checkpoint.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. sbi->sb->s_flags |= MS_RDONLY;
  30. if (!end_io)
  31. f2fs_flush_merged_writes(sbi);
  32. }
  33. /*
  34. * We guarantee no failure on the returned page.
  35. */
  36. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  37. {
  38. struct address_space *mapping = META_MAPPING(sbi);
  39. struct page *page = NULL;
  40. repeat:
  41. page = f2fs_grab_cache_page(mapping, index, false);
  42. if (!page) {
  43. cond_resched();
  44. goto repeat;
  45. }
  46. f2fs_wait_on_page_writeback(page, META, true);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. return page;
  50. }
  51. /*
  52. * We guarantee no failure on the returned page.
  53. */
  54. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  55. bool is_meta)
  56. {
  57. struct address_space *mapping = META_MAPPING(sbi);
  58. struct page *page;
  59. struct f2fs_io_info fio = {
  60. .sbi = sbi,
  61. .type = META,
  62. .op = REQ_OP_READ,
  63. .op_flags = REQ_META | REQ_PRIO,
  64. .old_blkaddr = index,
  65. .new_blkaddr = index,
  66. .encrypted_page = NULL,
  67. };
  68. if (unlikely(!is_meta))
  69. fio.op_flags &= ~REQ_META;
  70. repeat:
  71. page = f2fs_grab_cache_page(mapping, index, false);
  72. if (!page) {
  73. cond_resched();
  74. goto repeat;
  75. }
  76. if (PageUptodate(page))
  77. goto out;
  78. fio.page = page;
  79. if (f2fs_submit_page_bio(&fio)) {
  80. f2fs_put_page(page, 1);
  81. goto repeat;
  82. }
  83. lock_page(page);
  84. if (unlikely(page->mapping != mapping)) {
  85. f2fs_put_page(page, 1);
  86. goto repeat;
  87. }
  88. /*
  89. * if there is any IO error when accessing device, make our filesystem
  90. * readonly and make sure do not write checkpoint with non-uptodate
  91. * meta page.
  92. */
  93. if (unlikely(!PageUptodate(page)))
  94. f2fs_stop_checkpoint(sbi, false);
  95. out:
  96. return page;
  97. }
  98. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  99. {
  100. return __get_meta_page(sbi, index, true);
  101. }
  102. /* for POR only */
  103. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  104. {
  105. return __get_meta_page(sbi, index, false);
  106. }
  107. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  108. {
  109. switch (type) {
  110. case META_NAT:
  111. break;
  112. case META_SIT:
  113. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  114. return false;
  115. break;
  116. case META_SSA:
  117. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  118. blkaddr < SM_I(sbi)->ssa_blkaddr))
  119. return false;
  120. break;
  121. case META_CP:
  122. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  123. blkaddr < __start_cp_addr(sbi)))
  124. return false;
  125. break;
  126. case META_POR:
  127. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  128. blkaddr < MAIN_BLKADDR(sbi)))
  129. return false;
  130. break;
  131. default:
  132. BUG();
  133. }
  134. return true;
  135. }
  136. /*
  137. * Readahead CP/NAT/SIT/SSA pages
  138. */
  139. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  140. int type, bool sync)
  141. {
  142. struct page *page;
  143. block_t blkno = start;
  144. struct f2fs_io_info fio = {
  145. .sbi = sbi,
  146. .type = META,
  147. .op = REQ_OP_READ,
  148. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  149. .encrypted_page = NULL,
  150. .in_list = false,
  151. };
  152. struct blk_plug plug;
  153. if (unlikely(type == META_POR))
  154. fio.op_flags &= ~REQ_META;
  155. blk_start_plug(&plug);
  156. for (; nrpages-- > 0; blkno++) {
  157. if (!is_valid_blkaddr(sbi, blkno, type))
  158. goto out;
  159. switch (type) {
  160. case META_NAT:
  161. if (unlikely(blkno >=
  162. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  163. blkno = 0;
  164. /* get nat block addr */
  165. fio.new_blkaddr = current_nat_addr(sbi,
  166. blkno * NAT_ENTRY_PER_BLOCK);
  167. break;
  168. case META_SIT:
  169. /* get sit block addr */
  170. fio.new_blkaddr = current_sit_addr(sbi,
  171. blkno * SIT_ENTRY_PER_BLOCK);
  172. break;
  173. case META_SSA:
  174. case META_CP:
  175. case META_POR:
  176. fio.new_blkaddr = blkno;
  177. break;
  178. default:
  179. BUG();
  180. }
  181. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  182. fio.new_blkaddr, false);
  183. if (!page)
  184. continue;
  185. if (PageUptodate(page)) {
  186. f2fs_put_page(page, 1);
  187. continue;
  188. }
  189. fio.page = page;
  190. f2fs_submit_page_bio(&fio);
  191. f2fs_put_page(page, 0);
  192. }
  193. out:
  194. blk_finish_plug(&plug);
  195. return blkno - start;
  196. }
  197. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  198. {
  199. struct page *page;
