dir.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. static unsigned long dir_blocks(struct inode *inode)
  18. {
  19. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  20. >> PAGE_SHIFT;
  21. }
  22. static unsigned int dir_buckets(unsigned int level, int dir_level)
  23. {
  24. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  25. return 1 << (level + dir_level);
  26. else
  27. return MAX_DIR_BUCKETS;
  28. }
  29. static unsigned int bucket_blocks(unsigned int level)
  30. {
  31. if (level < MAX_DIR_HASH_DEPTH / 2)
  32. return 2;
  33. else
  34. return 4;
  35. }
  36. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  37. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  38. [F2FS_FT_REG_FILE] = DT_REG,
  39. [F2FS_FT_DIR] = DT_DIR,
  40. [F2FS_FT_CHRDEV] = DT_CHR,
  41. [F2FS_FT_BLKDEV] = DT_BLK,
  42. [F2FS_FT_FIFO] = DT_FIFO,
  43. [F2FS_FT_SOCK] = DT_SOCK,
  44. [F2FS_FT_SYMLINK] = DT_LNK,
  45. };
  46. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  47. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  48. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  49. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  50. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  51. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  52. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  53. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  54. };
  55. void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  56. {
  57. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  58. }
  59. unsigned char get_de_type(struct f2fs_dir_entry *de)
  60. {
  61. if (de->file_type < F2FS_FT_MAX)
  62. return f2fs_filetype_table[de->file_type];
  63. return DT_UNKNOWN;
  64. }
  65. static unsigned long dir_block_index(unsigned int level,
  66. int dir_level, unsigned int idx)
  67. {
  68. unsigned long i;
  69. unsigned long bidx = 0;
  70. for (i = 0; i < level; i++)
  71. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  72. bidx += idx * bucket_blocks(level);
  73. return bidx;
  74. }
  75. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  76. struct fscrypt_name *fname,
  77. f2fs_hash_t namehash,
  78. int *max_slots,
  79. struct page **res_page)
  80. {
  81. struct f2fs_dentry_block *dentry_blk;
  82. struct f2fs_dir_entry *de;
  83. struct f2fs_dentry_ptr d;
  84. dentry_blk = (struct f2fs_dentry_block *)kmap(dentry_page);
  85. make_dentry_ptr_block(NULL, &d, dentry_blk);
  86. de = find_target_dentry(fname, namehash, max_slots, &d);
  87. if (de)
  88. *res_page = dentry_page;
  89. else
  90. kunmap(dentry_page);
  91. return de;
  92. }
  93. struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
  94. f2fs_hash_t namehash, int *max_slots,
  95. struct f2fs_dentry_ptr *d)
  96. {
  97. struct f2fs_dir_entry *de;
  98. unsigned long bit_pos = 0;
  99. int max_len = 0;
  100. if (max_slots)
  101. *max_slots = 0;
  102. while (bit_pos < d->max) {
  103. if (!test_bit_le(bit_pos, d->bitmap)) {
  104. bit_pos++;
  105. max_len++;
  106. continue;
  107. }
  108. de = &d->dentry[bit_pos];
  109. if (unlikely(!de->name_len)) {
  110. bit_pos++;
  111. continue;
  112. }
  113. if (de->hash_code == namehash &&
  114. fscrypt_match_name(fname, d->filename[bit_pos],
  115. le16_to_cpu(de->name_len)))
  116. goto found;
  117. if (max_slots && max_len > *max_slots)
  118. *max_slots = max_len;
  119. max_len = 0;
  120. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  121. }
  122. de = NULL;
  123. found:
  124. if (max_slots && max_len > *max_slots)
  125. *max_slots = max_len;
  126. return de;
  127. }
  128. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  129. unsigned int level,
  130. struct fscrypt_name *fname,
  131. struct page **res_page)
