direct-io.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399
  1. /*
  2. * fs/direct-io.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * O_DIRECT
  7. *
  8. * 04Jul2002 Andrew Morton
  9. * Initial version
  10. * 11Sep2002 janetinc@us.ibm.com
  11. * added readv/writev support.
  12. * 29Oct2002 Andrew Morton
  13. * rewrote bio_add_page() support.
  14. * 30Oct2002 pbadari@us.ibm.com
  15. * added support for non-aligned IO.
  16. * 06Nov2002 pbadari@us.ibm.com
  17. * added asynchronous IO support.
  18. * 21Jul2003 nathans@sgi.com
  19. * added IO completion notifier.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/fs.h>
  25. #include <linux/mm.h>
  26. #include <linux/slab.h>
  27. #include <linux/highmem.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/task_io_accounting_ops.h>
  30. #include <linux/bio.h>
  31. #include <linux/wait.h>
  32. #include <linux/err.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/uio.h>
  37. #include <linux/atomic.h>
  38. #include <linux/prefetch.h>
  39. /*
  40. * How many user pages to map in one call to get_user_pages(). This determines
  41. * the size of a structure in the slab cache
  42. */
  43. #define DIO_PAGES 64
  44. /*
  45. * This code generally works in units of "dio_blocks". A dio_block is
  46. * somewhere between the hard sector size and the filesystem block size. it
  47. * is determined on a per-invocation basis. When talking to the filesystem
  48. * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  49. * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
  50. * to bio_block quantities by shifting left by blkfactor.
  51. *
  52. * If blkfactor is zero then the user's request was aligned to the filesystem's
  53. * blocksize.
  54. */
  55. /* dio_state only used in the submission path */
  56. struct dio_submit {
  57. struct bio *bio; /* bio under assembly */
  58. unsigned blkbits; /* doesn't change */
  59. unsigned blkfactor; /* When we're using an alignment which
  60. is finer than the filesystem's soft
  61. blocksize, this specifies how much
  62. finer. blkfactor=2 means 1/4-block
  63. alignment. Does not change */
  64. unsigned start_zero_done; /* flag: sub-blocksize zeroing has
  65. been performed at the start of a
  66. write */
  67. int pages_in_io; /* approximate total IO pages */
  68. sector_t block_in_file; /* Current offset into the underlying
  69. file in dio_block units. */
  70. unsigned blocks_available; /* At block_in_file. changes */
  71. int reap_counter; /* rate limit reaping */
  72. sector_t final_block_in_request;/* doesn't change */
  73. int boundary; /* prev block is at a boundary */
  74. get_block_t *get_block; /* block mapping function */
  75. dio_submit_t *submit_io; /* IO submition function */
  76. loff_t logical_offset_in_bio; /* current first logical block in bio */
  77. sector_t final_block_in_bio; /* current final block in bio + 1 */
  78. sector_t next_block_for_io; /* next block to be put under IO,
  79. in dio_blocks units */
  80. /*
  81. * Deferred addition of a page to the dio. These variables are
  82. * private to dio_send_cur_page(), submit_page_section() and
  83. * dio_bio_add_page().
  84. */
  85. struct page *cur_page; /* The page */
  86. unsigned cur_page_offset; /* Offset into it, in bytes */
  87. unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
  88. sector_t cur_page_block; /* Where it starts */
  89. loff_t cur_page_fs_offset; /* Offset in file */
  90. struct iov_iter *iter;
  91. /*
  92. * Page queue. These variables belong to dio_refill_pages() and
  93. * dio_get_page().
  94. */
  95. unsigned head; /* next page to process */
  96. unsigned tail; /* last valid page + 1 */
  97. size_t from, to;
  98. };
  99. /* dio_state communicated between submission path and end_io */
  100. struct dio {
  101. int flags; /* doesn't change */
  102. int op;
  103. int op_flags;
  104. blk_qc_t bio_cookie;
  105. struct gendisk *bio_disk;
  106. struct inode *inode;
  107. loff_t i_size; /* i_size when submitted */
  108. dio_iodone_t *end_io; /* IO completion function */
  109. void *private; /* copy from map_bh.b_private */
  110. /* BIO completion state */
  111. spinlock_t bio_lock; /* protects BIO fields below */
  112. int page_errors; /* errno from get_user_pages() */
  113. int is_async; /* is IO async ? */
  114. bool defer_completion; /* defer AIO completion to workqueue? */
  115. bool should_dirty; /* if pages should be dirtied */
  116. int io_error; /* IO error in completion path */
  117. unsigned long refcount; /* direct_io_worker() and bios */
  118. struct bio *bio_list; /* singly linked via bi_private */
  119. struct task_struct *waiter; /* waiting task (NULL if none) */
  120. /* AIO related stuff */
  121. struct kiocb *iocb; /* kiocb */
  122. ssize_t result; /* IO result */
  123. /*
  124. * pages[] (and any fields placed after it) are not zeroed out at
  125. * allocation time. Don't add new fields after pages[] unless you
  126. * wish that they not be zeroed.
  127. */
  128. union {
  129. struct page *pages[DIO_PAGES]; /* page buffer */
  130. struct work_struct complete_work;/* deferred AIO completion */
  131. };
  132. } ____cacheline_aligned_in_smp;
  133. static struct kmem_cache *dio_cache __read_mostly;
  134. /*
  135. * How many pages are in the queue?
  136. */
  137. static inline unsigned dio_pages_present(struct dio_submit *sdio)
  138. {
  139. return sdio->tail - sdio->head;
  140. }
  141. /*
  142. * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
  143. */
  144. static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
  145. {
  146. ssize_t ret;
  147. ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
  148. &sdio->from);
  149. if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
  150. struct page *page = ZERO_PAGE(0);
  151. /*
  152. * A memory fault, but the filesystem has some outstanding
  153. * mapped blocks. We need to use those blocks up to avoid
  154. * leaking stale data in the file.