  200. bool readahead = false;
  201. page = find_get_page(META_MAPPING(sbi), index);
  202. if (!page || !PageUptodate(page))
  203. readahead = true;
  204. f2fs_put_page(page, 0);
  205. if (readahead)
  206. ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  207. }
  208. static int __f2fs_write_meta_page(struct page *page,
  209. struct writeback_control *wbc,
  210. enum iostat_type io_type)
  211. {
  212. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  213. trace_f2fs_writepage(page, META);
  214. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  215. goto redirty_out;
  216. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  217. goto redirty_out;
  218. if (unlikely(f2fs_cp_error(sbi)))
  219. goto redirty_out;
  220. write_meta_page(sbi, page, io_type);
  221. dec_page_count(sbi, F2FS_DIRTY_META);
  222. if (wbc->for_reclaim)
  223. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  224. 0, page->index, META);
  225. unlock_page(page);
  226. if (unlikely(f2fs_cp_error(sbi)))
  227. f2fs_submit_merged_write(sbi, META);
  228. return 0;
  229. redirty_out:
  230. redirty_page_for_writepage(wbc, page);
  231. return AOP_WRITEPAGE_ACTIVATE;
  232. }
  233. static int f2fs_write_meta_page(struct page *page,
  234. struct writeback_control *wbc)
  235. {
  236. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  237. }
  238. static int f2fs_write_meta_pages(struct address_space *mapping,
  239. struct writeback_control *wbc)
  240. {
  241. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  242. long diff, written;
  243. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  244. goto skip_write;
  245. /* collect a number of dirty meta pages and write together */
  246. if (wbc->for_kupdate ||
  247. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  248. goto skip_write;
  249. /* if locked failed, cp will flush dirty pages instead */
  250. if (!mutex_trylock(&sbi->cp_mutex))
  251. goto skip_write;
  252. trace_f2fs_writepages(mapping->host, wbc, META);
  253. diff = nr_pages_to_write(sbi, META, wbc);
  254. written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  255. mutex_unlock(&sbi->cp_mutex);
  256. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  257. return 0;
  258. skip_write:
  259. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  260. trace_f2fs_writepages(mapping->host, wbc, META);
  261. return 0;
  262. }
  263. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  264. long nr_to_write, enum iostat_type io_type)
  265. {
  266. struct address_space *mapping = META_MAPPING(sbi);
  267. pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
  268. struct pagevec pvec;
  269. long nwritten = 0;
  270. struct writeback_control wbc = {
  271. .for_reclaim = 0,
  272. };
  273. struct blk_plug plug;
  274. pagevec_init(&pvec, 0);
  275. blk_start_plug(&plug);
  276. while (index <= end) {
  277. int i, nr_pages;
  278. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  279. PAGECACHE_TAG_DIRTY,
  280. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  281. if (unlikely(nr_pages == 0))
  282. break;
  283. for (i = 0; i < nr_pages; i++) {
  284. struct page *page = pvec.pages[i];
  285. if (prev == ULONG_MAX)
  286. prev = page->index - 1;
  287. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  288. pagevec_release(&pvec);
  289. goto stop;
  290. }
  291. lock_page(page);
  292. if (unlikely(page->mapping != mapping)) {
  293. continue_unlock:
  294. unlock_page(page);
  295. continue;
  296. }
  297. if (!PageDirty(page)) {
  298. /* someone wrote it for us */
  299. goto continue_unlock;
  300. }
  301. f2fs_wait_on_page_writeback(page, META, true);
  302. BUG_ON(PageWriteback(page));
  303. if (!clear_page_dirty_for_io(page))
  304. goto continue_unlock;
  305. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  306. unlock_page(page);
  307. break;
  308. }
  309. nwritten++;
  310. prev = page->index;
  311. if (unlikely(nwritten >= nr_to_write))
  312. break;
  313. }
  314. pagevec_release(&pvec);
  315. cond_resched();
  316. }
  317. stop:
  318. if (nwritten)
  319. f2fs_submit_merged_write(sbi, type);
  320. blk_finish_plug(&plug);
  321. return nwritten;
  322. }
  323. static int f2fs_set_meta_page_dirty(struct page *page)
  324. {
  325. trace_f2fs_set_page_dirty(page, META);
  326. if (!PageUptodate(page))
  327. SetPageUptodate(page);
  328. if (!PageDirty(page)) {
  329. f2fs_set_page_dirty_nobuffers(page);
  330. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  331. SetPagePrivate(page);
  332. f2fs_trace_pid(page);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. const struct address_space_operations f2fs_meta_aops = {
