file.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. int err;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. err = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return err;
  42. }
  43. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. sb_start_pagefault(inode->i_sb);
  51. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  52. /* block allocation */
  53. f2fs_lock_op(sbi);
  54. set_new_dnode(&dn, inode, NULL, NULL, 0);
  55. err = f2fs_reserve_block(&dn, page->index);
  56. if (err) {
  57. f2fs_unlock_op(sbi);
  58. goto out;
  59. }
  60. f2fs_put_dnode(&dn);
  61. f2fs_unlock_op(sbi);
  62. f2fs_balance_fs(sbi, dn.node_changed);
  63. file_update_time(vmf->vma->vm_file);
  64. down_read(&F2FS_I(inode)->i_mmap_sem);
  65. lock_page(page);
  66. if (unlikely(page->mapping != inode->i_mapping ||
  67. page_offset(page) > i_size_read(inode) ||
  68. !PageUptodate(page))) {
  69. unlock_page(page);
  70. err = -EFAULT;
  71. goto out_sem;
  72. }
  73. /*
  74. * check to see if the page is mapped already (no holes)
  75. */
  76. if (PageMappedToDisk(page))
  77. goto mapped;
  78. /* page is wholly or partially inside EOF */
  79. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  80. i_size_read(inode)) {
  81. unsigned offset;
  82. offset = i_size_read(inode) & ~PAGE_MASK;
  83. zero_user_segment(page, offset, PAGE_SIZE);
  84. }
  85. set_page_dirty(page);
  86. if (!PageUptodate(page))
  87. SetPageUptodate(page);
  88. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  89. trace_f2fs_vm_page_mkwrite(page, DATA);
  90. mapped:
  91. /* fill the page */
  92. f2fs_wait_on_page_writeback(page, DATA, false);
  93. /* wait for GCed encrypted page writeback */
  94. if (f2fs_encrypted_file(inode))
  95. f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
  96. out_sem:
  97. up_read(&F2FS_I(inode)->i_mmap_sem);
  98. out:
  99. sb_end_pagefault(inode->i_sb);
  100. f2fs_update_time(sbi, REQ_TIME);
  101. return block_page_mkwrite_return(err);
  102. }
  103. static const struct vm_operations_struct f2fs_file_vm_ops = {
  104. .fault = f2fs_filemap_fault,
  105. .map_pages = filemap_map_pages,
  106. .page_mkwrite = f2fs_vm_page_mkwrite,
  107. };
  108. static int get_parent_ino(struct inode *inode, nid_t *pino)
  109. {
  110. struct dentry *dentry;
  111. inode = igrab(inode);
  112. dentry = d_find_any_alias(inode);
  113. iput(inode);
  114. if (!dentry)
  115. return 0;
  116. *pino = parent_ino(dentry);
  117. dput(dentry);
  118. return 1;
  119. }
  120. static inline bool need_do_checkpoint(struct inode *inode)
  121. {
  122. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  123. bool need_cp = false;
  124. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  125. need_cp = true;
  126. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  127. need_cp = true;
  128. else if (file_wrong_pino(inode))
  129. need_cp = true;
  130. else if (!space_for_roll_forward(sbi))
  131. need_cp = true;
  132. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  133. need_cp = true;
  134. else if (test_opt(sbi, FASTBOOT))
  135. need_cp = true;
  136. else if (sbi->active_logs == 2)
  137. need_cp = true;
  138. return need_cp;
  139. }
  140. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  141. {
  142. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  143. bool ret = false;
  144. /* But we need to avoid that there are some inode updates */
  145. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  146. ret = true;
  147. f2fs_put_page(i, 0);
  148. return ret;
  149. }
  150. static void try_to_fix_pino(struct inode *inode)
  151. {
  152. struct f2fs_inode_info *fi = F2FS_I(inode);
  153. nid_t pino;
  154. down_write(&fi->i_sem);
  155. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  156. get_parent_ino(inode, &pino)) {
  157. f2fs_i_pino_write(inode, pino);
  158. file_got_pino(inode);
  159. }
  160. up_write(&fi->i_sem);
  161. }
  162. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  163. int datasync, bool atomic)
  164. {
  165. struct inode *inode = file->f_mapping->host;
  166. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  167. nid_t ino = inode->i_ino;
  168. int ret = 0;
  169. bool need_cp = false;
  170. struct writeback_control wbc = {
  171. .sync_mode = WB_SYNC_ALL,
  172. .nr_to_write = LONG_MAX,
  173. .for_reclaim = 0,
  174. };
  175. if (unlikely(f2fs_readonly(inode->i_sb)))
  176. return 0;
  177. trace_f2fs_sync_file_enter(inode);
  178. /* if fdatasync is triggered, let's do in-place-update */
  179. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  180. set_inode_flag(inode, FI_NEED_IPU);
  181. ret = file_write_and_wait_range(file, start, end);
  182. clear_inode_flag(inode, FI_NEED_IPU);
  183. if (ret) {
  184. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  185. return ret;
  186. }
  187. /* if the inode is dirty, let's recover all the time */
  188. if (!f2fs_skip_inode_update(inode, datasync)) {
  189. f2fs_write_inode(inode, NULL);
  190. goto go_write;
  191. }
  192. /*
  193. * if there is no written data, don't waste time to write recovery info.
  194. */
  195. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  196. !exist_written_data(sbi, ino, APPEND_INO)) {
  197. /* it may call write_inode just prior to fsync */
  198. if (need_inode_page_update(sbi, ino))
  199. goto go_write;
  200. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  201. exist_written_data(sbi, ino, UPDATE_INO))
  202. goto flush_out;
  203. goto out;
  204. }
  205. go_write:
  206. /*
  207. * Both of fdatasync() and fsync() are able to be recovered from
  208. * sudden-power-off.
  209. */
  210. down_read(&F2FS_I(inode)->i_sem);
  211. need_cp = need_do_checkpoint(inode);
  212. up_read(&F2FS_I(inode)->i_sem);
  213. if (need_cp) {
  214. /* all the dirty node pages should be flushed for POR */
  215. ret = f2fs_sync_fs(inode->i_sb, 1);
  216. /*
  217. * We've secured consistency through sync_fs. Following pino
  218. * will be used only for fsynced inodes after checkpoint.
  219. */
  220. try_to_fix_pino(inode);
  221. clear_inode_flag(inode, FI_APPEND_WRITE);
  222. clear_inode_flag(inode, FI_UPDATE_WRITE);
  223. goto out;
  224. }
  225. sync_nodes:
  226. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  227. if (ret)
  228. goto out;
  229. /* if cp_error was enabled, we should avoid infinite loop */
  230. if (unlikely(f2fs_cp_error(sbi))) {
  231. ret = -EIO;
  232. goto out;
  233. }
  234. if (need_inode_block_update(sbi, ino)) {
  235. f2fs_mark_inode_dirty_sync(inode, true);
  236. f2fs_write_inode(inode, NULL);
  237. goto sync_nodes;
  238. }
  239. /*
  240. * If it's atomic_write, it's just fine to keep write ordering. So
  241. * here we don't need to wait for node write completion, since we use
  242. * node chain which serializes node blocks. If one of node writes are
  243. * reordered, we can see simply broken chain, resulting in stopping
  244. * roll-forward recovery. It means we'll recover all or none node blocks
  245. * given fsync mark.
