relocation.c 114 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/slab.h>
  24. #include "ctree.h"
  25. #include "disk-io.h"
  26. #include "transaction.h"
  27. #include "volumes.h"
  28. #include "locking.h"
  29. #include "btrfs_inode.h"
  30. #include "async-thread.h"
  31. #include "free-space-cache.h"
  32. #include "inode-map.h"
  33. #include "qgroup.h"
  34. #include "print-tree.h"
  35. /*
  36. * backref_node, mapping_node and tree_block start with this
  37. */
  38. struct tree_entry {
  39. struct rb_node rb_node;
  40. u64 bytenr;
  41. };
  42. /*
  43. * present a tree block in the backref cache
  44. */
  45. struct backref_node {
  46. struct rb_node rb_node;
  47. u64 bytenr;
  48. u64 new_bytenr;
  49. /* objectid of tree block owner, can be not uptodate */
  50. u64 owner;
  51. /* link to pending, changed or detached list */
  52. struct list_head list;
  53. /* list of upper level blocks reference this block */
  54. struct list_head upper;
  55. /* list of child blocks in the cache */
  56. struct list_head lower;
  57. /* NULL if this node is not tree root */
  58. struct btrfs_root *root;
  59. /* extent buffer got by COW the block */
  60. struct extent_buffer *eb;
  61. /* level of tree block */
  62. unsigned int level:8;
  63. /* is the block in non-reference counted tree */
  64. unsigned int cowonly:1;
  65. /* 1 if no child node in the cache */
  66. unsigned int lowest:1;
  67. /* is the extent buffer locked */
  68. unsigned int locked:1;
  69. /* has the block been processed */
  70. unsigned int processed:1;
  71. /* have backrefs of this block been checked */
  72. unsigned int checked:1;
  73. /*
  74. * 1 if corresponding block has been cowed but some upper
  75. * level block pointers may not point to the new location
  76. */
  77. unsigned int pending:1;
  78. /*
  79. * 1 if the backref node isn't connected to any other
  80. * backref node.
  81. */
  82. unsigned int detached:1;
  83. };
  84. /*
  85. * present a block pointer in the backref cache
  86. */
  87. struct backref_edge {
  88. struct list_head list[2];
  89. struct backref_node *node[2];
  90. };
  91. #define LOWER 0
  92. #define UPPER 1
  93. #define RELOCATION_RESERVED_NODES 256
  94. struct backref_cache {
  95. /* red black tree of all backref nodes in the cache */
  96. struct rb_root rb_root;
  97. /* for passing backref nodes to btrfs_reloc_cow_block */
  98. struct backref_node *path[BTRFS_MAX_LEVEL];
  99. /*
  100. * list of blocks that have been cowed but some block
  101. * pointers in upper level blocks may not reflect the
  102. * new location
  103. */
  104. struct list_head pending[BTRFS_MAX_LEVEL];
  105. /* list of backref nodes with no child node */
  106. struct list_head leaves;
  107. /* list of blocks that have been cowed in current transaction */
  108. struct list_head changed;
  109. /* list of detached backref node. */
  110. struct list_head detached;
  111. u64 last_trans;
  112. int nr_nodes;
  113. int nr_edges;
  114. };
  115. /*
  116. * map address of tree root to tree
  117. */
  118. struct mapping_node {
  119. struct rb_node rb_node;
  120. u64 bytenr;
  121. void *data;
  122. };
  123. struct mapping_tree {
  124. struct rb_root rb_root;
  125. spinlock_t lock;
  126. };
  127. /*
  128. * present a tree block to process
  129. */
  130. struct tree_block {
  131. struct rb_node rb_node;
  132. u64 bytenr;
  133. struct btrfs_key key;
  134. unsigned int level:8;
  135. unsigned int key_ready:1;
  136. };
  137. #define MAX_EXTENTS 128
  138. struct file_extent_cluster {
  139. u64 start;
  140. u64 end;
  141. u64 boundary[MAX_EXTENTS];
  142. unsigned int nr;
  143. };
  144. struct reloc_control {
  145. /* block group to relocate */
  146. struct btrfs_block_group_cache *block_group;
  147. /* extent tree */
  148. struct btrfs_root *extent_root;
  149. /* inode for moving data */
  150. struct inode *data_inode;
  151. struct btrfs_block_rsv *block_rsv;
  152. struct backref_cache backref_cache;
  153. struct file_extent_cluster cluster;
  154. /* tree blocks have been processed */
  155. struct extent_io_tree processed_blocks;
  156. /* map start of tree root to corresponding reloc tree */
  157. struct mapping_tree reloc_root_tree;
  158. /* list of reloc trees */
  159. struct list_head reloc_roots;
  160. /* size of metadata reservation for merging reloc trees */
  161. u64 merging_rsv_size;
  162. /* size of relocated tree nodes */
  163. u64 nodes_relocated;
  164. /* reserved size for block group relocation*/
  165. u64 reserved_bytes;
  166. u64 search_start;
  167. u64 extents_found;
  168. unsigned int stage:8;
  169. unsigned int create_reloc_tree:1;
  170. unsigned int merge_reloc_tree:1;
  171. unsigned int found_file_extent:1;
  172. };
  173. /* stages of data relocation */
  174. #define MOVE_DATA_EXTENTS 0
  175. #define UPDATE_DATA_PTRS 1
  176. static void remove_backref_node(struct backref_cache *cache,
  177. struct backref_node *node);
  178. static void __mark_block_processed(struct reloc_control *rc,
  179. struct backref_node *node);
  180. static void mapping_tree_init(struct mapping_tree *tree)
  181. {
  182. tree->rb_root = RB_ROOT;
  183. spin_lock_init(&tree->lock);
  184. }
  185. static void backref_cache_init(struct backref_cache *cache)
  186. {
  187. int i;
  188. cache->rb_root = RB_ROOT;
  189. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  190. INIT_LIST_HEAD(&cache->pending[i]);
  191. INIT_LIST_HEAD(&cache->changed);
  192. INIT_LIST_HEAD(&cache->detached);
  193. INIT_LIST_HEAD(&cache->leaves);
  194. }
  195. static void backref_cache_cleanup(struct backref_cache *cache)
  196. {
  197. struct backref_node *node;
  198. int i;
  199. while (!list_empty(&cache->detached)) {
  200. node = list_entry(cache->detached.next,
  201. struct backref_node, list);
  202. remove_backref_node(cache, node);
  203. }
  204. while (!list_empty(&cache->leaves)) {
  205. node = list_entry(cache->leaves.next,
  206. struct backref_node, lower);
  207. remove_backref_node(cache, node);
  208. }
  209. cache->last_trans = 0;
  210. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  211. ASSERT(list_empty(&cache->pending[i]));
  212. ASSERT(list_empty(&cache->changed));
  213. ASSERT(list_empty(&cache->detached));
  214. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  215. ASSERT(!cache->nr_nodes);
  216. ASSERT(!cache->nr_edges);
  217. }
  218. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  219. {
  220. struct backref_node *node;
  221. node = kzalloc(sizeof(*node), GFP_NOFS);
  222. if (node) {
  223. INIT_LIST_HEAD(&node->list);
  224. INIT_LIST_HEAD(&node->upper);
  225. INIT_LIST_HEAD(&node->lower);
  226. RB_CLEAR_NODE(&node->rb_node);
  227. cache->nr_nodes++;
  228. }
  229. return node;
  230. }
  231. static void free_backref_node(struct backref_cache *cache,
  232. struct backref_node *node)
  233. {
  234. if (node) {
  235. cache->nr_nodes--;
  236. kfree(node);
  237. }
  238. }
  239. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  240. {
  241. struct backref_edge *edge;
  242. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  243. if (edge)
  244. cache->nr_edges++;
  245. return edge;
  246. }
  247. static void free_backref_edge(struct backref_cache *cache,
  248. struct backref_edge *edge)
  249. {
  250. if (edge) {
  251. cache->nr_edges--;
  252. kfree(edge);
  253. }
  254. }
  255. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  256. struct rb_node *node)
  257. {
  258. struct rb_node **p = &root->rb_node;
  259. struct rb_node *parent = NULL;
  260. struct tree_entry *entry;
  261. while (*p) {
  262. parent = *p;
  263. entry = rb_entry(parent, struct tree_entry, rb_node);
  264. if (bytenr < entry->bytenr)
  265. p = &(*p)->rb_left;
  266. else if (bytenr > entry->bytenr)
  267. p = &(*p)->rb_right;
  268. else
  269. return parent;
  270. }
  271. rb_link_node(node, parent, p);
  272. rb_insert_color(node, root);
  273. return NULL;
  274. }
  275. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  276. {
  277. struct rb_node *n = root->rb_node;
  278. struct tree_entry *entry;
  279. while (n) {
  280. entry = rb_entry(n, struct tree_entry, rb_node);
  281. if (bytenr < entry->bytenr)
  282. n = n->rb_left;
  283. else if (bytenr > entry->bytenr)
  284. n = n->rb_right;
  285. else
  286. return n;
  287. }
  288. return NULL;
  289. }
  290. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  291. {
  292. struct btrfs_fs_info *fs_info = NULL;
  293. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  294. rb_node);
  295. if (bnode->root)
  296. fs_info = bnode->root->fs_info;
  297. btrfs_panic(fs_info, errno,
  298. "Inconsistency in backref cache found at offset %llu",
  299. bytenr);
  300. }
  301. /*
  302. * walk up backref nodes until reach node presents tree root
  303. */
  304. static struct backref_node *walk_up_backref(struct backref_node *node,
  305. struct backref_edge *edges[],
  306. int *index)
  307. {
  308. struct backref_edge *edge;
  309. int idx = *index;
  310. while (!list_empty(&node->upper)) {
  311. edge = list_entry(node->upper.next,
  312. struct backref_edge, list[LOWER]);
  313. edges[idx++] = edge;
  314. node = edge->node[UPPER];
  315. }
  316. BUG_ON(node->detached);
  317. *index = idx;
  318. return node;
  319. }
  320. /*
  321. * walk down backref nodes to find start of next reference path
  322. */
  323. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  324. int *index)
  325. {
  326. struct backref_edge *edge;
  327. struct backref_node *lower;
  328. int idx = *index;
  329. while (idx > 0) {
  330. edge = edges[idx - 1];
  331. lower = edge->node[LOWER];
  332. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  333. idx--;
  334. continue;
  335. }
  336. edge = list_entry(edge->list[LOWER].next,
  337. struct backref_edge, list[LOWER]);
  338. edges[idx - 1] = edge;
  339. *index = idx;
  340. return edge->node[UPPER];
  341. }
  342. *index = 0;
  343. return NULL;
  344. }
  345. static void unlock_node_buffer(struct backref_node *node)
  346. {
  347. if (node->locked) {
  348. btrfs_tree_unlock(node->eb);
  349. node->locked = 0;
  350. }
  351. }
  352. static void drop_node_buffer(struct backref_node *node)
  353. {
  354. if (node->eb) {
  355. unlock_node_buffer(node);
  356. free_extent_buffer(node->eb);
  357. node->eb = NULL;
  358. }
  359. }
  360. static void drop_backref_node(struct backref_cache *tree,
  361. struct backref_node *node)
  362. {
  363. BUG_ON(!list_empty(&node->upper));
  364. drop_node_buffer(node);
  365. list_del(&node->list);
  366. list_del(&node->lower);
  367. if (!RB_EMPTY_NODE(&node->rb_node))
  368. rb_erase(&node->rb_node, &tree->rb_root);
  369. free_backref_node(tree, node);
  370. }
  371. /*
  372. * remove a backref node from the backref cache
  373. */
  374. static void remove_backref_node(struct backref_cache *cache,
  375. struct backref_node *node)
  376. {
  377. struct backref_node *upper;
  378. struct backref_edge *edge;
  379. if (!node)
  380. return;
  381. BUG_ON(!node->lowest && !node->detached);
  382. while (!list_empty(&node->upper)) {
  383. edge = list_entry(node->upper.next, struct backref_edge,
  384. list[LOWER]);
  385. upper = edge->node[UPPER];
  386. list_del(&edge->list[LOWER]);
  387. list_del(&edge->list[UPPER]);
  388. free_backref_edge(cache, edge);
  389. if (RB_EMPTY_NODE(&upper->rb_node)) {
  390. BUG_ON(!list_empty(&node->upper));
  391. drop_backref_node(cache, node);
  392. node = upper;
  393. node->lowest = 1;
  394. continue;
  395. }
  396. /*
  397. * add the node to leaf node list if no other
  398. * child block cached.