  132. {
  133. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  134. int s = GET_DENTRY_SLOTS(name.len);
  135. unsigned int nbucket, nblock;
  136. unsigned int bidx, end_block;
  137. struct page *dentry_page;
  138. struct f2fs_dir_entry *de = NULL;
  139. bool room = false;
  140. int max_slots;
  141. f2fs_hash_t namehash = f2fs_dentry_hash(&name, fname);
  142. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  143. nblock = bucket_blocks(level);
  144. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  145. le32_to_cpu(namehash) % nbucket);
  146. end_block = bidx + nblock;
  147. for (; bidx < end_block; bidx++) {
  148. /* no need to allocate new dentry pages to all the indices */
  149. dentry_page = find_data_page(dir, bidx);
  150. if (IS_ERR(dentry_page)) {
  151. if (PTR_ERR(dentry_page) == -ENOENT) {
  152. room = true;
  153. continue;
  154. } else {
  155. *res_page = dentry_page;
  156. break;
  157. }
  158. }
  159. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  160. res_page);
  161. if (de)
  162. break;
  163. if (max_slots >= s)
  164. room = true;
  165. f2fs_put_page(dentry_page, 0);
  166. }
  167. if (!de && room && F2FS_I(dir)->chash != namehash) {
  168. F2FS_I(dir)->chash = namehash;
  169. F2FS_I(dir)->clevel = level;
  170. }
  171. return de;
  172. }
  173. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  174. struct fscrypt_name *fname, struct page **res_page)
  175. {
  176. unsigned long npages = dir_blocks(dir);
  177. struct f2fs_dir_entry *de = NULL;
  178. unsigned int max_depth;
  179. unsigned int level;
  180. if (f2fs_has_inline_dentry(dir)) {
  181. *res_page = NULL;
  182. de = find_in_inline_dir(dir, fname, res_page);
  183. goto out;
  184. }
  185. if (npages == 0) {
  186. *res_page = NULL;
  187. goto out;
  188. }
  189. max_depth = F2FS_I(dir)->i_current_depth;
  190. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  191. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  192. "Corrupted max_depth of %lu: %u",
  193. dir->i_ino, max_depth);
  194. max_depth = MAX_DIR_HASH_DEPTH;
  195. f2fs_i_depth_write(dir, max_depth);
  196. }
  197. for (level = 0; level < max_depth; level++) {
  198. *res_page = NULL;
  199. de = find_in_level(dir, level, fname, res_page);
  200. if (de || IS_ERR(*res_page))
  201. break;
  202. }
  203. out:
  204. /* This is to increase the speed of f2fs_create */
  205. if (!de)
  206. F2FS_I(dir)->task = current;
  207. return de;
  208. }
  209. /*
  210. * Find an entry in the specified directory with the wanted name.
  211. * It returns the page where the entry was found (as a parameter - res_page),
  212. * and the entry itself. Page is returned mapped and unlocked.
  213. * Entry is guaranteed to be valid.
  214. */
  215. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  216. const struct qstr *child, struct page **res_page)
  217. {
  218. struct f2fs_dir_entry *de = NULL;
  219. struct fscrypt_name fname;
  220. int err;
  221. err = fscrypt_setup_filename(dir, child, 1, &fname);
  222. if (err) {
  223. if (err == -ENOENT)
  224. *res_page = NULL;
  225. else
  226. *res_page = ERR_PTR(err);
  227. return NULL;
  228. }
  229. de = __f2fs_find_entry(dir, &fname, res_page);
  230. fscrypt_free_filename(&fname);
  231. return de;
  232. }
  233. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  234. {
  235. struct qstr dotdot = QSTR_INIT("..", 2);
  236. return f2fs_find_entry(dir, &dotdot, p);
  237. }
  238. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  239. struct page **page)
  240. {
  241. ino_t res = 0;
  242. struct f2fs_dir_entry *de;
  243. de = f2fs_find_entry(dir, qstr, page);
  244. if (de) {
  245. res = le32_to_cpu(de->ino);
  246. f2fs_dentry_kunmap(dir, *page);