  246. */
  247. if (!atomic) {
  248. ret = wait_on_node_pages_writeback(sbi, ino);
  249. if (ret)
  250. goto out;
  251. }
  252. /* once recovery info is written, don't need to tack this */
  253. remove_ino_entry(sbi, ino, APPEND_INO);
  254. clear_inode_flag(inode, FI_APPEND_WRITE);
  255. flush_out:
  256. remove_ino_entry(sbi, ino, UPDATE_INO);
  257. clear_inode_flag(inode, FI_UPDATE_WRITE);
  258. if (!atomic)
  259. ret = f2fs_issue_flush(sbi);
  260. f2fs_update_time(sbi, REQ_TIME);
  261. out:
  262. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  263. f2fs_trace_ios(NULL, 1);
  264. return ret;
  265. }
  266. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  267. {
  268. return f2fs_do_sync_file(file, start, end, datasync, false);
  269. }
  270. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  271. pgoff_t pgofs, int whence)
  272. {
  273. struct pagevec pvec;
  274. int nr_pages;
  275. if (whence != SEEK_DATA)
  276. return 0;
  277. /* find first dirty page index */
  278. pagevec_init(&pvec, 0);
  279. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  280. PAGECACHE_TAG_DIRTY, 1);
  281. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  282. pagevec_release(&pvec);
  283. return pgofs;
  284. }
  285. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  286. int whence)
  287. {
  288. switch (whence) {
  289. case SEEK_DATA:
  290. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  291. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  292. return true;
  293. break;
  294. case SEEK_HOLE:
  295. if (blkaddr == NULL_ADDR)
  296. return true;
  297. break;
  298. }
  299. return false;
  300. }
  301. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  302. {
  303. struct inode *inode = file->f_mapping->host;
  304. loff_t maxbytes = inode->i_sb->s_maxbytes;
  305. struct dnode_of_data dn;
  306. pgoff_t pgofs, end_offset, dirty;
  307. loff_t data_ofs = offset;
  308. loff_t isize;
  309. int err = 0;
  310. inode_lock(inode);
  311. isize = i_size_read(inode);
  312. if (offset >= isize)
  313. goto fail;
  314. /* handle inline data case */
  315. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  316. if (whence == SEEK_HOLE)
  317. data_ofs = isize;
  318. goto found;
  319. }
  320. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  321. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  322. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  323. set_new_dnode(&dn, inode, NULL, NULL, 0);
  324. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  325. if (err && err != -ENOENT) {
  326. goto fail;
  327. } else if (err == -ENOENT) {
  328. /* direct node does not exists */
  329. if (whence == SEEK_DATA) {
  330. pgofs = get_next_page_offset(&dn, pgofs);
  331. continue;
  332. } else {
  333. goto found;
  334. }
  335. }
  336. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  337. /* find data/hole in dnode block */
  338. for (; dn.ofs_in_node < end_offset;
  339. dn.ofs_in_node++, pgofs++,
  340. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  341. block_t blkaddr;
  342. blkaddr = datablock_addr(dn.inode,
  343. dn.node_page, dn.ofs_in_node);
  344. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  345. f2fs_put_dnode(&dn);
  346. goto found;
  347. }
  348. }
  349. f2fs_put_dnode(&dn);
  350. }
  351. if (whence == SEEK_DATA)
  352. goto fail;
  353. found:
  354. if (whence == SEEK_HOLE && data_ofs > isize)
  355. data_ofs = isize;
  356. inode_unlock(inode);
  357. return vfs_setpos(file, data_ofs, maxbytes);
  358. fail:
  359. inode_unlock(inode);
  360. return -ENXIO;
  361. }
  362. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  363. {
  364. struct inode *inode = file->f_mapping->host;
  365. loff_t maxbytes = inode->i_sb->s_maxbytes;
  366. switch (whence) {
  367. case SEEK_SET:
  368. case SEEK_CUR:
  369. case SEEK_END:
  370. return generic_file_llseek_size(file, offset, whence,
  371. maxbytes, i_size_read(inode));
  372. case SEEK_DATA:
  373. case SEEK_HOLE:
  374. if (offset < 0)
  375. return -ENXIO;
  376. return f2fs_seek_block(file, offset, whence);
  377. }
  378. return -EINVAL;
  379. }
  380. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  381. {
  382. struct inode *inode = file_inode(file);
  383. int err;
  384. /* we don't need to use inline_data strictly */
  385. err = f2fs_convert_inline_inode(inode);
  386. if (err)
  387. return err;
  388. file_accessed(file);
  389. vma->vm_ops = &f2fs_file_vm_ops;
  390. return 0;
  391. }
  392. static int f2fs_file_open(struct inode *inode, struct file *filp)
  393. {
  394. struct dentry *dir;
  395. if (f2fs_encrypted_inode(inode)) {
  396. int ret = fscrypt_get_encryption_info(inode);
  397. if (ret)
  398. return -EACCES;
  399. if (!fscrypt_has_encryption_key(inode))
  400. return -ENOKEY;
  401. }
  402. dir = dget_parent(file_dentry(filp));
  403. if (f2fs_encrypted_inode(d_inode(dir)) &&
  404. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  405. dput(dir);
  406. return -EPERM;
  407. }
  408. dput(dir);
  409. return dquot_file_open(inode, filp);
  410. }
  411. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  412. {
  413. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  414. struct f2fs_node *raw_node;
  415. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  416. __le32 *addr;
  417. int base = 0;
  418. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  419. base = get_extra_isize(dn->inode);
  420. raw_node = F2FS_NODE(dn->node_page);
  421. addr = blkaddr_in_node(raw_node) + base + ofs;
  422. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  423. block_t blkaddr = le32_to_cpu(*addr);
  424. if (blkaddr == NULL_ADDR)
  425. continue;
  426. dn->data_blkaddr = NULL_ADDR;
  427. set_data_blkaddr(dn);
  428. invalidate_blocks(sbi, blkaddr);
  429. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  430. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  431. nr_free++;
  432. }
  433. if (nr_free) {
  434. pgoff_t fofs;
  435. /*
  436. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  437. * we will invalidate all blkaddr in the whole range.
  438. */
  439. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  440. dn->inode) + ofs;
  441. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  442. dec_valid_block_count(sbi, dn->inode, nr_free);
  443. }
  444. dn->ofs_in_node = ofs;
  445. f2fs_update_time(sbi, REQ_TIME);
  446. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  447. dn->ofs_in_node, nr_free);
  448. return nr_free;
  449. }
  450. void truncate_data_blocks(struct dnode_of_data *dn)
  451. {
  452. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  453. }
  454. static int truncate_partial_data_page(struct inode *inode, u64 from,
  455. bool cache_only)
  456. {
  457. unsigned offset = from & (PAGE_SIZE - 1);
  458. pgoff_t index = from >> PAGE_SHIFT;
  459. struct address_space *mapping = inode->i_mapping;
  460. struct page *page;
  461. if (!offset && !cache_only)
  462. return 0;
  463. if (cache_only) {
  464. page = find_lock_page(mapping, index);
  465. if (page && PageUptodate(page))
  466. goto truncate_out;
  467. f2fs_put_page(page, 1);
  468. return 0;
  469. }
  470. page = get_lock_data_page(inode, index, true);
  471. if (IS_ERR(page))
  472. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  473. truncate_out:
  474. f2fs_wait_on_page_writeback(page, DATA, true);
  475. zero_user(page, offset, PAGE_SIZE - offset);
  476. /* An encrypted inode should have a key and truncate the last page. */
  477. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  478. if (!cache_only)
  479. set_page_dirty(page);
  480. f2fs_put_page(page, 1);
  481. return 0;
  482. }
  483. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  484. {
  485. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  486. unsigned int blocksize = inode->i_sb->s_blocksize;
  487. struct dnode_of_data dn;
  488. pgoff_t free_from;
  489. int count = 0, err = 0;
  490. struct page *ipage;
  491. bool truncate_page = false;
  492. trace_f2fs_truncate_blocks_enter(inode, from);
  493. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  494. if (free_from >= sbi->max_file_blocks)
  495. goto free_partial;
  496. if (lock)
  497. f2fs_lock_op(sbi);
  498. ipage = get_node_page(sbi, inode->i_ino);
  499. if (IS_ERR(ipage)) {
  500. err = PTR_ERR(ipage);
  501. goto out;
  502. }
  503. if (f2fs_has_inline_data(inode)) {
  504. truncate_inline_inode(inode, ipage, from);
  505. f2fs_put_page(ipage, 1);
  506. truncate_page = true;
  507. goto out;
  508. }
  509. set_new_dnode(&dn, inode, ipage, NULL, 0);
  510. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  511. if (err) {
  512. if (err == -ENOENT)
  513. goto free_next;
  514. goto out;
  515. }
  516. count = ADDRS_PER_PAGE(dn.node_page, inode);
  517. count -= dn.ofs_in_node;
  518. f2fs_bug_on(sbi, count < 0);
  519. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  520. truncate_data_blocks_range(&dn, count);
  521. free_from += count;
  522. }
  523. f2fs_put_dnode(&dn);
  524. free_next:
  525. err = truncate_inode_blocks(inode, free_from);
  526. out:
  527. if (lock)
  528. f2fs_unlock_op(sbi);
  529. free_partial:
  530. /* lastly zero out the first data page */
  531. if (!err)
  532. err = truncate_partial_data_page(inode, from, truncate_page);
  533. trace_f2fs_truncate_blocks_exit(inode, err);
  534. return err;
  535. }
  536. int f2fs_truncate(struct inode *inode)
  537. {
  538. int err;
  539. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  540. S_ISLNK(inode->i_mode)))
  541. return 0;
  542. trace_f2fs_truncate(inode);
  543. #ifdef CONFIG_F2FS_FAULT_INJECTION
  544. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  545. f2fs_show_injection_info(FAULT_TRUNCATE);
  546. return -EIO;
  547. }
  548. #endif
  549. /* we should check inline_data size */
  550. if (!f2fs_may_inline_data(inode)) {
  551. err = f2fs_convert_inline_inode(inode);
  552. if (err)
  553. return err;
  554. }
  555. err = truncate_blocks(inode, i_size_read(inode), true);
  556. if (err)
  557. return err;
  558. inode->i_mtime = inode->i_ctime = current_time(inode);
  559. f2fs_mark_inode_dirty_sync(inode, false);
  560. return 0;
  561. }
  562. int f2fs_getattr(const struct path *path, struct kstat *stat,
  563. u32 request_mask, unsigned int query_flags)
  564. {
  565. struct inode *inode = d_inode(path->dentry);
  566. struct f2fs_inode_info *fi = F2FS_I(inode);
  567. unsigned int flags;
  568. flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  569. if (flags & FS_APPEND_FL)
  570. stat->attributes |= STATX_ATTR_APPEND;
  571. if (flags & FS_COMPR_FL)
  572. stat->attributes |= STATX_ATTR_COMPRESSED;
  573. if (f2fs_encrypted_inode(inode))
  574. stat->attributes |= STATX_ATTR_ENCRYPTED;
  575. if (flags & FS_IMMUTABLE_FL)
  576. stat->attributes |= STATX_ATTR_IMMUTABLE;
  577. if (flags & FS_NODUMP_FL)
  578. stat->attributes |= STATX_ATTR_NODUMP;
  579. stat->attributes_mask |= (STATX_ATTR_APPEND |
  580. STATX_ATTR_COMPRESSED |
  581. STATX_ATTR_ENCRYPTED |
  582. STATX_ATTR_IMMUTABLE |
  583. STATX_ATTR_NODUMP);
  584. generic_fillattr(inode, stat);
  585. return 0;
  586. }
  587. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  588. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  589. {
  590. unsigned int ia_valid = attr->ia_valid;
  591. if (ia_valid & ATTR_UID)
  592. inode->i_uid = attr->ia_uid;
  593. if (ia_valid & ATTR_GID)
  594. inode->i_gid = attr->ia_gid;
  595. if (ia_valid & ATTR_ATIME)
  596. inode->i_atime = timespec_trunc(attr->ia_atime,
  597. inode->i_sb->s_time_gran);
  598. if (ia_valid & ATTR_MTIME)
  599. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  600. inode->i_sb->s_time_gran);
  601. if (ia_valid & ATTR_CTIME)
  602. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  603. inode->i_sb->s_time_gran);
  604. if (ia_valid & ATTR_MODE) {
  605. umode_t mode = attr->ia_mode;
  606. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  607. mode &= ~S_ISGID;
  608. set_acl_inode(inode, mode);
  609. }
  610. }
  611. #else
  612. #define __setattr_copy setattr_copy
  613. #endif
  614. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  615. {
  616. struct inode *inode = d_inode(dentry);
  617. int err;
  618. bool size_changed = false;
  619. err = setattr_prepare(dentry, attr);
  620. if (err)
  621. return err;
  622. if (is_quota_modification(inode, attr)) {
  623. err = dquot_initialize(inode);
  624. if (err)
  625. return err;
  626. }
  627. if ((attr->ia_valid & ATTR_UID &&
  628. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  629. (attr->ia_valid & ATTR_GID &&
  630. !gid_eq(attr->ia_gid, inode->i_gid))) {
  631. err = dquot_transfer(inode, attr);
  632. if (err)
  633. return err;
  634. }
  635. if (attr->ia_valid & ATTR_SIZE) {
  636. if (f2fs_encrypted_inode(inode)) {
  637. err = fscrypt_get_encryption_info(inode);
  638. if (err)
  639. return err;
  640. if (!fscrypt_has_encryption_key(inode))
  641. return -ENOKEY;
  642. }
  643. if (attr->ia_size <= i_size_read(inode)) {
  644. down_write(&F2FS_I(inode)->i_mmap_sem);
  645. truncate_setsize(inode, attr->ia_size);
  646. err = f2fs_truncate(inode);
  647. up_write(&F2FS_I(inode)->i_mmap_sem);
  648. if (err)
  649. return err;
  650. } else {
  651. /*
  652. * do not trim all blocks after i_size if target size is
  653. * larger than i_size.