  399. */
  400. if (list_empty(&upper->lower)) {
  401. list_add_tail(&upper->lower, &cache->leaves);
  402. upper->lowest = 1;
  403. }
  404. }
  405. drop_backref_node(cache, node);
  406. }
  407. static void update_backref_node(struct backref_cache *cache,
  408. struct backref_node *node, u64 bytenr)
  409. {
  410. struct rb_node *rb_node;
  411. rb_erase(&node->rb_node, &cache->rb_root);
  412. node->bytenr = bytenr;
  413. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  414. if (rb_node)
  415. backref_tree_panic(rb_node, -EEXIST, bytenr);
  416. }
  417. /*
  418. * update backref cache after a transaction commit
  419. */
  420. static int update_backref_cache(struct btrfs_trans_handle *trans,
  421. struct backref_cache *cache)
  422. {
  423. struct backref_node *node;
  424. int level = 0;
  425. if (cache->last_trans == 0) {
  426. cache->last_trans = trans->transid;
  427. return 0;
  428. }
  429. if (cache->last_trans == trans->transid)
  430. return 0;
  431. /*
  432. * detached nodes are used to avoid unnecessary backref
  433. * lookup. transaction commit changes the extent tree.
  434. * so the detached nodes are no longer useful.
  435. */
  436. while (!list_empty(&cache->detached)) {
  437. node = list_entry(cache->detached.next,
  438. struct backref_node, list);
  439. remove_backref_node(cache, node);
  440. }
  441. while (!list_empty(&cache->changed)) {
  442. node = list_entry(cache->changed.next,
  443. struct backref_node, list);
  444. list_del_init(&node->list);
  445. BUG_ON(node->pending);
  446. update_backref_node(cache, node, node->new_bytenr);
  447. }
  448. /*
  449. * some nodes can be left in the pending list if there were
  450. * errors during processing the pending nodes.
  451. */
  452. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  453. list_for_each_entry(node, &cache->pending[level], list) {
  454. BUG_ON(!node->pending);
  455. if (node->bytenr == node->new_bytenr)
  456. continue;
  457. update_backref_node(cache, node, node->new_bytenr);
  458. }
  459. }
  460. cache->last_trans = 0;
  461. return 1;
  462. }
  463. static int should_ignore_root(struct btrfs_root *root)
  464. {
  465. struct btrfs_root *reloc_root;
  466. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  467. return 0;
  468. reloc_root = root->reloc_root;
  469. if (!reloc_root)
  470. return 0;
  471. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  472. root->fs_info->running_transaction->transid - 1)
  473. return 0;
  474. /*
  475. * if there is reloc tree and it was created in previous
  476. * transaction backref lookup can find the reloc tree,
  477. * so backref node for the fs tree root is useless for
  478. * relocation.
  479. */
  480. return 1;
  481. }
  482. /*
  483. * find reloc tree by address of tree root
  484. */
  485. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  486. u64 bytenr)
  487. {
  488. struct rb_node *rb_node;
  489. struct mapping_node *node;
  490. struct btrfs_root *root = NULL;
  491. spin_lock(&rc->reloc_root_tree.lock);
  492. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  493. if (rb_node) {
  494. node = rb_entry(rb_node, struct mapping_node, rb_node);
  495. root = (struct btrfs_root *)node->data;
  496. }
  497. spin_unlock(&rc->reloc_root_tree.lock);
  498. return root;
  499. }
  500. static int is_cowonly_root(u64 root_objectid)
  501. {
  502. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  503. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  504. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  505. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  506. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  507. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  508. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  509. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  510. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  511. return 1;
  512. return 0;
  513. }
  514. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  515. u64 root_objectid)
  516. {
  517. struct btrfs_key key;
  518. key.objectid = root_objectid;
  519. key.type = BTRFS_ROOT_ITEM_KEY;
  520. if (is_cowonly_root(root_objectid))
  521. key.offset = 0;
  522. else
  523. key.offset = (u64)-1;
  524. return btrfs_get_fs_root(fs_info, &key, false);
  525. }
  526. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  527. static noinline_for_stack
  528. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  529. struct extent_buffer *leaf,
  530. struct btrfs_extent_ref_v0 *ref0)
  531. {
  532. struct btrfs_root *root;
  533. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  534. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  535. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  536. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  537. BUG_ON(IS_ERR(root));
  538. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
  539. generation != btrfs_root_generation(&root->root_item))
  540. return NULL;
  541. return root;
  542. }
  543. #endif
  544. static noinline_for_stack
  545. int find_inline_backref(struct extent_buffer *leaf, int slot,
  546. unsigned long *ptr, unsigned long *end)
  547. {
  548. struct btrfs_key key;
  549. struct btrfs_extent_item *ei;
  550. struct btrfs_tree_block_info *bi;
  551. u32 item_size;
  552. btrfs_item_key_to_cpu(leaf, &key, slot);
  553. item_size = btrfs_item_size_nr(leaf, slot);
  554. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  555. if (item_size < sizeof(*ei)) {
  556. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  557. return 1;
  558. }
  559. #endif
  560. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  561. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  562. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  563. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  564. item_size <= sizeof(*ei) + sizeof(*bi)) {
  565. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  566. return 1;
  567. }
  568. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  569. item_size <= sizeof(*ei)) {
  570. WARN_ON(item_size < sizeof(*ei));
  571. return 1;
  572. }
  573. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  574. bi = (struct btrfs_tree_block_info *)(ei + 1);
  575. *ptr = (unsigned long)(bi + 1);
  576. } else {
  577. *ptr = (unsigned long)(ei + 1);
  578. }
  579. *end = (unsigned long)ei + item_size;
  580. return 0;
  581. }
  582. /*
  583. * build backref tree for a given tree block. root of the backref tree
  584. * corresponds the tree block, leaves of the backref tree correspond
  585. * roots of b-trees that reference the tree block.
  586. *
  587. * the basic idea of this function is check backrefs of a given block
  588. * to find upper level blocks that reference the block, and then check
  589. * backrefs of these upper level blocks recursively. the recursion stop
  590. * when tree root is reached or backrefs for the block is cached.
  591. *
  592. * NOTE: if we find backrefs for a block are cached, we know backrefs
  593. * for all upper level blocks that directly/indirectly reference the
  594. * block are also cached.
  595. */
  596. static noinline_for_stack
  597. struct backref_node *build_backref_tree(struct reloc_control *rc,
  598. struct btrfs_key *node_key,
  599. int level, u64 bytenr)
  600. {
  601. struct backref_cache *cache = &rc->backref_cache;
  602. struct btrfs_path *path1;
  603. struct btrfs_path *path2;
  604. struct extent_buffer *eb;
  605. struct btrfs_root *root;
  606. struct backref_node *cur;
  607. struct backref_node *upper;
  608. struct backref_node *lower;
  609. struct backref_node *node = NULL;
  610. struct backref_node *exist = NULL;
  611. struct backref_edge *edge;
  612. struct rb_node *rb_node;
  613. struct btrfs_key key;
  614. unsigned long end;
  615. unsigned long ptr;
  616. LIST_HEAD(list);
  617. LIST_HEAD(useless);
  618. int cowonly;
  619. int ret;
  620. int err = 0;
  621. bool need_check = true;
  622. path1 = btrfs_alloc_path();
  623. path2 = btrfs_alloc_path();
  624. if (!path1 || !path2) {
  625. err = -ENOMEM;
  626. goto out;
  627. }
  628. path1->reada = READA_FORWARD;
  629. path2->reada = READA_FORWARD;
  630. node = alloc_backref_node(cache);
  631. if (!node) {
  632. err = -ENOMEM;
  633. goto out;
  634. }
  635. node->bytenr = bytenr;
  636. node->level = level;
  637. node->lowest = 1;
  638. cur = node;
  639. again:
  640. end = 0;
  641. ptr = 0;
  642. key.objectid = cur->bytenr;
  643. key.type = BTRFS_METADATA_ITEM_KEY;
  644. key.offset = (u64)-1;
  645. path1->search_commit_root = 1;
  646. path1->skip_locking = 1;
  647. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  648. 0, 0);
  649. if (ret < 0) {
  650. err = ret;
  651. goto out;
  652. }
  653. ASSERT(ret);
  654. ASSERT(path1->slots[0]);
  655. path1->slots[0]--;
  656. WARN_ON(cur->checked);
  657. if (!list_empty(&cur->upper)) {
  658. /*
  659. * the backref was added previously when processing
  660. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  661. */
  662. ASSERT(list_is_singular(&cur->upper));
  663. edge = list_entry(cur->upper.next, struct backref_edge,
  664. list[LOWER]);
  665. ASSERT(list_empty(&edge->list[UPPER]));
  666. exist = edge->node[UPPER];
  667. /*
  668. * add the upper level block to pending list if we need
  669. * check its backrefs
  670. */
  671. if (!exist->checked)
  672. list_add_tail(&edge->list[UPPER], &list);
  673. } else {
  674. exist = NULL;
  675. }
  676. while (1) {
  677. cond_resched();
  678. eb = path1->nodes[0];
  679. if (ptr >= end) {
  680. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  681. ret = btrfs_next_leaf(rc->extent_root, path1);
  682. if (ret < 0) {
  683. err = ret;
  684. goto out;
  685. }
  686. if (ret > 0)
  687. break;
  688. eb = path1->nodes[0];
  689. }
  690. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  691. if (key.objectid != cur->bytenr) {
  692. WARN_ON(exist);
  693. break;
  694. }
  695. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  696. key.type == BTRFS_METADATA_ITEM_KEY) {
  697. ret = find_inline_backref(eb, path1->slots[0],
  698. &ptr, &end);
  699. if (ret)
  700. goto next;
  701. }
  702. }
  703. if (ptr < end) {
  704. /* update key for inline back ref */
  705. struct btrfs_extent_inline_ref *iref;
  706. int type;
  707. iref = (struct btrfs_extent_inline_ref *)ptr;
  708. type = btrfs_get_extent_inline_ref_type(eb, iref,
  709. BTRFS_REF_TYPE_BLOCK);
  710. if (type == BTRFS_REF_TYPE_INVALID) {
  711. err = -EINVAL;
  712. goto out;
  713. }
  714. key.type = type;
  715. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  716. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  717. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  718. }
  719. if (exist &&
  720. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  721. exist->owner == key.offset) ||
  722. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  723. exist->bytenr == key.offset))) {
  724. exist = NULL;
  725. goto next;
  726. }
  727. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  728. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  729. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  730. if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  731. struct btrfs_extent_ref_v0 *ref0;
  732. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  733. struct btrfs_extent_ref_v0);
  734. if (key.objectid == key.offset) {
  735. root = find_tree_root(rc, eb, ref0);
  736. if (root && !should_ignore_root(root))
  737. cur->root = root;
  738. else
  739. list_add(&cur->list, &useless);
  740. break;
  741. }
  742. if (is_cowonly_root(btrfs_ref_root_v0(eb,
  743. ref0)))
  744. cur->cowonly = 1;
  745. }
  746. #else
  747. ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
  748. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  749. #endif
  750. if (key.objectid == key.offset) {
  751. /*
  752. * only root blocks of reloc trees use
  753. * backref of this type.