  155. */
  156. if (dio->page_errors == 0)
  157. dio->page_errors = ret;
  158. get_page(page);
  159. dio->pages[0] = page;
  160. sdio->head = 0;
  161. sdio->tail = 1;
  162. sdio->from = 0;
  163. sdio->to = PAGE_SIZE;
  164. return 0;
  165. }
  166. if (ret >= 0) {
  167. iov_iter_advance(sdio->iter, ret);
  168. ret += sdio->from;
  169. sdio->head = 0;
  170. sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
  171. sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
  172. return 0;
  173. }
  174. return ret;
  175. }
  176. /*
  177. * Get another userspace page. Returns an ERR_PTR on error. Pages are
  178. * buffered inside the dio so that we can call get_user_pages() against a
  179. * decent number of pages, less frequently. To provide nicer use of the
  180. * L1 cache.
  181. */
  182. static inline struct page *dio_get_page(struct dio *dio,
  183. struct dio_submit *sdio)
  184. {
  185. if (dio_pages_present(sdio) == 0) {
  186. int ret;
  187. ret = dio_refill_pages(dio, sdio);
  188. if (ret)
  189. return ERR_PTR(ret);
  190. BUG_ON(dio_pages_present(sdio) == 0);
  191. }
  192. return dio->pages[sdio->head];
  193. }
  194. /**
  195. * dio_complete() - called when all DIO BIO I/O has been completed
  196. * @offset: the byte offset in the file of the completed operation
  197. *
  198. * This drops i_dio_count, lets interested parties know that a DIO operation
  199. * has completed, and calculates the resulting return code for the operation.
  200. *
  201. * It lets the filesystem know if it registered an interest earlier via
  202. * get_block. Pass the private field of the map buffer_head so that
  203. * filesystems can use it to hold additional state between get_block calls and
  204. * dio_complete.
  205. */
  206. static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
  207. {
  208. loff_t offset = dio->iocb->ki_pos;
  209. ssize_t transferred = 0;
  210. int err;
  211. /*
  212. * AIO submission can race with bio completion to get here while
  213. * expecting to have the last io completed by bio completion.
  214. * In that case -EIOCBQUEUED is in fact not an error we want
  215. * to preserve through this call.
  216. */
  217. if (ret == -EIOCBQUEUED)
  218. ret = 0;
  219. if (dio->result) {
  220. transferred = dio->result;
  221. /* Check for short read case */
  222. if ((dio->op == REQ_OP_READ) &&
  223. ((offset + transferred) > dio->i_size))
  224. transferred = dio->i_size - offset;
  225. /* ignore EFAULT if some IO has been done */
  226. if (unlikely(ret == -EFAULT) && transferred)
  227. ret = 0;
  228. }
  229. if (ret == 0)
  230. ret = dio->page_errors;
  231. if (ret == 0)
  232. ret = dio->io_error;
  233. if (ret == 0)
  234. ret = transferred;
  235. /*
  236. * Try again to invalidate clean pages which might have been cached by
  237. * non-direct readahead, or faulted in by get_user_pages() if the source
  238. * of the write was an mmap'ed region of the file we're writing. Either
  239. * one is a pretty crazy thing to do, so we don't support it 100%. If
  240. * this invalidation fails, tough, the write still worked...
  241. */
  242. if (ret > 0 && dio->op == REQ_OP_WRITE &&
  243. dio->inode->i_mapping->nrpages) {
  244. err = invalidate_inode_pages2_range(dio->inode->i_mapping,
  245. offset >> PAGE_SHIFT,
  246. (offset + ret - 1) >> PAGE_SHIFT);
  247. WARN_ON_ONCE(err);
  248. }
  249. if (dio->end_io) {
  250. // XXX: ki_pos??
  251. err = dio->end_io(dio->iocb, offset, ret, dio->private);
  252. if (err)
  253. ret = err;
  254. }
  255. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  256. inode_dio_end(dio->inode);
  257. if (is_async) {
  258. /*
  259. * generic_write_sync expects ki_pos to have been updated
  260. * already, but the submission path only does this for
  261. * synchronous I/O.
  262. */
  263. dio->iocb->ki_pos += transferred;
  264. if (dio->op == REQ_OP_WRITE)
  265. ret = generic_write_sync(dio->iocb, transferred);
  266. dio->iocb->ki_complete(dio->iocb, ret, 0);
  267. }
  268. kmem_cache_free(dio_cache, dio);
  269. return ret;
  270. }
  271. static void dio_aio_complete_work(struct work_struct *work)
  272. {
  273. struct dio *dio = container_of(work, struct dio, complete_work);
  274. dio_complete(dio, 0, true);
  275. }
  276. static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
  277. /*
  278. * Asynchronous IO callback.
  279. */
  280. static void dio_bio_end_aio(struct bio *bio)
  281. {
  282. struct dio *dio = bio->bi_private;
  283. unsigned long remaining;
  284. unsigned long flags;
  285. bool defer_completion = false;
  286. /* cleanup the bio */
  287. dio_bio_complete(dio, bio);
  288. spin_lock_irqsave(&dio->bio_lock, flags);
  289. remaining = --dio->refcount;
  290. if (remaining == 1 && dio->waiter)
  291. wake_up_process(dio->waiter);
  292. spin_unlock_irqrestore(&dio->bio_lock, flags);
  293. if (remaining == 0) {
  294. /*
  295. * Defer completion when defer_completion is set or
  296. * when the inode has pages mapped and this is AIO write.
  297. * We need to invalidate those pages because there is a
  298. * chance they contain stale data in the case buffered IO
  299. * went in between AIO submission and completion into the
  300. * same region.
  301. */
  302. if (dio->result)
  303. defer_completion = dio->defer_completion ||
  304. (dio->op == REQ_OP_WRITE &&
  305. dio->inode->i_mapping->nrpages);
  306. if (defer_completion) {
  307. INIT_WORK(&dio->complete_work, dio_aio_complete_work);
  308. queue_work(dio->inode->i_sb->s_dio_done_wq,
  309. &dio->complete_work);
  310. } else {
  311. dio_complete(dio, 0, true);
  312. }
  313. }
  314. }
  315. /*
  316. * The BIO completion handler simply queues the BIO up for the process-context
  317. * handler.