  654. */
  655. down_write(&F2FS_I(inode)->i_mmap_sem);
  656. truncate_setsize(inode, attr->ia_size);
  657. up_write(&F2FS_I(inode)->i_mmap_sem);
  658. /* should convert inline inode here */
  659. if (!f2fs_may_inline_data(inode)) {
  660. err = f2fs_convert_inline_inode(inode);
  661. if (err)
  662. return err;
  663. }
  664. inode->i_mtime = inode->i_ctime = current_time(inode);
  665. }
  666. size_changed = true;
  667. }
  668. __setattr_copy(inode, attr);
  669. if (attr->ia_valid & ATTR_MODE) {
  670. err = posix_acl_chmod(inode, get_inode_mode(inode));
  671. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  672. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  673. clear_inode_flag(inode, FI_ACL_MODE);
  674. }
  675. }
  676. /* file size may changed here */
  677. f2fs_mark_inode_dirty_sync(inode, size_changed);
  678. /* inode change will produce dirty node pages flushed by checkpoint */
  679. f2fs_balance_fs(F2FS_I_SB(inode), true);
  680. return err;
  681. }
  682. const struct inode_operations f2fs_file_inode_operations = {
  683. .getattr = f2fs_getattr,
  684. .setattr = f2fs_setattr,
  685. .get_acl = f2fs_get_acl,
  686. .set_acl = f2fs_set_acl,
  687. #ifdef CONFIG_F2FS_FS_XATTR
  688. .listxattr = f2fs_listxattr,
  689. #endif
  690. .fiemap = f2fs_fiemap,
  691. };
  692. static int fill_zero(struct inode *inode, pgoff_t index,
  693. loff_t start, loff_t len)
  694. {
  695. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  696. struct page *page;
  697. if (!len)
  698. return 0;
  699. f2fs_balance_fs(sbi, true);
  700. f2fs_lock_op(sbi);
  701. page = get_new_data_page(inode, NULL, index, false);
  702. f2fs_unlock_op(sbi);
  703. if (IS_ERR(page))
  704. return PTR_ERR(page);
  705. f2fs_wait_on_page_writeback(page, DATA, true);
  706. zero_user(page, start, len);
  707. set_page_dirty(page);
  708. f2fs_put_page(page, 1);
  709. return 0;
  710. }
  711. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  712. {
  713. int err;
  714. while (pg_start < pg_end) {
  715. struct dnode_of_data dn;
  716. pgoff_t end_offset, count;
  717. set_new_dnode(&dn, inode, NULL, NULL, 0);
  718. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  719. if (err) {
  720. if (err == -ENOENT) {
  721. pg_start++;
  722. continue;
  723. }
  724. return err;
  725. }
  726. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  727. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  728. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  729. truncate_data_blocks_range(&dn, count);
  730. f2fs_put_dnode(&dn);
  731. pg_start += count;
  732. }
  733. return 0;
  734. }
  735. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  736. {
  737. pgoff_t pg_start, pg_end;
  738. loff_t off_start, off_end;
  739. int ret;
  740. ret = f2fs_convert_inline_inode(inode);
  741. if (ret)
  742. return ret;
  743. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  744. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  745. off_start = offset & (PAGE_SIZE - 1);
  746. off_end = (offset + len) & (PAGE_SIZE - 1);
  747. if (pg_start == pg_end) {
  748. ret = fill_zero(inode, pg_start, off_start,
  749. off_end - off_start);
  750. if (ret)
  751. return ret;
  752. } else {
  753. if (off_start) {
  754. ret = fill_zero(inode, pg_start++, off_start,
  755. PAGE_SIZE - off_start);
  756. if (ret)
  757. return ret;
  758. }
  759. if (off_end) {
  760. ret = fill_zero(inode, pg_end, 0, off_end);
  761. if (ret)
  762. return ret;
  763. }
  764. if (pg_start < pg_end) {
  765. struct address_space *mapping = inode->i_mapping;
  766. loff_t blk_start, blk_end;
  767. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  768. f2fs_balance_fs(sbi, true);
  769. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  770. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  771. down_write(&F2FS_I(inode)->i_mmap_sem);
  772. truncate_inode_pages_range(mapping, blk_start,
  773. blk_end - 1);
  774. f2fs_lock_op(sbi);
  775. ret = truncate_hole(inode, pg_start, pg_end);
  776. f2fs_unlock_op(sbi);
  777. up_write(&F2FS_I(inode)->i_mmap_sem);
  778. }
  779. }
  780. return ret;
  781. }
  782. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  783. int *do_replace, pgoff_t off, pgoff_t len)
  784. {
  785. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  786. struct dnode_of_data dn;
  787. int ret, done, i;
  788. next_dnode:
  789. set_new_dnode(&dn, inode, NULL, NULL, 0);
  790. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  791. if (ret && ret != -ENOENT) {
  792. return ret;
  793. } else if (ret == -ENOENT) {
  794. if (dn.max_level == 0)
  795. return -ENOENT;
  796. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  797. blkaddr += done;
  798. do_replace += done;
  799. goto next;
  800. }
  801. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  802. dn.ofs_in_node, len);
  803. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  804. *blkaddr = datablock_addr(dn.inode,
  805. dn.node_page, dn.ofs_in_node);
  806. if (!is_checkpointed_data(sbi, *blkaddr)) {
  807. if (test_opt(sbi, LFS)) {
  808. f2fs_put_dnode(&dn);
  809. return -ENOTSUPP;
  810. }
  811. /* do not invalidate this block address */
  812. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  813. *do_replace = 1;
  814. }
  815. }
  816. f2fs_put_dnode(&dn);
  817. next:
  818. len -= done;
  819. off += done;
  820. if (len)
  821. goto next_dnode;
  822. return 0;
  823. }
  824. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  825. int *do_replace, pgoff_t off, int len)
  826. {
  827. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  828. struct dnode_of_data dn;
  829. int ret, i;
  830. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  831. if (*do_replace == 0)
  832. continue;
  833. set_new_dnode(&dn, inode, NULL, NULL, 0);
  834. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  835. if (ret) {
  836. dec_valid_block_count(sbi, inode, 1);
  837. invalidate_blocks(sbi, *blkaddr);
  838. } else {
  839. f2fs_update_data_blkaddr(&dn, *blkaddr);
  840. }
  841. f2fs_put_dnode(&dn);
  842. }
  843. return 0;
  844. }
  845. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  846. block_t *blkaddr, int *do_replace,
  847. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  848. {
  849. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  850. pgoff_t i = 0;
  851. int ret;
  852. while (i < len) {
  853. if (blkaddr[i] == NULL_ADDR && !full) {
  854. i++;
  855. continue;
  856. }
  857. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  858. struct dnode_of_data dn;
  859. struct node_info ni;
  860. size_t new_size;
  861. pgoff_t ilen;
  862. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  863. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  864. if (ret)
  865. return ret;
  866. get_node_info(sbi, dn.nid, &ni);
  867. ilen = min((pgoff_t)
  868. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  869. dn.ofs_in_node, len - i);
  870. do {
  871. dn.data_blkaddr = datablock_addr(dn.inode,
  872. dn.node_page, dn.ofs_in_node);
  873. truncate_data_blocks_range(&dn, 1);
  874. if (do_replace[i]) {
  875. f2fs_i_blocks_write(src_inode,
  876. 1, false, false);
  877. f2fs_i_blocks_write(dst_inode,
  878. 1, true, false);
  879. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  880. blkaddr[i], ni.version, true, false);
  881. do_replace[i] = 0;
  882. }
  883. dn.ofs_in_node++;
  884. i++;
  885. new_size = (dst + i) << PAGE_SHIFT;
  886. if (dst_inode->i_size < new_size)
  887. f2fs_i_size_write(dst_inode, new_size);
  888. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  889. f2fs_put_dnode(&dn);
  890. } else {
  891. struct page *psrc, *pdst;
  892. psrc = get_lock_data_page(src_inode, src + i, true);
  893. if (IS_ERR(psrc))
  894. return PTR_ERR(psrc);
  895. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  896. true);
  897. if (IS_ERR(pdst)) {
  898. f2fs_put_page(psrc, 1);
  899. return PTR_ERR(pdst);
  900. }
  901. f2fs_copy_page(psrc, pdst);
  902. set_page_dirty(pdst);
  903. f2fs_put_page(pdst, 1);
  904. f2fs_put_page(psrc, 1);
  905. ret = truncate_hole(src_inode, src + i, src + i + 1);
  906. if (ret)
  907. return ret;
  908. i++;
  909. }
  910. }
  911. return 0;
  912. }
  913. static int __exchange_data_block(struct inode *src_inode,
  914. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  915. pgoff_t len, bool full)
  916. {
  917. block_t *src_blkaddr;
  918. int *do_replace;
  919. pgoff_t olen;
  920. int ret;
  921. while (len) {
  922. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  923. src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  924. if (!src_blkaddr)
  925. return -ENOMEM;
  926. do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  927. if (!do_replace) {
  928. kvfree(src_blkaddr);
  929. return -ENOMEM;
  930. }
  931. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  932. do_replace, src, olen);
  933. if (ret)
  934. goto roll_back;
  935. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  936. do_replace, src, dst, olen, full);
  937. if (ret)
  938. goto roll_back;
  939. src += olen;
  940. dst += olen;
  941. len -= olen;
  942. kvfree(src_blkaddr);
  943. kvfree(do_replace);
  944. }
  945. return 0;
  946. roll_back:
  947. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  948. kvfree(src_blkaddr);
  949. kvfree(do_replace);
  950. return ret;
  951. }
  952. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  953. {
  954. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  955. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  956. int ret;
  957. f2fs_balance_fs(sbi, true);
  958. f2fs_lock_op(sbi);
  959. f2fs_drop_extent_tree(inode);
  960. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  961. f2fs_unlock_op(sbi);
  962. return ret;
  963. }
  964. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  965. {
  966. pgoff_t pg_start, pg_end;
  967. loff_t new_size;
  968. int ret;