  754. */
  755. root = find_reloc_root(rc, cur->bytenr);
  756. ASSERT(root);
  757. cur->root = root;
  758. break;
  759. }
  760. edge = alloc_backref_edge(cache);
  761. if (!edge) {
  762. err = -ENOMEM;
  763. goto out;
  764. }
  765. rb_node = tree_search(&cache->rb_root, key.offset);
  766. if (!rb_node) {
  767. upper = alloc_backref_node(cache);
  768. if (!upper) {
  769. free_backref_edge(cache, edge);
  770. err = -ENOMEM;
  771. goto out;
  772. }
  773. upper->bytenr = key.offset;
  774. upper->level = cur->level + 1;
  775. /*
  776. * backrefs for the upper level block isn't
  777. * cached, add the block to pending list
  778. */
  779. list_add_tail(&edge->list[UPPER], &list);
  780. } else {
  781. upper = rb_entry(rb_node, struct backref_node,
  782. rb_node);
  783. ASSERT(upper->checked);
  784. INIT_LIST_HEAD(&edge->list[UPPER]);
  785. }
  786. list_add_tail(&edge->list[LOWER], &cur->upper);
  787. edge->node[LOWER] = cur;
  788. edge->node[UPPER] = upper;
  789. goto next;
  790. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  791. goto next;
  792. }
  793. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  794. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  795. if (IS_ERR(root)) {
  796. err = PTR_ERR(root);
  797. goto out;
  798. }
  799. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  800. cur->cowonly = 1;
  801. if (btrfs_root_level(&root->root_item) == cur->level) {
  802. /* tree root */
  803. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  804. cur->bytenr);
  805. if (should_ignore_root(root))
  806. list_add(&cur->list, &useless);
  807. else
  808. cur->root = root;
  809. break;
  810. }
  811. level = cur->level + 1;
  812. /*
  813. * searching the tree to find upper level blocks
  814. * reference the block.
  815. */
  816. path2->search_commit_root = 1;
  817. path2->skip_locking = 1;
  818. path2->lowest_level = level;
  819. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  820. path2->lowest_level = 0;
  821. if (ret < 0) {
  822. err = ret;
  823. goto out;
  824. }
  825. if (ret > 0 && path2->slots[level] > 0)
  826. path2->slots[level]--;
  827. eb = path2->nodes[level];
  828. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  829. cur->bytenr) {
  830. btrfs_err(root->fs_info,
  831. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  832. cur->bytenr, level - 1, root->objectid,
  833. node_key->objectid, node_key->type,
  834. node_key->offset);
  835. err = -ENOENT;
  836. goto out;
  837. }
  838. lower = cur;
  839. need_check = true;
  840. for (; level < BTRFS_MAX_LEVEL; level++) {
  841. if (!path2->nodes[level]) {
  842. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  843. lower->bytenr);
  844. if (should_ignore_root(root))
  845. list_add(&lower->list, &useless);
  846. else
  847. lower->root = root;
  848. break;
  849. }
  850. edge = alloc_backref_edge(cache);
  851. if (!edge) {
  852. err = -ENOMEM;
  853. goto out;
  854. }
  855. eb = path2->nodes[level];
  856. rb_node = tree_search(&cache->rb_root, eb->start);
  857. if (!rb_node) {
  858. upper = alloc_backref_node(cache);
  859. if (!upper) {
  860. free_backref_edge(cache, edge);
  861. err = -ENOMEM;
  862. goto out;
  863. }
  864. upper->bytenr = eb->start;
  865. upper->owner = btrfs_header_owner(eb);
  866. upper->level = lower->level + 1;
  867. if (!test_bit(BTRFS_ROOT_REF_COWS,
  868. &root->state))
  869. upper->cowonly = 1;
  870. /*
  871. * if we know the block isn't shared
  872. * we can void checking its backrefs.
  873. */
  874. if (btrfs_block_can_be_shared(root, eb))
  875. upper->checked = 0;
  876. else
  877. upper->checked = 1;
  878. /*
  879. * add the block to pending list if we
  880. * need check its backrefs, we only do this once
  881. * while walking up a tree as we will catch
  882. * anything else later on.
  883. */
  884. if (!upper->checked && need_check) {
  885. need_check = false;
  886. list_add_tail(&edge->list[UPPER],
  887. &list);
  888. } else {
  889. if (upper->checked)
  890. need_check = true;
  891. INIT_LIST_HEAD(&edge->list[UPPER]);
  892. }
  893. } else {
  894. upper = rb_entry(rb_node, struct backref_node,
  895. rb_node);
  896. ASSERT(upper->checked);
  897. INIT_LIST_HEAD(&edge->list[UPPER]);
  898. if (!upper->owner)
  899. upper->owner = btrfs_header_owner(eb);
  900. }
  901. list_add_tail(&edge->list[LOWER], &lower->upper);
  902. edge->node[LOWER] = lower;
  903. edge->node[UPPER] = upper;
  904. if (rb_node)
  905. break;
  906. lower = upper;
  907. upper = NULL;
  908. }
  909. btrfs_release_path(path2);
  910. next:
  911. if (ptr < end) {
  912. ptr += btrfs_extent_inline_ref_size(key.type);
  913. if (ptr >= end) {
  914. WARN_ON(ptr > end);
  915. ptr = 0;
  916. end = 0;
  917. }
  918. }
  919. if (ptr >= end)
  920. path1->slots[0]++;
  921. }
  922. btrfs_release_path(path1);
  923. cur->checked = 1;
  924. WARN_ON(exist);
  925. /* the pending list isn't empty, take the first block to process */
  926. if (!list_empty(&list)) {
  927. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  928. list_del_init(&edge->list[UPPER]);
  929. cur = edge->node[UPPER];
  930. goto again;
  931. }
  932. /*
  933. * everything goes well, connect backref nodes and insert backref nodes
  934. * into the cache.
  935. */
  936. ASSERT(node->checked);
  937. cowonly = node->cowonly;
  938. if (!cowonly) {
  939. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  940. &node->rb_node);
  941. if (rb_node)
  942. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  943. list_add_tail(&node->lower, &cache->leaves);
  944. }
  945. list_for_each_entry(edge, &node->upper, list[LOWER])
  946. list_add_tail(&edge->list[UPPER], &list);
  947. while (!list_empty(&list)) {
  948. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  949. list_del_init(&edge->list[UPPER]);
  950. upper = edge->node[UPPER];
  951. if (upper->detached) {
  952. list_del(&edge->list[LOWER]);
  953. lower = edge->node[LOWER];
  954. free_backref_edge(cache, edge);
  955. if (list_empty(&lower->upper))
  956. list_add(&lower->list, &useless);
  957. continue;
  958. }
  959. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  960. if (upper->lowest) {
  961. list_del_init(&upper->lower);
  962. upper->lowest = 0;
  963. }
  964. list_add_tail(&edge->list[UPPER], &upper->lower);
  965. continue;
  966. }
  967. if (!upper->checked) {
  968. /*
  969. * Still want to blow up for developers since this is a
  970. * logic bug.
  971. */
  972. ASSERT(0);
  973. err = -EINVAL;
  974. goto out;
  975. }
  976. if (cowonly != upper->cowonly) {
  977. ASSERT(0);
  978. err = -EINVAL;
  979. goto out;
  980. }
  981. if (!cowonly) {
  982. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  983. &upper->rb_node);
  984. if (rb_node)
  985. backref_tree_panic(rb_node, -EEXIST,
  986. upper->bytenr);
  987. }
  988. list_add_tail(&edge->list[UPPER], &upper->lower);
  989. list_for_each_entry(edge, &upper->upper, list[LOWER])
  990. list_add_tail(&edge->list[UPPER], &list);
  991. }
  992. /*
  993. * process useless backref nodes. backref nodes for tree leaves
  994. * are deleted from the cache. backref nodes for upper level
  995. * tree blocks are left in the cache to avoid unnecessary backref
  996. * lookup.
  997. */
  998. while (!list_empty(&useless)) {
  999. upper = list_entry(useless.next, struct backref_node, list);
  1000. list_del_init(&upper->list);
  1001. ASSERT(list_empty(&upper->upper));
  1002. if (upper == node)
  1003. node = NULL;
  1004. if (upper->lowest) {
  1005. list_del_init(&upper->lower);
  1006. upper->lowest = 0;
  1007. }
  1008. while (!list_empty(&upper->lower)) {
  1009. edge = list_entry(upper->lower.next,
  1010. struct backref_edge, list[UPPER]);
  1011. list_del(&edge->list[UPPER]);
  1012. list_del(&edge->list[LOWER]);
  1013. lower = edge->node[LOWER];
  1014. free_backref_edge(cache, edge);
  1015. if (list_empty(&lower->upper))
  1016. list_add(&lower->list, &useless);
  1017. }
  1018. __mark_block_processed(rc, upper);
  1019. if (upper->level > 0) {
  1020. list_add(&upper->list, &cache->detached);
  1021. upper->detached = 1;
  1022. } else {
  1023. rb_erase(&upper->rb_node, &cache->rb_root);
  1024. free_backref_node(cache, upper);
  1025. }
  1026. }
  1027. out:
  1028. btrfs_free_path(path1);
  1029. btrfs_free_path(path2);
  1030. if (err) {
  1031. while (!list_empty(&useless)) {
  1032. lower = list_entry(useless.next,
  1033. struct backref_node, list);
  1034. list_del_init(&lower->list);
  1035. }
  1036. while (!list_empty(&list)) {
  1037. edge = list_first_entry(&list, struct backref_edge,
  1038. list[UPPER]);
  1039. list_del(&edge->list[UPPER]);
  1040. list_del(&edge->list[LOWER]);
  1041. lower = edge->node[LOWER];
  1042. upper = edge->node[UPPER];
  1043. free_backref_edge(cache, edge);
  1044. /*
  1045. * Lower is no longer linked to any upper backref nodes
  1046. * and isn't in the cache, we can free it ourselves.
  1047. */
  1048. if (list_empty(&lower->upper) &&
  1049. RB_EMPTY_NODE(&lower->rb_node))
  1050. list_add(&lower->list, &useless);
  1051. if (!RB_EMPTY_NODE(&upper->rb_node))
  1052. continue;
  1053. /* Add this guy's upper edges to the list to process */
  1054. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1055. list_add_tail(&edge->list[UPPER], &list);
  1056. if (list_empty(&upper->upper))
  1057. list_add(&upper->list, &useless);
  1058. }
  1059. while (!list_empty(&useless)) {
  1060. lower = list_entry(useless.next,
  1061. struct backref_node, list);
  1062. list_del_init(&lower->list);
  1063. if (lower == node)
  1064. node = NULL;
  1065. free_backref_node(cache, lower);
  1066. }
  1067. free_backref_node(cache, node);
  1068. return ERR_PTR(err);
  1069. }
  1070. ASSERT(!node || !node->detached);
  1071. return node;
  1072. }
  1073. /*
  1074. * helper to add backref node for the newly created snapshot.