  338. .writepage = f2fs_write_meta_page,
  339. .writepages = f2fs_write_meta_pages,
  340. .set_page_dirty = f2fs_set_meta_page_dirty,
  341. .invalidatepage = f2fs_invalidate_page,
  342. .releasepage = f2fs_release_page,
  343. #ifdef CONFIG_MIGRATION
  344. .migratepage = f2fs_migrate_page,
  345. #endif
  346. };
  347. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  348. {
  349. struct inode_management *im = &sbi->im[type];
  350. struct ino_entry *e, *tmp;
  351. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  352. retry:
  353. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  354. spin_lock(&im->ino_lock);
  355. e = radix_tree_lookup(&im->ino_root, ino);
  356. if (!e) {
  357. e = tmp;
  358. if (radix_tree_insert(&im->ino_root, ino, e)) {
  359. spin_unlock(&im->ino_lock);
  360. radix_tree_preload_end();
  361. goto retry;
  362. }
  363. memset(e, 0, sizeof(struct ino_entry));
  364. e->ino = ino;
  365. list_add_tail(&e->list, &im->ino_list);
  366. if (type != ORPHAN_INO)
  367. im->ino_num++;
  368. }
  369. spin_unlock(&im->ino_lock);
  370. radix_tree_preload_end();
  371. if (e != tmp)
  372. kmem_cache_free(ino_entry_slab, tmp);
  373. }
  374. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  375. {
  376. struct inode_management *im = &sbi->im[type];
  377. struct ino_entry *e;
  378. spin_lock(&im->ino_lock);
  379. e = radix_tree_lookup(&im->ino_root, ino);
  380. if (e) {
  381. list_del(&e->list);
  382. radix_tree_delete(&im->ino_root, ino);
  383. im->ino_num--;
  384. spin_unlock(&im->ino_lock);
  385. kmem_cache_free(ino_entry_slab, e);
  386. return;
  387. }
  388. spin_unlock(&im->ino_lock);
  389. }
  390. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  391. {
  392. /* add new dirty ino entry into list */
  393. __add_ino_entry(sbi, ino, type);
  394. }
  395. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  396. {
  397. /* remove dirty ino entry from list */
  398. __remove_ino_entry(sbi, ino, type);
  399. }
  400. /* mode should be APPEND_INO or UPDATE_INO */
  401. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  402. {
  403. struct inode_management *im = &sbi->im[mode];
  404. struct ino_entry *e;
  405. spin_lock(&im->ino_lock);
  406. e = radix_tree_lookup(&im->ino_root, ino);
  407. spin_unlock(&im->ino_lock);
  408. return e ? true : false;
  409. }
  410. void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  411. {
  412. struct ino_entry *e, *tmp;
  413. int i;
  414. for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
  415. struct inode_management *im = &sbi->im[i];
  416. spin_lock(&im->ino_lock);
  417. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  418. list_del(&e->list);
  419. radix_tree_delete(&im->ino_root, e->ino);
  420. kmem_cache_free(ino_entry_slab, e);
  421. im->ino_num--;
  422. }
  423. spin_unlock(&im->ino_lock);
  424. }
  425. }
  426. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  427. {
  428. struct inode_management *im = &sbi->im[ORPHAN_INO];
  429. int err = 0;
  430. spin_lock(&im->ino_lock);
  431. #ifdef CONFIG_F2FS_FAULT_INJECTION
  432. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  433. spin_unlock(&im->ino_lock);
  434. f2fs_show_injection_info(FAULT_ORPHAN);
  435. return -ENOSPC;
  436. }
  437. #endif
  438. if (unlikely(im->ino_num >= sbi->max_orphans))
  439. err = -ENOSPC;
  440. else
  441. im->ino_num++;
  442. spin_unlock(&im->ino_lock);
  443. return err;
  444. }
  445. void release_orphan_inode(struct f2fs_sb_info *sbi)
  446. {
  447. struct inode_management *im = &sbi->im[ORPHAN_INO];
  448. spin_lock(&im->ino_lock);
  449. f2fs_bug_on(sbi, im->ino_num == 0);
  450. im->ino_num--;
  451. spin_unlock(&im->ino_lock);
  452. }
  453. void add_orphan_inode(struct inode *inode)
  454. {
  455. /* add new orphan ino entry into list */
  456. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
  457. update_inode_page(inode);
  458. }
  459. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  460. {
  461. /* remove orphan entry from orphan list */
  462. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  463. }
  464. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  465. {
  466. struct inode *inode;
  467. struct node_info ni;
  468. int err = acquire_orphan_inode(sbi);
  469. if (err) {
  470. set_sbi_flag(sbi, SBI_NEED_FSCK);
  471. f2fs_msg(sbi->sb, KERN_WARNING,
  472. "%s: orphan failed (ino=%x), run fsck to fix.",
  473. __func__, ino);
  474. return err;
  475. }
  476. __add_ino_entry(sbi, ino, ORPHAN_INO);
  477. inode = f2fs_iget_retry(sbi->sb, ino);
  478. if (IS_ERR(inode)) {
  479. /*
  480. * there should be a bug that we can't find the entry
  481. * to orphan inode.