  318. *
  319. * During I/O bi_private points at the dio. After I/O, bi_private is used to
  320. * implement a singly-linked list of completed BIOs, at dio->bio_list.
  321. */
  322. static void dio_bio_end_io(struct bio *bio)
  323. {
  324. struct dio *dio = bio->bi_private;
  325. unsigned long flags;
  326. spin_lock_irqsave(&dio->bio_lock, flags);
  327. bio->bi_private = dio->bio_list;
  328. dio->bio_list = bio;
  329. if (--dio->refcount == 1 && dio->waiter)
  330. wake_up_process(dio->waiter);
  331. spin_unlock_irqrestore(&dio->bio_lock, flags);
  332. }
  333. /**
  334. * dio_end_io - handle the end io action for the given bio
  335. * @bio: The direct io bio thats being completed
  336. *
  337. * This is meant to be called by any filesystem that uses their own dio_submit_t
  338. * so that the DIO specific endio actions are dealt with after the filesystem
  339. * has done it's completion work.
  340. */
  341. void dio_end_io(struct bio *bio)
  342. {
  343. struct dio *dio = bio->bi_private;
  344. if (dio->is_async)
  345. dio_bio_end_aio(bio);
  346. else
  347. dio_bio_end_io(bio);
  348. }
  349. EXPORT_SYMBOL_GPL(dio_end_io);
  350. static inline void
  351. dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
  352. struct block_device *bdev,
  353. sector_t first_sector, int nr_vecs)
  354. {
  355. struct bio *bio;
  356. /*
  357. * bio_alloc() is guaranteed to return a bio when called with
  358. * __GFP_RECLAIM and we request a valid number of vectors.
  359. */
  360. bio = bio_alloc(GFP_KERNEL, nr_vecs);
  361. bio_set_dev(bio, bdev);
  362. bio->bi_iter.bi_sector = first_sector;
  363. bio_set_op_attrs(bio, dio->op, dio->op_flags);
  364. if (dio->is_async)
  365. bio->bi_end_io = dio_bio_end_aio;
  366. else
  367. bio->bi_end_io = dio_bio_end_io;
  368. bio->bi_write_hint = dio->iocb->ki_hint;
  369. sdio->bio = bio;
  370. sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
  371. }
  372. /*
  373. * In the AIO read case we speculatively dirty the pages before starting IO.
  374. * During IO completion, any of these pages which happen to have been written
  375. * back will be redirtied by bio_check_pages_dirty().
  376. *
  377. * bios hold a dio reference between submit_bio and ->end_io.
  378. */
  379. static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
  380. {
  381. struct bio *bio = sdio->bio;
  382. unsigned long flags;
  383. bio->bi_private = dio;
  384. spin_lock_irqsave(&dio->bio_lock, flags);
  385. dio->refcount++;
  386. spin_unlock_irqrestore(&dio->bio_lock, flags);
  387. if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
  388. bio_set_pages_dirty(bio);
  389. dio->bio_disk = bio->bi_disk;
  390. if (sdio->submit_io) {
  391. sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
  392. dio->bio_cookie = BLK_QC_T_NONE;
  393. } else
  394. dio->bio_cookie = submit_bio(bio);
  395. sdio->bio = NULL;
  396. sdio->boundary = 0;
  397. sdio->logical_offset_in_bio = 0;
  398. }
  399. /*
  400. * Release any resources in case of a failure
  401. */
  402. static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
  403. {
  404. while (sdio->head < sdio->tail)
  405. put_page(dio->pages[sdio->head++]);
  406. }
  407. /*
  408. * Wait for the next BIO to complete. Remove it and return it. NULL is
  409. * returned once all BIOs have been completed. This must only be called once
  410. * all bios have been issued so that dio->refcount can only decrease. This
  411. * requires that that the caller hold a reference on the dio.
  412. */
  413. static struct bio *dio_await_one(struct dio *dio)
  414. {
  415. unsigned long flags;
  416. struct bio *bio = NULL;
  417. spin_lock_irqsave(&dio->bio_lock, flags);
  418. /*
  419. * Wait as long as the list is empty and there are bios in flight. bio
  420. * completion drops the count, maybe adds to the list, and wakes while
  421. * holding the bio_lock so we don't need set_current_state()'s barrier
  422. * and can call it after testing our condition.
  423. */
  424. while (dio->refcount > 1 && dio->bio_list == NULL) {
  425. __set_current_state(TASK_UNINTERRUPTIBLE);
  426. dio->waiter = current;
  427. spin_unlock_irqrestore(&dio->bio_lock, flags);
  428. if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
  429. !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie))
  430. io_schedule();
  431. /* wake up sets us TASK_RUNNING */
  432. spin_lock_irqsave(&dio->bio_lock, flags);
  433. dio->waiter = NULL;
  434. }
  435. if (dio->bio_list) {
  436. bio = dio->bio_list;
  437. dio->bio_list = bio->bi_private;
  438. }
  439. spin_unlock_irqrestore(&dio->bio_lock, flags);
  440. return bio;
  441. }
  442. /*
  443. * Process one completed BIO. No locks are held.
  444. */
  445. static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
  446. {
  447. struct bio_vec *bvec;
  448. unsigned i;
  449. blk_status_t err = bio->bi_status;
  450. if (err) {
  451. if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
  452. dio->io_error = -EAGAIN;
  453. else
  454. dio->io_error = -EIO;
  455. }
  456. if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
  457. bio_check_pages_dirty(bio); /* transfers ownership */
  458. } else {
  459. bio_for_each_segment_all(bvec, bio, i) {
  460. struct page *page = bvec->bv_page;
  461. if (dio->op == REQ_OP_READ && !PageCompound(page) &&
  462. dio->should_dirty)
  463. set_page_dirty_lock(page);
  464. put_page(page);
  465. }
  466. bio_put(bio);
  467. }
  468. return err;
  469. }
  470. /*
  471. * Wait on and process all in-flight BIOs. This must only be called once
  472. * all bios have been issued so that the refcount can only decrease.
