data.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/mm.h>
  23. #include <linux/memcontrol.h>
  24. #include <linux/cleancache.h>
  25. #include <linux/sched/signal.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "trace.h"
  30. #include <trace/events/f2fs.h>
  31. static bool __is_cp_guaranteed(struct page *page)
  32. {
  33. struct address_space *mapping = page->mapping;
  34. struct inode *inode;
  35. struct f2fs_sb_info *sbi;
  36. if (!mapping)
  37. return false;
  38. inode = mapping->host;
  39. sbi = F2FS_I_SB(inode);
  40. if (inode->i_ino == F2FS_META_INO(sbi) ||
  41. inode->i_ino == F2FS_NODE_INO(sbi) ||
  42. S_ISDIR(inode->i_mode) ||
  43. is_cold_data(page))
  44. return true;
  45. return false;
  46. }
  47. static void f2fs_read_end_io(struct bio *bio)
  48. {
  49. struct bio_vec *bvec;
  50. int i;
  51. #ifdef CONFIG_F2FS_FAULT_INJECTION
  52. if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
  53. f2fs_show_injection_info(FAULT_IO);
  54. bio->bi_status = BLK_STS_IOERR;
  55. }
  56. #endif
  57. if (f2fs_bio_encrypted(bio)) {
  58. if (bio->bi_status) {
  59. fscrypt_release_ctx(bio->bi_private);
  60. } else {
  61. fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  62. return;
  63. }
  64. }
  65. bio_for_each_segment_all(bvec, bio, i) {
  66. struct page *page = bvec->bv_page;
  67. if (!bio->bi_status) {
  68. if (!PageUptodate(page))
  69. SetPageUptodate(page);
  70. } else {
  71. ClearPageUptodate(page);
  72. SetPageError(page);
  73. }
  74. unlock_page(page);
  75. }
  76. bio_put(bio);
  77. }
  78. static void f2fs_write_end_io(struct bio *bio)
  79. {
  80. struct f2fs_sb_info *sbi = bio->bi_private;
  81. struct bio_vec *bvec;
  82. int i;
  83. bio_for_each_segment_all(bvec, bio, i) {
  84. struct page *page = bvec->bv_page;
  85. enum count_type type = WB_DATA_TYPE(page);
  86. if (IS_DUMMY_WRITTEN_PAGE(page)) {
  87. set_page_private(page, (unsigned long)NULL);
  88. ClearPagePrivate(page);
  89. unlock_page(page);
  90. mempool_free(page, sbi->write_io_dummy);
  91. if (unlikely(bio->bi_status))
  92. f2fs_stop_checkpoint(sbi, true);
  93. continue;
  94. }
  95. fscrypt_pullback_bio_page(&page, true);
  96. if (unlikely(bio->bi_status)) {
  97. mapping_set_error(page->mapping, -EIO);
  98. f2fs_stop_checkpoint(sbi, true);
  99. }
  100. dec_page_count(sbi, type);
  101. clear_cold_data(page);
  102. end_page_writeback(page);
  103. }
  104. if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
  105. wq_has_sleeper(&sbi->cp_wait))
  106. wake_up(&sbi->cp_wait);
  107. bio_put(bio);
  108. }
  109. /*
  110. * Return true, if pre_bio's bdev is same as its target device.
  111. */
  112. struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
  113. block_t blk_addr, struct bio *bio)
  114. {
  115. struct block_device *bdev = sbi->sb->s_bdev;
  116. int i;
  117. for (i = 0; i < sbi->s_ndevs; i++) {
  118. if (FDEV(i).start_blk <= blk_addr &&
  119. FDEV(i).end_blk >= blk_addr) {
  120. blk_addr -= FDEV(i).start_blk;
  121. bdev = FDEV(i).bdev;
  122. break;
  123. }
  124. }
  125. if (bio) {
  126. bio_set_dev(bio, bdev);
  127. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  128. }
  129. return bdev;
  130. }
  131. int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
  132. {
  133. int i;
  134. for (i = 0; i < sbi->s_ndevs; i++)
  135. if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
  136. return i;
  137. return 0;
  138. }
  139. static bool __same_bdev(struct f2fs_sb_info *sbi,
  140. block_t blk_addr, struct bio *bio)
  141. {
  142. struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
  143. return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
  144. }
  145. /*
  146. * Low-level block read/write IO operations.
  147. */
  148. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  149. int npages, bool is_read)
  150. {
  151. struct bio *bio;
  152. bio = f2fs_bio_alloc(npages);
  153. f2fs_target_device(sbi, blk_addr, bio);
  154. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  155. bio->bi_private = is_read ? NULL : sbi;
  156. return bio;
  157. }
  158. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  159. struct bio *bio, enum page_type type)
  160. {
  161. if (!is_read_io(bio_op(bio))) {
  162. unsigned int start;
  163. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  164. current->plug && (type == DATA || type == NODE))
  165. blk_finish_plug(current->plug);
  166. if (type != DATA && type != NODE)
  167. goto submit_io;
  168. start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
  169. start %= F2FS_IO_SIZE(sbi);
  170. if (start == 0)
  171. goto submit_io;
  172. /* fill dummy pages */
  173. for (; start < F2FS_IO_SIZE(sbi); start++) {
  174. struct page *page =
  175. mempool_alloc(sbi->write_io_dummy,
  176. GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
  177. f2fs_bug_on(sbi, !page);
  178. SetPagePrivate(page);
  179. set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
  180. lock_page(page);
  181. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
  182. f2fs_bug_on(sbi, 1);
  183. }
  184. /*
  185. * In the NODE case, we lose next block address chain. So, we
  186. * need to do checkpoint in f2fs_sync_file.
  187. */
  188. if (type == NODE)
  189. set_sbi_flag(sbi, SBI_NEED_CP);
  190. }
  191. submit_io:
  192. if (is_read_io(bio_op(bio)))
  193. trace_f2fs_submit_read_bio(sbi->sb, type, bio);
  194. else
  195. trace_f2fs_submit_write_bio(sbi->sb, type, bio);
  196. submit_bio(bio);
  197. }
  198. static void __submit_merged_bio(struct f2fs_bio_info *io)
  199. {
  200. struct f2fs_io_info *fio = &io->fio;
  201. if (!io->bio)
  202. return;
  203. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  204. if (is_read_io(fio->op))
  205. trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
  206. else
  207. trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
  208. __submit_bio(io->sbi, io->bio, fio->type);
  209. io->bio = NULL;
  210. }
  211. static bool __has_merged_page(struct f2fs_bio_info *io,
  212. struct inode *inode, nid_t ino, pgoff_t idx)
  213. {
  214. struct bio_vec *bvec;
  215. struct page *target;
  216. int i;
  217. if (!io->bio)
  218. return false;
  219. if (!inode && !ino)
  220. return true;
  221. bio_for_each_segment_all(bvec, io->bio, i) {
  222. if (bvec->bv_page->mapping)
  223. target = bvec->bv_page;
  224. else
  225. target = fscrypt_control_page(bvec->bv_page);
  226. if (idx != target->index)
  227. continue;
  228. if (inode && inode == target->mapping->host)
  229. return true;
  230. if (ino && ino == ino_of_node(target))
  231. return true;
  232. }
  233. return false;
  234. }
  235. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  236. nid_t ino, pgoff_t idx, enum page_type type)
  237. {
  238. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  239. enum temp_type temp;
  240. struct f2fs_bio_info *io;
  241. bool ret = false;
  242. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  243. io = sbi->write_io[btype] + temp;
  244. down_read(&io->io_rwsem);
  245. ret = __has_merged_page(io, inode, ino, idx);
  246. up_read(&io->io_rwsem);
  247. /* TODO: use HOT temp only for meta pages now. */
  248. if (ret || btype == META)
  249. break;
  250. }
  251. return ret;
  252. }
  253. static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
  254. enum page_type type, enum temp_type temp)
  255. {
  256. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  257. struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
  258. down_write(&io->io_rwsem);
  259. /* change META to META_FLUSH in the checkpoint procedure */
  260. if (type >= META_FLUSH) {
  261. io->fio.type = META_FLUSH;
  262. io->fio.op = REQ_OP_WRITE;
  263. io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
  264. if (!test_opt(sbi, NOBARRIER))
  265. io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  266. }
  267. __submit_merged_bio(io);
  268. up_write(&io->io_rwsem);
  269. }
  270. static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
  271. struct inode *inode, nid_t ino, pgoff_t idx,
  272. enum page_type type, bool force)
  273. {
  274. enum temp_type temp;
  275. if (!force && !has_merged_page(sbi, inode, ino, idx, type))
  276. return;
  277. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  278. __f2fs_submit_merged_write(sbi, type, temp);
  279. /* TODO: use HOT temp only for meta pages now. */
  280. if (type >= META)
  281. break;
  282. }
  283. }
  284. void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
  285. {
  286. __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
  287. }
  288. void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
  289. struct inode *inode, nid_t ino, pgoff_t idx,
  290. enum page_type type)
  291. {
  292. __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
  293. }
  294. void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
  295. {
  296. f2fs_submit_merged_write(sbi, DATA);
  297. f2fs_submit_merged_write(sbi, NODE);
  298. f2fs_submit_merged_write(sbi, META);
  299. }
  300. /*
  301. * Fill the locked page with data located in the block address.