  482. */
  483. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  484. return PTR_ERR(inode);
  485. }
  486. clear_nlink(inode);
  487. /* truncate all the data during iput */
  488. iput(inode);
  489. get_node_info(sbi, ino, &ni);
  490. /* ENOMEM was fully retried in f2fs_evict_inode. */
  491. if (ni.blk_addr != NULL_ADDR) {
  492. set_sbi_flag(sbi, SBI_NEED_FSCK);
  493. f2fs_msg(sbi->sb, KERN_WARNING,
  494. "%s: orphan failed (ino=%x) by kernel, retry mount.",
  495. __func__, ino);
  496. return -EIO;
  497. }
  498. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  499. return 0;
  500. }
  501. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  502. {
  503. block_t start_blk, orphan_blocks, i, j;
  504. unsigned int s_flags = sbi->sb->s_flags;
  505. int err = 0;
  506. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  507. return 0;
  508. if (s_flags & MS_RDONLY) {
  509. f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
  510. sbi->sb->s_flags &= ~MS_RDONLY;
  511. }
  512. #ifdef CONFIG_QUOTA
  513. /* Needed for iput() to work correctly and not trash data */
  514. sbi->sb->s_flags |= MS_ACTIVE;
  515. /* Turn on quotas so that they are updated correctly */
  516. f2fs_enable_quota_files(sbi);
  517. #endif
  518. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  519. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  520. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  521. for (i = 0; i < orphan_blocks; i++) {
  522. struct page *page = get_meta_page(sbi, start_blk + i);
  523. struct f2fs_orphan_block *orphan_blk;
  524. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  525. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  526. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  527. err = recover_orphan_inode(sbi, ino);
  528. if (err) {
  529. f2fs_put_page(page, 1);
  530. goto out;
  531. }
  532. }
  533. f2fs_put_page(page, 1);
  534. }
  535. /* clear Orphan Flag */
  536. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  537. out:
  538. #ifdef CONFIG_QUOTA
  539. /* Turn quotas off */
  540. f2fs_quota_off_umount(sbi->sb);
  541. #endif
  542. sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
  543. return err;
  544. }
  545. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  546. {
  547. struct list_head *head;
  548. struct f2fs_orphan_block *orphan_blk = NULL;
  549. unsigned int nentries = 0;
  550. unsigned short index = 1;
  551. unsigned short orphan_blocks;
  552. struct page *page = NULL;
  553. struct ino_entry *orphan = NULL;
  554. struct inode_management *im = &sbi->im[ORPHAN_INO];
  555. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  556. /*
  557. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  558. * orphan inode operations are covered under f2fs_lock_op().
  559. * And, spin_lock should be avoided due to page operations below.
  560. */
  561. head = &im->ino_list;
  562. /* loop for each orphan inode entry and write them in Jornal block */
  563. list_for_each_entry(orphan, head, list) {
  564. if (!page) {
  565. page = grab_meta_page(sbi, start_blk++);
  566. orphan_blk =
  567. (struct f2fs_orphan_block *)page_address(page);
  568. memset(orphan_blk, 0, sizeof(*orphan_blk));
  569. }
  570. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  571. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  572. /*
  573. * an orphan block is full of 1020 entries,
  574. * then we need to flush current orphan blocks
  575. * and bring another one in memory
  576. */
  577. orphan_blk->blk_addr = cpu_to_le16(index);
  578. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  579. orphan_blk->entry_count = cpu_to_le32(nentries);
  580. set_page_dirty(page);
  581. f2fs_put_page(page, 1);
  582. index++;
  583. nentries = 0;
  584. page = NULL;
  585. }
  586. }
  587. if (page) {
  588. orphan_blk->blk_addr = cpu_to_le16(index);
  589. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  590. orphan_blk->entry_count = cpu_to_le32(nentries);
  591. set_page_dirty(page);
  592. f2fs_put_page(page, 1);
  593. }
  594. }
  595. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  596. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  597. unsigned long long *version)
  598. {
  599. unsigned long blk_size = sbi->blocksize;
  600. size_t crc_offset = 0;
  601. __u32 crc = 0;
  602. *cp_page = get_meta_page(sbi, cp_addr);
  603. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  604. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  605. if (crc_offset > (blk_size - sizeof(__le32))) {
  606. f2fs_msg(sbi->sb, KERN_WARNING,
  607. "invalid crc_offset: %zu", crc_offset);
  608. return -EINVAL;
  609. }
  610. crc = cur_cp_crc(*cp_block);
  611. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  612. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  613. return -EINVAL;
  614. }
  615. *version = cur_cp_version(*cp_block);
  616. return 0;
  617. }
  618. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  619. block_t cp_addr, unsigned long long *version)
  620. {
  621. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  622. struct f2fs_checkpoint *cp_block = NULL;
  623. unsigned long long cur_version = 0, pre_version = 0;
  624. int err;