  473. * This just waits for all bios to make it through dio_bio_complete. IO
  474. * errors are propagated through dio->io_error and should be propagated via
  475. * dio_complete().
  476. */
  477. static void dio_await_completion(struct dio *dio)
  478. {
  479. struct bio *bio;
  480. do {
  481. bio = dio_await_one(dio);
  482. if (bio)
  483. dio_bio_complete(dio, bio);
  484. } while (bio);
  485. }
  486. /*
  487. * A really large O_DIRECT read or write can generate a lot of BIOs. So
  488. * to keep the memory consumption sane we periodically reap any completed BIOs
  489. * during the BIO generation phase.
  490. *
  491. * This also helps to limit the peak amount of pinned userspace memory.
  492. */
  493. static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
  494. {
  495. int ret = 0;
  496. if (sdio->reap_counter++ >= 64) {
  497. while (dio->bio_list) {
  498. unsigned long flags;
  499. struct bio *bio;
  500. int ret2;
  501. spin_lock_irqsave(&dio->bio_lock, flags);
  502. bio = dio->bio_list;
  503. dio->bio_list = bio->bi_private;
  504. spin_unlock_irqrestore(&dio->bio_lock, flags);
  505. ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
  506. if (ret == 0)
  507. ret = ret2;
  508. }
  509. sdio->reap_counter = 0;
  510. }
  511. return ret;
  512. }
  513. /*
  514. * Create workqueue for deferred direct IO completions. We allocate the
  515. * workqueue when it's first needed. This avoids creating workqueue for
  516. * filesystems that don't need it and also allows us to create the workqueue
  517. * late enough so the we can include s_id in the name of the workqueue.
  518. */
  519. int sb_init_dio_done_wq(struct super_block *sb)
  520. {
  521. struct workqueue_struct *old;
  522. struct workqueue_struct *wq = alloc_workqueue("dio/%s",
  523. WQ_MEM_RECLAIM, 0,
  524. sb->s_id);
  525. if (!wq)
  526. return -ENOMEM;
  527. /*
  528. * This has to be atomic as more DIOs can race to create the workqueue
  529. */
  530. old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
  531. /* Someone created workqueue before us? Free ours... */
  532. if (old)
  533. destroy_workqueue(wq);
  534. return 0;
  535. }
  536. static int dio_set_defer_completion(struct dio *dio)
  537. {
  538. struct super_block *sb = dio->inode->i_sb;
  539. if (dio->defer_completion)
  540. return 0;
  541. dio->defer_completion = true;
  542. if (!sb->s_dio_done_wq)
  543. return sb_init_dio_done_wq(sb);
  544. return 0;
  545. }
  546. /*
  547. * Call into the fs to map some more disk blocks. We record the current number
  548. * of available blocks at sdio->blocks_available. These are in units of the
  549. * fs blocksize, i_blocksize(inode).
  550. *
  551. * The fs is allowed to map lots of blocks at once. If it wants to do that,
  552. * it uses the passed inode-relative block number as the file offset, as usual.
  553. *
  554. * get_block() is passed the number of i_blkbits-sized blocks which direct_io
  555. * has remaining to do. The fs should not map more than this number of blocks.
  556. *
  557. * If the fs has mapped a lot of blocks, it should populate bh->b_size to
  558. * indicate how much contiguous disk space has been made available at
  559. * bh->b_blocknr.
  560. *
  561. * If *any* of the mapped blocks are new, then the fs must set buffer_new().
  562. * This isn't very efficient...
  563. *
  564. * In the case of filesystem holes: the fs may return an arbitrarily-large
  565. * hole by returning an appropriate value in b_size and by clearing
  566. * buffer_mapped(). However the direct-io code will only process holes one
  567. * block at a time - it will repeatedly call get_block() as it walks the hole.
  568. */
  569. static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
  570. struct buffer_head *map_bh)
  571. {
  572. int ret;
  573. sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
  574. sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
  575. unsigned long fs_count; /* Number of filesystem-sized blocks */
  576. int create;
  577. unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
  578. /*
  579. * If there was a memory error and we've overwritten all the
  580. * mapped blocks then we can now return that memory error
  581. */
  582. ret = dio->page_errors;
  583. if (ret == 0) {
  584. BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
  585. fs_startblk = sdio->block_in_file >> sdio->blkfactor;
  586. fs_endblk = (sdio->final_block_in_request - 1) >>
  587. sdio->blkfactor;
  588. fs_count = fs_endblk - fs_startblk + 1;
  589. map_bh->b_state = 0;
  590. map_bh->b_size = fs_count << i_blkbits;
  591. /*
  592. * For writes that could fill holes inside i_size on a
  593. * DIO_SKIP_HOLES filesystem we forbid block creations: only
  594. * overwrites are permitted. We will return early to the caller
  595. * once we see an unmapped buffer head returned, and the caller
  596. * will fall back to buffered I/O.
  597. *
  598. * Otherwise the decision is left to the get_blocks method,
  599. * which may decide to handle it or also return an unmapped
  600. * buffer head.
  601. */
  602. create = dio->op == REQ_OP_WRITE;
  603. if (dio->flags & DIO_SKIP_HOLES) {
  604. if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
  605. i_blkbits))
  606. create = 0;
  607. }
  608. ret = (*sdio->get_block)(dio->inode, fs_startblk,
  609. map_bh, create);
  610. /* Store for completion */
  611. dio->private = map_bh->b_private;
  612. if (ret == 0 && buffer_defer_completion(map_bh))
  613. ret = dio_set_defer_completion(dio);
  614. }
  615. return ret;
  616. }
  617. /*
  618. * There is no bio. Make one now.