  302. * A caller needs to unlock the page on failure.
  303. */
  304. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  305. {
  306. struct bio *bio;
  307. struct page *page = fio->encrypted_page ?
  308. fio->encrypted_page : fio->page;
  309. trace_f2fs_submit_page_bio(page, fio);
  310. f2fs_trace_ios(fio, 0);
  311. /* Allocate a new bio */
  312. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
  313. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  314. bio_put(bio);
  315. return -EFAULT;
  316. }
  317. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  318. __submit_bio(fio->sbi, bio, fio->type);
  319. if (!is_read_io(fio->op))
  320. inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
  321. return 0;
  322. }
  323. int f2fs_submit_page_write(struct f2fs_io_info *fio)
  324. {
  325. struct f2fs_sb_info *sbi = fio->sbi;
  326. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  327. struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
  328. struct page *bio_page;
  329. int err = 0;
  330. f2fs_bug_on(sbi, is_read_io(fio->op));
  331. down_write(&io->io_rwsem);
  332. next:
  333. if (fio->in_list) {
  334. spin_lock(&io->io_lock);
  335. if (list_empty(&io->io_list)) {
  336. spin_unlock(&io->io_lock);
  337. goto out_fail;
  338. }
  339. fio = list_first_entry(&io->io_list,
  340. struct f2fs_io_info, list);
  341. list_del(&fio->list);
  342. spin_unlock(&io->io_lock);
  343. }
  344. if (fio->old_blkaddr != NEW_ADDR)
  345. verify_block_addr(sbi, fio->old_blkaddr);
  346. verify_block_addr(sbi, fio->new_blkaddr);
  347. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  348. /* set submitted = 1 as a return value */
  349. fio->submitted = 1;
  350. inc_page_count(sbi, WB_DATA_TYPE(bio_page));
  351. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  352. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
  353. !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
  354. __submit_merged_bio(io);
  355. alloc_new:
  356. if (io->bio == NULL) {
  357. if ((fio->type == DATA || fio->type == NODE) &&
  358. fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
  359. err = -EAGAIN;
  360. dec_page_count(sbi, WB_DATA_TYPE(bio_page));
  361. goto out_fail;
  362. }
  363. io->bio = __bio_alloc(sbi, fio->new_blkaddr,
  364. BIO_MAX_PAGES, false);
  365. io->fio = *fio;
  366. }
  367. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
  368. __submit_merged_bio(io);
  369. goto alloc_new;
  370. }
  371. io->last_block_in_bio = fio->new_blkaddr;
  372. f2fs_trace_ios(fio, 0);
  373. trace_f2fs_submit_page_write(fio->page, fio);
  374. if (fio->in_list)
  375. goto next;
  376. out_fail:
  377. up_write(&io->io_rwsem);
  378. return err;
  379. }
  380. static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
  381. unsigned nr_pages)
  382. {
  383. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  384. struct fscrypt_ctx *ctx = NULL;
  385. struct bio *bio;
  386. if (f2fs_encrypted_file(inode)) {
  387. ctx = fscrypt_get_ctx(inode, GFP_NOFS);
  388. if (IS_ERR(ctx))
  389. return ERR_CAST(ctx);
  390. /* wait the page to be moved by cleaning */
  391. f2fs_wait_on_block_writeback(sbi, blkaddr);
  392. }
  393. bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
  394. if (!bio) {
  395. if (ctx)
  396. fscrypt_release_ctx(ctx);
  397. return ERR_PTR(-ENOMEM);
  398. }
  399. f2fs_target_device(sbi, blkaddr, bio);
  400. bio->bi_end_io = f2fs_read_end_io;
  401. bio->bi_private = ctx;
  402. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  403. return bio;
  404. }
  405. /* This can handle encryption stuffs */
  406. static int f2fs_submit_page_read(struct inode *inode, struct page *page,
  407. block_t blkaddr)
  408. {
  409. struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
  410. if (IS_ERR(bio))
  411. return PTR_ERR(bio);
  412. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  413. bio_put(bio);
  414. return -EFAULT;
  415. }
  416. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  417. return 0;
  418. }
  419. static void __set_data_blkaddr(struct dnode_of_data *dn)
  420. {
  421. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  422. __le32 *addr_array;
  423. int base = 0;
  424. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  425. base = get_extra_isize(dn->inode);
  426. /* Get physical address of data block */
  427. addr_array = blkaddr_in_node(rn);
  428. addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  429. }
  430. /*
  431. * Lock ordering for the change of data block address:
  432. * ->data_page
  433. * ->node_page
  434. * update block addresses in the node page
  435. */
  436. void set_data_blkaddr(struct dnode_of_data *dn)
  437. {
  438. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  439. __set_data_blkaddr(dn);
  440. if (set_page_dirty(dn->node_page))
  441. dn->node_changed = true;
  442. }
  443. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  444. {
  445. dn->data_blkaddr = blkaddr;
  446. set_data_blkaddr(dn);
  447. f2fs_update_extent_cache(dn);
  448. }
  449. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  450. int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  451. {
  452. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  453. int err;
  454. if (!count)
  455. return 0;
  456. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  457. return -EPERM;
  458. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  459. return err;
  460. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  461. dn->ofs_in_node, count);
  462. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  463. for (; count > 0; dn->ofs_in_node++) {
  464. block_t blkaddr = datablock_addr(dn->inode,
  465. dn->node_page, dn->ofs_in_node);
  466. if (blkaddr == NULL_ADDR) {
  467. dn->data_blkaddr = NEW_ADDR;
  468. __set_data_blkaddr(dn);
  469. count--;
  470. }
  471. }
  472. if (set_page_dirty(dn->node_page))
  473. dn->node_changed = true;
  474. return 0;
  475. }
  476. /* Should keep dn->ofs_in_node unchanged */
  477. int reserve_new_block(struct dnode_of_data *dn)
  478. {
  479. unsigned int ofs_in_node = dn->ofs_in_node;
  480. int ret;
  481. ret = reserve_new_blocks(dn, 1);
  482. dn->ofs_in_node = ofs_in_node;
  483. return ret;
  484. }
  485. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  486. {
  487. bool need_put = dn->inode_page ? false : true;
  488. int err;
  489. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  490. if (err)
  491. return err;
  492. if (dn->data_blkaddr == NULL_ADDR)
  493. err = reserve_new_block(dn);
  494. if (err || need_put)
  495. f2fs_put_dnode(dn);
  496. return err;
  497. }
  498. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  499. {
  500. struct extent_info ei = {0,0,0};
  501. struct inode *inode = dn->inode;
  502. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  503. dn->data_blkaddr = ei.blk + index - ei.fofs;
  504. return 0;
  505. }
  506. return f2fs_reserve_block(dn, index);
  507. }
  508. struct page *get_read_data_page(struct inode *inode, pgoff_t index,
  509. int op_flags, bool for_write)
  510. {
  511. struct address_space *mapping = inode->i_mapping;
  512. struct dnode_of_data dn;
  513. struct page *page;
  514. struct extent_info ei = {0,0,0};
  515. int err;
  516. page = f2fs_grab_cache_page(mapping, index, for_write);
  517. if (!page)
  518. return ERR_PTR(-ENOMEM);
  519. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  520. dn.data_blkaddr = ei.blk + index - ei.fofs;
  521. goto got_it;
  522. }
  523. set_new_dnode(&dn, inode, NULL, NULL, 0);
  524. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  525. if (err)
  526. goto put_err;
  527. f2fs_put_dnode(&dn);
  528. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  529. err = -ENOENT;
  530. goto put_err;
  531. }
  532. got_it:
  533. if (PageUptodate(page)) {
  534. unlock_page(page);
  535. return page;
  536. }
  537. /*
  538. * A new dentry page is allocated but not able to be written, since its
  539. * new inode page couldn't be allocated due to -ENOSPC.