  1075. * the backref node is created by cloning backref node that
  1076. * corresponds to root of source tree
  1077. */
  1078. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1079. struct reloc_control *rc,
  1080. struct btrfs_root *src,
  1081. struct btrfs_root *dest)
  1082. {
  1083. struct btrfs_root *reloc_root = src->reloc_root;
  1084. struct backref_cache *cache = &rc->backref_cache;
  1085. struct backref_node *node = NULL;
  1086. struct backref_node *new_node;
  1087. struct backref_edge *edge;
  1088. struct backref_edge *new_edge;
  1089. struct rb_node *rb_node;
  1090. if (cache->last_trans > 0)
  1091. update_backref_cache(trans, cache);
  1092. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1093. if (rb_node) {
  1094. node = rb_entry(rb_node, struct backref_node, rb_node);
  1095. if (node->detached)
  1096. node = NULL;
  1097. else
  1098. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1099. }
  1100. if (!node) {
  1101. rb_node = tree_search(&cache->rb_root,
  1102. reloc_root->commit_root->start);
  1103. if (rb_node) {
  1104. node = rb_entry(rb_node, struct backref_node,
  1105. rb_node);
  1106. BUG_ON(node->detached);
  1107. }
  1108. }
  1109. if (!node)
  1110. return 0;
  1111. new_node = alloc_backref_node(cache);
  1112. if (!new_node)
  1113. return -ENOMEM;
  1114. new_node->bytenr = dest->node->start;
  1115. new_node->level = node->level;
  1116. new_node->lowest = node->lowest;
  1117. new_node->checked = 1;
  1118. new_node->root = dest;
  1119. if (!node->lowest) {
  1120. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1121. new_edge = alloc_backref_edge(cache);
  1122. if (!new_edge)
  1123. goto fail;
  1124. new_edge->node[UPPER] = new_node;
  1125. new_edge->node[LOWER] = edge->node[LOWER];
  1126. list_add_tail(&new_edge->list[UPPER],
  1127. &new_node->lower);
  1128. }
  1129. } else {
  1130. list_add_tail(&new_node->lower, &cache->leaves);
  1131. }
  1132. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1133. &new_node->rb_node);
  1134. if (rb_node)
  1135. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1136. if (!new_node->lowest) {
  1137. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1138. list_add_tail(&new_edge->list[LOWER],
  1139. &new_edge->node[LOWER]->upper);
  1140. }
  1141. }
  1142. return 0;
  1143. fail:
  1144. while (!list_empty(&new_node->lower)) {
  1145. new_edge = list_entry(new_node->lower.next,
  1146. struct backref_edge, list[UPPER]);
  1147. list_del(&new_edge->list[UPPER]);
  1148. free_backref_edge(cache, new_edge);
  1149. }
  1150. free_backref_node(cache, new_node);
  1151. return -ENOMEM;
  1152. }
  1153. /*
  1154. * helper to add 'address of tree root -> reloc tree' mapping
  1155. */
  1156. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1157. {
  1158. struct btrfs_fs_info *fs_info = root->fs_info;
  1159. struct rb_node *rb_node;
  1160. struct mapping_node *node;
  1161. struct reloc_control *rc = fs_info->reloc_ctl;
  1162. node = kmalloc(sizeof(*node), GFP_NOFS);
  1163. if (!node)
  1164. return -ENOMEM;
  1165. node->bytenr = root->node->start;
  1166. node->data = root;
  1167. spin_lock(&rc->reloc_root_tree.lock);
  1168. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1169. node->bytenr, &node->rb_node);
  1170. spin_unlock(&rc->reloc_root_tree.lock);
  1171. if (rb_node) {
  1172. btrfs_panic(fs_info, -EEXIST,
  1173. "Duplicate root found for start=%llu while inserting into relocation tree",
  1174. node->bytenr);
  1175. }
  1176. list_add_tail(&root->root_list, &rc->reloc_roots);
  1177. return 0;
  1178. }
  1179. /*
  1180. * helper to delete the 'address of tree root -> reloc tree'
  1181. * mapping
  1182. */
  1183. static void __del_reloc_root(struct btrfs_root *root)
  1184. {
  1185. struct btrfs_fs_info *fs_info = root->fs_info;
  1186. struct rb_node *rb_node;
  1187. struct mapping_node *node = NULL;
  1188. struct reloc_control *rc = fs_info->reloc_ctl;
  1189. spin_lock(&rc->reloc_root_tree.lock);
  1190. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1191. root->node->start);
  1192. if (rb_node) {
  1193. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1194. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1195. }
  1196. spin_unlock(&rc->reloc_root_tree.lock);
  1197. if (!node)
  1198. return;
  1199. BUG_ON((struct btrfs_root *)node->data != root);
  1200. spin_lock(&fs_info->trans_lock);
  1201. list_del_init(&root->root_list);
  1202. spin_unlock(&fs_info->trans_lock);
  1203. kfree(node);
  1204. }
  1205. /*
  1206. * helper to update the 'address of tree root -> reloc tree'
  1207. * mapping
  1208. */
  1209. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1210. {
  1211. struct btrfs_fs_info *fs_info = root->fs_info;
  1212. struct rb_node *rb_node;
  1213. struct mapping_node *node = NULL;
  1214. struct reloc_control *rc = fs_info->reloc_ctl;
  1215. spin_lock(&rc->reloc_root_tree.lock);
  1216. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1217. root->node->start);
  1218. if (rb_node) {
  1219. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1220. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1221. }
  1222. spin_unlock(&rc->reloc_root_tree.lock);
  1223. if (!node)
  1224. return 0;
  1225. BUG_ON((struct btrfs_root *)node->data != root);
  1226. spin_lock(&rc->reloc_root_tree.lock);
  1227. node->bytenr = new_bytenr;
  1228. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1229. node->bytenr, &node->rb_node);
  1230. spin_unlock(&rc->reloc_root_tree.lock);
  1231. if (rb_node)
  1232. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1233. return 0;
  1234. }
  1235. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1236. struct btrfs_root *root, u64 objectid)
  1237. {
  1238. struct btrfs_fs_info *fs_info = root->fs_info;
  1239. struct btrfs_root *reloc_root;
  1240. struct extent_buffer *eb;
  1241. struct btrfs_root_item *root_item;
  1242. struct btrfs_key root_key;
  1243. int ret;
  1244. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1245. BUG_ON(!root_item);
  1246. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1247. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1248. root_key.offset = objectid;
  1249. if (root->root_key.objectid == objectid) {
  1250. u64 commit_root_gen;
  1251. /* called by btrfs_init_reloc_root */
  1252. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1253. BTRFS_TREE_RELOC_OBJECTID);
  1254. BUG_ON(ret);
  1255. /*
  1256. * Set the last_snapshot field to the generation of the commit
  1257. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1258. * correctly (returns true) when the relocation root is created
  1259. * either inside the critical section of a transaction commit
  1260. * (through transaction.c:qgroup_account_snapshot()) and when
  1261. * it's created before the transaction commit is started.
  1262. */
  1263. commit_root_gen = btrfs_header_generation(root->commit_root);
  1264. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1265. } else {
  1266. /*
  1267. * called by btrfs_reloc_post_snapshot_hook.
  1268. * the source tree is a reloc tree, all tree blocks
  1269. * modified after it was created have RELOC flag
  1270. * set in their headers. so it's OK to not update
  1271. * the 'last_snapshot'.
  1272. */
  1273. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1274. BTRFS_TREE_RELOC_OBJECTID);
  1275. BUG_ON(ret);
  1276. }
  1277. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1278. btrfs_set_root_bytenr(root_item, eb->start);
  1279. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1280. btrfs_set_root_generation(root_item, trans->transid);
  1281. if (root->root_key.objectid == objectid) {
  1282. btrfs_set_root_refs(root_item, 0);
  1283. memset(&root_item->drop_progress, 0,
  1284. sizeof(struct btrfs_disk_key));
  1285. root_item->drop_level = 0;
  1286. }
  1287. btrfs_tree_unlock(eb);
  1288. free_extent_buffer(eb);
  1289. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1290. &root_key, root_item);
  1291. BUG_ON(ret);
  1292. kfree(root_item);
  1293. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1294. BUG_ON(IS_ERR(reloc_root));
  1295. reloc_root->last_trans = trans->transid;
  1296. return reloc_root;
  1297. }
  1298. /*
  1299. * create reloc tree for a given fs tree. reloc tree is just a
  1300. * snapshot of the fs tree with special root objectid.
  1301. */
  1302. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1303. struct btrfs_root *root)
  1304. {
  1305. struct btrfs_fs_info *fs_info = root->fs_info;
  1306. struct btrfs_root *reloc_root;
  1307. struct reloc_control *rc = fs_info->reloc_ctl;
  1308. struct btrfs_block_rsv *rsv;
  1309. int clear_rsv = 0;
  1310. int ret;
  1311. if (root->reloc_root) {
  1312. reloc_root = root->reloc_root;
  1313. reloc_root->last_trans = trans->transid;
  1314. return 0;
  1315. }
  1316. if (!rc || !rc->create_reloc_tree ||
  1317. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1318. return 0;
  1319. if (!trans->reloc_reserved) {
  1320. rsv = trans->block_rsv;
  1321. trans->block_rsv = rc->block_rsv;
  1322. clear_rsv = 1;
  1323. }
  1324. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1325. if (clear_rsv)
  1326. trans->block_rsv = rsv;
  1327. ret = __add_reloc_root(reloc_root);
  1328. BUG_ON(ret < 0);
  1329. root->reloc_root = reloc_root;
  1330. return 0;
  1331. }
  1332. /*
  1333. * update root item of reloc tree
  1334. */
  1335. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1336. struct btrfs_root *root)
  1337. {
  1338. struct btrfs_fs_info *fs_info = root->fs_info;
  1339. struct btrfs_root *reloc_root;
  1340. struct btrfs_root_item *root_item;
  1341. int ret;
  1342. if (!root->reloc_root)
  1343. goto out;
  1344. reloc_root = root->reloc_root;
  1345. root_item = &reloc_root->root_item;
  1346. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1347. btrfs_root_refs(root_item) == 0) {
  1348. root->reloc_root = NULL;
  1349. __del_reloc_root(reloc_root);
  1350. }
  1351. if (reloc_root->commit_root != reloc_root->node) {
  1352. btrfs_set_root_node(root_item, reloc_root->node);
  1353. free_extent_buffer(reloc_root->commit_root);
  1354. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1355. }
  1356. ret = btrfs_update_root(trans, fs_info->tree_root,
  1357. &reloc_root->root_key, root_item);
  1358. BUG_ON(ret);
  1359. out:
  1360. return 0;
  1361. }
  1362. /*
  1363. * helper to find first cached inode with inode number >= objectid
  1364. * in a subvolume
  1365. */
  1366. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1367. {
  1368. struct rb_node *node;
  1369. struct rb_node *prev;
  1370. struct btrfs_inode *entry;
  1371. struct inode *inode;
  1372. spin_lock(&root->inode_lock);
  1373. again:
  1374. node = root->inode_tree.rb_node;
  1375. prev = NULL;
  1376. while (node) {
  1377. prev = node;
  1378. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1379. if (objectid < btrfs_ino(entry))
  1380. node = node->rb_left;
  1381. else if (objectid > btrfs_ino(entry))
  1382. node = node->rb_right;
  1383. else
  1384. break;
  1385. }
  1386. if (!node) {
  1387. while (prev) {
  1388. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1389. if (objectid <= btrfs_ino(entry)) {
  1390. node = prev;
  1391. break;
  1392. }
  1393. prev = rb_next(prev);
  1394. }
  1395. }
  1396. while (node) {
  1397. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1398. inode = igrab(&entry->vfs_inode);
  1399. if (inode) {
  1400. spin_unlock(&root->inode_lock);
  1401. return inode;
  1402. }
  1403. objectid = btrfs_ino(entry) + 1;
  1404. if (cond_resched_lock(&root->inode_lock))
  1405. goto again;
  1406. node = rb_next(node);
  1407. }
  1408. spin_unlock(&root->inode_lock);
  1409. return NULL;
  1410. }
  1411. static int in_block_group(u64 bytenr,
  1412. struct btrfs_block_group_cache *block_group)
  1413. {
  1414. if (bytenr >= block_group->key.objectid &&
  1415. bytenr < block_group->key.objectid + block_group->key.offset)
  1416. return 1;
  1417. return 0;
  1418. }
  1419. /*
  1420. * get new location of data
  1421. */
  1422. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1423. u64 bytenr, u64 num_bytes)
  1424. {
  1425. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1426. struct btrfs_path *path;
  1427. struct btrfs_file_extent_item *fi;
  1428. struct extent_buffer *leaf;
  1429. int ret;
  1430. path = btrfs_alloc_path();
  1431. if (!path)
  1432. return -ENOMEM;
  1433. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1434. ret = btrfs_lookup_file_extent(NULL, root, path,
  1435. btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
  1436. if (ret < 0)
  1437. goto out;
  1438. if (ret > 0) {
  1439. ret = -ENOENT;
  1440. goto out;
  1441. }
  1442. leaf = path->nodes[0];
  1443. fi = btrfs_item_ptr(leaf, path->slots[0],
  1444. struct btrfs_file_extent_item);
  1445. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1446. btrfs_file_extent_compression(leaf, fi) ||
  1447. btrfs_file_extent_encryption(leaf, fi) ||
  1448. btrfs_file_extent_other_encoding(leaf, fi));
  1449. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1450. ret = -EINVAL;
  1451. goto out;
  1452. }
  1453. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1454. ret = 0;
  1455. out:
  1456. btrfs_free_path(path);
  1457. return ret;
  1458. }
  1459. /*
  1460. * update file extent items in the tree leaf to point to
  1461. * the new locations.