  625. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  626. &cp_page_1, version);
  627. if (err)
  628. goto invalid_cp1;
  629. pre_version = *version;
  630. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  631. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  632. &cp_page_2, version);
  633. if (err)
  634. goto invalid_cp2;
  635. cur_version = *version;
  636. if (cur_version == pre_version) {
  637. *version = cur_version;
  638. f2fs_put_page(cp_page_2, 1);
  639. return cp_page_1;
  640. }
  641. invalid_cp2:
  642. f2fs_put_page(cp_page_2, 1);
  643. invalid_cp1:
  644. f2fs_put_page(cp_page_1, 1);
  645. return NULL;
  646. }
  647. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  648. {
  649. struct f2fs_checkpoint *cp_block;
  650. struct f2fs_super_block *fsb = sbi->raw_super;
  651. struct page *cp1, *cp2, *cur_page;
  652. unsigned long blk_size = sbi->blocksize;
  653. unsigned long long cp1_version = 0, cp2_version = 0;
  654. unsigned long long cp_start_blk_no;
  655. unsigned int cp_blks = 1 + __cp_payload(sbi);
  656. block_t cp_blk_no;
  657. int i;
  658. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  659. if (!sbi->ckpt)
  660. return -ENOMEM;
  661. /*
  662. * Finding out valid cp block involves read both
  663. * sets( cp pack1 and cp pack 2)
  664. */
  665. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  666. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  667. /* The second checkpoint pack should start at the next segment */
  668. cp_start_blk_no += ((unsigned long long)1) <<
  669. le32_to_cpu(fsb->log_blocks_per_seg);
  670. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  671. if (cp1 && cp2) {
  672. if (ver_after(cp2_version, cp1_version))
  673. cur_page = cp2;
  674. else
  675. cur_page = cp1;
  676. } else if (cp1) {
  677. cur_page = cp1;
  678. } else if (cp2) {
  679. cur_page = cp2;
  680. } else {
  681. goto fail_no_cp;
  682. }
  683. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  684. memcpy(sbi->ckpt, cp_block, blk_size);
  685. /* Sanity checking of checkpoint */
  686. if (sanity_check_ckpt(sbi))
  687. goto free_fail_no_cp;
  688. if (cur_page == cp1)
  689. sbi->cur_cp_pack = 1;
  690. else
  691. sbi->cur_cp_pack = 2;
  692. if (cp_blks <= 1)
  693. goto done;
  694. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  695. if (cur_page == cp2)
  696. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  697. for (i = 1; i < cp_blks; i++) {
  698. void *sit_bitmap_ptr;
  699. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  700. cur_page = get_meta_page(sbi, cp_blk_no + i);
  701. sit_bitmap_ptr = page_address(cur_page);
  702. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  703. f2fs_put_page(cur_page, 1);
  704. }
  705. done:
  706. f2fs_put_page(cp1, 1);
  707. f2fs_put_page(cp2, 1);
  708. return 0;
  709. free_fail_no_cp:
  710. f2fs_put_page(cp1, 1);
  711. f2fs_put_page(cp2, 1);
  712. fail_no_cp:
  713. kfree(sbi->ckpt);
  714. return -EINVAL;
  715. }
  716. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  717. {
  718. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  719. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  720. if (is_inode_flag_set(inode, flag))
  721. return;
  722. set_inode_flag(inode, flag);
  723. if (!f2fs_is_volatile_file(inode))
  724. list_add_tail(&F2FS_I(inode)->dirty_list,
  725. &sbi->inode_list[type]);
  726. stat_inc_dirty_inode(sbi, type);
  727. }
  728. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  729. {
  730. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  731. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  732. return;
  733. list_del_init(&F2FS_I(inode)->dirty_list);
  734. clear_inode_flag(inode, flag);
  735. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  736. }
  737. void update_dirty_page(struct inode *inode, struct page *page)
  738. {
  739. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  740. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  741. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  742. !S_ISLNK(inode->i_mode))
  743. return;
  744. spin_lock(&sbi->inode_lock[type]);
  745. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  746. __add_dirty_inode(inode, type);
  747. inode_inc_dirty_pages(inode);
  748. spin_unlock(&sbi->inode_lock[type]);
  749. SetPagePrivate(page);
  750. f2fs_trace_pid(page);
  751. }
  752. void remove_dirty_inode(struct inode *inode)
  753. {
  754. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  755. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  756. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  757. !S_ISLNK(inode->i_mode))
  758. return;
  759. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  760. return;
  761. spin_lock(&sbi->inode_lock[type]);
  762. __remove_dirty_inode(inode, type);
  763. spin_unlock(&sbi->inode_lock[type]);
  764. }
  765. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  766. {
  767. struct list_head *head;
  768. struct inode *inode;
  769. struct f2fs_inode_info *fi;
  770. bool is_dir = (type == DIR_INODE);
  771. unsigned long ino = 0;
  772. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  773. get_pages(sbi, is_dir ?