  619. */
  620. static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
  621. sector_t start_sector, struct buffer_head *map_bh)
  622. {
  623. sector_t sector;
  624. int ret, nr_pages;
  625. ret = dio_bio_reap(dio, sdio);
  626. if (ret)
  627. goto out;
  628. sector = start_sector << (sdio->blkbits - 9);
  629. nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
  630. BUG_ON(nr_pages <= 0);
  631. dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
  632. sdio->boundary = 0;
  633. out:
  634. return ret;
  635. }
  636. /*
  637. * Attempt to put the current chunk of 'cur_page' into the current BIO. If
  638. * that was successful then update final_block_in_bio and take a ref against
  639. * the just-added page.
  640. *
  641. * Return zero on success. Non-zero means the caller needs to start a new BIO.
  642. */
  643. static inline int dio_bio_add_page(struct dio_submit *sdio)
  644. {
  645. int ret;
  646. ret = bio_add_page(sdio->bio, sdio->cur_page,
  647. sdio->cur_page_len, sdio->cur_page_offset);
  648. if (ret == sdio->cur_page_len) {
  649. /*
  650. * Decrement count only, if we are done with this page
  651. */
  652. if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
  653. sdio->pages_in_io--;
  654. get_page(sdio->cur_page);
  655. sdio->final_block_in_bio = sdio->cur_page_block +
  656. (sdio->cur_page_len >> sdio->blkbits);
  657. ret = 0;
  658. } else {
  659. ret = 1;
  660. }
  661. return ret;
  662. }
  663. /*
  664. * Put cur_page under IO. The section of cur_page which is described by
  665. * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
  666. * starts on-disk at cur_page_block.
  667. *
  668. * We take a ref against the page here (on behalf of its presence in the bio).
  669. *
  670. * The caller of this function is responsible for removing cur_page from the
  671. * dio, and for dropping the refcount which came from that presence.
  672. */
  673. static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
  674. struct buffer_head *map_bh)
  675. {
  676. int ret = 0;
  677. if (sdio->bio) {
  678. loff_t cur_offset = sdio->cur_page_fs_offset;
  679. loff_t bio_next_offset = sdio->logical_offset_in_bio +
  680. sdio->bio->bi_iter.bi_size;
  681. /*
  682. * See whether this new request is contiguous with the old.
  683. *
  684. * Btrfs cannot handle having logically non-contiguous requests
  685. * submitted. For example if you have
  686. *
  687. * Logical: [0-4095][HOLE][8192-12287]
  688. * Physical: [0-4095] [4096-8191]
  689. *
  690. * We cannot submit those pages together as one BIO. So if our
  691. * current logical offset in the file does not equal what would
  692. * be the next logical offset in the bio, submit the bio we
  693. * have.
  694. */
  695. if (sdio->final_block_in_bio != sdio->cur_page_block ||
  696. cur_offset != bio_next_offset)
  697. dio_bio_submit(dio, sdio);
  698. }
  699. if (sdio->bio == NULL) {
  700. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  701. if (ret)
  702. goto out;
  703. }
  704. if (dio_bio_add_page(sdio) != 0) {
  705. dio_bio_submit(dio, sdio);
  706. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  707. if (ret == 0) {
  708. ret = dio_bio_add_page(sdio);
  709. BUG_ON(ret != 0);
  710. }
  711. }
  712. out:
  713. return ret;
  714. }
  715. /*
  716. * An autonomous function to put a chunk of a page under deferred IO.
  717. *
  718. * The caller doesn't actually know (or care) whether this piece of page is in
  719. * a BIO, or is under IO or whatever. We just take care of all possible
  720. * situations here. The separation between the logic of do_direct_IO() and
  721. * that of submit_page_section() is important for clarity. Please don't break.
  722. *
  723. * The chunk of page starts on-disk at blocknr.
  724. *
  725. * We perform deferred IO, by recording the last-submitted page inside our
  726. * private part of the dio structure. If possible, we just expand the IO
  727. * across that page here.
  728. *
  729. * If that doesn't work out then we put the old page into the bio and add this
  730. * page to the dio instead.
  731. */
  732. static inline int
  733. submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
  734. unsigned offset, unsigned len, sector_t blocknr,
  735. struct buffer_head *map_bh)
  736. {
  737. int ret = 0;
  738. if (dio->op == REQ_OP_WRITE) {
  739. /*
  740. * Read accounting is performed in submit_bio()
  741. */
  742. task_io_account_write(len);
  743. }
  744. /*
  745. * Can we just grow the current page's presence in the dio?
  746. */
  747. if (sdio->cur_page == page &&
  748. sdio->cur_page_offset + sdio->cur_page_len == offset &&
  749. sdio->cur_page_block +
  750. (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
  751. sdio->cur_page_len += len;
  752. goto out;
  753. }
  754. /*
  755. * If there's a deferred page already there then send it.
  756. */
  757. if (sdio->cur_page) {
  758. ret = dio_send_cur_page(dio, sdio, map_bh);
  759. put_page(sdio->cur_page);
  760. sdio->cur_page = NULL;
  761. if (ret)
  762. return ret;
  763. }
  764. get_page(page); /* It is in dio */
  765. sdio->cur_page = page;
  766. sdio->cur_page_offset = offset;
  767. sdio->cur_page_len = len;
  768. sdio->cur_page_block = blocknr;
  769. sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
  770. out:
  771. /*
  772. * If sdio->boundary then we want to schedule the IO now to
  773. * avoid metadata seeks.
  774. */
  775. if (sdio->boundary) {
  776. ret = dio_send_cur_page(dio, sdio, map_bh);
  777. dio_bio_submit(dio, sdio);
  778. put_page(sdio->cur_page);
  779. sdio->cur_page = NULL;
  780. }
  781. return ret;
  782. }
  783. /*
  784. * If we are not writing the entire block and get_block() allocated
  785. * the block for us, we need to fill-in the unused portion of the
  786. * block with zeros. This happens only if user-buffer, fileoffset or
  787. * io length is not filesystem block-size multiple.
  788. *
  789. * `end' is zero if we're doing the start of the IO, 1 at the end of the
  790. * IO.