  1462. */
  1463. static noinline_for_stack
  1464. int replace_file_extents(struct btrfs_trans_handle *trans,
  1465. struct reloc_control *rc,
  1466. struct btrfs_root *root,
  1467. struct extent_buffer *leaf)
  1468. {
  1469. struct btrfs_fs_info *fs_info = root->fs_info;
  1470. struct btrfs_key key;
  1471. struct btrfs_file_extent_item *fi;
  1472. struct inode *inode = NULL;
  1473. u64 parent;
  1474. u64 bytenr;
  1475. u64 new_bytenr = 0;
  1476. u64 num_bytes;
  1477. u64 end;
  1478. u32 nritems;
  1479. u32 i;
  1480. int ret = 0;
  1481. int first = 1;
  1482. int dirty = 0;
  1483. if (rc->stage != UPDATE_DATA_PTRS)
  1484. return 0;
  1485. /* reloc trees always use full backref */
  1486. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1487. parent = leaf->start;
  1488. else
  1489. parent = 0;
  1490. nritems = btrfs_header_nritems(leaf);
  1491. for (i = 0; i < nritems; i++) {
  1492. cond_resched();
  1493. btrfs_item_key_to_cpu(leaf, &key, i);
  1494. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1495. continue;
  1496. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1497. if (btrfs_file_extent_type(leaf, fi) ==
  1498. BTRFS_FILE_EXTENT_INLINE)
  1499. continue;
  1500. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1501. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1502. if (bytenr == 0)
  1503. continue;
  1504. if (!in_block_group(bytenr, rc->block_group))
  1505. continue;
  1506. /*
  1507. * if we are modifying block in fs tree, wait for readpage
  1508. * to complete and drop the extent cache
  1509. */
  1510. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1511. if (first) {
  1512. inode = find_next_inode(root, key.objectid);
  1513. first = 0;
  1514. } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
  1515. btrfs_add_delayed_iput(inode);
  1516. inode = find_next_inode(root, key.objectid);
  1517. }
  1518. if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
  1519. end = key.offset +
  1520. btrfs_file_extent_num_bytes(leaf, fi);
  1521. WARN_ON(!IS_ALIGNED(key.offset,
  1522. fs_info->sectorsize));
  1523. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1524. end--;
  1525. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1526. key.offset, end);
  1527. if (!ret)
  1528. continue;
  1529. btrfs_drop_extent_cache(BTRFS_I(inode),
  1530. key.offset, end, 1);
  1531. unlock_extent(&BTRFS_I(inode)->io_tree,
  1532. key.offset, end);
  1533. }
  1534. }
  1535. ret = get_new_location(rc->data_inode, &new_bytenr,
  1536. bytenr, num_bytes);
  1537. if (ret) {
  1538. /*
  1539. * Don't have to abort since we've not changed anything
  1540. * in the file extent yet.
  1541. */
  1542. break;
  1543. }
  1544. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1545. dirty = 1;
  1546. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1547. ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
  1548. num_bytes, parent,
  1549. btrfs_header_owner(leaf),
  1550. key.objectid, key.offset);
  1551. if (ret) {
  1552. btrfs_abort_transaction(trans, ret);
  1553. break;
  1554. }
  1555. ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
  1556. parent, btrfs_header_owner(leaf),
  1557. key.objectid, key.offset);
  1558. if (ret) {
  1559. btrfs_abort_transaction(trans, ret);
  1560. break;
  1561. }
  1562. }
  1563. if (dirty)
  1564. btrfs_mark_buffer_dirty(leaf);
  1565. if (inode)
  1566. btrfs_add_delayed_iput(inode);
  1567. return ret;
  1568. }
  1569. static noinline_for_stack
  1570. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1571. struct btrfs_path *path, int level)
  1572. {
  1573. struct btrfs_disk_key key1;
  1574. struct btrfs_disk_key key2;
  1575. btrfs_node_key(eb, &key1, slot);
  1576. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1577. return memcmp(&key1, &key2, sizeof(key1));
  1578. }
  1579. /*
  1580. * try to replace tree blocks in fs tree with the new blocks
  1581. * in reloc tree. tree blocks haven't been modified since the
  1582. * reloc tree was create can be replaced.
  1583. *
  1584. * if a block was replaced, level of the block + 1 is returned.
  1585. * if no block got replaced, 0 is returned. if there are other
  1586. * errors, a negative error number is returned.
  1587. */
  1588. static noinline_for_stack
  1589. int replace_path(struct btrfs_trans_handle *trans,
  1590. struct btrfs_root *dest, struct btrfs_root *src,
  1591. struct btrfs_path *path, struct btrfs_key *next_key,
  1592. int lowest_level, int max_level)
  1593. {
  1594. struct btrfs_fs_info *fs_info = dest->fs_info;
  1595. struct extent_buffer *eb;
  1596. struct extent_buffer *parent;
  1597. struct btrfs_key key;
  1598. u64 old_bytenr;
  1599. u64 new_bytenr;
  1600. u64 old_ptr_gen;
  1601. u64 new_ptr_gen;
  1602. u64 last_snapshot;
  1603. u32 blocksize;
  1604. int cow = 0;
  1605. int level;
  1606. int ret;
  1607. int slot;
  1608. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1609. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1610. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1611. again:
  1612. slot = path->slots[lowest_level];
  1613. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1614. eb = btrfs_lock_root_node(dest);
  1615. btrfs_set_lock_blocking(eb);
  1616. level = btrfs_header_level(eb);
  1617. if (level < lowest_level) {
  1618. btrfs_tree_unlock(eb);
  1619. free_extent_buffer(eb);
  1620. return 0;
  1621. }
  1622. if (cow) {
  1623. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1624. BUG_ON(ret);
  1625. }
  1626. btrfs_set_lock_blocking(eb);
  1627. if (next_key) {
  1628. next_key->objectid = (u64)-1;
  1629. next_key->type = (u8)-1;
  1630. next_key->offset = (u64)-1;
  1631. }
  1632. parent = eb;
  1633. while (1) {
  1634. level = btrfs_header_level(parent);
  1635. BUG_ON(level < lowest_level);
  1636. ret = btrfs_bin_search(parent, &key, level, &slot);
  1637. if (ret && slot > 0)
  1638. slot--;
  1639. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1640. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1641. old_bytenr = btrfs_node_blockptr(parent, slot);
  1642. blocksize = fs_info->nodesize;
  1643. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1644. if (level <= max_level) {
  1645. eb = path->nodes[level];
  1646. new_bytenr = btrfs_node_blockptr(eb,
  1647. path->slots[level]);
  1648. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1649. path->slots[level]);
  1650. } else {
  1651. new_bytenr = 0;
  1652. new_ptr_gen = 0;
  1653. }
  1654. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1655. ret = level;
  1656. break;
  1657. }
  1658. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1659. memcmp_node_keys(parent, slot, path, level)) {
  1660. if (level <= lowest_level) {
  1661. ret = 0;
  1662. break;
  1663. }
  1664. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
  1665. if (IS_ERR(eb)) {
  1666. ret = PTR_ERR(eb);
  1667. break;
  1668. } else if (!extent_buffer_uptodate(eb)) {
  1669. ret = -EIO;
  1670. free_extent_buffer(eb);
  1671. break;
  1672. }
  1673. btrfs_tree_lock(eb);
  1674. if (cow) {
  1675. ret = btrfs_cow_block(trans, dest, eb, parent,
  1676. slot, &eb);
  1677. BUG_ON(ret);
  1678. }
  1679. btrfs_set_lock_blocking(eb);
  1680. btrfs_tree_unlock(parent);
  1681. free_extent_buffer(parent);
  1682. parent = eb;
  1683. continue;
  1684. }
  1685. if (!cow) {
  1686. btrfs_tree_unlock(parent);
  1687. free_extent_buffer(parent);
  1688. cow = 1;
  1689. goto again;
  1690. }
  1691. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1692. path->slots[level]);
  1693. btrfs_release_path(path);
  1694. path->lowest_level = level;
  1695. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1696. path->lowest_level = 0;
  1697. BUG_ON(ret);
  1698. /*
  1699. * Info qgroup to trace both subtrees.
  1700. *
  1701. * We must trace both trees.
  1702. * 1) Tree reloc subtree
  1703. * If not traced, we will leak data numbers
  1704. * 2) Fs subtree
  1705. * If not traced, we will double count old data
  1706. * and tree block numbers, if current trans doesn't free
  1707. * data reloc tree inode.
  1708. */
  1709. ret = btrfs_qgroup_trace_subtree(trans, src, parent,
  1710. btrfs_header_generation(parent),
  1711. btrfs_header_level(parent));
  1712. if (ret < 0)
  1713. break;
  1714. ret = btrfs_qgroup_trace_subtree(trans, dest,
  1715. path->nodes[level],
  1716. btrfs_header_generation(path->nodes[level]),
  1717. btrfs_header_level(path->nodes[level]));
  1718. if (ret < 0)
  1719. break;
  1720. /*
  1721. * swap blocks in fs tree and reloc tree.