  774. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  775. retry:
  776. if (unlikely(f2fs_cp_error(sbi)))
  777. return -EIO;
  778. spin_lock(&sbi->inode_lock[type]);
  779. head = &sbi->inode_list[type];
  780. if (list_empty(head)) {
  781. spin_unlock(&sbi->inode_lock[type]);
  782. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  783. get_pages(sbi, is_dir ?
  784. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  785. return 0;
  786. }
  787. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  788. inode = igrab(&fi->vfs_inode);
  789. spin_unlock(&sbi->inode_lock[type]);
  790. if (inode) {
  791. unsigned long cur_ino = inode->i_ino;
  792. if (is_dir)
  793. F2FS_I(inode)->cp_task = current;
  794. filemap_fdatawrite(inode->i_mapping);
  795. if (is_dir)
  796. F2FS_I(inode)->cp_task = NULL;
  797. iput(inode);
  798. /* We need to give cpu to another writers. */
  799. if (ino == cur_ino) {
  800. congestion_wait(BLK_RW_ASYNC, HZ/50);
  801. cond_resched();
  802. } else {
  803. ino = cur_ino;
  804. }
  805. } else {
  806. /*
  807. * We should submit bio, since it exists several
  808. * wribacking dentry pages in the freeing inode.
  809. */
  810. f2fs_submit_merged_write(sbi, DATA);
  811. cond_resched();
  812. }
  813. goto retry;
  814. }
  815. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  816. {
  817. struct list_head *head = &sbi->inode_list[DIRTY_META];
  818. struct inode *inode;
  819. struct f2fs_inode_info *fi;
  820. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  821. while (total--) {
  822. if (unlikely(f2fs_cp_error(sbi)))
  823. return -EIO;
  824. spin_lock(&sbi->inode_lock[DIRTY_META]);
  825. if (list_empty(head)) {
  826. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  827. return 0;
  828. }
  829. fi = list_first_entry(head, struct f2fs_inode_info,
  830. gdirty_list);
  831. inode = igrab(&fi->vfs_inode);
  832. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  833. if (inode) {
  834. sync_inode_metadata(inode, 0);
  835. /* it's on eviction */
  836. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  837. update_inode_page(inode);
  838. iput(inode);
  839. }
  840. };
  841. return 0;
  842. }
  843. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  844. {
  845. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  846. struct f2fs_nm_info *nm_i = NM_I(sbi);
  847. nid_t last_nid = nm_i->next_scan_nid;
  848. next_free_nid(sbi, &last_nid);
  849. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  850. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  851. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  852. ckpt->next_free_nid = cpu_to_le32(last_nid);
  853. }
  854. /*
  855. * Freeze all the FS-operations for checkpoint.
  856. */
  857. static int block_operations(struct f2fs_sb_info *sbi)
  858. {
  859. struct writeback_control wbc = {
  860. .sync_mode = WB_SYNC_ALL,
  861. .nr_to_write = LONG_MAX,
  862. .for_reclaim = 0,
  863. };
  864. struct blk_plug plug;
  865. int err = 0;
  866. blk_start_plug(&plug);
  867. retry_flush_dents:
  868. f2fs_lock_all(sbi);
  869. /* write all the dirty dentry pages */
  870. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  871. f2fs_unlock_all(sbi);
  872. err = sync_dirty_inodes(sbi, DIR_INODE);
  873. if (err)
  874. goto out;
  875. cond_resched();
  876. goto retry_flush_dents;
  877. }
  878. /*
  879. * POR: we should ensure that there are no dirty node pages
  880. * until finishing nat/sit flush. inode->i_blocks can be updated.
  881. */
  882. down_write(&sbi->node_change);
  883. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  884. up_write(&sbi->node_change);
  885. f2fs_unlock_all(sbi);
  886. err = f2fs_sync_inode_meta(sbi);
  887. if (err)
  888. goto out;
  889. cond_resched();
  890. goto retry_flush_dents;
  891. }
  892. retry_flush_nodes:
  893. down_write(&sbi->node_write);
  894. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  895. up_write(&sbi->node_write);
  896. err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  897. if (err) {
  898. up_write(&sbi->node_change);
  899. f2fs_unlock_all(sbi);
  900. goto out;
  901. }
  902. cond_resched();
  903. goto retry_flush_nodes;
  904. }
  905. /*
  906. * sbi->node_change is used only for AIO write_begin path which produces
  907. * dirty node blocks and some checkpoint values by block allocation.