  969. if (offset + len >= i_size_read(inode))
  970. return -EINVAL;
  971. /* collapse range should be aligned to block size of f2fs. */
  972. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  973. return -EINVAL;
  974. ret = f2fs_convert_inline_inode(inode);
  975. if (ret)
  976. return ret;
  977. pg_start = offset >> PAGE_SHIFT;
  978. pg_end = (offset + len) >> PAGE_SHIFT;
  979. down_write(&F2FS_I(inode)->i_mmap_sem);
  980. /* write out all dirty pages from offset */
  981. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  982. if (ret)
  983. goto out;
  984. truncate_pagecache(inode, offset);
  985. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  986. if (ret)
  987. goto out;
  988. /* write out all moved pages, if possible */
  989. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  990. truncate_pagecache(inode, offset);
  991. new_size = i_size_read(inode) - len;
  992. truncate_pagecache(inode, new_size);
  993. ret = truncate_blocks(inode, new_size, true);
  994. if (!ret)
  995. f2fs_i_size_write(inode, new_size);
  996. out:
  997. up_write(&F2FS_I(inode)->i_mmap_sem);
  998. return ret;
  999. }
  1000. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1001. pgoff_t end)
  1002. {
  1003. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1004. pgoff_t index = start;
  1005. unsigned int ofs_in_node = dn->ofs_in_node;
  1006. blkcnt_t count = 0;
  1007. int ret;
  1008. for (; index < end; index++, dn->ofs_in_node++) {
  1009. if (datablock_addr(dn->inode, dn->node_page,
  1010. dn->ofs_in_node) == NULL_ADDR)
  1011. count++;
  1012. }
  1013. dn->ofs_in_node = ofs_in_node;
  1014. ret = reserve_new_blocks(dn, count);
  1015. if (ret)
  1016. return ret;
  1017. dn->ofs_in_node = ofs_in_node;
  1018. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1019. dn->data_blkaddr = datablock_addr(dn->inode,
  1020. dn->node_page, dn->ofs_in_node);
  1021. /*
  1022. * reserve_new_blocks will not guarantee entire block
  1023. * allocation.
  1024. */
  1025. if (dn->data_blkaddr == NULL_ADDR) {
  1026. ret = -ENOSPC;
  1027. break;
  1028. }
  1029. if (dn->data_blkaddr != NEW_ADDR) {
  1030. invalidate_blocks(sbi, dn->data_blkaddr);
  1031. dn->data_blkaddr = NEW_ADDR;
  1032. set_data_blkaddr(dn);
  1033. }
  1034. }
  1035. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1036. return ret;
  1037. }
  1038. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1039. int mode)
  1040. {
  1041. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1042. struct address_space *mapping = inode->i_mapping;
  1043. pgoff_t index, pg_start, pg_end;
  1044. loff_t new_size = i_size_read(inode);
  1045. loff_t off_start, off_end;
  1046. int ret = 0;
  1047. ret = inode_newsize_ok(inode, (len + offset));
  1048. if (ret)
  1049. return ret;
  1050. ret = f2fs_convert_inline_inode(inode);
  1051. if (ret)
  1052. return ret;
  1053. down_write(&F2FS_I(inode)->i_mmap_sem);
  1054. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1055. if (ret)
  1056. goto out_sem;
  1057. truncate_pagecache_range(inode, offset, offset + len - 1);
  1058. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1059. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1060. off_start = offset & (PAGE_SIZE - 1);
  1061. off_end = (offset + len) & (PAGE_SIZE - 1);
  1062. if (pg_start == pg_end) {
  1063. ret = fill_zero(inode, pg_start, off_start,
  1064. off_end - off_start);
  1065. if (ret)
  1066. goto out_sem;
  1067. new_size = max_t(loff_t, new_size, offset + len);
  1068. } else {
  1069. if (off_start) {
  1070. ret = fill_zero(inode, pg_start++, off_start,
  1071. PAGE_SIZE - off_start);
  1072. if (ret)
  1073. goto out_sem;
  1074. new_size = max_t(loff_t, new_size,
  1075. (loff_t)pg_start << PAGE_SHIFT);
  1076. }
  1077. for (index = pg_start; index < pg_end;) {
  1078. struct dnode_of_data dn;
  1079. unsigned int end_offset;
  1080. pgoff_t end;
  1081. f2fs_lock_op(sbi);
  1082. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1083. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1084. if (ret) {
  1085. f2fs_unlock_op(sbi);
  1086. goto out;
  1087. }
  1088. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1089. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1090. ret = f2fs_do_zero_range(&dn, index, end);
  1091. f2fs_put_dnode(&dn);
  1092. f2fs_unlock_op(sbi);
  1093. f2fs_balance_fs(sbi, dn.node_changed);
  1094. if (ret)
  1095. goto out;
  1096. index = end;
  1097. new_size = max_t(loff_t, new_size,
  1098. (loff_t)index << PAGE_SHIFT);
  1099. }
  1100. if (off_end) {
  1101. ret = fill_zero(inode, pg_end, 0, off_end);
  1102. if (ret)
  1103. goto out;
  1104. new_size = max_t(loff_t, new_size, offset + len);
  1105. }
  1106. }
  1107. out:
  1108. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1109. f2fs_i_size_write(inode, new_size);
  1110. out_sem:
  1111. up_write(&F2FS_I(inode)->i_mmap_sem);
  1112. return ret;
  1113. }
  1114. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1115. {
  1116. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1117. pgoff_t nr, pg_start, pg_end, delta, idx;
  1118. loff_t new_size;
  1119. int ret = 0;
  1120. new_size = i_size_read(inode) + len;
  1121. ret = inode_newsize_ok(inode, new_size);
  1122. if (ret)
  1123. return ret;
  1124. if (offset >= i_size_read(inode))
  1125. return -EINVAL;
  1126. /* insert range should be aligned to block size of f2fs. */
  1127. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1128. return -EINVAL;
  1129. ret = f2fs_convert_inline_inode(inode);
  1130. if (ret)
  1131. return ret;
  1132. f2fs_balance_fs(sbi, true);
  1133. down_write(&F2FS_I(inode)->i_mmap_sem);
  1134. ret = truncate_blocks(inode, i_size_read(inode), true);
  1135. if (ret)
  1136. goto out;
  1137. /* write out all dirty pages from offset */
  1138. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1139. if (ret)
  1140. goto out;
  1141. truncate_pagecache(inode, offset);
  1142. pg_start = offset >> PAGE_SHIFT;
  1143. pg_end = (offset + len) >> PAGE_SHIFT;
  1144. delta = pg_end - pg_start;
  1145. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1146. while (!ret && idx > pg_start) {
  1147. nr = idx - pg_start;
  1148. if (nr > delta)
  1149. nr = delta;
  1150. idx -= nr;
  1151. f2fs_lock_op(sbi);
  1152. f2fs_drop_extent_tree(inode);
  1153. ret = __exchange_data_block(inode, inode, idx,
  1154. idx + delta, nr, false);
  1155. f2fs_unlock_op(sbi);
  1156. }
  1157. /* write out all moved pages, if possible */
  1158. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1159. truncate_pagecache(inode, offset);
  1160. if (!ret)
  1161. f2fs_i_size_write(inode, new_size);
  1162. out:
  1163. up_write(&F2FS_I(inode)->i_mmap_sem);
  1164. return ret;
  1165. }
  1166. static int expand_inode_data(struct inode *inode, loff_t offset,
  1167. loff_t len, int mode)
  1168. {
  1169. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1170. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1171. pgoff_t pg_end;
  1172. loff_t new_size = i_size_read(inode);
  1173. loff_t off_end;
  1174. int err;
  1175. err = inode_newsize_ok(inode, (len + offset));
  1176. if (err)
  1177. return err;
  1178. err = f2fs_convert_inline_inode(inode);
  1179. if (err)
  1180. return err;
  1181. f2fs_balance_fs(sbi, true);
  1182. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1183. off_end = (offset + len) & (PAGE_SIZE - 1);
  1184. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1185. map.m_len = pg_end - map.m_lblk;
  1186. if (off_end)
  1187. map.m_len++;
  1188. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1189. if (err) {
  1190. pgoff_t last_off;
  1191. if (!map.m_len)
  1192. return err;
  1193. last_off = map.m_lblk + map.m_len - 1;
  1194. /* update new size to the failed position */
  1195. new_size = (last_off == pg_end) ? offset + len:
  1196. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1197. } else {
  1198. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1199. }
  1200. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1201. f2fs_i_size_write(inode, new_size);
  1202. return err;
  1203. }
  1204. static long f2fs_fallocate(struct file *file, int mode,
  1205. loff_t offset, loff_t len)
  1206. {
  1207. struct inode *inode = file_inode(file);
  1208. long ret = 0;
  1209. /* f2fs only support ->fallocate for regular file */
  1210. if (!S_ISREG(inode->i_mode))
  1211. return -EINVAL;
  1212. if (f2fs_encrypted_inode(inode) &&
  1213. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1214. return -EOPNOTSUPP;
  1215. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1216. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1217. FALLOC_FL_INSERT_RANGE))
  1218. return -EOPNOTSUPP;
  1219. inode_lock(inode);
  1220. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1221. if (offset >= inode->i_size)
  1222. goto out;
  1223. ret = punch_hole(inode, offset, len);
  1224. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1225. ret = f2fs_collapse_range(inode, offset, len);
  1226. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1227. ret = f2fs_zero_range(inode, offset, len, mode);
  1228. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1229. ret = f2fs_insert_range(inode, offset, len);
  1230. } else {
  1231. ret = expand_inode_data(inode, offset, len, mode);
  1232. }
  1233. if (!ret) {
  1234. inode->i_mtime = inode->i_ctime = current_time(inode);
  1235. f2fs_mark_inode_dirty_sync(inode, false);
  1236. if (mode & FALLOC_FL_KEEP_SIZE)
  1237. file_set_keep_isize(inode);
  1238. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1239. }
  1240. out:
  1241. inode_unlock(inode);
  1242. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1243. return ret;
  1244. }
  1245. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1246. {
  1247. /*
  1248. * f2fs_relase_file is called at every close calls. So we should
  1249. * not drop any inmemory pages by close called by other process.