  540. * In such the case, its blkaddr can be remained as NEW_ADDR.
  541. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  542. */
  543. if (dn.data_blkaddr == NEW_ADDR) {
  544. zero_user_segment(page, 0, PAGE_SIZE);
  545. if (!PageUptodate(page))
  546. SetPageUptodate(page);
  547. unlock_page(page);
  548. return page;
  549. }
  550. err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
  551. if (err)
  552. goto put_err;
  553. return page;
  554. put_err:
  555. f2fs_put_page(page, 1);
  556. return ERR_PTR(err);
  557. }
  558. struct page *find_data_page(struct inode *inode, pgoff_t index)
  559. {
  560. struct address_space *mapping = inode->i_mapping;
  561. struct page *page;
  562. page = find_get_page(mapping, index);
  563. if (page && PageUptodate(page))
  564. return page;
  565. f2fs_put_page(page, 0);
  566. page = get_read_data_page(inode, index, 0, false);
  567. if (IS_ERR(page))
  568. return page;
  569. if (PageUptodate(page))
  570. return page;
  571. wait_on_page_locked(page);
  572. if (unlikely(!PageUptodate(page))) {
  573. f2fs_put_page(page, 0);
  574. return ERR_PTR(-EIO);
  575. }
  576. return page;
  577. }
  578. /*
  579. * If it tries to access a hole, return an error.
  580. * Because, the callers, functions in dir.c and GC, should be able to know
  581. * whether this page exists or not.
  582. */
  583. struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
  584. bool for_write)
  585. {
  586. struct address_space *mapping = inode->i_mapping;
  587. struct page *page;
  588. repeat:
  589. page = get_read_data_page(inode, index, 0, for_write);
  590. if (IS_ERR(page))
  591. return page;
  592. /* wait for read completion */
  593. lock_page(page);
  594. if (unlikely(page->mapping != mapping)) {
  595. f2fs_put_page(page, 1);
  596. goto repeat;
  597. }
  598. if (unlikely(!PageUptodate(page))) {
  599. f2fs_put_page(page, 1);
  600. return ERR_PTR(-EIO);
  601. }
  602. return page;
  603. }
  604. /*
  605. * Caller ensures that this data page is never allocated.
  606. * A new zero-filled data page is allocated in the page cache.
  607. *
  608. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  609. * f2fs_unlock_op().
  610. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  611. * ipage should be released by this function.
  612. */
  613. struct page *get_new_data_page(struct inode *inode,
  614. struct page *ipage, pgoff_t index, bool new_i_size)
  615. {
  616. struct address_space *mapping = inode->i_mapping;
  617. struct page *page;
  618. struct dnode_of_data dn;
  619. int err;
  620. page = f2fs_grab_cache_page(mapping, index, true);
  621. if (!page) {
  622. /*
  623. * before exiting, we should make sure ipage will be released
  624. * if any error occur.
  625. */
  626. f2fs_put_page(ipage, 1);
  627. return ERR_PTR(-ENOMEM);
  628. }
  629. set_new_dnode(&dn, inode, ipage, NULL, 0);
  630. err = f2fs_reserve_block(&dn, index);
  631. if (err) {
  632. f2fs_put_page(page, 1);
  633. return ERR_PTR(err);
  634. }
  635. if (!ipage)
  636. f2fs_put_dnode(&dn);
  637. if (PageUptodate(page))
  638. goto got_it;
  639. if (dn.data_blkaddr == NEW_ADDR) {
  640. zero_user_segment(page, 0, PAGE_SIZE);
  641. if (!PageUptodate(page))
  642. SetPageUptodate(page);
  643. } else {
  644. f2fs_put_page(page, 1);
  645. /* if ipage exists, blkaddr should be NEW_ADDR */
  646. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  647. page = get_lock_data_page(inode, index, true);
  648. if (IS_ERR(page))
  649. return page;
  650. }
  651. got_it:
  652. if (new_i_size && i_size_read(inode) <
  653. ((loff_t)(index + 1) << PAGE_SHIFT))
  654. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  655. return page;
  656. }
  657. static int __allocate_data_block(struct dnode_of_data *dn)
  658. {
  659. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  660. struct f2fs_summary sum;
  661. struct node_info ni;
  662. pgoff_t fofs;
  663. blkcnt_t count = 1;
  664. int err;
  665. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  666. return -EPERM;
  667. dn->data_blkaddr = datablock_addr(dn->inode,
  668. dn->node_page, dn->ofs_in_node);
  669. if (dn->data_blkaddr == NEW_ADDR)
  670. goto alloc;
  671. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  672. return err;
  673. alloc:
  674. get_node_info(sbi, dn->nid, &ni);
  675. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  676. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  677. &sum, CURSEG_WARM_DATA, NULL, false);
  678. set_data_blkaddr(dn);
  679. /* update i_size */
  680. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  681. dn->ofs_in_node;
  682. if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
  683. f2fs_i_size_write(dn->inode,
  684. ((loff_t)(fofs + 1) << PAGE_SHIFT));
  685. return 0;
  686. }
  687. static inline bool __force_buffered_io(struct inode *inode, int rw)
  688. {
  689. return (f2fs_encrypted_file(inode) ||
  690. (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
  691. F2FS_I_SB(inode)->s_ndevs);
  692. }
  693. int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  694. {
  695. struct inode *inode = file_inode(iocb->ki_filp);
  696. struct f2fs_map_blocks map;
  697. int err = 0;
  698. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  699. return 0;
  700. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  701. map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
  702. if (map.m_len > map.m_lblk)
  703. map.m_len -= map.m_lblk;
  704. else
  705. map.m_len = 0;
  706. map.m_next_pgofs = NULL;
  707. if (iocb->ki_flags & IOCB_DIRECT) {
  708. err = f2fs_convert_inline_inode(inode);
  709. if (err)
  710. return err;
  711. return f2fs_map_blocks(inode, &map, 1,
  712. __force_buffered_io(inode, WRITE) ?
  713. F2FS_GET_BLOCK_PRE_AIO :
  714. F2FS_GET_BLOCK_PRE_DIO);
  715. }
  716. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
  717. err = f2fs_convert_inline_inode(inode);
  718. if (err)
  719. return err;
  720. }
  721. if (!f2fs_has_inline_data(inode))
  722. return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  723. return err;
  724. }
  725. static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
  726. {
  727. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  728. if (lock)
  729. down_read(&sbi->node_change);
  730. else
  731. up_read(&sbi->node_change);
  732. } else {
  733. if (lock)
  734. f2fs_lock_op(sbi);
  735. else
  736. f2fs_unlock_op(sbi);
  737. }
  738. }
  739. /*
  740. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  741. * f2fs_map_blocks structure.
  742. * If original data blocks are allocated, then give them to blockdev.