  247. f2fs_put_page(*page, 0);
  248. }
  249. return res;
  250. }
  251. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  252. struct page *page, struct inode *inode)
  253. {
  254. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  255. lock_page(page);
  256. f2fs_wait_on_page_writeback(page, type, true);
  257. de->ino = cpu_to_le32(inode->i_ino);
  258. set_de_type(de, inode->i_mode);
  259. f2fs_dentry_kunmap(dir, page);
  260. set_page_dirty(page);
  261. dir->i_mtime = dir->i_ctime = current_time(dir);
  262. f2fs_mark_inode_dirty_sync(dir, false);
  263. f2fs_put_page(page, 1);
  264. }
  265. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  266. {
  267. struct f2fs_inode *ri;
  268. f2fs_wait_on_page_writeback(ipage, NODE, true);
  269. /* copy name info. to this inode page */
  270. ri = F2FS_INODE(ipage);
  271. ri->i_namelen = cpu_to_le32(name->len);
  272. memcpy(ri->i_name, name->name, name->len);
  273. set_page_dirty(ipage);
  274. }
  275. void do_make_empty_dir(struct inode *inode, struct inode *parent,
  276. struct f2fs_dentry_ptr *d)
  277. {
  278. struct qstr dot = QSTR_INIT(".", 1);
  279. struct qstr dotdot = QSTR_INIT("..", 2);
  280. /* update dirent of "." */
  281. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  282. /* update dirent of ".." */
  283. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  284. }
  285. static int make_empty_dir(struct inode *inode,
  286. struct inode *parent, struct page *page)
  287. {
  288. struct page *dentry_page;
  289. struct f2fs_dentry_block *dentry_blk;
  290. struct f2fs_dentry_ptr d;
  291. if (f2fs_has_inline_dentry(inode))
  292. return make_empty_inline_dir(inode, parent, page);
  293. dentry_page = get_new_data_page(inode, page, 0, true);
  294. if (IS_ERR(dentry_page))
  295. return PTR_ERR(dentry_page);
  296. dentry_blk = kmap_atomic(dentry_page);
  297. make_dentry_ptr_block(NULL, &d, dentry_blk);
  298. do_make_empty_dir(inode, parent, &d);
  299. kunmap_atomic(dentry_blk);
  300. set_page_dirty(dentry_page);
  301. f2fs_put_page(dentry_page, 1);
  302. return 0;
  303. }
  304. struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
  305. const struct qstr *new_name, const struct qstr *orig_name,
  306. struct page *dpage)
  307. {
  308. struct page *page;
  309. int err;
  310. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  311. page = new_inode_page(inode);
  312. if (IS_ERR(page))
  313. return page;
  314. if (S_ISDIR(inode->i_mode)) {
  315. /* in order to handle error case */
  316. get_page(page);
  317. err = make_empty_dir(inode, dir, page);
  318. if (err) {
  319. lock_page(page);
  320. goto put_error;
  321. }
  322. put_page(page);
  323. }
  324. err = f2fs_init_acl(inode, dir, page, dpage);
  325. if (err)
  326. goto put_error;
  327. err = f2fs_init_security(inode, dir, orig_name, page);
  328. if (err)
  329. goto put_error;
  330. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode)) {
  331. err = fscrypt_inherit_context(dir, inode, page, false);
  332. if (err)
  333. goto put_error;
  334. }
  335. } else {
  336. page = get_node_page(F2FS_I_SB(dir), inode->i_ino);
  337. if (IS_ERR(page))
  338. return page;
  339. set_cold_node(inode, page);
  340. }
  341. if (new_name) {
  342. init_dent_inode(new_name, page);
  343. if (f2fs_encrypted_inode(dir))
  344. file_set_enc_name(inode);
  345. }
  346. /*
  347. * This file should be checkpointed during fsync.
  348. * We lost i_pino from now on.
  349. */
  350. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  351. if (!S_ISDIR(inode->i_mode))
  352. file_lost_pino(inode);
  353. /*
  354. * If link the tmpfile to alias through linkat path,
  355. * we should remove this inode from orphan list.