  1250. */
  1251. if (!(filp->f_mode & FMODE_WRITE) ||
  1252. atomic_read(&inode->i_writecount) != 1)
  1253. return 0;
  1254. /* some remained atomic pages should discarded */
  1255. if (f2fs_is_atomic_file(inode))
  1256. drop_inmem_pages(inode);
  1257. if (f2fs_is_volatile_file(inode)) {
  1258. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1259. stat_dec_volatile_write(inode);
  1260. set_inode_flag(inode, FI_DROP_CACHE);
  1261. filemap_fdatawrite(inode->i_mapping);
  1262. clear_inode_flag(inode, FI_DROP_CACHE);
  1263. }
  1264. return 0;
  1265. }
  1266. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1267. {
  1268. struct inode *inode = file_inode(file);
  1269. /*
  1270. * If the process doing a transaction is crashed, we should do
  1271. * roll-back. Otherwise, other reader/write can see corrupted database
  1272. * until all the writers close its file. Since this should be done
  1273. * before dropping file lock, it needs to do in ->flush.
  1274. */
  1275. if (f2fs_is_atomic_file(inode) &&
  1276. F2FS_I(inode)->inmem_task == current)
  1277. drop_inmem_pages(inode);
  1278. return 0;
  1279. }
  1280. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1281. {
  1282. struct inode *inode = file_inode(filp);
  1283. struct f2fs_inode_info *fi = F2FS_I(inode);
  1284. unsigned int flags = fi->i_flags &
  1285. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  1286. return put_user(flags, (int __user *)arg);
  1287. }
  1288. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1289. {
  1290. struct f2fs_inode_info *fi = F2FS_I(inode);
  1291. unsigned int oldflags;
  1292. /* Is it quota file? Do not allow user to mess with it */
  1293. if (IS_NOQUOTA(inode))
  1294. return -EPERM;
  1295. flags = f2fs_mask_flags(inode->i_mode, flags);
  1296. oldflags = fi->i_flags;
  1297. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
  1298. if (!capable(CAP_LINUX_IMMUTABLE))
  1299. return -EPERM;
  1300. flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1301. flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1302. fi->i_flags = flags;
  1303. if (fi->i_flags & FS_PROJINHERIT_FL)
  1304. set_inode_flag(inode, FI_PROJ_INHERIT);
  1305. else
  1306. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1307. inode->i_ctime = current_time(inode);
  1308. f2fs_set_inode_flags(inode);
  1309. f2fs_mark_inode_dirty_sync(inode, false);
  1310. return 0;
  1311. }
  1312. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1313. {
  1314. struct inode *inode = file_inode(filp);
  1315. unsigned int flags;
  1316. int ret;
  1317. if (!inode_owner_or_capable(inode))
  1318. return -EACCES;
  1319. if (get_user(flags, (int __user *)arg))
  1320. return -EFAULT;
  1321. ret = mnt_want_write_file(filp);
  1322. if (ret)
  1323. return ret;
  1324. inode_lock(inode);
  1325. ret = __f2fs_ioc_setflags(inode, flags);
  1326. inode_unlock(inode);
  1327. mnt_drop_write_file(filp);
  1328. return ret;
  1329. }
  1330. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1331. {
  1332. struct inode *inode = file_inode(filp);
  1333. return put_user(inode->i_generation, (int __user *)arg);
  1334. }
  1335. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1336. {
  1337. struct inode *inode = file_inode(filp);
  1338. int ret;
  1339. if (!inode_owner_or_capable(inode))
  1340. return -EACCES;
  1341. if (!S_ISREG(inode->i_mode))
  1342. return -EINVAL;
  1343. ret = mnt_want_write_file(filp);
  1344. if (ret)
  1345. return ret;
  1346. inode_lock(inode);
  1347. if (f2fs_is_atomic_file(inode))
  1348. goto out;
  1349. ret = f2fs_convert_inline_inode(inode);
  1350. if (ret)
  1351. goto out;
  1352. set_inode_flag(inode, FI_ATOMIC_FILE);
  1353. set_inode_flag(inode, FI_HOT_DATA);
  1354. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1355. if (!get_dirty_pages(inode))
  1356. goto inc_stat;
  1357. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1358. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1359. inode->i_ino, get_dirty_pages(inode));
  1360. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1361. if (ret) {
  1362. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1363. clear_inode_flag(inode, FI_HOT_DATA);
  1364. goto out;
  1365. }
  1366. inc_stat:
  1367. F2FS_I(inode)->inmem_task = current;
  1368. stat_inc_atomic_write(inode);
  1369. stat_update_max_atomic_write(inode);
  1370. out:
  1371. inode_unlock(inode);
  1372. mnt_drop_write_file(filp);
  1373. return ret;
  1374. }
  1375. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1376. {
  1377. struct inode *inode = file_inode(filp);
  1378. int ret;
  1379. if (!inode_owner_or_capable(inode))
  1380. return -EACCES;
  1381. ret = mnt_want_write_file(filp);
  1382. if (ret)
  1383. return ret;
  1384. inode_lock(inode);
  1385. if (f2fs_is_volatile_file(inode))
  1386. goto err_out;
  1387. if (f2fs_is_atomic_file(inode)) {
  1388. ret = commit_inmem_pages(inode);
  1389. if (ret)
  1390. goto err_out;
  1391. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1392. if (!ret) {
  1393. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1394. clear_inode_flag(inode, FI_HOT_DATA);
  1395. stat_dec_atomic_write(inode);
  1396. }
  1397. } else {
  1398. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1399. }
  1400. err_out:
  1401. inode_unlock(inode);
  1402. mnt_drop_write_file(filp);
  1403. return ret;
  1404. }
  1405. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1406. {
  1407. struct inode *inode = file_inode(filp);
  1408. int ret;
  1409. if (!inode_owner_or_capable(inode))
  1410. return -EACCES;
  1411. if (!S_ISREG(inode->i_mode))
  1412. return -EINVAL;
  1413. ret = mnt_want_write_file(filp);
  1414. if (ret)
  1415. return ret;
  1416. inode_lock(inode);
  1417. if (f2fs_is_volatile_file(inode))
  1418. goto out;
  1419. ret = f2fs_convert_inline_inode(inode);
  1420. if (ret)
  1421. goto out;
  1422. stat_inc_volatile_write(inode);
  1423. stat_update_max_volatile_write(inode);
  1424. set_inode_flag(inode, FI_VOLATILE_FILE);
  1425. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1426. out:
  1427. inode_unlock(inode);
  1428. mnt_drop_write_file(filp);
  1429. return ret;
  1430. }
  1431. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1432. {
  1433. struct inode *inode = file_inode(filp);
  1434. int ret;
  1435. if (!inode_owner_or_capable(inode))
  1436. return -EACCES;
  1437. ret = mnt_want_write_file(filp);
  1438. if (ret)
  1439. return ret;
  1440. inode_lock(inode);
  1441. if (!f2fs_is_volatile_file(inode))
  1442. goto out;
  1443. if (!f2fs_is_first_block_written(inode)) {
  1444. ret = truncate_partial_data_page(inode, 0, true);
  1445. goto out;
  1446. }
  1447. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1448. out:
  1449. inode_unlock(inode);
  1450. mnt_drop_write_file(filp);
  1451. return ret;
  1452. }
  1453. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1454. {
  1455. struct inode *inode = file_inode(filp);
  1456. int ret;
  1457. if (!inode_owner_or_capable(inode))
  1458. return -EACCES;
  1459. ret = mnt_want_write_file(filp);
  1460. if (ret)
  1461. return ret;
  1462. inode_lock(inode);
  1463. if (f2fs_is_atomic_file(inode))
  1464. drop_inmem_pages(inode);
  1465. if (f2fs_is_volatile_file(inode)) {
  1466. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1467. stat_dec_volatile_write(inode);
  1468. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1469. }
  1470. inode_unlock(inode);
  1471. mnt_drop_write_file(filp);
  1472. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1473. return ret;