  1722. */
  1723. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1724. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1725. btrfs_mark_buffer_dirty(parent);
  1726. btrfs_set_node_blockptr(path->nodes[level],
  1727. path->slots[level], old_bytenr);
  1728. btrfs_set_node_ptr_generation(path->nodes[level],
  1729. path->slots[level], old_ptr_gen);
  1730. btrfs_mark_buffer_dirty(path->nodes[level]);
  1731. ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
  1732. blocksize, path->nodes[level]->start,
  1733. src->root_key.objectid, level - 1, 0);
  1734. BUG_ON(ret);
  1735. ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
  1736. blocksize, 0, dest->root_key.objectid,
  1737. level - 1, 0);
  1738. BUG_ON(ret);
  1739. ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
  1740. path->nodes[level]->start,
  1741. src->root_key.objectid, level - 1, 0);
  1742. BUG_ON(ret);
  1743. ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
  1744. 0, dest->root_key.objectid, level - 1,
  1745. 0);
  1746. BUG_ON(ret);
  1747. btrfs_unlock_up_safe(path, 0);
  1748. ret = level;
  1749. break;
  1750. }
  1751. btrfs_tree_unlock(parent);
  1752. free_extent_buffer(parent);
  1753. return ret;
  1754. }
  1755. /*
  1756. * helper to find next relocated block in reloc tree
  1757. */
  1758. static noinline_for_stack
  1759. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1760. int *level)
  1761. {
  1762. struct extent_buffer *eb;
  1763. int i;
  1764. u64 last_snapshot;
  1765. u32 nritems;
  1766. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1767. for (i = 0; i < *level; i++) {
  1768. free_extent_buffer(path->nodes[i]);
  1769. path->nodes[i] = NULL;
  1770. }
  1771. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1772. eb = path->nodes[i];
  1773. nritems = btrfs_header_nritems(eb);
  1774. while (path->slots[i] + 1 < nritems) {
  1775. path->slots[i]++;
  1776. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1777. last_snapshot)
  1778. continue;
  1779. *level = i;
  1780. return 0;
  1781. }
  1782. free_extent_buffer(path->nodes[i]);
  1783. path->nodes[i] = NULL;
  1784. }
  1785. return 1;
  1786. }
  1787. /*
  1788. * walk down reloc tree to find relocated block of lowest level
  1789. */
  1790. static noinline_for_stack
  1791. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1792. int *level)
  1793. {
  1794. struct btrfs_fs_info *fs_info = root->fs_info;
  1795. struct extent_buffer *eb = NULL;
  1796. int i;
  1797. u64 bytenr;
  1798. u64 ptr_gen = 0;
  1799. u64 last_snapshot;
  1800. u32 nritems;
  1801. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1802. for (i = *level; i > 0; i--) {
  1803. eb = path->nodes[i];
  1804. nritems = btrfs_header_nritems(eb);
  1805. while (path->slots[i] < nritems) {
  1806. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1807. if (ptr_gen > last_snapshot)
  1808. break;
  1809. path->slots[i]++;
  1810. }
  1811. if (path->slots[i] >= nritems) {
  1812. if (i == *level)
  1813. break;
  1814. *level = i + 1;
  1815. return 0;
  1816. }
  1817. if (i == 1) {
  1818. *level = i;
  1819. return 0;
  1820. }
  1821. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1822. eb = read_tree_block(fs_info, bytenr, ptr_gen);
  1823. if (IS_ERR(eb)) {
  1824. return PTR_ERR(eb);
  1825. } else if (!extent_buffer_uptodate(eb)) {
  1826. free_extent_buffer(eb);
  1827. return -EIO;
  1828. }
  1829. BUG_ON(btrfs_header_level(eb) != i - 1);
  1830. path->nodes[i - 1] = eb;
  1831. path->slots[i - 1] = 0;
  1832. }
  1833. return 1;
  1834. }
  1835. /*
  1836. * invalidate extent cache for file extents whose key in range of
  1837. * [min_key, max_key)
  1838. */
  1839. static int invalidate_extent_cache(struct btrfs_root *root,
  1840. struct btrfs_key *min_key,
  1841. struct btrfs_key *max_key)
  1842. {
  1843. struct btrfs_fs_info *fs_info = root->fs_info;
  1844. struct inode *inode = NULL;
  1845. u64 objectid;
  1846. u64 start, end;
  1847. u64 ino;
  1848. objectid = min_key->objectid;
  1849. while (1) {
  1850. cond_resched();
  1851. iput(inode);
  1852. if (objectid > max_key->objectid)
  1853. break;
  1854. inode = find_next_inode(root, objectid);
  1855. if (!inode)
  1856. break;
  1857. ino = btrfs_ino(BTRFS_I(inode));
  1858. if (ino > max_key->objectid) {
  1859. iput(inode);
  1860. break;
  1861. }
  1862. objectid = ino + 1;
  1863. if (!S_ISREG(inode->i_mode))
  1864. continue;
  1865. if (unlikely(min_key->objectid == ino)) {
  1866. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1867. continue;
  1868. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1869. start = 0;
  1870. else {
  1871. start = min_key->offset;
  1872. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1873. }
  1874. } else {
  1875. start = 0;
  1876. }
  1877. if (unlikely(max_key->objectid == ino)) {
  1878. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1879. continue;
  1880. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1881. end = (u64)-1;
  1882. } else {
  1883. if (max_key->offset == 0)
  1884. continue;
  1885. end = max_key->offset;
  1886. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1887. end--;
  1888. }
  1889. } else {
  1890. end = (u64)-1;
  1891. }
  1892. /* the lock_extent waits for readpage to complete */
  1893. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1894. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
  1895. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1896. }
  1897. return 0;
  1898. }
  1899. static int find_next_key(struct btrfs_path *path, int level,
  1900. struct btrfs_key *key)
  1901. {
  1902. while (level < BTRFS_MAX_LEVEL) {
  1903. if (!path->nodes[level])
  1904. break;
  1905. if (path->slots[level] + 1 <
  1906. btrfs_header_nritems(path->nodes[level])) {
  1907. btrfs_node_key_to_cpu(path->nodes[level], key,
  1908. path->slots[level] + 1);
  1909. return 0;
  1910. }
  1911. level++;
  1912. }
  1913. return 1;
  1914. }
  1915. /*
  1916. * merge the relocated tree blocks in reloc tree with corresponding
  1917. * fs tree.
  1918. */
  1919. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1920. struct btrfs_root *root)
  1921. {
  1922. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1923. LIST_HEAD(inode_list);
  1924. struct btrfs_key key;
  1925. struct btrfs_key next_key;
  1926. struct btrfs_trans_handle *trans = NULL;
  1927. struct btrfs_root *reloc_root;
  1928. struct btrfs_root_item *root_item;
  1929. struct btrfs_path *path;
  1930. struct extent_buffer *leaf;
  1931. int level;
  1932. int max_level;
  1933. int replaced = 0;
  1934. int ret;
  1935. int err = 0;
  1936. u32 min_reserved;
  1937. path = btrfs_alloc_path();
  1938. if (!path)
  1939. return -ENOMEM;
  1940. path->reada = READA_FORWARD;
  1941. reloc_root = root->reloc_root;
  1942. root_item = &reloc_root->root_item;
  1943. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1944. level = btrfs_root_level(root_item);
  1945. extent_buffer_get(reloc_root->node);
  1946. path->nodes[level] = reloc_root->node;
  1947. path->slots[level] = 0;
  1948. } else {
  1949. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1950. level = root_item->drop_level;
  1951. BUG_ON(level == 0);
  1952. path->lowest_level = level;
  1953. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1954. path->lowest_level = 0;
  1955. if (ret < 0) {
  1956. btrfs_free_path(path);
  1957. return ret;
  1958. }
  1959. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1960. path->slots[level]);
  1961. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1962. btrfs_unlock_up_safe(path, 0);
  1963. }
  1964. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1965. memset(&next_key, 0, sizeof(next_key));
  1966. while (1) {
  1967. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1968. BTRFS_RESERVE_FLUSH_ALL);
  1969. if (ret) {
  1970. err = ret;
  1971. goto out;
  1972. }
  1973. trans = btrfs_start_transaction(root, 0);
  1974. if (IS_ERR(trans)) {
  1975. err = PTR_ERR(trans);
  1976. trans = NULL;
  1977. goto out;
  1978. }
  1979. trans->block_rsv = rc->block_rsv;
  1980. replaced = 0;
  1981. max_level = level;
  1982. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1983. if (ret < 0) {
  1984. err = ret;
  1985. goto out;
  1986. }
  1987. if (ret > 0)
  1988. break;
  1989. if (!find_next_key(path, level, &key) &&
  1990. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1991. ret = 0;
  1992. } else {
  1993. ret = replace_path(trans, root, reloc_root, path,
  1994. &next_key, level, max_level);
  1995. }
  1996. if (ret < 0) {
  1997. err = ret;
  1998. goto out;
  1999. }
  2000. if (ret > 0) {
  2001. level = ret;
  2002. btrfs_node_key_to_cpu(path->nodes[level], &key,
  2003. path->slots[level]);
  2004. replaced = 1;
  2005. }
  2006. ret = walk_up_reloc_tree(reloc_root, path, &level);
  2007. if (ret > 0)
  2008. break;
  2009. BUG_ON(level == 0);
  2010. /*
  2011. * save the merging progress in the drop_progress.
  2012. * this is OK since root refs == 1 in this case.
  2013. */
  2014. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  2015. path->slots[level]);
  2016. root_item->drop_level = level;
  2017. btrfs_end_transaction_throttle(trans);
  2018. trans = NULL;
  2019. btrfs_btree_balance_dirty(fs_info);
  2020. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2021. invalidate_extent_cache(root, &key, &next_key);
  2022. }
  2023. /*
  2024. * handle the case only one block in the fs tree need to be
  2025. * relocated and the block is tree root.
  2026. */
  2027. leaf = btrfs_lock_root_node(root);
  2028. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  2029. btrfs_tree_unlock(leaf);
  2030. free_extent_buffer(leaf);
  2031. if (ret < 0)
  2032. err = ret;
  2033. out:
  2034. btrfs_free_path(path);
  2035. if (err == 0) {
  2036. memset(&root_item->drop_progress, 0,
  2037. sizeof(root_item->drop_progress));
  2038. root_item->drop_level = 0;
  2039. btrfs_set_root_refs(root_item, 0);
  2040. btrfs_update_reloc_root(trans, root);
  2041. }
  2042. if (trans)
  2043. btrfs_end_transaction_throttle(trans);
  2044. btrfs_btree_balance_dirty(fs_info);
  2045. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2046. invalidate_extent_cache(root, &key, &next_key);
  2047. return err;
  2048. }
  2049. static noinline_for_stack
  2050. int prepare_to_merge(struct reloc_control *rc, int err)
  2051. {
  2052. struct btrfs_root *root = rc->extent_root;
  2053. struct btrfs_fs_info *fs_info = root->fs_info;
  2054. struct btrfs_root *reloc_root;
  2055. struct btrfs_trans_handle *trans;
  2056. LIST_HEAD(reloc_roots);
  2057. u64 num_bytes = 0;
  2058. int ret;
  2059. mutex_lock(&fs_info->reloc_mutex);
  2060. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2061. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2062. mutex_unlock(&fs_info->reloc_mutex);
  2063. again:
  2064. if (!err) {
  2065. num_bytes = rc->merging_rsv_size;
  2066. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2067. BTRFS_RESERVE_FLUSH_ALL);
  2068. if (ret)
  2069. err = ret;
  2070. }
  2071. trans = btrfs_join_transaction(rc->extent_root);
  2072. if (IS_ERR(trans)) {
  2073. if (!err)
  2074. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2075. num_bytes);
  2076. return PTR_ERR(trans);
  2077. }
  2078. if (!err) {
  2079. if (num_bytes != rc->merging_rsv_size) {
  2080. btrfs_end_transaction(trans);
  2081. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2082. num_bytes);
  2083. goto again;
  2084. }
  2085. }
  2086. rc->merge_reloc_tree = 1;
  2087. while (!list_empty(&rc->reloc_roots)) {
  2088. reloc_root = list_entry(rc->reloc_roots.next,
  2089. struct btrfs_root, root_list);
  2090. list_del_init(&reloc_root->root_list);
  2091. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2092. BUG_ON(IS_ERR(root));
  2093. BUG_ON(root->reloc_root != reloc_root);
  2094. /*
  2095. * set reference count to 1, so btrfs_recover_relocation
  2096. * knows it should resumes merging
  2097. */
  2098. if (!err)
  2099. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2100. btrfs_update_reloc_root(trans, root);
  2101. list_add(&reloc_root->root_list, &reloc_roots);
  2102. }
  2103. list_splice(&reloc_roots, &rc->reloc_roots);
  2104. if (!err)
  2105. btrfs_commit_transaction(trans);
  2106. else
  2107. btrfs_end_transaction(trans);
  2108. return err;
  2109. }
  2110. static noinline_for_stack
  2111. void free_reloc_roots(struct list_head *list)
  2112. {
  2113. struct btrfs_root *reloc_root;
  2114. while (!list_empty(list)) {
  2115. reloc_root = list_entry(list->next, struct btrfs_root,
  2116. root_list);
  2117. free_extent_buffer(reloc_root->node);
  2118. free_extent_buffer(reloc_root->commit_root);
  2119. reloc_root->node = NULL;
  2120. reloc_root->commit_root = NULL;
  2121. __del_reloc_root(reloc_root);
  2122. }
  2123. }
  2124. static noinline_for_stack
  2125. void merge_reloc_roots(struct reloc_control *rc)
  2126. {
  2127. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2128. struct btrfs_root *root;
  2129. struct btrfs_root *reloc_root;
  2130. LIST_HEAD(reloc_roots);
  2131. int found = 0;
  2132. int ret = 0;
  2133. again:
  2134. root = rc->extent_root;
  2135. /*
  2136. * this serializes us with btrfs_record_root_in_transaction,
  2137. * we have to make sure nobody is in the middle of
  2138. * adding their roots to the list while we are
  2139. * doing this splice
  2140. */
  2141. mutex_lock(&fs_info->reloc_mutex);
