan_inode(inode);
  490. }
  491. alloc_nid_done(sbi, inode->i_ino);
  492. } else {
  493. set_inode_flag(inode, FI_FREE_NID);
  494. }
  495. f2fs_unlock_op(sbi);
  496. /* iput will drop the inode object */
  497. iput(inode);
  498. }