  743. * Otherwise,
  744. * a. preallocate requested block addresses
  745. * b. do not use extent cache for better performance
  746. * c. give the block addresses to blockdev
  747. */
  748. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  749. int create, int flag)
  750. {
  751. unsigned int maxblocks = map->m_len;
  752. struct dnode_of_data dn;
  753. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  754. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  755. pgoff_t pgofs, end_offset, end;
  756. int err = 0, ofs = 1;
  757. unsigned int ofs_in_node, last_ofs_in_node;
  758. blkcnt_t prealloc;
  759. struct extent_info ei = {0,0,0};
  760. block_t blkaddr;
  761. if (!maxblocks)
  762. return 0;
  763. map->m_len = 0;
  764. map->m_flags = 0;
  765. /* it only supports block size == page size */
  766. pgofs = (pgoff_t)map->m_lblk;
  767. end = pgofs + maxblocks;
  768. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  769. map->m_pblk = ei.blk + pgofs - ei.fofs;
  770. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  771. map->m_flags = F2FS_MAP_MAPPED;
  772. goto out;
  773. }
  774. next_dnode:
  775. if (create)
  776. __do_map_lock(sbi, flag, true);
  777. /* When reading holes, we need its node page */
  778. set_new_dnode(&dn, inode, NULL, NULL, 0);
  779. err = get_dnode_of_data(&dn, pgofs, mode);
  780. if (err) {
  781. if (flag == F2FS_GET_BLOCK_BMAP)
  782. map->m_pblk = 0;
  783. if (err == -ENOENT) {
  784. err = 0;
  785. if (map->m_next_pgofs)
  786. *map->m_next_pgofs =
  787. get_next_page_offset(&dn, pgofs);
  788. }
  789. goto unlock_out;
  790. }
  791. prealloc = 0;
  792. last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
  793. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  794. next_block:
  795. blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  796. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
  797. if (create) {
  798. if (unlikely(f2fs_cp_error(sbi))) {
  799. err = -EIO;
  800. goto sync_out;
  801. }
  802. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  803. if (blkaddr == NULL_ADDR) {
  804. prealloc++;
  805. last_ofs_in_node = dn.ofs_in_node;
  806. }
  807. } else {
  808. err = __allocate_data_block(&dn);
  809. if (!err)
  810. set_inode_flag(inode, FI_APPEND_WRITE);
  811. }
  812. if (err)
  813. goto sync_out;
  814. map->m_flags |= F2FS_MAP_NEW;
  815. blkaddr = dn.data_blkaddr;
  816. } else {
  817. if (flag == F2FS_GET_BLOCK_BMAP) {
  818. map->m_pblk = 0;
  819. goto sync_out;
  820. }
  821. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  822. blkaddr == NULL_ADDR) {
  823. if (map->m_next_pgofs)
  824. *map->m_next_pgofs = pgofs + 1;
  825. }
  826. if (flag != F2FS_GET_BLOCK_FIEMAP ||
  827. blkaddr != NEW_ADDR)
  828. goto sync_out;
  829. }
  830. }
  831. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  832. goto skip;
  833. if (map->m_len == 0) {
  834. /* preallocated unwritten block should be mapped for fiemap. */
  835. if (blkaddr == NEW_ADDR)
  836. map->m_flags |= F2FS_MAP_UNWRITTEN;
  837. map->m_flags |= F2FS_MAP_MAPPED;
  838. map->m_pblk = blkaddr;
  839. map->m_len = 1;
  840. } else if ((map->m_pblk != NEW_ADDR &&
  841. blkaddr == (map->m_pblk + ofs)) ||
  842. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  843. flag == F2FS_GET_BLOCK_PRE_DIO) {
  844. ofs++;
  845. map->m_len++;
  846. } else {
  847. goto sync_out;
  848. }
  849. skip:
  850. dn.ofs_in_node++;
  851. pgofs++;
  852. /* preallocate blocks in batch for one dnode page */
  853. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  854. (pgofs == end || dn.ofs_in_node == end_offset)) {
  855. dn.ofs_in_node = ofs_in_node;
  856. err = reserve_new_blocks(&dn, prealloc);
  857. if (err)
  858. goto sync_out;
  859. map->m_len += dn.ofs_in_node - ofs_in_node;
  860. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  861. err = -ENOSPC;
  862. goto sync_out;
  863. }
  864. dn.ofs_in_node = end_offset;
  865. }
  866. if (pgofs >= end)
  867. goto sync_out;
  868. else if (dn.ofs_in_node < end_offset)
  869. goto next_block;
  870. f2fs_put_dnode(&dn);
  871. if (create) {
  872. __do_map_lock(sbi, flag, false);
  873. f2fs_balance_fs(sbi, dn.node_changed);
  874. }
  875. goto next_dnode;
  876. sync_out:
  877. f2fs_put_dnode(&dn);
  878. unlock_out:
  879. if (create) {
  880. __do_map_lock(sbi, flag, false);
  881. f2fs_balance_fs(sbi, dn.node_changed);
  882. }
  883. out:
  884. trace_f2fs_map_blocks(inode, map, err);
  885. return err;
  886. }
  887. static int __get_data_block(struct inode *inode, sector_t iblock,
  888. struct buffer_head *bh, int create, int flag,
  889. pgoff_t *next_pgofs)
  890. {
  891. struct f2fs_map_blocks map;
  892. int err;
  893. map.m_lblk = iblock;
  894. map.m_len = bh->b_size >> inode->i_blkbits;
  895. map.m_next_pgofs = next_pgofs;
  896. err = f2fs_map_blocks(inode, &map, create, flag);
  897. if (!err) {
  898. map_bh(bh, inode->i_sb, map.m_pblk);
  899. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  900. bh->b_size = (u64)map.m_len << inode->i_blkbits;
  901. }
  902. return err;
  903. }
  904. static int get_data_block(struct inode *inode, sector_t iblock,
  905. struct buffer_head *bh_result, int create, int flag,
  906. pgoff_t *next_pgofs)
  907. {
  908. return __get_data_block(inode, iblock, bh_result, create,
  909. flag, next_pgofs);
  910. }
  911. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  912. struct buffer_head *bh_result, int create)
  913. {
  914. return __get_data_block(inode, iblock, bh_result, create,
  915. F2FS_GET_BLOCK_DEFAULT, NULL);
  916. }
  917. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  918. struct buffer_head *bh_result, int create)
  919. {
  920. /* Block number less than F2FS MAX BLOCKS */
  921. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  922. return -EFBIG;
  923. return __get_data_block(inode, iblock, bh_result, create,
  924. F2FS_GET_BLOCK_BMAP, NULL);
  925. }
  926. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  927. {
  928. return (offset >> inode->i_blkbits);
  929. }
  930. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  931. {
  932. return (blk << inode->i_blkbits);
  933. }
  934. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  935. u64 start, u64 len)
  936. {
  937. struct buffer_head map_bh;
  938. sector_t start_blk, last_blk;
  939. pgoff_t next_pgofs;
  940. u64 logical = 0, phys = 0, size = 0;
  941. u32 flags = 0;
  942. int ret = 0;
  943. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
  944. if (ret)
  945. return ret;
  946. if (f2fs_has_inline_data(inode)) {
  947. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  948. if (ret != -EAGAIN)
  949. return ret;
  950. }
  951. inode_lock(inode);
  952. if (logical_to_blk(inode, len) == 0)
  953. len = blk_to_logical(inode, 1);
  954. start_blk = logical_to_blk(inode, start);
  955. last_blk = logical_to_blk(inode, start + len - 1);
  956. next:
  957. memset(&map_bh, 0, sizeof(struct buffer_head));
  958. map_bh.b_size = len;
  959. ret = get_data_block(inode, start_blk, &map_bh, 0,
  960. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  961. if (ret)
  962. goto out;
  963. /* HOLE */
  964. if (!buffer_mapped(&map_bh)) {
  965. start_blk = next_pgofs;
  966. if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
  967. F2FS_I_SB(inode)->max_file_blocks))
  968. goto prep_next;
  969. flags |= FIEMAP_EXTENT_LAST;
  970. }
  971. if (size) {
  972. if (f2fs_encrypted_inode(inode))
  973. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  974. ret = fiemap_fill_next_extent(fieinfo, logical,
  975. phys, size, flags);
  976. }
  977. if (start_blk > last_blk || ret)
  978. goto out;
  979. logical = blk_to_logical(inode, start_blk);
  980. phys = blk_to_logical(inode, map_bh.b_blocknr);
  981. size = map_bh.b_size;
  982. flags = 0;
  983. if (buffer_unwritten(&map_bh))
  984. flags = FIEMAP_EXTENT_UNWRITTEN;
  985. start_blk += logical_to_blk(inode, size);
  986. prep_next:
  987. cond_resched();
  988. if (fatal_signal_pending(current))
  989. ret = -EINTR;
  990. else
  991. goto next;
  992. out:
  993. if (ret == 1)
  994. ret = 0;
  995. inode_unlock(inode);
  996. return ret;
  997. }
  998. /*
  999. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  1000. * Major change was from block_size == page_size in f2fs by default.
  1001. */
  1002. static int f2fs_mpage_readpages(struct address_space *mapping,
  1003. struct list_head *pages, struct page *page,
  1004. unsigned nr_pages)
  1005. {
  1006. struct bio *bio = NULL;
  1007. unsigned page_idx;
  1008. sector_t last_block_in_bio = 0;
  1009. struct inode *inode = mapping->host;
  1010. const unsigned blkbits = inode->i_blkbits;
  1011. const unsigned blocksize = 1 << blkbits;
  1012. sector_t block_in_file;
  1013. sector_t last_block;
  1014. sector_t last_block_in_file;
  1015. sector_t block_nr;
  1016. struct f2fs_map_blocks map;
  1017. map.m_pblk = 0;
  1018. map.m_lblk = 0;
  1019. map.m_len = 0;
  1020. map.m_flags = 0;
  1021. map.m_next_pgofs = NULL;
  1022. for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
  1023. if (pages) {
  1024. page = list_last_entry(pages, struct page, lru);
  1025. prefetchw(&page->flags);
  1026. list_del(&page->lru);
  1027. if (add_to_page_cache_lru(page, mapping,
  1028. page->index,
  1029. readahead_gfp_mask(mapping)))
  1030. goto next_page;
  1031. }
  1032. block_in_file = (sector_t)page->index;
  1033. last_block = block_in_file + nr_pages;
  1034. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  1035. blkbits;
  1036. if (last_block > last_block_in_file)
  1037. last_block = last_block_in_file;
  1038. /*
  1039. * Map blocks using the previous result first.