  1474. }
  1475. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1476. {
  1477. struct inode *inode = file_inode(filp);
  1478. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1479. struct super_block *sb = sbi->sb;
  1480. __u32 in;
  1481. int ret;
  1482. if (!capable(CAP_SYS_ADMIN))
  1483. return -EPERM;
  1484. if (get_user(in, (__u32 __user *)arg))
  1485. return -EFAULT;
  1486. ret = mnt_want_write_file(filp);
  1487. if (ret)
  1488. return ret;
  1489. switch (in) {
  1490. case F2FS_GOING_DOWN_FULLSYNC:
  1491. sb = freeze_bdev(sb->s_bdev);
  1492. if (sb && !IS_ERR(sb)) {
  1493. f2fs_stop_checkpoint(sbi, false);
  1494. thaw_bdev(sb->s_bdev, sb);
  1495. }
  1496. break;
  1497. case F2FS_GOING_DOWN_METASYNC:
  1498. /* do checkpoint only */
  1499. f2fs_sync_fs(sb, 1);
  1500. f2fs_stop_checkpoint(sbi, false);
  1501. break;
  1502. case F2FS_GOING_DOWN_NOSYNC:
  1503. f2fs_stop_checkpoint(sbi, false);
  1504. break;
  1505. case F2FS_GOING_DOWN_METAFLUSH:
  1506. sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1507. f2fs_stop_checkpoint(sbi, false);
  1508. break;
  1509. default:
  1510. ret = -EINVAL;
  1511. goto out;
  1512. }
  1513. f2fs_update_time(sbi, REQ_TIME);
  1514. out:
  1515. mnt_drop_write_file(filp);
  1516. return ret;
  1517. }
  1518. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1519. {
  1520. struct inode *inode = file_inode(filp);
  1521. struct super_block *sb = inode->i_sb;
  1522. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1523. struct fstrim_range range;
  1524. int ret;
  1525. if (!capable(CAP_SYS_ADMIN))
  1526. return -EPERM;
  1527. if (!blk_queue_discard(q))
  1528. return -EOPNOTSUPP;
  1529. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1530. sizeof(range)))
  1531. return -EFAULT;
  1532. ret = mnt_want_write_file(filp);
  1533. if (ret)
  1534. return ret;
  1535. range.minlen = max((unsigned int)range.minlen,
  1536. q->limits.discard_granularity);
  1537. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1538. mnt_drop_write_file(filp);
  1539. if (ret < 0)
  1540. return ret;
  1541. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1542. sizeof(range)))
  1543. return -EFAULT;
  1544. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1545. return 0;
  1546. }
  1547. static bool uuid_is_nonzero(__u8 u[16])
  1548. {
  1549. int i;
  1550. for (i = 0; i < 16; i++)
  1551. if (u[i])
  1552. return true;
  1553. return false;
  1554. }
  1555. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1556. {
  1557. struct inode *inode = file_inode(filp);
  1558. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1559. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1560. }
  1561. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1562. {
  1563. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1564. }
  1565. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1566. {
  1567. struct inode *inode = file_inode(filp);
  1568. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1569. int err;
  1570. if (!f2fs_sb_has_crypto(inode->i_sb))
  1571. return -EOPNOTSUPP;
  1572. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1573. goto got_it;
  1574. err = mnt_want_write_file(filp);
  1575. if (err)
  1576. return err;
  1577. /* update superblock with uuid */
  1578. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1579. err = f2fs_commit_super(sbi, false);
  1580. if (err) {
  1581. /* undo new data */
  1582. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1583. mnt_drop_write_file(filp);
  1584. return err;
  1585. }
  1586. mnt_drop_write_file(filp);
  1587. got_it:
  1588. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1589. 16))
  1590. return -EFAULT;
  1591. return 0;
  1592. }
  1593. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1594. {
  1595. struct inode *inode = file_inode(filp);
  1596. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1597. __u32 sync;
  1598. int ret;
  1599. if (!capable(CAP_SYS_ADMIN))
  1600. return -EPERM;
  1601. if (get_user(sync, (__u32 __user *)arg))
  1602. return -EFAULT;
  1603. if (f2fs_readonly(sbi->sb))
  1604. return -EROFS;
  1605. ret = mnt_want_write_file(filp);
  1606. if (ret)
  1607. return ret;
  1608. if (!sync) {
  1609. if (!mutex_trylock(&sbi->gc_mutex)) {
  1610. ret = -EBUSY;
  1611. goto out;
  1612. }
  1613. } else {
  1614. mutex_lock(&sbi->gc_mutex);
  1615. }
  1616. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1617. out:
  1618. mnt_drop_write_file(filp);
  1619. return ret;
  1620. }
  1621. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1622. {
  1623. struct inode *inode = file_inode(filp);
  1624. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1625. struct f2fs_gc_range range;
  1626. u64 end;
  1627. int ret;
  1628. if (!capable(CAP_SYS_ADMIN))
  1629. return -EPERM;
  1630. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1631. sizeof(range)))
  1632. return -EFAULT;
  1633. if (f2fs_readonly(sbi->sb))
  1634. return -EROFS;
  1635. ret = mnt_want_write_file(filp);
  1636. if (ret)
  1637. return ret;
  1638. end = range.start + range.len;
  1639. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
  1640. return -EINVAL;
  1641. do_more:
  1642. if (!range.sync) {
  1643. if (!mutex_trylock(&sbi->gc_mutex)) {
  1644. ret = -EBUSY;
  1645. goto out;
  1646. }
  1647. } else {
  1648. mutex_lock(&sbi->gc_mutex);
  1649. }
  1650. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1651. range.start += sbi->blocks_per_seg;
  1652. if (range.start <= end)
  1653. goto do_more;
  1654. out:
  1655. mnt_drop_write_file(filp);
  1656. return ret;
  1657. }
  1658. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1659. {
  1660. struct inode *inode = file_inode(filp);
  1661. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1662. int ret;
  1663. if (!capable(CAP_SYS_ADMIN))
  1664. return -EPERM;
  1665. if (f2fs_readonly(sbi->sb))
  1666. return -EROFS;
  1667. ret = mnt_want_write_file(filp);
  1668. if (ret)
  1669. return ret;
  1670. ret = f2fs_sync_fs(sbi->sb, 1);
  1671. mnt_drop_write_file(filp);
  1672. return ret;
  1673. }
  1674. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1675. struct file *filp,
  1676. struct f2fs_defragment *range)
  1677. {
  1678. struct inode *inode = file_inode(filp);
  1679. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1680. struct extent_info ei = {0,0,0};
  1681. pgoff_t pg_start, pg_end;
  1682. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1683. unsigned int total = 0, sec_num;
  1684. block_t blk_end = 0;
  1685. bool fragmented = false;
  1686. int err;
  1687. /* if in-place-update policy is enabled, don't waste time here */
  1688. if (need_inplace_update_policy(inode, NULL))
  1689. return -EINVAL;
  1690. pg_start = range->start >> PAGE_SHIFT;
  1691. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1692. f2fs_balance_fs(sbi, true);
  1693. inode_lock(inode);
  1694. /* writeback all dirty pages in the range */
  1695. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1696. range->start + range->len - 1);
  1697. if (err)
  1698. goto out;
  1699. /*
  1700. * lookup mapping info in extent cache, skip defragmenting if physical
  1701. * block addresses are continuous.
  1702. */
  1703. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1704. if (ei.fofs + ei.len >= pg_end)
  1705. goto out;
  1706. }
  1707. map.m_lblk = pg_start;
  1708. /*
  1709. * lookup mapping info in dnode page cache, skip defragmenting if all
  1710. * physical block addresses are continuous even if there are hole(s)
  1711. * in logical blocks.