  791. */
  792. static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
  793. int end, struct buffer_head *map_bh)
  794. {
  795. unsigned dio_blocks_per_fs_block;
  796. unsigned this_chunk_blocks; /* In dio_blocks */
  797. unsigned this_chunk_bytes;
  798. struct page *page;
  799. sdio->start_zero_done = 1;
  800. if (!sdio->blkfactor || !buffer_new(map_bh))
  801. return;
  802. dio_blocks_per_fs_block = 1 << sdio->blkfactor;
  803. this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
  804. if (!this_chunk_blocks)
  805. return;
  806. /*
  807. * We need to zero out part of an fs block. It is either at the
  808. * beginning or the end of the fs block.
  809. */
  810. if (end)
  811. this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
  812. this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
  813. page = ZERO_PAGE(0);
  814. if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
  815. sdio->next_block_for_io, map_bh))
  816. return;
  817. sdio->next_block_for_io += this_chunk_blocks;
  818. }
  819. /*
  820. * Walk the user pages, and the file, mapping blocks to disk and generating
  821. * a sequence of (page,offset,len,block) mappings. These mappings are injected
  822. * into submit_page_section(), which takes care of the next stage of submission
  823. *
  824. * Direct IO against a blockdev is different from a file. Because we can
  825. * happily perform page-sized but 512-byte aligned IOs. It is important that
  826. * blockdev IO be able to have fine alignment and large sizes.
  827. *
  828. * So what we do is to permit the ->get_block function to populate bh.b_size
  829. * with the size of IO which is permitted at this offset and this i_blkbits.
  830. *
  831. * For best results, the blockdev should be set up with 512-byte i_blkbits and
  832. * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
  833. * fine alignment but still allows this function to work in PAGE_SIZE units.
  834. */
  835. static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
  836. struct buffer_head *map_bh)
  837. {
  838. const unsigned blkbits = sdio->blkbits;
  839. const unsigned i_blkbits = blkbits + sdio->blkfactor;
  840. int ret = 0;
  841. while (sdio->block_in_file < sdio->final_block_in_request) {
  842. struct page *page;
  843. size_t from, to;
  844. page = dio_get_page(dio, sdio);
  845. if (IS_ERR(page)) {
  846. ret = PTR_ERR(page);
  847. goto out;
  848. }
  849. from = sdio->head ? 0 : sdio->from;
  850. to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
  851. sdio->head++;
  852. while (from < to) {
  853. unsigned this_chunk_bytes; /* # of bytes mapped */
  854. unsigned this_chunk_blocks; /* # of blocks */
  855. unsigned u;
  856. if (sdio->blocks_available == 0) {
  857. /*
  858. * Need to go and map some more disk
  859. */
  860. unsigned long blkmask;
  861. unsigned long dio_remainder;
  862. ret = get_more_blocks(dio, sdio, map_bh);
  863. if (ret) {
  864. put_page(page);
  865. goto out;
  866. }
  867. if (!buffer_mapped(map_bh))
  868. goto do_holes;
  869. sdio->blocks_available =
  870. map_bh->b_size >> blkbits;
  871. sdio->next_block_for_io =
  872. map_bh->b_blocknr << sdio->blkfactor;
  873. if (buffer_new(map_bh)) {
  874. clean_bdev_aliases(
  875. map_bh->b_bdev,
  876. map_bh->b_blocknr,
  877. map_bh->b_size >> i_blkbits);
  878. }
  879. if (!sdio->blkfactor)
  880. goto do_holes;
  881. blkmask = (1 << sdio->blkfactor) - 1;
  882. dio_remainder = (sdio->block_in_file & blkmask);
  883. /*
  884. * If we are at the start of IO and that IO
  885. * starts partway into a fs-block,
  886. * dio_remainder will be non-zero. If the IO
  887. * is a read then we can simply advance the IO
  888. * cursor to the first block which is to be
  889. * read. But if the IO is a write and the
  890. * block was newly allocated we cannot do that;
  891. * the start of the fs block must be zeroed out
  892. * on-disk
  893. */
  894. if (!buffer_new(map_bh))
  895. sdio->next_block_for_io += dio_remainder;
  896. sdio->blocks_available -= dio_remainder;
  897. }
  898. do_holes:
  899. /* Handle holes */
  900. if (!buffer_mapped(map_bh)) {
  901. loff_t i_size_aligned;
  902. /* AKPM: eargh, -ENOTBLK is a hack */
  903. if (dio->op == REQ_OP_WRITE) {
  904. put_page(page);
  905. return -ENOTBLK;
  906. }
  907. /*
  908. * Be sure to account for a partial block as the
  909. * last block in the file
  910. */
  911. i_size_aligned = ALIGN(i_size_read(dio->inode),
  912. 1 << blkbits);
  913. if (sdio->block_in_file >=
  914. i_size_aligned >> blkbits) {
  915. /* We hit eof */
  916. put_page(page);
  917. goto out;
  918. }
  919. zero_user(page, from, 1 << blkbits);
  920. sdio->block_in_file++;
  921. from += 1 << blkbits;
  922. dio->result += 1 << blkbits;
  923. goto next_block;
  924. }
  925. /*
  926. * If we're performing IO which has an alignment which
  927. * is finer than the underlying fs, go check to see if
  928. * we must zero out the start of this block.