  2142. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2143. mutex_unlock(&fs_info->reloc_mutex);
  2144. while (!list_empty(&reloc_roots)) {
  2145. found = 1;
  2146. reloc_root = list_entry(reloc_roots.next,
  2147. struct btrfs_root, root_list);
  2148. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2149. root = read_fs_root(fs_info,
  2150. reloc_root->root_key.offset);
  2151. BUG_ON(IS_ERR(root));
  2152. BUG_ON(root->reloc_root != reloc_root);
  2153. ret = merge_reloc_root(rc, root);
  2154. if (ret) {
  2155. if (list_empty(&reloc_root->root_list))
  2156. list_add_tail(&reloc_root->root_list,
  2157. &reloc_roots);
  2158. goto out;
  2159. }
  2160. } else {
  2161. list_del_init(&reloc_root->root_list);
  2162. }
  2163. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2164. if (ret < 0) {
  2165. if (list_empty(&reloc_root->root_list))
  2166. list_add_tail(&reloc_root->root_list,
  2167. &reloc_roots);
  2168. goto out;
  2169. }
  2170. }
  2171. if (found) {
  2172. found = 0;
  2173. goto again;
  2174. }
  2175. out:
  2176. if (ret) {
  2177. btrfs_handle_fs_error(fs_info, ret, NULL);
  2178. if (!list_empty(&reloc_roots))
  2179. free_reloc_roots(&reloc_roots);
  2180. /* new reloc root may be added */
  2181. mutex_lock(&fs_info->reloc_mutex);
  2182. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2183. mutex_unlock(&fs_info->reloc_mutex);
  2184. if (!list_empty(&reloc_roots))
  2185. free_reloc_roots(&reloc_roots);
  2186. }
  2187. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2188. }
  2189. static void free_block_list(struct rb_root *blocks)
  2190. {
  2191. struct tree_block *block;
  2192. struct rb_node *rb_node;
  2193. while ((rb_node = rb_first(blocks))) {
  2194. block = rb_entry(rb_node, struct tree_block, rb_node);
  2195. rb_erase(rb_node, blocks);
  2196. kfree(block);
  2197. }
  2198. }
  2199. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2200. struct btrfs_root *reloc_root)
  2201. {
  2202. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2203. struct btrfs_root *root;
  2204. if (reloc_root->last_trans == trans->transid)
  2205. return 0;
  2206. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2207. BUG_ON(IS_ERR(root));
  2208. BUG_ON(root->reloc_root != reloc_root);
  2209. return btrfs_record_root_in_trans(trans, root);
  2210. }
  2211. static noinline_for_stack
  2212. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2213. struct reloc_control *rc,
  2214. struct backref_node *node,
  2215. struct backref_edge *edges[])
  2216. {
  2217. struct backref_node *next;
  2218. struct btrfs_root *root;
  2219. int index = 0;
  2220. next = node;
  2221. while (1) {
  2222. cond_resched();
  2223. next = walk_up_backref(next, edges, &index);
  2224. root = next->root;
  2225. BUG_ON(!root);
  2226. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2227. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2228. record_reloc_root_in_trans(trans, root);
  2229. break;
  2230. }
  2231. btrfs_record_root_in_trans(trans, root);
  2232. root = root->reloc_root;
  2233. if (next->new_bytenr != root->node->start) {
  2234. BUG_ON(next->new_bytenr);
  2235. BUG_ON(!list_empty(&next->list));
  2236. next->new_bytenr = root->node->start;
  2237. next->root = root;
  2238. list_add_tail(&next->list,
  2239. &rc->backref_cache.changed);
  2240. __mark_block_processed(rc, next);
  2241. break;
  2242. }
  2243. WARN_ON(1);
  2244. root = NULL;
  2245. next = walk_down_backref(edges, &index);
  2246. if (!next || next->level <= node->level)
  2247. break;
  2248. }
  2249. if (!root)
  2250. return NULL;
  2251. next = node;
  2252. /* setup backref node path for btrfs_reloc_cow_block */
  2253. while (1) {
  2254. rc->backref_cache.path[next->level] = next;
  2255. if (--index < 0)
  2256. break;
  2257. next = edges[index]->node[UPPER];
  2258. }
  2259. return root;
  2260. }
  2261. /*
  2262. * select a tree root for relocation. return NULL if the block
  2263. * is reference counted. we should use do_relocation() in this
  2264. * case. return a tree root pointer if the block isn't reference
  2265. * counted. return -ENOENT if the block is root of reloc tree.
  2266. */
  2267. static noinline_for_stack
  2268. struct btrfs_root *select_one_root(struct backref_node *node)
  2269. {
  2270. struct backref_node *next;
  2271. struct btrfs_root *root;
  2272. struct btrfs_root *fs_root = NULL;
  2273. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2274. int index = 0;
  2275. next = node;
  2276. while (1) {
  2277. cond_resched();
  2278. next = walk_up_backref(next, edges, &index);
  2279. root = next->root;
  2280. BUG_ON(!root);
  2281. /* no other choice for non-references counted tree */
  2282. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2283. return root;
  2284. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2285. fs_root = root;
  2286. if (next != node)
  2287. return NULL;
  2288. next = walk_down_backref(edges, &index);
  2289. if (!next || next->level <= node->level)
  2290. break;
  2291. }
  2292. if (!fs_root)
  2293. return ERR_PTR(-ENOENT);
  2294. return fs_root;
  2295. }
  2296. static noinline_for_stack
  2297. u64 calcu_metadata_size(struct reloc_control *rc,
  2298. struct backref_node *node, int reserve)
  2299. {
  2300. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2301. struct backref_node *next = node;
  2302. struct backref_edge *edge;
  2303. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2304. u64 num_bytes = 0;
  2305. int index = 0;
  2306. BUG_ON(reserve && node->processed);
  2307. while (next) {
  2308. cond_resched();
  2309. while (1) {
  2310. if (next->processed && (reserve || next != node))
  2311. break;
  2312. num_bytes += fs_info->nodesize;
  2313. if (list_empty(&next->upper))
  2314. break;
  2315. edge = list_entry(next->upper.next,
  2316. struct backref_edge, list[LOWER]);
  2317. edges[index++] = edge;
  2318. next = edge->node[UPPER];
  2319. }
  2320. next = walk_down_backref(edges, &index);
  2321. }
  2322. return num_bytes;
  2323. }
  2324. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2325. struct reloc_control *rc,
  2326. struct backref_node *node)
  2327. {
  2328. struct btrfs_root *root = rc->extent_root;
  2329. struct btrfs_fs_info *fs_info = root->fs_info;
  2330. u64 num_bytes;
  2331. int ret;
  2332. u64 tmp;
  2333. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2334. trans->block_rsv = rc->block_rsv;
  2335. rc->reserved_bytes += num_bytes;
  2336. /*
  2337. * We are under a transaction here so we can only do limited flushing.
  2338. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2339. * transaction and try to refill when we can flush all the things.
  2340. */
  2341. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2342. BTRFS_RESERVE_FLUSH_LIMIT);
  2343. if (ret) {
  2344. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2345. while (tmp <= rc->reserved_bytes)
  2346. tmp <<= 1;
  2347. /*
  2348. * only one thread can access block_rsv at this point,
  2349. * so we don't need hold lock to protect block_rsv.
  2350. * we expand more reservation size here to allow enough
  2351. * space for relocation and we will return eailer in
  2352. * enospc case.
  2353. */
  2354. rc->block_rsv->size = tmp + fs_info->nodesize *
  2355. RELOCATION_RESERVED_NODES;
  2356. return -EAGAIN;
  2357. }
  2358. return 0;
  2359. }
  2360. /*
  2361. * relocate a block tree, and then update pointers in upper level
  2362. * blocks that reference the block to point to the new location.
  2363. *
  2364. * if called by link_to_upper, the block has already been relocated.
  2365. * in that case this function just updates pointers.
  2366. */
  2367. static int do_relocation(struct btrfs_trans_handle *trans,
  2368. struct reloc_control *rc,
  2369. struct backref_node *node,
  2370. struct btrfs_key *key,
  2371. struct btrfs_path *path, int lowest)
  2372. {
  2373. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2374. struct backref_node *upper;
  2375. struct backref_edge *edge;
  2376. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2377. struct btrfs_root *root;
  2378. struct extent_buffer *eb;
  2379. u32 blocksize;
  2380. u64 bytenr;
  2381. u64 generation;
  2382. int slot;
  2383. int ret;
  2384. int err = 0;
  2385. BUG_ON(lowest && node->eb);
  2386. path->lowest_level = node->level + 1;
  2387. rc->backref_cache.path[node->level] = node;
  2388. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2389. cond_resched();
  2390. upper = edge->node[UPPER];
  2391. root = select_reloc_root(trans, rc, upper, edges);
  2392. BUG_ON(!root);
  2393. if (upper->eb && !upper->locked) {
  2394. if (!lowest) {
  2395. ret = btrfs_bin_search(upper->eb, key,
  2396. upper->level, &slot);
  2397. BUG_ON(ret);
  2398. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2399. if (node->eb->start == bytenr)
  2400. goto next;
  2401. }
  2402. drop_node_buffer(upper);
  2403. }
  2404. if (!upper->eb) {
  2405. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2406. if (ret) {
  2407. if (ret < 0)
  2408. err = ret;
  2409. else
  2410. err = -ENOENT;
  2411. btrfs_release_path(path);
  2412. break;
  2413. }
  2414. if (!upper->eb) {
  2415. upper->eb = path->nodes[upper->level];
  2416. path->nodes[upper->level] = NULL;
  2417. } else {
  2418. BUG_ON(upper->eb != path->nodes[upper->level]);
  2419. }
  2420. upper->locked = 1;
  2421. path->locks[upper->level] = 0;
  2422. slot = path->slots[upper->level];
  2423. btrfs_release_path(path);
  2424. } else {
  2425. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2426. &slot);
  2427. BUG_ON(ret);
  2428. }
  2429. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2430. if (lowest) {
  2431. if (bytenr != node->bytenr) {
  2432. btrfs_err(root->fs_info,
  2433. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2434. bytenr, node->bytenr, slot,
  2435. upper->eb->start);
  2436. err = -EIO;
  2437. goto next;
  2438. }
  2439. } else {
  2440. if (node->eb->start == bytenr)
  2441. goto next;
  2442. }
  2443. blocksize = root->fs_info->nodesize;
  2444. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2445. eb = read_tree_block(fs_info, bytenr, generation);
  2446. if (IS_ERR(eb)) {
  2447. err = PTR_ERR(eb);
  2448. goto next;
  2449. } else if (!extent_buffer_uptodate(eb)) {
  2450. free_extent_buffer(eb);
  2451. err = -EIO;
  2452. goto next;
  2453. }
  2454. btrfs_tree_lock(eb);
  2455. btrfs_set_lock_blocking(eb);
  2456. if (!node->eb) {
  2457. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2458. slot, &eb);
  2459. btrfs_tree_unlock(eb);
  2460. free_extent_buffer(eb);
  2461. if (ret < 0) {
  2462. err = ret;
  2463. goto next;
  2464. }
  2465. BUG_ON(node->eb != eb);
  2466. } else {
  2467. btrfs_set_node_blockptr(upper->eb, slot,
  2468. node->eb->start);
  2469. btrfs_set_node_ptr_generation(upper->eb, slot,
  2470. trans->transid);
  2471. btrfs_mark_buffer_dirty(upper->eb);
  2472. ret = btrfs_inc_extent_ref(trans, root->fs_info,
  2473. node->eb->start, blocksize,
  2474. upper->eb->start,
  2475. btrfs_header_owner(upper->eb),
  2476. node->level, 0);
  2477. BUG_ON(ret);
  2478. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2479. BUG_ON(ret);
  2480. }
  2481. next:
  2482. if (!upper->pending)
  2483. drop_node_buffer(upper);
  2484. else
  2485. unlock_node_buffer(upper);
  2486. if (err)
  2487. break;
  2488. }
  2489. if (!err && node->pending) {
  2490. drop_node_buffer(node);
  2491. list_move_tail(&node->list, &rc->backref_cache.changed);
  2492. node->pending = 0;
  2493. }
  2494. path->lowest_level = 0;
  2495. BUG_ON(err == -ENOSPC);
  2496. return err;
  2497. }
  2498. static int link_to_upper(struct btrfs_trans_handle *trans,
  2499. struct reloc_control *rc,
  2500. struct backref_node *node,
  2501. struct btrfs_path *path)
  2502. {
  2503. struct btrfs_key key;
  2504. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2505. return do_relocation(trans, rc, node, &key, path, 0);
  2506. }
  2507. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2508. struct reloc_control *rc,
  2509. struct btrfs_path *path, int err)
  2510. {
  2511. LIST_HEAD(list);
  2512. struct backref_cache *cache = &rc->backref_cache;
  2513. struct backref_node *node;
  2514. int level;
  2515. int ret;
  2516. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2517. while (!list_empty(&cache->pending[level])) {
  2518. node = list_entry(cache->pending[level].next,
  2519. struct backref_node, list);
  2520. list_move_tail(&node->list, &list);
  2521. BUG_ON(!node->pending);
  2522. if (!err) {
  2523. ret = link_to_upper(trans, rc, node, path);
  2524. if (ret < 0)
  2525. err = ret;
  2526. }
  2527. }
  2528. list_splice_init(&list, &cache->pending[level]);
  2529. }
  2530. return err;
  2531. }
  2532. static void mark_block_processed(struct reloc_control *rc,
  2533. u64 bytenr, u32 blocksize)
  2534. {
  2535. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2536. EXTENT_DIRTY);
  2537. }
  2538. static void __mark_block_processed(struct reloc_control *rc,
  2539. struct backref_node *node)
  2540. {
  2541. u32 blocksize;
  2542. if (node->level == 0 ||
  2543. in_block_group(node->bytenr, rc->block_group)) {
  2544. blocksize = rc->extent_root->fs_info->nodesize;
  2545. mark_block_processed(rc, node->bytenr, blocksize);
  2546. }
  2547. node->processed = 1;
  2548. }
  2549. /*
  2550. * mark a block and all blocks directly/indirectly reference the block
  2551. * as processed.