  908. */
  909. __prepare_cp_block(sbi);
  910. up_write(&sbi->node_change);
  911. out:
  912. blk_finish_plug(&plug);
  913. return err;
  914. }
  915. static void unblock_operations(struct f2fs_sb_info *sbi)
  916. {
  917. up_write(&sbi->node_write);
  918. f2fs_unlock_all(sbi);
  919. }
  920. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  921. {
  922. DEFINE_WAIT(wait);
  923. for (;;) {
  924. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  925. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  926. break;
  927. io_schedule_timeout(5*HZ);
  928. }
  929. finish_wait(&sbi->cp_wait, &wait);
  930. }
  931. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  932. {
  933. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  934. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  935. unsigned long flags;
  936. spin_lock_irqsave(&sbi->cp_lock, flags);
  937. if ((cpc->reason & CP_UMOUNT) &&
  938. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  939. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  940. disable_nat_bits(sbi, false);
  941. if (cpc->reason & CP_TRIMMED)
  942. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  943. if (cpc->reason & CP_UMOUNT)
  944. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  945. else
  946. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  947. if (cpc->reason & CP_FASTBOOT)
  948. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  949. else
  950. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  951. if (orphan_num)
  952. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  953. else
  954. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  955. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  956. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  957. /* set this flag to activate crc|cp_ver for recovery */
  958. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  959. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  960. }
  961. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  962. {
  963. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  964. struct f2fs_nm_info *nm_i = NM_I(sbi);
  965. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  966. block_t start_blk;
  967. unsigned int data_sum_blocks, orphan_blocks;
  968. __u32 crc32 = 0;
  969. int i;
  970. int cp_payload_blks = __cp_payload(sbi);
  971. struct super_block *sb = sbi->sb;
  972. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  973. u64 kbytes_written;
  974. /* Flush all the NAT/SIT pages */
  975. while (get_pages(sbi, F2FS_DIRTY_META)) {
  976. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  977. if (unlikely(f2fs_cp_error(sbi)))
  978. return -EIO;
  979. }
  980. /*
  981. * modify checkpoint
  982. * version number is already updated
  983. */
  984. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  985. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  986. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  987. ckpt->cur_node_segno[i] =
  988. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  989. ckpt->cur_node_blkoff[i] =
  990. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  991. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  992. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  993. }
  994. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  995. ckpt->cur_data_segno[i] =
  996. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  997. ckpt->cur_data_blkoff[i] =
  998. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  999. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  1000. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  1001. }
  1002. /* 2 cp + n data seg summary + orphan inode blocks */
  1003. data_sum_blocks = npages_for_summary_flush(sbi, false);
  1004. spin_lock_irqsave(&sbi->cp_lock, flags);
  1005. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1006. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1007. else
  1008. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1009. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1010. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1011. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1012. orphan_blocks);
  1013. if (__remain_node_summaries(cpc->reason))
  1014. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  1015. cp_payload_blks + data_sum_blocks +
  1016. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1017. else
  1018. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1019. cp_payload_blks + data_sum_blocks +
  1020. orphan_blocks);
  1021. /* update ckpt flag for checkpoint */
  1022. update_ckpt_flags(sbi, cpc);
  1023. /* update SIT/NAT bitmap */
  1024. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1025. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1026. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1027. *((__le32 *)((unsigned char *)ckpt +
  1028. le32_to_cpu(ckpt->checksum_offset)))
  1029. = cpu_to_le32(crc32);
  1030. start_blk = __start_cp_next_addr(sbi);
  1031. /* write nat bits */
  1032. if (enabled_nat_bits(sbi, cpc)) {
  1033. __u64 cp_ver = cur_cp_version(ckpt);
  1034. block_t blk;
  1035. cp_ver |= ((__u64)crc32 << 32);
  1036. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1037. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1038. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1039. update_meta_page(sbi, nm_i->nat_bits +
  1040. (i << F2FS_BLKSIZE_BITS), blk + i);
  1041. /* Flush all the NAT BITS pages */
  1042. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1043. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1044. if (unlikely(f2fs_cp_error(sbi)))
  1045. return -EIO;
  1046. }
  1047. }
  1048. /* need to wait for end_io results */
  1049. wait_on_all_pages_writeback(sbi);
  1050. if (unlikely(f2fs_cp_error(sbi)))
  1051. return -EIO;
  1052. /* write out checkpoint buffer at block 0 */
  1053. update_meta_page(sbi, ckpt, start_blk++);
  1054. for (i = 1; i < 1 + cp_payload_blks; i++)
  1055. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1056. start_blk++);
  1057. if (orphan_num) {
  1058. write_orphan_inodes(sbi, start_blk);
  1059. start_blk += orphan_blocks;
  1060. }
  1061. write_data_summaries(sbi, start_blk);
  1062. start_blk += data_sum_blocks;
  1063. /* Record write statistics in the hot node summary */
  1064. kbytes_written = sbi->kbytes_written;
  1065. if (sb->s_bdev->bd_part)
  1066. kbytes_written += BD_PART_WRITTEN(sbi);
  1067. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1068. if (__remain_node_summaries(cpc->reason)) {
  1069. write_node_summaries(sbi, start_blk);
  1070. start_blk += NR_CURSEG_NODE_TYPE;
  1071. }
  1072. /* writeout checkpoint block */
  1073. update_meta_page(sbi, ckpt, start_blk);
  1074. /* wait for previous submitted node/meta pages writeback */
  1075. wait_on_all_pages_writeback(sbi);
  1076. if (unlikely(f2fs_cp_error(sbi)))
  1077. return -EIO;
  1078. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
  1079. filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
  1080. /* update user_block_counts */
  1081. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1082. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1083. /* Here, we only have one bio having CP pack */
  1084. sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
  1085. /* wait for previous submitted meta pages writeback */
  1086. wait_on_all_pages_writeback(sbi);
  1087. release_ino_entry(sbi, false);
  1088. if (unlikely(f2fs_cp_error(sbi)))
  1089. return -EIO;
  1090. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1091. clear_sbi_flag(sbi, SBI_NEED_CP);
  1092. __set_cp_next_pack(sbi);
  1093. /*
  1094. * redirty superblock if metadata like node page or inode cache is
  1095. * updated during writing checkpoint.