  929. */
  930. if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
  931. dio_zero_block(dio, sdio, 0, map_bh);
  932. /*
  933. * Work out, in this_chunk_blocks, how much disk we
  934. * can add to this page
  935. */
  936. this_chunk_blocks = sdio->blocks_available;
  937. u = (to - from) >> blkbits;
  938. if (this_chunk_blocks > u)
  939. this_chunk_blocks = u;
  940. u = sdio->final_block_in_request - sdio->block_in_file;
  941. if (this_chunk_blocks > u)
  942. this_chunk_blocks = u;
  943. this_chunk_bytes = this_chunk_blocks << blkbits;
  944. BUG_ON(this_chunk_bytes == 0);
  945. if (this_chunk_blocks == sdio->blocks_available)
  946. sdio->boundary = buffer_boundary(map_bh);
  947. ret = submit_page_section(dio, sdio, page,
  948. from,
  949. this_chunk_bytes,
  950. sdio->next_block_for_io,
  951. map_bh);
  952. if (ret) {
  953. put_page(page);
  954. goto out;
  955. }
  956. sdio->next_block_for_io += this_chunk_blocks;
  957. sdio->block_in_file += this_chunk_blocks;
  958. from += this_chunk_bytes;
  959. dio->result += this_chunk_bytes;
  960. sdio->blocks_available -= this_chunk_blocks;
  961. next_block:
  962. BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
  963. if (sdio->block_in_file == sdio->final_block_in_request)
  964. break;
  965. }
  966. /* Drop the ref which was taken in get_user_pages() */
  967. put_page(page);
  968. }
  969. out:
  970. return ret;
  971. }
  972. static inline int drop_refcount(struct dio *dio)
  973. {
  974. int ret2;
  975. unsigned long flags;
  976. /*
  977. * Sync will always be dropping the final ref and completing the
  978. * operation. AIO can if it was a broken operation described above or
  979. * in fact if all the bios race to complete before we get here. In
  980. * that case dio_complete() translates the EIOCBQUEUED into the proper
  981. * return code that the caller will hand to ->complete().
  982. *
  983. * This is managed by the bio_lock instead of being an atomic_t so that
  984. * completion paths can drop their ref and use the remaining count to
  985. * decide to wake the submission path atomically.
  986. */
  987. spin_lock_irqsave(&dio->bio_lock, flags);
  988. ret2 = --dio->refcount;
  989. spin_unlock_irqrestore(&dio->bio_lock, flags);
  990. return ret2;
  991. }
  992. /*
  993. * This is a library function for use by filesystem drivers.
  994. *
  995. * The locking rules are governed by the flags parameter:
  996. * - if the flags value contains DIO_LOCKING we use a fancy locking
  997. * scheme for dumb filesystems.
  998. * For writes this function is called under i_mutex and returns with
  999. * i_mutex held, for reads, i_mutex is not held on entry, but it is
  1000. * taken and dropped again before returning.
  1001. * - if the flags value does NOT contain DIO_LOCKING we don't use any
  1002. * internal locking but rather rely on the filesystem to synchronize
  1003. * direct I/O reads/writes versus each other and truncate.
  1004. *
  1005. * To help with locking against truncate we incremented the i_dio_count
  1006. * counter before starting direct I/O, and decrement it once we are done.
  1007. * Truncate can wait for it to reach zero to provide exclusion. It is
  1008. * expected that filesystem provide exclusion between new direct I/O
  1009. * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
  1010. * but other filesystems need to take care of this on their own.
  1011. *
  1012. * NOTE: if you pass "sdio" to anything by pointer make sure that function
  1013. * is always inlined. Otherwise gcc is unable to split the structure into
  1014. * individual fields and will generate much worse code. This is important
  1015. * for the whole file.
  1016. */
  1017. static inline ssize_t
  1018. do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  1019. struct block_device *bdev, struct iov_iter *iter,
  1020. get_block_t get_block, dio_iodone_t end_io,
  1021. dio_submit_t submit_io, int flags)
  1022. {
  1023. unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
  1024. unsigned blkbits = i_blkbits;
  1025. unsigned blocksize_mask = (1 << blkbits) - 1;
  1026. ssize_t retval = -EINVAL;
  1027. size_t count = iov_iter_count(iter);
  1028. loff_t offset = iocb->ki_pos;
  1029. loff_t end = offset + count;
  1030. struct dio *dio;
  1031. struct dio_submit sdio = { 0, };
  1032. struct buffer_head map_bh = { 0, };
  1033. struct blk_plug plug;
  1034. unsigned long align = offset | iov_iter_alignment(iter);
  1035. /*
  1036. * Avoid references to bdev if not absolutely needed to give
  1037. * the early prefetch in the caller enough time.
  1038. */
  1039. if (align & blocksize_mask) {
  1040. if (bdev)
  1041. blkbits = blksize_bits(bdev_logical_block_size(bdev));
  1042. blocksize_mask = (1 << blkbits) - 1;
  1043. if (align & blocksize_mask)
  1044. goto out;
  1045. }
  1046. /* watch out for a 0 len io from a tricksy fs */
  1047. if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
  1048. return 0;
  1049. dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
  1050. retval = -ENOMEM;
  1051. if (!dio)
  1052. goto out;
  1053. /*
  1054. * Believe it or not, zeroing out the page array caused a .5%
  1055. * performance regression in a database benchmark. So, we take
  1056. * care to only zero out what's needed.
  1057. */
  1058. memset(dio, 0, offsetof(struct dio, pages));
  1059. dio->flags = flags;
  1060. if (dio->flags & DIO_LOCKING) {
  1061. if (iov_iter_rw(iter) == READ) {
  1062. struct address_space *mapping =
  1063. iocb->ki_filp->f_mapping;
  1064. /* will be released by direct_io_worker */
  1065. inode_lock(inode);
  1066. retval = filemap_write_and_wait_range(mapping, offset,
  1067. end - 1);
  1068. if (retval) {
  1069. inode_unlock(inode);
  1070. kmem_cache_free(dio_cache, dio);
  1071. goto out;
  1072. }
  1073. }
  1074. }
  1075. /* Once we sampled i_size check for reads beyond EOF */
  1076. dio->i_size = i_size_read(inode);
  1077. if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
  1078. if (dio->flags & DIO_LOCKING)
  1079. inode_unlock(inode);
  1080. kmem_cache_free(dio_cache, dio);
  1081. retval = 0;
  1082. goto out;
  1083. }
  1084. /*
  1085. * For file extending writes updating i_size before data writeouts
  1086. * complete can expose uninitialized blocks in dumb filesystems.
  1087. * In that case we need to wait for I/O completion even if asked
  1088. * for an asynchronous write.