  356. */
  357. if (inode->i_nlink == 0)
  358. remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  359. f2fs_i_links_write(inode, true);
  360. }
  361. return page;
  362. put_error:
  363. clear_nlink(inode);
  364. update_inode(inode, page);
  365. f2fs_put_page(page, 1);
  366. return ERR_PTR(err);
  367. }
  368. void update_parent_metadata(struct inode *dir, struct inode *inode,
  369. unsigned int current_depth)
  370. {
  371. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  372. if (S_ISDIR(inode->i_mode))
  373. f2fs_i_links_write(dir, true);
  374. clear_inode_flag(inode, FI_NEW_INODE);
  375. }
  376. dir->i_mtime = dir->i_ctime = current_time(dir);
  377. f2fs_mark_inode_dirty_sync(dir, false);
  378. if (F2FS_I(dir)->i_current_depth != current_depth)
  379. f2fs_i_depth_write(dir, current_depth);
  380. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  381. clear_inode_flag(inode, FI_INC_LINK);
  382. }
  383. int room_for_filename(const void *bitmap, int slots, int max_slots)
  384. {
  385. int bit_start = 0;
  386. int zero_start, zero_end;
  387. next:
  388. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  389. if (zero_start >= max_slots)
  390. return max_slots;
  391. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  392. if (zero_end - zero_start >= slots)
  393. return zero_start;
  394. bit_start = zero_end + 1;
  395. if (zero_end + 1 >= max_slots)
  396. return max_slots;
  397. goto next;
  398. }
  399. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  400. const struct qstr *name, f2fs_hash_t name_hash,
  401. unsigned int bit_pos)
  402. {
  403. struct f2fs_dir_entry *de;
  404. int slots = GET_DENTRY_SLOTS(name->len);
  405. int i;
  406. de = &d->dentry[bit_pos];
  407. de->hash_code = name_hash;
  408. de->name_len = cpu_to_le16(name->len);
  409. memcpy(d->filename[bit_pos], name->name, name->len);
  410. de->ino = cpu_to_le32(ino);
  411. set_de_type(de, mode);
  412. for (i = 0; i < slots; i++) {
  413. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  414. /* avoid wrong garbage data for readdir */
  415. if (i)
  416. (de + i)->name_len = 0;
  417. }
  418. }
  419. int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
  420. const struct qstr *orig_name,
  421. struct inode *inode, nid_t ino, umode_t mode)
  422. {
  423. unsigned int bit_pos;
  424. unsigned int level;
  425. unsigned int current_depth;
  426. unsigned long bidx, block;
  427. f2fs_hash_t dentry_hash;
  428. unsigned int nbucket, nblock;
  429. struct page *dentry_page = NULL;
  430. struct f2fs_dentry_block *dentry_blk = NULL;
  431. struct f2fs_dentry_ptr d;
  432. struct page *page = NULL;
  433. int slots, err = 0;
  434. level = 0;
  435. slots = GET_DENTRY_SLOTS(new_name->len);
  436. dentry_hash = f2fs_dentry_hash(new_name, NULL);
  437. current_depth = F2FS_I(dir)->i_current_depth;
  438. if (F2FS_I(dir)->chash == dentry_hash) {
  439. level = F2FS_I(dir)->clevel;
  440. F2FS_I(dir)->chash = 0;
  441. }
  442. start:
  443. #ifdef CONFIG_F2FS_FAULT_INJECTION
  444. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
  445. f2fs_show_injection_info(FAULT_DIR_DEPTH);
  446. return -ENOSPC;
  447. }
  448. #endif
  449. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  450. return -ENOSPC;
  451. /* Increase the depth, if required */
  452. if (level == current_depth)
  453. ++current_depth;
  454. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  455. nblock = bucket_blocks(level);
  456. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  457. (le32_to_cpu(dentry_hash) % nbucket));
  458. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  459. dentry_page = get_new_data_page(dir, NULL, block, true);
  460. if (IS_ERR(dentry_page))
  461. return PTR_ERR(dentry_page);
  462. dentry_blk = kmap(dentry_page);
  463. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  464. slots, NR_DENTRY_IN_BLOCK);
  465. if (bit_pos < NR_DENTRY_IN_BLOCK)
  466. goto add_dentry;
  467. kunmap(dentry_page);
  468. f2fs_put_page(dentry_page, 1);
  469. }