  1040. */
  1041. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  1042. block_in_file > map.m_lblk &&
  1043. block_in_file < (map.m_lblk + map.m_len))
  1044. goto got_it;
  1045. /*
  1046. * Then do more f2fs_map_blocks() calls until we are
  1047. * done with this page.
  1048. */
  1049. map.m_flags = 0;
  1050. if (block_in_file < last_block) {
  1051. map.m_lblk = block_in_file;
  1052. map.m_len = last_block - block_in_file;
  1053. if (f2fs_map_blocks(inode, &map, 0,
  1054. F2FS_GET_BLOCK_DEFAULT))
  1055. goto set_error_page;
  1056. }
  1057. got_it:
  1058. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  1059. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  1060. SetPageMappedToDisk(page);
  1061. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  1062. SetPageUptodate(page);
  1063. goto confused;
  1064. }
  1065. } else {
  1066. zero_user_segment(page, 0, PAGE_SIZE);
  1067. if (!PageUptodate(page))
  1068. SetPageUptodate(page);
  1069. unlock_page(page);
  1070. goto next_page;
  1071. }
  1072. /*
  1073. * This page will go to BIO. Do we need to send this
  1074. * BIO off first?
  1075. */
  1076. if (bio && (last_block_in_bio != block_nr - 1 ||
  1077. !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
  1078. submit_and_realloc:
  1079. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1080. bio = NULL;
  1081. }
  1082. if (bio == NULL) {
  1083. bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
  1084. if (IS_ERR(bio)) {
  1085. bio = NULL;
  1086. goto set_error_page;
  1087. }
  1088. }
  1089. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  1090. goto submit_and_realloc;
  1091. last_block_in_bio = block_nr;
  1092. goto next_page;
  1093. set_error_page:
  1094. SetPageError(page);
  1095. zero_user_segment(page, 0, PAGE_SIZE);
  1096. unlock_page(page);
  1097. goto next_page;
  1098. confused:
  1099. if (bio) {
  1100. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1101. bio = NULL;
  1102. }
  1103. unlock_page(page);
  1104. next_page:
  1105. if (pages)
  1106. put_page(page);
  1107. }
  1108. BUG_ON(pages && !list_empty(pages));
  1109. if (bio)
  1110. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1111. return 0;
  1112. }
  1113. static int f2fs_read_data_page(struct file *file, struct page *page)
  1114. {
  1115. struct inode *inode = page->mapping->host;
  1116. int ret = -EAGAIN;
  1117. trace_f2fs_readpage(page, DATA);
  1118. /* If the file has inline data, try to read it directly */
  1119. if (f2fs_has_inline_data(inode))
  1120. ret = f2fs_read_inline_data(inode, page);
  1121. if (ret == -EAGAIN)
  1122. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  1123. return ret;
  1124. }
  1125. static int f2fs_read_data_pages(struct file *file,
  1126. struct address_space *mapping,
  1127. struct list_head *pages, unsigned nr_pages)
  1128. {
  1129. struct inode *inode = file->f_mapping->host;
  1130. struct page *page = list_last_entry(pages, struct page, lru);
  1131. trace_f2fs_readpages(inode, page, nr_pages);
  1132. /* If the file has inline data, skip readpages */
  1133. if (f2fs_has_inline_data(inode))
  1134. return 0;
  1135. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  1136. }
  1137. static int encrypt_one_page(struct f2fs_io_info *fio)
  1138. {
  1139. struct inode *inode = fio->page->mapping->host;
  1140. gfp_t gfp_flags = GFP_NOFS;
  1141. if (!f2fs_encrypted_file(inode))
  1142. return 0;
  1143. /* wait for GCed encrypted page writeback */
  1144. f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
  1145. retry_encrypt:
  1146. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1147. PAGE_SIZE, 0, fio->page->index, gfp_flags);
  1148. if (!IS_ERR(fio->encrypted_page))
  1149. return 0;
  1150. /* flush pending IOs and wait for a while in the ENOMEM case */
  1151. if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
  1152. f2fs_flush_merged_writes(fio->sbi);
  1153. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1154. gfp_flags |= __GFP_NOFAIL;
  1155. goto retry_encrypt;
  1156. }
  1157. return PTR_ERR(fio->encrypted_page);
  1158. }
  1159. static inline bool need_inplace_update(struct f2fs_io_info *fio)
  1160. {
  1161. struct inode *inode = fio->page->mapping->host;
  1162. if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
  1163. return false;
  1164. if (is_cold_data(fio->page))
  1165. return false;
  1166. if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
  1167. return false;
  1168. return need_inplace_update_policy(inode, fio);
  1169. }
  1170. static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
  1171. {
  1172. if (fio->old_blkaddr == NEW_ADDR)
  1173. return false;
  1174. if (fio->old_blkaddr == NULL_ADDR)
  1175. return false;
  1176. return true;
  1177. }
  1178. int do_write_data_page(struct f2fs_io_info *fio)
  1179. {
  1180. struct page *page = fio->page;
  1181. struct inode *inode = page->mapping->host;
  1182. struct dnode_of_data dn;
  1183. struct extent_info ei = {0,0,0};
  1184. bool ipu_force = false;
  1185. int err = 0;
  1186. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1187. if (need_inplace_update(fio) &&
  1188. f2fs_lookup_extent_cache(inode, page->index, &ei)) {
  1189. fio->old_blkaddr = ei.blk + page->index - ei.fofs;
  1190. if (valid_ipu_blkaddr(fio)) {
  1191. ipu_force = true;
  1192. fio->need_lock = LOCK_DONE;
  1193. goto got_it;
  1194. }
  1195. }
  1196. /* Deadlock due to between page->lock and f2fs_lock_op */
  1197. if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
  1198. return -EAGAIN;
  1199. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1200. if (err)
  1201. goto out;
  1202. fio->old_blkaddr = dn.data_blkaddr;
  1203. /* This page is already truncated */
  1204. if (fio->old_blkaddr == NULL_ADDR) {
  1205. ClearPageUptodate(page);
  1206. goto out_writepage;
  1207. }
  1208. got_it:
  1209. /*
  1210. * If current allocation needs SSR,
  1211. * it had better in-place writes for updated data.
  1212. */
  1213. if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
  1214. err = encrypt_one_page(fio);
  1215. if (err)
  1216. goto out_writepage;
  1217. set_page_writeback(page);
  1218. f2fs_put_dnode(&dn);
  1219. if (fio->need_lock == LOCK_REQ)
  1220. f2fs_unlock_op(fio->sbi);
  1221. err = rewrite_data_page(fio);
  1222. trace_f2fs_do_write_data_page(fio->page, IPU);
  1223. set_inode_flag(inode, FI_UPDATE_WRITE);
  1224. return err;
  1225. }
  1226. if (fio->need_lock == LOCK_RETRY) {
  1227. if (!f2fs_trylock_op(fio->sbi)) {
  1228. err = -EAGAIN;
  1229. goto out_writepage;
  1230. }
  1231. fio->need_lock = LOCK_REQ;
  1232. }
  1233. err = encrypt_one_page(fio);
  1234. if (err)
  1235. goto out_writepage;
  1236. set_page_writeback(page);
  1237. /* LFS mode write path */
  1238. write_data_page(&dn, fio);
  1239. trace_f2fs_do_write_data_page(page, OPU);
  1240. set_inode_flag(inode, FI_APPEND_WRITE);
  1241. if (page->index == 0)
  1242. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1243. out_writepage:
  1244. f2fs_put_dnode(&dn);
  1245. out:
  1246. if (fio->need_lock == LOCK_REQ)
  1247. f2fs_unlock_op(fio->sbi);
  1248. return err;
  1249. }
  1250. static int __write_data_page(struct page *page, bool *submitted,
  1251. struct writeback_control *wbc,
  1252. enum iostat_type io_type)
  1253. {
  1254. struct inode *inode = page->mapping->host;
  1255. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1256. loff_t i_size = i_size_read(inode);
  1257. const pgoff_t end_index = ((unsigned long long) i_size)
  1258. >> PAGE_SHIFT;
  1259. loff_t psize = (page->index + 1) << PAGE_SHIFT;
  1260. unsigned offset = 0;
  1261. bool need_balance_fs = false;
  1262. int err = 0;
  1263. struct f2fs_io_info fio = {
  1264. .sbi = sbi,
  1265. .type = DATA,
  1266. .op = REQ_OP_WRITE,
  1267. .op_flags = wbc_to_write_flags(wbc),
  1268. .old_blkaddr = NULL_ADDR,
  1269. .page = page,
  1270. .encrypted_page = NULL,
  1271. .submitted = false,
  1272. .need_lock = LOCK_RETRY,
  1273. .io_type = io_type,
  1274. };
  1275. trace_f2fs_writepage(page, DATA);
  1276. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1277. goto redirty_out;
  1278. if (page->index < end_index)
  1279. goto write;
  1280. /*
  1281. * If the offset is out-of-range of file size,
  1282. * this page does not have to be written to disk.