  1089. */
  1090. if (is_sync_kiocb(iocb))
  1091. dio->is_async = false;
  1092. else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
  1093. iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
  1094. dio->is_async = false;
  1095. else
  1096. dio->is_async = true;
  1097. dio->inode = inode;
  1098. if (iov_iter_rw(iter) == WRITE) {
  1099. dio->op = REQ_OP_WRITE;
  1100. dio->op_flags = REQ_SYNC | REQ_IDLE;
  1101. if (iocb->ki_flags & IOCB_NOWAIT)
  1102. dio->op_flags |= REQ_NOWAIT;
  1103. } else {
  1104. dio->op = REQ_OP_READ;
  1105. }
  1106. /*
  1107. * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
  1108. * so that we can call ->fsync.
  1109. */
  1110. if (dio->is_async && iov_iter_rw(iter) == WRITE) {
  1111. retval = 0;
  1112. if ((iocb->ki_filp->f_flags & O_DSYNC) ||
  1113. IS_SYNC(iocb->ki_filp->f_mapping->host))
  1114. retval = dio_set_defer_completion(dio);
  1115. else if (!dio->inode->i_sb->s_dio_done_wq) {
  1116. /*
  1117. * In case of AIO write racing with buffered read we
  1118. * need to defer completion. We can't decide this now,
  1119. * however the workqueue needs to be initialized here.
  1120. */
  1121. retval = sb_init_dio_done_wq(dio->inode->i_sb);
  1122. }
  1123. if (retval) {
  1124. /*
  1125. * We grab i_mutex only for reads so we don't have
  1126. * to release it here
  1127. */
  1128. kmem_cache_free(dio_cache, dio);
  1129. goto out;
  1130. }
  1131. }
  1132. /*
  1133. * Will be decremented at I/O completion time.
  1134. */
  1135. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  1136. inode_dio_begin(inode);
  1137. retval = 0;
  1138. sdio.blkbits = blkbits;
  1139. sdio.blkfactor = i_blkbits - blkbits;
  1140. sdio.block_in_file = offset >> blkbits;
  1141. sdio.get_block = get_block;
  1142. dio->end_io = end_io;
  1143. sdio.submit_io = submit_io;
  1144. sdio.final_block_in_bio = -1;
  1145. sdio.next_block_for_io = -1;
  1146. dio->iocb = iocb;
  1147. spin_lock_init(&dio->bio_lock);
  1148. dio->refcount = 1;
  1149. dio->should_dirty = (iter->type == ITER_IOVEC);
  1150. sdio.iter = iter;
  1151. sdio.final_block_in_request =
  1152. (offset + iov_iter_count(iter)) >> blkbits;
  1153. /*
  1154. * In case of non-aligned buffers, we may need 2 more
  1155. * pages since we need to zero out first and last block.
  1156. */
  1157. if (unlikely(sdio.blkfactor))
  1158. sdio.pages_in_io = 2;
  1159. sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
  1160. blk_start_plug(&plug);
  1161. retval = do_direct_IO(dio, &sdio, &map_bh);
  1162. if (retval)
  1163. dio_cleanup(dio, &sdio);
  1164. if (retval == -ENOTBLK) {
  1165. /*
  1166. * The remaining part of the request will be
  1167. * be handled by buffered I/O when we return
  1168. */
  1169. retval = 0;
  1170. }
  1171. /*
  1172. * There may be some unwritten disk at the end of a part-written
  1173. * fs-block-sized block. Go zero that now.
  1174. */
  1175. dio_zero_block(dio, &sdio, 1, &map_bh);
  1176. if (sdio.cur_page) {
  1177. ssize_t ret2;
  1178. ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
  1179. if (retval == 0)
  1180. retval = ret2;
  1181. put_page(sdio.cur_page);
  1182. sdio.cur_page = NULL;
  1183. }
  1184. if (sdio.bio)
  1185. dio_bio_submit(dio, &sdio);
  1186. blk_finish_plug(&plug);
  1187. /*
  1188. * It is possible that, we return short IO due to end of file.
  1189. * In that case, we need to release all the pages we got hold on.
  1190. */
  1191. dio_cleanup(dio, &sdio);
  1192. /*
  1193. * All block lookups have been performed. For READ requests
  1194. * we can let i_mutex go now that its achieved its purpose
  1195. * of protecting us from looking up uninitialized blocks.
  1196. */
  1197. if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
  1198. inode_unlock(dio->inode);
  1199. /*
  1200. * The only time we want to leave bios in flight is when a successful
  1201. * partial aio read or full aio write have been setup. In that case
  1202. * bio completion will call aio_complete. The only time it's safe to
  1203. * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
  1204. * This had *better* be the only place that raises -EIOCBQUEUED.
  1205. */
  1206. BUG_ON(retval == -EIOCBQUEUED);
  1207. if (dio->is_async && retval == 0 && dio->result &&
  1208. (iov_iter_rw(iter) == READ || dio->result == count))
  1209. retval = -EIOCBQUEUED;
  1210. else
  1211. dio_await_completion(dio);
  1212. if (drop_refcount(dio) == 0) {
  1213. retval = dio_complete(dio, retval, false);
  1214. } else
  1215. BUG_ON(retval != -EIOCBQUEUED);
  1216. out:
  1217. return retval;
  1218. }
  1219. ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  1220. struct block_device *bdev, struct iov_iter *iter,
  1221. get_block_t get_block,
  1222. dio_iodone_t end_io, dio_submit_t submit_io,
  1223. int flags)
  1224. {
  1225. /*
  1226. * The block device state is needed in the end to finally
  1227. * submit everything. Since it's likely to be cache cold
  1228. * prefetch it here as first thing to hide some of the
  1229. * latency.
  1230. *
  1231. * Attempt to prefetch the pieces we likely need later.
  1232. */
  1233. prefetch(&bdev->bd_disk->part_tbl);
  1234. prefetch(bdev->bd_queue);
  1235. prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
  1236. return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
  1237. end_io, submit_io, flags);
  1238. }
  1239. EXPORT_SYMBOL(__blockdev_direct_IO);
  1240. static __init int dio_init(void)
  1241. {
  1242. dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
  1243. return 0;
  1244. }
  1245. module_init(dio_init)