  1712. */
  1713. while (map.m_lblk < pg_end) {
  1714. map.m_len = pg_end - map.m_lblk;
  1715. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1716. if (err)
  1717. goto out;
  1718. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1719. map.m_lblk++;
  1720. continue;
  1721. }
  1722. if (blk_end && blk_end != map.m_pblk) {
  1723. fragmented = true;
  1724. break;
  1725. }
  1726. blk_end = map.m_pblk + map.m_len;
  1727. map.m_lblk += map.m_len;
  1728. }
  1729. if (!fragmented)
  1730. goto out;
  1731. map.m_lblk = pg_start;
  1732. map.m_len = pg_end - pg_start;
  1733. sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1734. /*
  1735. * make sure there are enough free section for LFS allocation, this can
  1736. * avoid defragment running in SSR mode when free section are allocated
  1737. * intensively
  1738. */
  1739. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1740. err = -EAGAIN;
  1741. goto out;
  1742. }
  1743. while (map.m_lblk < pg_end) {
  1744. pgoff_t idx;
  1745. int cnt = 0;
  1746. do_map:
  1747. map.m_len = pg_end - map.m_lblk;
  1748. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1749. if (err)
  1750. goto clear_out;
  1751. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1752. map.m_lblk++;
  1753. continue;
  1754. }
  1755. set_inode_flag(inode, FI_DO_DEFRAG);
  1756. idx = map.m_lblk;
  1757. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1758. struct page *page;
  1759. page = get_lock_data_page(inode, idx, true);
  1760. if (IS_ERR(page)) {
  1761. err = PTR_ERR(page);
  1762. goto clear_out;
  1763. }
  1764. set_page_dirty(page);
  1765. f2fs_put_page(page, 1);
  1766. idx++;
  1767. cnt++;
  1768. total++;
  1769. }
  1770. map.m_lblk = idx;
  1771. if (idx < pg_end && cnt < blk_per_seg)
  1772. goto do_map;
  1773. clear_inode_flag(inode, FI_DO_DEFRAG);
  1774. err = filemap_fdatawrite(inode->i_mapping);
  1775. if (err)
  1776. goto out;
  1777. }
  1778. clear_out:
  1779. clear_inode_flag(inode, FI_DO_DEFRAG);
  1780. out:
  1781. inode_unlock(inode);
  1782. if (!err)
  1783. range->len = (u64)total << PAGE_SHIFT;
  1784. return err;
  1785. }
  1786. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1787. {
  1788. struct inode *inode = file_inode(filp);
  1789. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1790. struct f2fs_defragment range;
  1791. int err;
  1792. if (!capable(CAP_SYS_ADMIN))
  1793. return -EPERM;
  1794. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1795. return -EINVAL;
  1796. if (f2fs_readonly(sbi->sb))
  1797. return -EROFS;
  1798. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1799. sizeof(range)))
  1800. return -EFAULT;
  1801. /* verify alignment of offset & size */
  1802. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1803. return -EINVAL;
  1804. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1805. sbi->max_file_blocks))
  1806. return -EINVAL;
  1807. err = mnt_want_write_file(filp);
  1808. if (err)
  1809. return err;
  1810. err = f2fs_defragment_range(sbi, filp, &range);
  1811. mnt_drop_write_file(filp);
  1812. f2fs_update_time(sbi, REQ_TIME);
  1813. if (err < 0)
  1814. return err;
  1815. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1816. sizeof(range)))
  1817. return -EFAULT;
  1818. return 0;
  1819. }
  1820. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1821. struct file *file_out, loff_t pos_out, size_t len)
  1822. {
  1823. struct inode *src = file_inode(file_in);
  1824. struct inode *dst = file_inode(file_out);
  1825. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1826. size_t olen = len, dst_max_i_size = 0;
  1827. size_t dst_osize;
  1828. int ret;
  1829. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1830. src->i_sb != dst->i_sb)
  1831. return -EXDEV;
  1832. if (unlikely(f2fs_readonly(src->i_sb)))
  1833. return -EROFS;
  1834. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1835. return -EINVAL;
  1836. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1837. return -EOPNOTSUPP;
  1838. if (src == dst) {
  1839. if (pos_in == pos_out)
  1840. return 0;
  1841. if (pos_out > pos_in && pos_out < pos_in + len)
  1842. return -EINVAL;
  1843. }
  1844. inode_lock(src);
  1845. if (src != dst) {
  1846. if (!inode_trylock(dst)) {
  1847. ret = -EBUSY;
  1848. goto out;
  1849. }
  1850. }
  1851. ret = -EINVAL;
  1852. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1853. goto out_unlock;
  1854. if (len == 0)
  1855. olen = len = src->i_size - pos_in;
  1856. if (pos_in + len == src->i_size)
  1857. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1858. if (len == 0) {
  1859. ret = 0;
  1860. goto out_unlock;
  1861. }
  1862. dst_osize = dst->i_size;
  1863. if (pos_out + olen > dst->i_size)
  1864. dst_max_i_size = pos_out + olen;
  1865. /* verify the end result is block aligned */
  1866. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1867. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1868. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1869. goto out_unlock;
  1870. ret = f2fs_convert_inline_inode(src);
  1871. if (ret)
  1872. goto out_unlock;
  1873. ret = f2fs_convert_inline_inode(dst);
  1874. if (ret)
  1875. goto out_unlock;
  1876. /* write out all dirty pages from offset */
  1877. ret = filemap_write_and_wait_range(src->i_mapping,
  1878. pos_in, pos_in + len);
  1879. if (ret)
  1880. goto out_unlock;
  1881. ret = filemap_write_and_wait_range(dst->i_mapping,
  1882. pos_out, pos_out + len);
  1883. if (ret)
  1884. goto out_unlock;
  1885. f2fs_balance_fs(sbi, true);
  1886. f2fs_lock_op(sbi);
  1887. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1888. pos_out >> F2FS_BLKSIZE_BITS,
  1889. len >> F2FS_BLKSIZE_BITS, false);
  1890. if (!ret) {
  1891. if (dst_max_i_size)
  1892. f2fs_i_size_write(dst, dst_max_i_size);
  1893. else if (dst_osize != dst->i_size)
  1894. f2fs_i_size_write(dst, dst_osize);
  1895. }
  1896. f2fs_unlock_op(sbi);
  1897. out_unlock:
  1898. if (src != dst)
  1899. inode_unlock(dst);
  1900. out:
  1901. inode_unlock(src);
  1902. return ret;
  1903. }
  1904. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1905. {
  1906. struct f2fs_move_range range;
  1907. struct fd dst;
  1908. int err;
  1909. if (!(filp->f_mode & FMODE_READ) ||
  1910. !(filp->f_mode & FMODE_WRITE))
  1911. return -EBADF;
  1912. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1913. sizeof(range)))
  1914. return -EFAULT;
  1915. dst = fdget(range.dst_fd);
  1916. if (!dst.file)
  1917. return -EBADF;
  1918. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1919. err = -EBADF;
  1920. goto err_out;
  1921. }
  1922. err = mnt_want_write_file(filp);
  1923. if (err)
  1924. goto err_out;
  1925. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1926. range.pos_out, range.len);
  1927. mnt_drop_write_file(filp);
  1928. if (err)
  1929. goto err_out;
  1930. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1931. &range, sizeof(range)))
  1932. err = -EFAULT;
  1933. err_out:
  1934. fdput(dst);
  1935. return err;
  1936. }
  1937. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  1938. {
  1939. struct inode *inode = file_inode(filp);
  1940. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1941. struct sit_info *sm = SIT_I(sbi);
  1942. unsigned int start_segno = 0, end_segno = 0;
  1943. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  1944. struct f2fs_flush_device range;
  1945. int ret;
  1946. if (!capable(CAP_SYS_ADMIN))
  1947. return -EPERM;
  1948. if (f2fs_readonly(sbi->sb))
  1949. return -EROFS;
  1950. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  1951. sizeof(range)))
  1952. return -EFAULT;
  1953. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  1954. sbi->segs_per_sec != 1) {
  1955. f2fs_msg(sbi->sb, KERN_WARNING,
  1956. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  1957. range.dev_num, sbi->s_ndevs,
  1958. sbi->segs_per_sec);
  1959. return -EINVAL;
  1960. }
  1961. ret = mnt_want_write_file(filp);
  1962. if (ret)
  1963. return ret;
  1964. if (range.dev_num != 0)
  1965. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  1966. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  1967. start_segno = sm->last_victim[FLUSH_DEVICE];
  1968. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  1969. start_segno = dev_start_segno;
  1970. end_segno = min(start_segno + range.segments, dev_end_segno);
  1971. while (start_segno < end_segno) {
  1972. if (!mutex_trylock(&sbi->gc_mutex)) {
  1973. ret = -EBUSY;
  1974. goto out;
  1975. }
  1976. sm->last_victim[GC_CB] = end_segno + 1;
  1977. sm->last_victim[GC_GREEDY] = end_segno + 1;
  1978. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  1979. ret = f2fs_gc(sbi, true, true, start_segno);
  1980. if (ret == -EAGAIN)
  1981. ret = 0;
  1982. else if (ret < 0)
  1983. break;
  1984. start_segno++;
  1985. }
  1986. out:
  1987. mnt_drop_write_file(filp);
  1988. return ret;
  1989. }
  1990. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  1991. {
  1992. struct inode *inode = file_inode(filp);
  1993. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  1994. /* Must validate to set it with SQLite behavior in Android. */
  1995. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  1996. return put_user(sb_feature, (u32 __user *)arg);
  1997. }
  1998. #ifdef CONFIG_QUOTA
  1999. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2000. {
  2001. struct inode *inode = file_inode(filp);
  2002. struct f2fs_inode_info *fi = F2FS_I(inode);
  2003. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2004. struct super_block *sb = sbi->sb;
  2005. struct dquot *transfer_to[MAXQUOTAS] = {};
  2006. struct page *ipage;
  2007. kprojid_t kprojid;
  2008. int err;
  2009. if (!f2fs_sb_has_project_quota(sb)) {
  2010. if (projid != F2FS_DEF_PROJID)
  2011. return -EOPNOTSUPP;
  2012. else
  2013. return 0;
  2014. }
  2015. if (!f2fs_has_extra_attr(inode))