  1283. */
  1284. offset = i_size & (PAGE_SIZE - 1);
  1285. if ((page->index >= end_index + 1) || !offset)
  1286. goto out;
  1287. zero_user_segment(page, offset, PAGE_SIZE);
  1288. write:
  1289. if (f2fs_is_drop_cache(inode))
  1290. goto out;
  1291. /* we should not write 0'th page having journal header */
  1292. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1293. (!wbc->for_reclaim &&
  1294. available_free_memory(sbi, BASE_CHECK))))
  1295. goto redirty_out;
  1296. /* we should bypass data pages to proceed the kworkder jobs */
  1297. if (unlikely(f2fs_cp_error(sbi))) {
  1298. mapping_set_error(page->mapping, -EIO);
  1299. goto out;
  1300. }
  1301. /* Dentry blocks are controlled by checkpoint */
  1302. if (S_ISDIR(inode->i_mode)) {
  1303. fio.need_lock = LOCK_DONE;
  1304. err = do_write_data_page(&fio);
  1305. goto done;
  1306. }
  1307. if (!wbc->for_reclaim)
  1308. need_balance_fs = true;
  1309. else if (has_not_enough_free_secs(sbi, 0, 0))
  1310. goto redirty_out;
  1311. else
  1312. set_inode_flag(inode, FI_HOT_DATA);
  1313. err = -EAGAIN;
  1314. if (f2fs_has_inline_data(inode)) {
  1315. err = f2fs_write_inline_data(inode, page);
  1316. if (!err)
  1317. goto out;
  1318. }
  1319. if (err == -EAGAIN) {
  1320. err = do_write_data_page(&fio);
  1321. if (err == -EAGAIN) {
  1322. fio.need_lock = LOCK_REQ;
  1323. err = do_write_data_page(&fio);
  1324. }
  1325. }
  1326. if (F2FS_I(inode)->last_disk_size < psize)
  1327. F2FS_I(inode)->last_disk_size = psize;
  1328. done:
  1329. if (err && err != -ENOENT)
  1330. goto redirty_out;
  1331. out:
  1332. inode_dec_dirty_pages(inode);
  1333. if (err)
  1334. ClearPageUptodate(page);
  1335. if (wbc->for_reclaim) {
  1336. f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
  1337. clear_inode_flag(inode, FI_HOT_DATA);
  1338. remove_dirty_inode(inode);
  1339. submitted = NULL;
  1340. }
  1341. unlock_page(page);
  1342. if (!S_ISDIR(inode->i_mode))
  1343. f2fs_balance_fs(sbi, need_balance_fs);
  1344. if (unlikely(f2fs_cp_error(sbi))) {
  1345. f2fs_submit_merged_write(sbi, DATA);
  1346. submitted = NULL;
  1347. }
  1348. if (submitted)
  1349. *submitted = fio.submitted;
  1350. return 0;
  1351. redirty_out:
  1352. redirty_page_for_writepage(wbc, page);
  1353. if (!err)
  1354. return AOP_WRITEPAGE_ACTIVATE;
  1355. unlock_page(page);
  1356. return err;
  1357. }
  1358. static int f2fs_write_data_page(struct page *page,
  1359. struct writeback_control *wbc)
  1360. {
  1361. return __write_data_page(page, NULL, wbc, FS_DATA_IO);
  1362. }
  1363. /*
  1364. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1365. * The major change is making write step of cold data page separately from
  1366. * warm/hot data page.
  1367. */
  1368. static int f2fs_write_cache_pages(struct address_space *mapping,
  1369. struct writeback_control *wbc,
  1370. enum iostat_type io_type)
  1371. {
  1372. int ret = 0;
  1373. int done = 0;
  1374. struct pagevec pvec;
  1375. int nr_pages;
  1376. pgoff_t uninitialized_var(writeback_index);
  1377. pgoff_t index;
  1378. pgoff_t end; /* Inclusive */
  1379. pgoff_t done_index;
  1380. pgoff_t last_idx = ULONG_MAX;
  1381. int cycled;
  1382. int range_whole = 0;
  1383. int tag;
  1384. pagevec_init(&pvec, 0);
  1385. if (get_dirty_pages(mapping->host) <=
  1386. SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
  1387. set_inode_flag(mapping->host, FI_HOT_DATA);
  1388. else
  1389. clear_inode_flag(mapping->host, FI_HOT_DATA);
  1390. if (wbc->range_cyclic) {
  1391. writeback_index = mapping->writeback_index; /* prev offset */
  1392. index = writeback_index;
  1393. if (index == 0)
  1394. cycled = 1;
  1395. else
  1396. cycled = 0;
  1397. end = -1;
  1398. } else {
  1399. index = wbc->range_start >> PAGE_SHIFT;
  1400. end = wbc->range_end >> PAGE_SHIFT;
  1401. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1402. range_whole = 1;
  1403. cycled = 1; /* ignore range_cyclic tests */
  1404. }
  1405. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1406. tag = PAGECACHE_TAG_TOWRITE;
  1407. else
  1408. tag = PAGECACHE_TAG_DIRTY;
  1409. retry:
  1410. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1411. tag_pages_for_writeback(mapping, index, end);
  1412. done_index = index;
  1413. while (!done && (index <= end)) {
  1414. int i;
  1415. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1416. min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
  1417. if (nr_pages == 0)
  1418. break;
  1419. for (i = 0; i < nr_pages; i++) {
  1420. struct page *page = pvec.pages[i];
  1421. bool submitted = false;
  1422. if (page->index > end) {
  1423. done = 1;
  1424. break;
  1425. }
  1426. done_index = page->index;
  1427. retry_write:
  1428. lock_page(page);
  1429. if (unlikely(page->mapping != mapping)) {
  1430. continue_unlock:
  1431. unlock_page(page);
  1432. continue;
  1433. }
  1434. if (!PageDirty(page)) {
  1435. /* someone wrote it for us */
  1436. goto continue_unlock;
  1437. }
  1438. if (PageWriteback(page)) {
  1439. if (wbc->sync_mode != WB_SYNC_NONE)
  1440. f2fs_wait_on_page_writeback(page,
  1441. DATA, true);
  1442. else
  1443. goto continue_unlock;
  1444. }
  1445. BUG_ON(PageWriteback(page));
  1446. if (!clear_page_dirty_for_io(page))
  1447. goto continue_unlock;
  1448. ret = __write_data_page(page, &submitted, wbc, io_type);
  1449. if (unlikely(ret)) {
  1450. /*
  1451. * keep nr_to_write, since vfs uses this to
  1452. * get # of written pages.