  470. /* Move to next level to find the empty slot for new dentry */
  471. ++level;
  472. goto start;
  473. add_dentry:
  474. f2fs_wait_on_page_writeback(dentry_page, DATA, true);
  475. if (inode) {
  476. down_write(&F2FS_I(inode)->i_sem);
  477. page = init_inode_metadata(inode, dir, new_name,
  478. orig_name, NULL);
  479. if (IS_ERR(page)) {
  480. err = PTR_ERR(page);
  481. goto fail;
  482. }
  483. }
  484. make_dentry_ptr_block(NULL, &d, dentry_blk);
  485. f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
  486. set_page_dirty(dentry_page);
  487. if (inode) {
  488. f2fs_i_pino_write(inode, dir->i_ino);
  489. f2fs_put_page(page, 1);
  490. }
  491. update_parent_metadata(dir, inode, current_depth);
  492. fail:
  493. if (inode)
  494. up_write(&F2FS_I(inode)->i_sem);
  495. kunmap(dentry_page);
  496. f2fs_put_page(dentry_page, 1);
  497. return err;
  498. }
  499. int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
  500. struct inode *inode, nid_t ino, umode_t mode)
  501. {
  502. struct qstr new_name;
  503. int err = -EAGAIN;
  504. new_name.name = fname_name(fname);
  505. new_name.len = fname_len(fname);
  506. if (f2fs_has_inline_dentry(dir))
  507. err = f2fs_add_inline_entry(dir, &new_name, fname->usr_fname,
  508. inode, ino, mode);
  509. if (err == -EAGAIN)
  510. err = f2fs_add_regular_entry(dir, &new_name, fname->usr_fname,
  511. inode, ino, mode);
  512. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  513. return err;
  514. }
  515. /*
  516. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  517. * f2fs_unlock_op().
  518. */
  519. int __f2fs_add_link(struct inode *dir, const struct qstr *name,
  520. struct inode *inode, nid_t ino, umode_t mode)
  521. {
  522. struct fscrypt_name fname;
  523. struct page *page = NULL;
  524. struct f2fs_dir_entry *de = NULL;
  525. int err;
  526. err = fscrypt_setup_filename(dir, name, 0, &fname);
  527. if (err)
  528. return err;
  529. /*
  530. * An immature stakable filesystem shows a race condition between lookup
  531. * and create. If we have same task when doing lookup and create, it's
  532. * definitely fine as expected by VFS normally. Otherwise, let's just
  533. * verify on-disk dentry one more time, which guarantees filesystem
  534. * consistency more.
  535. */
  536. if (current != F2FS_I(dir)->task) {
  537. de = __f2fs_find_entry(dir, &fname, &page);
  538. F2FS_I(dir)->task = NULL;
  539. }
  540. if (de) {
  541. f2fs_dentry_kunmap(dir, page);
  542. f2fs_put_page(page, 0);
  543. err = -EEXIST;
  544. } else if (IS_ERR(page)) {
  545. err = PTR_ERR(page);
  546. } else {
  547. err = __f2fs_do_add_link(dir, &fname, inode, ino, mode);
  548. }
  549. fscrypt_free_filename(&fname);
  550. return err;
  551. }
  552. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  553. {
  554. struct page *page;
  555. int err = 0;
  556. down_write(&F2FS_I(inode)->i_sem);
  557. page = init_inode_metadata(inode, dir, NULL, NULL, NULL);
  558. if (IS_ERR(page)) {
  559. err = PTR_ERR(page);
  560. goto fail;
  561. }
  562. f2fs_put_page(page, 1);
  563. clear_inode_flag(inode, FI_NEW_INODE);
  564. fail:
  565. up_write(&F2FS_I(inode)->i_sem);
  566. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  567. return err;
  568. }
  569. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  570. {
  571. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  572. down_write(&F2FS_I(inode)->i_sem);
  573. if (S_ISDIR(inode->i_mode))
  574. f2fs_i_links_write(dir, false);
  575. inode->i_ctime = current_time(inode);
  576. f2fs_i_links_write(inode, false);
  577. if (S_ISDIR(inode->i_mode)) {
  578. f2fs_i_links_write(inode, false);
  579. f2fs_i_size_write(inode, 0);
  580. }
  581. up_write(&F2FS_I(inode)->i_sem);
  582. if (inode->i_nlink == 0)
  583. add_orphan_inode(inode);
  584. else
  585. release_orphan_inode(sbi);
  586. }
  587. /*
  588. * It only removes the dentry from the dentry page, corresponding name
  589. * entry in name page does not need to be touched during deletion.