  2016. return -EOPNOTSUPP;
  2017. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2018. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2019. return 0;
  2020. err = mnt_want_write_file(filp);
  2021. if (err)
  2022. return err;
  2023. err = -EPERM;
  2024. inode_lock(inode);
  2025. /* Is it quota file? Do not allow user to mess with it */
  2026. if (IS_NOQUOTA(inode))
  2027. goto out_unlock;
  2028. ipage = get_node_page(sbi, inode->i_ino);
  2029. if (IS_ERR(ipage)) {
  2030. err = PTR_ERR(ipage);
  2031. goto out_unlock;
  2032. }
  2033. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2034. i_projid)) {
  2035. err = -EOVERFLOW;
  2036. f2fs_put_page(ipage, 1);
  2037. goto out_unlock;
  2038. }
  2039. f2fs_put_page(ipage, 1);
  2040. dquot_initialize(inode);
  2041. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2042. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2043. err = __dquot_transfer(inode, transfer_to);
  2044. dqput(transfer_to[PRJQUOTA]);
  2045. if (err)
  2046. goto out_dirty;
  2047. }
  2048. F2FS_I(inode)->i_projid = kprojid;
  2049. inode->i_ctime = current_time(inode);
  2050. out_dirty:
  2051. f2fs_mark_inode_dirty_sync(inode, true);
  2052. out_unlock:
  2053. inode_unlock(inode);
  2054. mnt_drop_write_file(filp);
  2055. return err;
  2056. }
  2057. #else
  2058. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2059. {
  2060. if (projid != F2FS_DEF_PROJID)
  2061. return -EOPNOTSUPP;
  2062. return 0;
  2063. }
  2064. #endif
  2065. /* Transfer internal flags to xflags */
  2066. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2067. {
  2068. __u32 xflags = 0;
  2069. if (iflags & FS_SYNC_FL)
  2070. xflags |= FS_XFLAG_SYNC;
  2071. if (iflags & FS_IMMUTABLE_FL)
  2072. xflags |= FS_XFLAG_IMMUTABLE;
  2073. if (iflags & FS_APPEND_FL)
  2074. xflags |= FS_XFLAG_APPEND;
  2075. if (iflags & FS_NODUMP_FL)
  2076. xflags |= FS_XFLAG_NODUMP;
  2077. if (iflags & FS_NOATIME_FL)
  2078. xflags |= FS_XFLAG_NOATIME;
  2079. if (iflags & FS_PROJINHERIT_FL)
  2080. xflags |= FS_XFLAG_PROJINHERIT;
  2081. return xflags;
  2082. }
  2083. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2084. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2085. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2086. /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
  2087. #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
  2088. FS_IMMUTABLE_FL | \
  2089. FS_APPEND_FL | \
  2090. FS_NODUMP_FL | \
  2091. FS_NOATIME_FL | \
  2092. FS_PROJINHERIT_FL)
  2093. /* Transfer xflags flags to internal */
  2094. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2095. {
  2096. unsigned long iflags = 0;
  2097. if (xflags & FS_XFLAG_SYNC)
  2098. iflags |= FS_SYNC_FL;
  2099. if (xflags & FS_XFLAG_IMMUTABLE)
  2100. iflags |= FS_IMMUTABLE_FL;
  2101. if (xflags & FS_XFLAG_APPEND)
  2102. iflags |= FS_APPEND_FL;
  2103. if (xflags & FS_XFLAG_NODUMP)
  2104. iflags |= FS_NODUMP_FL;
  2105. if (xflags & FS_XFLAG_NOATIME)
  2106. iflags |= FS_NOATIME_FL;
  2107. if (xflags & FS_XFLAG_PROJINHERIT)
  2108. iflags |= FS_PROJINHERIT_FL;
  2109. return iflags;
  2110. }
  2111. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2112. {
  2113. struct inode *inode = file_inode(filp);
  2114. struct f2fs_inode_info *fi = F2FS_I(inode);
  2115. struct fsxattr fa;
  2116. memset(&fa, 0, sizeof(struct fsxattr));
  2117. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2118. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
  2119. if (f2fs_sb_has_project_quota(inode->i_sb))
  2120. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2121. fi->i_projid);
  2122. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2123. return -EFAULT;
  2124. return 0;
  2125. }
  2126. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2127. {
  2128. struct inode *inode = file_inode(filp);
  2129. struct f2fs_inode_info *fi = F2FS_I(inode);
  2130. struct fsxattr fa;
  2131. unsigned int flags;
  2132. int err;
  2133. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2134. return -EFAULT;
  2135. /* Make sure caller has proper permission */
  2136. if (!inode_owner_or_capable(inode))
  2137. return -EACCES;
  2138. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2139. return -EOPNOTSUPP;
  2140. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2141. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2142. return -EOPNOTSUPP;
  2143. err = mnt_want_write_file(filp);
  2144. if (err)
  2145. return err;
  2146. inode_lock(inode);
  2147. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2148. (flags & F2FS_FL_XFLAG_VISIBLE);
  2149. err = __f2fs_ioc_setflags(inode, flags);
  2150. inode_unlock(inode);
  2151. mnt_drop_write_file(filp);
  2152. if (err)
  2153. return err;
  2154. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2155. if (err)
  2156. return err;
  2157. return 0;
  2158. }
  2159. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2160. {
  2161. switch (cmd) {
  2162. case F2FS_IOC_GETFLAGS:
  2163. return f2fs_ioc_getflags(filp, arg);
  2164. case F2FS_IOC_SETFLAGS:
  2165. return f2fs_ioc_setflags(filp, arg);
  2166. case F2FS_IOC_GETVERSION:
  2167. return f2fs_ioc_getversion(filp, arg);
  2168. case F2FS_IOC_START_ATOMIC_WRITE:
  2169. return f2fs_ioc_start_atomic_write(filp);
  2170. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2171. return f2fs_ioc_commit_atomic_write(filp);
  2172. case F2FS_IOC_START_VOLATILE_WRITE:
  2173. return f2fs_ioc_start_volatile_write(filp);
  2174. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2175. return f2fs_ioc_release_volatile_write(filp);
  2176. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2177. return f2fs_ioc_abort_volatile_write(filp);
  2178. case F2FS_IOC_SHUTDOWN:
  2179. return f2fs_ioc_shutdown(filp, arg);
  2180. case FITRIM:
  2181. return f2fs_ioc_fitrim(filp, arg);
  2182. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2183. return f2fs_ioc_set_encryption_policy(filp, arg);
  2184. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2185. return f2fs_ioc_get_encryption_policy(filp, arg);
  2186. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2187. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2188. case F2FS_IOC_GARBAGE_COLLECT:
  2189. return f2fs_ioc_gc(filp, arg);
  2190. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2191. return f2fs_ioc_gc_range(filp, arg);
  2192. case F2FS_IOC_WRITE_CHECKPOINT:
  2193. return f2fs_ioc_write_checkpoint(filp, arg);
  2194. case F2FS_IOC_DEFRAGMENT:
  2195. return f2fs_ioc_defragment(filp, arg);
  2196. case F2FS_IOC_MOVE_RANGE:
  2197. return f2fs_ioc_move_range(filp, arg);
  2198. case F2FS_IOC_FLUSH_DEVICE:
  2199. return f2fs_ioc_flush_device(filp, arg);
  2200. case F2FS_IOC_GET_FEATURES:
  2201. return f2fs_ioc_get_features(filp, arg);
  2202. case F2FS_IOC_FSGETXATTR:
  2203. return f2fs_ioc_fsgetxattr(filp, arg);
  2204. case F2FS_IOC_FSSETXATTR:
  2205. return f2fs_ioc_fssetxattr(filp, arg);
  2206. default:
  2207. return -ENOTTY;
  2208. }
  2209. }
  2210. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2211. {
  2212. struct file *file = iocb->ki_filp;
  2213. struct inode *inode = file_inode(file);
  2214. struct blk_plug plug;
  2215. ssize_t ret;
  2216. inode_lock(inode);
  2217. ret = generic_write_checks(iocb, from);
  2218. if (ret > 0) {
  2219. int err;
  2220. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2221. set_inode_flag(inode, FI_NO_PREALLOC);
  2222. err = f2fs_preallocate_blocks(iocb, from);
  2223. if (err) {
  2224. inode_unlock(inode);
  2225. return err;
  2226. }
  2227. blk_start_plug(&plug);
  2228. ret = __generic_file_write_iter(iocb, from);
  2229. blk_finish_plug(&plug);
  2230. clear_inode_flag(inode, FI_NO_PREALLOC);
  2231. if (ret > 0)
  2232. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2233. }
  2234. inode_unlock(inode);
  2235. if (ret > 0)
  2236. ret = generic_write_sync(iocb, ret);
  2237. return ret;
  2238. }
  2239. #ifdef CONFIG_COMPAT
  2240. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2241. {
  2242. switch (cmd) {
  2243. case F2FS_IOC32_GETFLAGS:
  2244. cmd = F2FS_IOC_GETFLAGS;
  2245. break;
  2246. case F2FS_IOC32_SETFLAGS:
  2247. cmd = F2FS_IOC_SETFLAGS;
  2248. break;
  2249. case F2FS_IOC32_GETVERSION:
  2250. cmd = F2FS_IOC_GETVERSION;
  2251. break;
  2252. case F2FS_IOC_START_ATOMIC_WRITE:
  2253. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2254. case F2FS_IOC_START_VOLATILE_WRITE:
  2255. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2256. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2257. case F2FS_IOC_SHUTDOWN:
  2258. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2259. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2260. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2261. case F2FS_IOC_GARBAGE_COLLECT:
  2262. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2263. case F2FS_IOC_WRITE_CHECKPOINT:
  2264. case F2FS_IOC_DEFRAGMENT:
  2265. case F2FS_IOC_MOVE_RANGE:
  2266. case F2FS_IOC_FLUSH_DEVICE:
  2267. case F2FS_IOC_GET_FEATURES:
  2268. case F2FS_IOC_FSGETXATTR:
  2269. case F2FS_IOC_FSSETXATTR:
  2270. break;
  2271. default:
  2272. return -ENOIOCTLCMD;
  2273. }
  2274. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2275. }
  2276. #endif
  2277. const struct file_operations f2fs_file_operations = {
  2278. .llseek = f2fs_llseek,
  2279. .read_iter = generic_file_read_iter,
  2280. .write_iter = f2fs_file_write_iter,
  2281. .open = f2fs_file_open,
  2282. .release = f2fs_release_file,
  2283. .mmap = f2fs_file_mmap,
  2284. .flush = f2fs_file_flush,
  2285. .fsync = f2fs_sync_file,
  2286. .fallocate = f2fs_fallocate,
  2287. .unlocked_ioctl = f2fs_ioctl,
  2288. #ifdef CONFIG_COMPAT
  2289. .compat_ioctl = f2fs_compat_ioctl,
  2290. #endif
  2291. .splice_read = generic_file_splice_read,
  2292. .splice_write = iter_file_splice_write,
  2293. };