  1453. */
  1454. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1455. unlock_page(page);
  1456. ret = 0;
  1457. continue;
  1458. } else if (ret == -EAGAIN) {
  1459. ret = 0;
  1460. if (wbc->sync_mode == WB_SYNC_ALL) {
  1461. cond_resched();
  1462. congestion_wait(BLK_RW_ASYNC,
  1463. HZ/50);
  1464. goto retry_write;
  1465. }
  1466. continue;
  1467. }
  1468. done_index = page->index + 1;
  1469. done = 1;
  1470. break;
  1471. } else if (submitted) {
  1472. last_idx = page->index;
  1473. }
  1474. /* give a priority to WB_SYNC threads */
  1475. if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
  1476. --wbc->nr_to_write <= 0) &&
  1477. wbc->sync_mode == WB_SYNC_NONE) {
  1478. done = 1;
  1479. break;
  1480. }
  1481. }
  1482. pagevec_release(&pvec);
  1483. cond_resched();
  1484. }
  1485. if (!cycled && !done) {
  1486. cycled = 1;
  1487. index = 0;
  1488. end = writeback_index - 1;
  1489. goto retry;
  1490. }
  1491. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1492. mapping->writeback_index = done_index;
  1493. if (last_idx != ULONG_MAX)
  1494. f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
  1495. 0, last_idx, DATA);
  1496. return ret;
  1497. }
  1498. int __f2fs_write_data_pages(struct address_space *mapping,
  1499. struct writeback_control *wbc,
  1500. enum iostat_type io_type)
  1501. {
  1502. struct inode *inode = mapping->host;
  1503. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1504. struct blk_plug plug;
  1505. int ret;
  1506. /* deal with chardevs and other special file */
  1507. if (!mapping->a_ops->writepage)
  1508. return 0;
  1509. /* skip writing if there is no dirty page in this inode */
  1510. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1511. return 0;
  1512. /* during POR, we don't need to trigger writepage at all. */
  1513. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1514. goto skip_write;
  1515. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1516. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1517. available_free_memory(sbi, DIRTY_DENTS))
  1518. goto skip_write;
  1519. /* skip writing during file defragment */
  1520. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1521. goto skip_write;
  1522. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1523. /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
  1524. if (wbc->sync_mode == WB_SYNC_ALL)
  1525. atomic_inc(&sbi->wb_sync_req);
  1526. else if (atomic_read(&sbi->wb_sync_req))
  1527. goto skip_write;
  1528. blk_start_plug(&plug);
  1529. ret = f2fs_write_cache_pages(mapping, wbc, io_type);
  1530. blk_finish_plug(&plug);
  1531. if (wbc->sync_mode == WB_SYNC_ALL)
  1532. atomic_dec(&sbi->wb_sync_req);
  1533. /*
  1534. * if some pages were truncated, we cannot guarantee its mapping->host
  1535. * to detect pending bios.
  1536. */
  1537. remove_dirty_inode(inode);
  1538. return ret;
  1539. skip_write:
  1540. wbc->pages_skipped += get_dirty_pages(inode);
  1541. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1542. return 0;
  1543. }
  1544. static int f2fs_write_data_pages(struct address_space *mapping,
  1545. struct writeback_control *wbc)
  1546. {
  1547. struct inode *inode = mapping->host;
  1548. return __f2fs_write_data_pages(mapping, wbc,
  1549. F2FS_I(inode)->cp_task == current ?
  1550. FS_CP_DATA_IO : FS_DATA_IO);
  1551. }
  1552. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1553. {
  1554. struct inode *inode = mapping->host;
  1555. loff_t i_size = i_size_read(inode);
  1556. if (to > i_size) {
  1557. down_write(&F2FS_I(inode)->i_mmap_sem);
  1558. truncate_pagecache(inode, i_size);
  1559. truncate_blocks(inode, i_size, true);
  1560. up_write(&F2FS_I(inode)->i_mmap_sem);
  1561. }
  1562. }
  1563. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1564. struct page *page, loff_t pos, unsigned len,
  1565. block_t *blk_addr, bool *node_changed)
  1566. {
  1567. struct inode *inode = page->mapping->host;
  1568. pgoff_t index = page->index;
  1569. struct dnode_of_data dn;
  1570. struct page *ipage;
  1571. bool locked = false;
  1572. struct extent_info ei = {0,0,0};
  1573. int err = 0;
  1574. /*
  1575. * we already allocated all the blocks, so we don't need to get
  1576. * the block addresses when there is no need to fill the page.
  1577. */
  1578. if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
  1579. !is_inode_flag_set(inode, FI_NO_PREALLOC))
  1580. return 0;
  1581. if (f2fs_has_inline_data(inode) ||
  1582. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1583. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  1584. locked = true;
  1585. }
  1586. restart:
  1587. /* check inline_data */
  1588. ipage = get_node_page(sbi, inode->i_ino);
  1589. if (IS_ERR(ipage)) {
  1590. err = PTR_ERR(ipage);
  1591. goto unlock_out;
  1592. }
  1593. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1594. if (f2fs_has_inline_data(inode)) {
  1595. if (pos + len <= MAX_INLINE_DATA(inode)) {
  1596. read_inline_data(page, ipage);
  1597. set_inode_flag(inode, FI_DATA_EXIST);
  1598. if (inode->i_nlink)
  1599. set_inline_node(ipage);
  1600. } else {
  1601. err = f2fs_convert_inline_page(&dn, page);
  1602. if (err)
  1603. goto out;
  1604. if (dn.data_blkaddr == NULL_ADDR)
  1605. err = f2fs_get_block(&dn, index);
  1606. }
  1607. } else if (locked) {
  1608. err = f2fs_get_block(&dn, index);
  1609. } else {
  1610. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1611. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1612. } else {
  1613. /* hole case */
  1614. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1615. if (err || dn.data_blkaddr == NULL_ADDR) {
  1616. f2fs_put_dnode(&dn);
  1617. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
  1618. true);
  1619. locked = true;
  1620. goto restart;
  1621. }
  1622. }
  1623. }
  1624. /* convert_inline_page can make node_changed */
  1625. *blk_addr = dn.data_blkaddr;
  1626. *node_changed = dn.node_changed;
  1627. out:
  1628. f2fs_put_dnode(&dn);
  1629. unlock_out:
  1630. if (locked)
  1631. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  1632. return err;
  1633. }
  1634. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1635. loff_t pos, unsigned len, unsigned flags,
  1636. struct page **pagep, void **fsdata)
  1637. {
  1638. struct inode *inode = mapping->host;
  1639. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1640. struct page *page = NULL;
  1641. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1642. bool need_balance = false;
  1643. block_t blkaddr = NULL_ADDR;
  1644. int err = 0;
  1645. trace_f2fs_write_begin(inode, pos, len, flags);
  1646. /*
  1647. * We should check this at this moment to avoid deadlock on inode page
  1648. * and #0 page. The locking rule for inline_data conversion should be:
  1649. * lock_page(page #0) -> lock_page(inode_page)
  1650. */
  1651. if (index != 0) {
  1652. err = f2fs_convert_inline_inode(inode);
  1653. if (err)
  1654. goto fail;
  1655. }
  1656. repeat:
  1657. /*
  1658. * Do not use grab_cache_page_write_begin() to avoid deadlock due to
  1659. * wait_for_stable_page. Will wait that below with our IO control.
  1660. */
  1661. page = pagecache_get_page(mapping, index,
  1662. FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
  1663. if (!page) {
  1664. err = -ENOMEM;
  1665. goto fail;
  1666. }
  1667. *pagep = page;
  1668. err = prepare_write_begin(sbi, page, pos, len,
  1669. &blkaddr, &need_balance);
  1670. if (err)
  1671. goto fail;
  1672. if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
  1673. unlock_page(page);
  1674. f2fs_balance_fs(sbi, true);
  1675. lock_page(page);
  1676. if (page->mapping != mapping) {
  1677. /* The page got truncated from under us */
  1678. f2fs_put_page(page, 1);
  1679. goto repeat;
  1680. }
  1681. }
  1682. f2fs_wait_on_page_writeback(page, DATA, false);
  1683. /* wait for GCed encrypted page writeback */
  1684. if (f2fs_encrypted_file(inode))
  1685. f2fs_wait_on_block_writeback(sbi, blkaddr);
  1686. if (len == PAGE_SIZE || PageUptodate(page))
  1687. return 0;
  1688. if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
  1689. zero_user_segment(page, len, PAGE_SIZE);
  1690. return 0;
  1691. }
  1692. if (blkaddr == NEW_ADDR) {
  1693. zero_user_segment(page, 0, PAGE_SIZE);
  1694. SetPageUptodate(page);
  1695. } else {
  1696. err = f2fs_submit_page_read(inode, page, blkaddr);
  1697. if (err)
  1698. goto fail;
  1699. lock_page(page);
  1700. if (unlikely(page->mapping != mapping)) {
  1701. f2fs_put_page(page, 1);
  1702. goto repeat;
  1703. }
  1704. if (unlikely(!PageUptodate(page))) {
  1705. err = -EIO;
  1706. goto fail;
  1707. }
  1708. }
  1709. return 0;
  1710. fail:
  1711. f2fs_put_page(page, 1);
  1712. f2fs_write_failed(mapping, pos + len);
  1713. return err;
  1714. }
  1715. static int f2fs_write_end(struct file *file,
  1716. struct address_space *mapping,
  1717. loff_t pos, unsigned len, unsigned copied,
  1718. struct page *page, void *fsdata)
  1719. {
  1720. struct inode *inode = page->mapping->host;
  1721. trace_f2fs_write_end(inode, pos, len, copied);
  1722. /*
  1723. * This should be come from len == PAGE_SIZE, and we expect copied
  1724. * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
  1725. * let generic_perform_write() try to copy data again through copied=0.