  590. */
  591. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  592. struct inode *dir, struct inode *inode)
  593. {
  594. struct f2fs_dentry_block *dentry_blk;
  595. unsigned int bit_pos;
  596. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  597. struct address_space *mapping = page_mapping(page);
  598. unsigned long flags;
  599. int i;
  600. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  601. if (f2fs_has_inline_dentry(dir))
  602. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  603. lock_page(page);
  604. f2fs_wait_on_page_writeback(page, DATA, true);
  605. dentry_blk = page_address(page);
  606. bit_pos = dentry - dentry_blk->dentry;
  607. for (i = 0; i < slots; i++)
  608. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  609. /* Let's check and deallocate this dentry page */
  610. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  611. NR_DENTRY_IN_BLOCK,
  612. 0);
  613. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  614. set_page_dirty(page);
  615. dir->i_ctime = dir->i_mtime = current_time(dir);
  616. f2fs_mark_inode_dirty_sync(dir, false);
  617. if (inode)
  618. f2fs_drop_nlink(dir, inode);
  619. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  620. !truncate_hole(dir, page->index, page->index + 1)) {
  621. spin_lock_irqsave(&mapping->tree_lock, flags);
  622. radix_tree_tag_clear(&mapping->page_tree, page_index(page),
  623. PAGECACHE_TAG_DIRTY);
  624. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  625. clear_page_dirty_for_io(page);
  626. ClearPagePrivate(page);
  627. ClearPageUptodate(page);
  628. inode_dec_dirty_pages(dir);
  629. remove_dirty_inode(dir);
  630. }
  631. f2fs_put_page(page, 1);
  632. }
  633. bool f2fs_empty_dir(struct inode *dir)
  634. {
  635. unsigned long bidx;
  636. struct page *dentry_page;
  637. unsigned int bit_pos;
  638. struct f2fs_dentry_block *dentry_blk;
  639. unsigned long nblock = dir_blocks(dir);
  640. if (f2fs_has_inline_dentry(dir))
  641. return f2fs_empty_inline_dir(dir);
  642. for (bidx = 0; bidx < nblock; bidx++) {
  643. dentry_page = get_lock_data_page(dir, bidx, false);
  644. if (IS_ERR(dentry_page)) {
  645. if (PTR_ERR(dentry_page) == -ENOENT)
  646. continue;
  647. else
  648. return false;
  649. }
  650. dentry_blk = kmap_atomic(dentry_page);
  651. if (bidx == 0)
  652. bit_pos = 2;
  653. else
  654. bit_pos = 0;
  655. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  656. NR_DENTRY_IN_BLOCK,
  657. bit_pos);
  658. kunmap_atomic(dentry_blk);
  659. f2fs_put_page(dentry_page, 1);
  660. if (bit_pos < NR_DENTRY_IN_BLOCK)
  661. return false;
  662. }
  663. return true;
  664. }
  665. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  666. unsigned int start_pos, struct fscrypt_str *fstr)
  667. {
  668. unsigned char d_type = DT_UNKNOWN;
  669. unsigned int bit_pos;
  670. struct f2fs_dir_entry *de = NULL;
  671. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  672. bit_pos = ((unsigned long)ctx->pos % d->max);
  673. while (bit_pos < d->max) {
  674. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  675. if (bit_pos >= d->max)
  676. break;
  677. de = &d->dentry[bit_pos];