  1096. */
  1097. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1098. get_pages(sbi, F2FS_DIRTY_IMETA))
  1099. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1100. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1101. return 0;
  1102. }
  1103. /*
  1104. * We guarantee that this checkpoint procedure will not fail.
  1105. */
  1106. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1107. {
  1108. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1109. unsigned long long ckpt_ver;
  1110. int err = 0;
  1111. mutex_lock(&sbi->cp_mutex);
  1112. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1113. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1114. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1115. goto out;
  1116. if (unlikely(f2fs_cp_error(sbi))) {
  1117. err = -EIO;
  1118. goto out;
  1119. }
  1120. if (f2fs_readonly(sbi->sb)) {
  1121. err = -EROFS;
  1122. goto out;
  1123. }
  1124. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1125. err = block_operations(sbi);
  1126. if (err)
  1127. goto out;
  1128. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1129. f2fs_flush_merged_writes(sbi);
  1130. /* this is the case of multiple fstrims without any changes */
  1131. if (cpc->reason & CP_DISCARD) {
  1132. if (!exist_trim_candidates(sbi, cpc)) {
  1133. unblock_operations(sbi);
  1134. goto out;
  1135. }
  1136. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1137. SIT_I(sbi)->dirty_sentries == 0 &&
  1138. prefree_segments(sbi) == 0) {
  1139. flush_sit_entries(sbi, cpc);
  1140. clear_prefree_segments(sbi, cpc);
  1141. unblock_operations(sbi);
  1142. goto out;
  1143. }
  1144. }
  1145. /*
  1146. * update checkpoint pack index
  1147. * Increase the version number so that
  1148. * SIT entries and seg summaries are written at correct place
  1149. */
  1150. ckpt_ver = cur_cp_version(ckpt);
  1151. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1152. /* write cached NAT/SIT entries to NAT/SIT area */
  1153. flush_nat_entries(sbi, cpc);
  1154. flush_sit_entries(sbi, cpc);
  1155. /* unlock all the fs_lock[] in do_checkpoint() */
  1156. err = do_checkpoint(sbi, cpc);
  1157. if (err)
  1158. release_discard_addrs(sbi);
  1159. else
  1160. clear_prefree_segments(sbi, cpc);
  1161. unblock_operations(sbi);
  1162. stat_inc_cp_count(sbi->stat_info);
  1163. if (cpc->reason & CP_RECOVERY)
  1164. f2fs_msg(sbi->sb, KERN_NOTICE,
  1165. "checkpoint: version = %llx", ckpt_ver);
  1166. /* do checkpoint periodically */
  1167. f2fs_update_time(sbi, CP_TIME);
  1168. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1169. out:
  1170. mutex_unlock(&sbi->cp_mutex);
  1171. return err;
  1172. }
  1173. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  1174. {
  1175. int i;
  1176. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1177. struct inode_management *im = &sbi->im[i];
  1178. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1179. spin_lock_init(&im->ino_lock);
  1180. INIT_LIST_HEAD(&im->ino_list);
  1181. im->ino_num = 0;
  1182. }
  1183. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1184. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1185. F2FS_ORPHANS_PER_BLOCK;
  1186. }
  1187. int __init create_checkpoint_caches(void)
  1188. {
  1189. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1190. sizeof(struct ino_entry));
  1191. if (!ino_entry_slab)
  1192. return -ENOMEM;
  1193. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1194. sizeof(struct inode_entry));
  1195. if (!inode_entry_slab) {
  1196. kmem_cache_destroy(ino_entry_slab);
  1197. return -ENOMEM;
  1198. }
  1199. return 0;
  1200. }
  1201. void destroy_checkpoint_caches(void)
  1202. {
  1203. kmem_cache_destroy(ino_entry_slab);
  1204. kmem_cache_destroy(inode_entry_slab);
  1205. }