  1726. */
  1727. if (!PageUptodate(page)) {
  1728. if (unlikely(copied != len))
  1729. copied = 0;
  1730. else
  1731. SetPageUptodate(page);
  1732. }
  1733. if (!copied)
  1734. goto unlock_out;
  1735. set_page_dirty(page);
  1736. if (pos + copied > i_size_read(inode))
  1737. f2fs_i_size_write(inode, pos + copied);
  1738. unlock_out:
  1739. f2fs_put_page(page, 1);
  1740. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1741. return copied;
  1742. }
  1743. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1744. loff_t offset)
  1745. {
  1746. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1747. if (offset & blocksize_mask)
  1748. return -EINVAL;
  1749. if (iov_iter_alignment(iter) & blocksize_mask)
  1750. return -EINVAL;
  1751. return 0;
  1752. }
  1753. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  1754. {
  1755. struct address_space *mapping = iocb->ki_filp->f_mapping;
  1756. struct inode *inode = mapping->host;
  1757. size_t count = iov_iter_count(iter);
  1758. loff_t offset = iocb->ki_pos;
  1759. int rw = iov_iter_rw(iter);
  1760. int err;
  1761. err = check_direct_IO(inode, iter, offset);
  1762. if (err)
  1763. return err;
  1764. if (__force_buffered_io(inode, rw))
  1765. return 0;
  1766. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  1767. down_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1768. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  1769. up_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1770. if (rw == WRITE) {
  1771. if (err > 0) {
  1772. f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
  1773. err);
  1774. set_inode_flag(inode, FI_UPDATE_WRITE);
  1775. } else if (err < 0) {
  1776. f2fs_write_failed(mapping, offset + count);
  1777. }
  1778. }
  1779. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  1780. return err;
  1781. }
  1782. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1783. unsigned int length)
  1784. {
  1785. struct inode *inode = page->mapping->host;
  1786. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1787. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1788. (offset % PAGE_SIZE || length != PAGE_SIZE))
  1789. return;
  1790. if (PageDirty(page)) {
  1791. if (inode->i_ino == F2FS_META_INO(sbi)) {
  1792. dec_page_count(sbi, F2FS_DIRTY_META);
  1793. } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
  1794. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1795. } else {
  1796. inode_dec_dirty_pages(inode);
  1797. remove_dirty_inode(inode);
  1798. }
  1799. }
  1800. /* This is atomic written page, keep Private */
  1801. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1802. return drop_inmem_page(inode, page);
  1803. set_page_private(page, 0);
  1804. ClearPagePrivate(page);
  1805. }
  1806. int f2fs_release_page(struct page *page, gfp_t wait)
  1807. {
  1808. /* If this is dirty page, keep PagePrivate */
  1809. if (PageDirty(page))
  1810. return 0;
  1811. /* This is atomic written page, keep Private */
  1812. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1813. return 0;
  1814. set_page_private(page, 0);
  1815. ClearPagePrivate(page);
  1816. return 1;
  1817. }
  1818. /*
  1819. * This was copied from __set_page_dirty_buffers which gives higher performance
  1820. * in very high speed storages. (e.g., pmem)
  1821. */
  1822. void f2fs_set_page_dirty_nobuffers(struct page *page)
  1823. {
  1824. struct address_space *mapping = page->mapping;
  1825. unsigned long flags;
  1826. if (unlikely(!mapping))
  1827. return;
  1828. spin_lock(&mapping->private_lock);
  1829. lock_page_memcg(page);
  1830. SetPageDirty(page);
  1831. spin_unlock(&mapping->private_lock);
  1832. spin_lock_irqsave(&mapping->tree_lock, flags);
  1833. WARN_ON_ONCE(!PageUptodate(page));
  1834. account_page_dirtied(page, mapping);
  1835. radix_tree_tag_set(&mapping->page_tree,
  1836. page_index(page), PAGECACHE_TAG_DIRTY);
  1837. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1838. unlock_page_memcg(page);
  1839. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1840. return;
  1841. }
  1842. static int f2fs_set_data_page_dirty(struct page *page)
  1843. {
  1844. struct address_space *mapping = page->mapping;
  1845. struct inode *inode = mapping->host;
  1846. trace_f2fs_set_page_dirty(page, DATA);
  1847. if (!PageUptodate(page))
  1848. SetPageUptodate(page);
  1849. if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
  1850. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  1851. register_inmem_page(inode, page);
  1852. return 1;
  1853. }
  1854. /*
  1855. * Previously, this page has been registered, we just
  1856. * return here.
  1857. */
  1858. return 0;
  1859. }
  1860. if (!PageDirty(page)) {
  1861. f2fs_set_page_dirty_nobuffers(page);
  1862. update_dirty_page(inode, page);
  1863. return 1;
  1864. }
  1865. return 0;
  1866. }
  1867. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  1868. {
  1869. struct inode *inode = mapping->host;
  1870. if (f2fs_has_inline_data(inode))
  1871. return 0;
  1872. /* make sure allocating whole blocks */
  1873. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1874. filemap_write_and_wait(mapping);
  1875. return generic_block_bmap(mapping, block, get_data_block_bmap);
  1876. }
  1877. #ifdef CONFIG_MIGRATION
  1878. #include <linux/migrate.h>
  1879. int f2fs_migrate_page(struct address_space *mapping,
  1880. struct page *newpage, struct page *page, enum migrate_mode mode)
  1881. {
  1882. int rc, extra_count;
  1883. struct f2fs_inode_info *fi = F2FS_I(mapping->host);
  1884. bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
  1885. BUG_ON(PageWriteback(page));
  1886. /* migrating an atomic written page is safe with the inmem_lock hold */
  1887. if (atomic_written) {
  1888. if (mode != MIGRATE_SYNC)
  1889. return -EBUSY;
  1890. if (!mutex_trylock(&fi->inmem_lock))
  1891. return -EAGAIN;
  1892. }
  1893. /*
  1894. * A reference is expected if PagePrivate set when move mapping,
  1895. * however F2FS breaks this for maintaining dirty page counts when
  1896. * truncating pages. So here adjusting the 'extra_count' make it work.
  1897. */
  1898. extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
  1899. rc = migrate_page_move_mapping(mapping, newpage,
  1900. page, NULL, mode, extra_count);
  1901. if (rc != MIGRATEPAGE_SUCCESS) {
  1902. if (atomic_written)
  1903. mutex_unlock(&fi->inmem_lock);
  1904. return rc;
  1905. }
  1906. if (atomic_written) {
  1907. struct inmem_pages *cur;
  1908. list_for_each_entry(cur, &fi->inmem_pages, list)
  1909. if (cur->page == page) {
  1910. cur->page = newpage;
  1911. break;
  1912. }
  1913. mutex_unlock(&fi->inmem_lock);
  1914. put_page(page);
  1915. get_page(newpage);
  1916. }
  1917. if (PagePrivate(page))
  1918. SetPagePrivate(newpage);
  1919. set_page_private(newpage, page_private(page));
  1920. if (mode != MIGRATE_SYNC_NO_COPY)
  1921. migrate_page_copy(newpage, page);
  1922. else
  1923. migrate_page_states(newpage, page);
  1924. return MIGRATEPAGE_SUCCESS;
  1925. }
  1926. #endif
  1927. const struct address_space_operations f2fs_dblock_aops = {
  1928. .readpage = f2fs_read_data_page,
  1929. .readpages = f2fs_read_data_pages,
  1930. .writepage = f2fs_write_data_page,
  1931. .writepages = f2fs_write_data_pages,
  1932. .write_begin = f2fs_write_begin,
  1933. .write_end = f2fs_write_end,
  1934. .set_page_dirty = f2fs_set_data_page_dirty,
  1935. .invalidatepage = f2fs_invalidate_page,
  1936. .releasepage = f2fs_release_page,
  1937. .direct_IO = f2fs_direct_IO,
  1938. .bmap = f2fs_bmap,
  1939. #ifdef CONFIG_MIGRATION
  1940. .migratepage = f2fs_migrate_page,
  1941. #endif
  1942. };