  678. if (de->name_len == 0) {
  679. bit_pos++;
  680. ctx->pos = start_pos + bit_pos;
  681. continue;
  682. }
  683. d_type = get_de_type(de);
  684. de_name.name = d->filename[bit_pos];
  685. de_name.len = le16_to_cpu(de->name_len);
  686. if (f2fs_encrypted_inode(d->inode)) {
  687. int save_len = fstr->len;
  688. int err;
  689. err = fscrypt_fname_disk_to_usr(d->inode,
  690. (u32)de->hash_code, 0,
  691. &de_name, fstr);
  692. if (err)
  693. return err;
  694. de_name = *fstr;
  695. fstr->len = save_len;
  696. }
  697. if (!dir_emit(ctx, de_name.name, de_name.len,
  698. le32_to_cpu(de->ino), d_type))
  699. return 1;
  700. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  701. ctx->pos = start_pos + bit_pos;
  702. }
  703. return 0;
  704. }
  705. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  706. {
  707. struct inode *inode = file_inode(file);
  708. unsigned long npages = dir_blocks(inode);
  709. struct f2fs_dentry_block *dentry_blk = NULL;
  710. struct page *dentry_page = NULL;
  711. struct file_ra_state *ra = &file->f_ra;
  712. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  713. struct f2fs_dentry_ptr d;
  714. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  715. int err = 0;
  716. if (f2fs_encrypted_inode(inode)) {
  717. err = fscrypt_get_encryption_info(inode);
  718. if (err && err != -ENOKEY)
  719. return err;
  720. err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
  721. if (err < 0)
  722. return err;
  723. }
  724. if (f2fs_has_inline_dentry(inode)) {
  725. err = f2fs_read_inline_dir(file, ctx, &fstr);
  726. goto out;
  727. }
  728. /* readahead for multi pages of dir */
  729. if (npages - n > 1 && !ra_has_index(ra, n))
  730. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  731. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  732. for (; n < npages; n++) {
  733. dentry_page = get_lock_data_page(inode, n, false);
  734. if (IS_ERR(dentry_page)) {
  735. err = PTR_ERR(dentry_page);
  736. if (err == -ENOENT) {
  737. err = 0;
  738. continue;
  739. } else {
  740. goto out;
  741. }
  742. }
  743. dentry_blk = kmap(dentry_page);
  744. make_dentry_ptr_block(inode, &d, dentry_blk);
  745. err = f2fs_fill_dentries(ctx, &d,
  746. n * NR_DENTRY_IN_BLOCK, &fstr);
  747. if (err) {
  748. kunmap(dentry_page);
  749. f2fs_put_page(dentry_page, 1);
  750. break;
  751. }
  752. ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  753. kunmap(dentry_page);
  754. f2fs_put_page(dentry_page, 1);
  755. }
  756. out:
  757. fscrypt_fname_free_buffer(&fstr);
  758. return err < 0 ? err : 0;
  759. }
  760. static int f2fs_dir_open(struct inode *inode, struct file *filp)
  761. {
  762. if (f2fs_encrypted_inode(inode))
  763. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  764. return 0;
  765. }
  766. const struct file_operations f2fs_dir_operations = {
  767. .llseek = generic_file_llseek,
  768. .read = generic_read_dir,
  769. .iterate_shared = f2fs_readdir,
  770. .fsync = f2fs_sync_file,
  771. .open = f2fs_dir_open,
  772. .unlocked_ioctl = f2fs_ioctl,
  773. #ifdef CONFIG_COMPAT
  774. .compat_ioctl = f2fs_compat_ioctl,
  775. #endif
  776. };