  2552. */
  2553. static void update_processed_blocks(struct reloc_control *rc,
  2554. struct backref_node *node)
  2555. {
  2556. struct backref_node *next = node;
  2557. struct backref_edge *edge;
  2558. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2559. int index = 0;
  2560. while (next) {
  2561. cond_resched();
  2562. while (1) {
  2563. if (next->processed)
  2564. break;
  2565. __mark_block_processed(rc, next);
  2566. if (list_empty(&next->upper))
  2567. break;
  2568. edge = list_entry(next->upper.next,
  2569. struct backref_edge, list[LOWER]);
  2570. edges[index++] = edge;
  2571. next = edge->node[UPPER];
  2572. }
  2573. next = walk_down_backref(edges, &index);
  2574. }
  2575. }
  2576. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2577. {
  2578. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2579. if (test_range_bit(&rc->processed_blocks, bytenr,
  2580. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2581. return 1;
  2582. return 0;
  2583. }
  2584. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2585. struct tree_block *block)
  2586. {
  2587. struct extent_buffer *eb;
  2588. BUG_ON(block->key_ready);
  2589. eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
  2590. if (IS_ERR(eb)) {
  2591. return PTR_ERR(eb);
  2592. } else if (!extent_buffer_uptodate(eb)) {
  2593. free_extent_buffer(eb);
  2594. return -EIO;
  2595. }
  2596. WARN_ON(btrfs_header_level(eb) != block->level);
  2597. if (block->level == 0)
  2598. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2599. else
  2600. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2601. free_extent_buffer(eb);
  2602. block->key_ready = 1;
  2603. return 0;
  2604. }
  2605. /*
  2606. * helper function to relocate a tree block
  2607. */
  2608. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2609. struct reloc_control *rc,
  2610. struct backref_node *node,
  2611. struct btrfs_key *key,
  2612. struct btrfs_path *path)
  2613. {
  2614. struct btrfs_root *root;
  2615. int ret = 0;
  2616. if (!node)
  2617. return 0;
  2618. BUG_ON(node->processed);
  2619. root = select_one_root(node);
  2620. if (root == ERR_PTR(-ENOENT)) {
  2621. update_processed_blocks(rc, node);
  2622. goto out;
  2623. }
  2624. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2625. ret = reserve_metadata_space(trans, rc, node);
  2626. if (ret)
  2627. goto out;
  2628. }
  2629. if (root) {
  2630. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2631. BUG_ON(node->new_bytenr);
  2632. BUG_ON(!list_empty(&node->list));
  2633. btrfs_record_root_in_trans(trans, root);
  2634. root = root->reloc_root;
  2635. node->new_bytenr = root->node->start;
  2636. node->root = root;
  2637. list_add_tail(&node->list, &rc->backref_cache.changed);
  2638. } else {
  2639. path->lowest_level = node->level;
  2640. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2641. btrfs_release_path(path);
  2642. if (ret > 0)
  2643. ret = 0;
  2644. }
  2645. if (!ret)
  2646. update_processed_blocks(rc, node);
  2647. } else {
  2648. ret = do_relocation(trans, rc, node, key, path, 1);
  2649. }
  2650. out:
  2651. if (ret || node->level == 0 || node->cowonly)
  2652. remove_backref_node(&rc->backref_cache, node);
  2653. return ret;
  2654. }
  2655. /*
  2656. * relocate a list of blocks
  2657. */
  2658. static noinline_for_stack
  2659. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2660. struct reloc_control *rc, struct rb_root *blocks)
  2661. {
  2662. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2663. struct backref_node *node;
  2664. struct btrfs_path *path;
  2665. struct tree_block *block;
  2666. struct rb_node *rb_node;
  2667. int ret;
  2668. int err = 0;
  2669. path = btrfs_alloc_path();
  2670. if (!path) {
  2671. err = -ENOMEM;
  2672. goto out_free_blocks;
  2673. }
  2674. rb_node = rb_first(blocks);
  2675. while (rb_node) {
  2676. block = rb_entry(rb_node, struct tree_block, rb_node);
  2677. if (!block->key_ready)
  2678. readahead_tree_block(fs_info, block->bytenr);
  2679. rb_node = rb_next(rb_node);
  2680. }
  2681. rb_node = rb_first(blocks);
  2682. while (rb_node) {
  2683. block = rb_entry(rb_node, struct tree_block, rb_node);
  2684. if (!block->key_ready) {
  2685. err = get_tree_block_key(fs_info, block);
  2686. if (err)
  2687. goto out_free_path;
  2688. }
  2689. rb_node = rb_next(rb_node);
  2690. }
  2691. rb_node = rb_first(blocks);
  2692. while (rb_node) {
  2693. block = rb_entry(rb_node, struct tree_block, rb_node);
  2694. node = build_backref_tree(rc, &block->key,
  2695. block->level, block->bytenr);
  2696. if (IS_ERR(node)) {
  2697. err = PTR_ERR(node);
  2698. goto out;
  2699. }
  2700. ret = relocate_tree_block(trans, rc, node, &block->key,
  2701. path);
  2702. if (ret < 0) {
  2703. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2704. err = ret;
  2705. goto out;
  2706. }
  2707. rb_node = rb_next(rb_node);
  2708. }
  2709. out:
  2710. err = finish_pending_nodes(trans, rc, path, err);
  2711. out_free_path:
  2712. btrfs_free_path(path);
  2713. out_free_blocks:
  2714. free_block_list(blocks);
  2715. return err;
  2716. }
  2717. static noinline_for_stack
  2718. int prealloc_file_extent_cluster(struct inode *inode,
  2719. struct file_extent_cluster *cluster)
  2720. {
  2721. u64 alloc_hint = 0;
  2722. u64 start;
  2723. u64 end;
  2724. u64 offset = BTRFS_I(inode)->index_cnt;
  2725. u64 num_bytes;
  2726. int nr = 0;
  2727. int ret = 0;
  2728. u64 prealloc_start = cluster->start - offset;
  2729. u64 prealloc_end = cluster->end - offset;
  2730. u64 cur_offset;
  2731. struct extent_changeset *data_reserved = NULL;
  2732. BUG_ON(cluster->start != cluster->boundary[0]);
  2733. inode_lock(inode);
  2734. ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
  2735. prealloc_end + 1 - prealloc_start);
  2736. if (ret)
  2737. goto out;
  2738. cur_offset = prealloc_start;
  2739. while (nr < cluster->nr) {
  2740. start = cluster->boundary[nr] - offset;
  2741. if (nr + 1 < cluster->nr)
  2742. end = cluster->boundary[nr + 1] - 1 - offset;
  2743. else
  2744. end = cluster->end - offset;
  2745. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2746. num_bytes = end + 1 - start;
  2747. if (cur_offset < start)
  2748. btrfs_free_reserved_data_space(inode, data_reserved,
  2749. cur_offset, start - cur_offset);
  2750. ret = btrfs_prealloc_file_range(inode, 0, start,
  2751. num_bytes, num_bytes,
  2752. end + 1, &alloc_hint);
  2753. cur_offset = end + 1;
  2754. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2755. if (ret)
  2756. break;
  2757. nr++;
  2758. }
  2759. if (cur_offset < prealloc_end)
  2760. btrfs_free_reserved_data_space(inode, data_reserved,
  2761. cur_offset, prealloc_end + 1 - cur_offset);
  2762. out:
  2763. inode_unlock(inode);
  2764. extent_changeset_free(data_reserved);
  2765. return ret;
  2766. }
  2767. static noinline_for_stack
  2768. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2769. u64 block_start)
  2770. {
  2771. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2772. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2773. struct extent_map *em;
  2774. int ret = 0;
  2775. em = alloc_extent_map();
  2776. if (!em)
  2777. return -ENOMEM;
  2778. em->start = start;
  2779. em->len = end + 1 - start;
  2780. em->block_len = em->len;
  2781. em->block_start = block_start;
  2782. em->bdev = fs_info->fs_devices->latest_bdev;
  2783. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2784. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2785. while (1) {
  2786. write_lock(&em_tree->lock);
  2787. ret = add_extent_mapping(em_tree, em, 0);
  2788. write_unlock(&em_tree->lock);
  2789. if (ret != -EEXIST) {
  2790. free_extent_map(em);
  2791. break;
  2792. }
  2793. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2794. }
  2795. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2796. return ret;
  2797. }
  2798. static int relocate_file_extent_cluster(struct inode *inode,
  2799. struct file_extent_cluster *cluster)
  2800. {
  2801. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2802. u64 page_start;
  2803. u64 page_end;
  2804. u64 offset = BTRFS_I(inode)->index_cnt;
  2805. unsigned long index;
  2806. unsigned long last_index;
  2807. struct page *page;
  2808. struct file_ra_state *ra;
  2809. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2810. int nr = 0;
  2811. int ret = 0;
  2812. if (!cluster->nr)
  2813. return 0;
  2814. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2815. if (!ra)
  2816. return -ENOMEM;
  2817. ret = prealloc_file_extent_cluster(inode, cluster);
  2818. if (ret)
  2819. goto out;
  2820. file_ra_state_init(ra, inode->i_mapping);
  2821. ret = setup_extent_mapping(inode, cluster->start - offset,
  2822. cluster->end - offset, cluster->start);
  2823. if (ret)
  2824. goto out;
  2825. index = (cluster->start - offset) >> PAGE_SHIFT;
  2826. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2827. while (index <= last_index) {
  2828. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  2829. PAGE_SIZE);
  2830. if (ret)
  2831. goto out;
  2832. page = find_lock_page(inode->i_mapping, index);
  2833. if (!page) {
  2834. page_cache_sync_readahead(inode->i_mapping,
  2835. ra, NULL, index,
  2836. last_index + 1 - index);
  2837. page = find_or_create_page(inode->i_mapping, index,
  2838. mask);
  2839. if (!page) {
  2840. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2841. PAGE_SIZE);
  2842. ret = -ENOMEM;
  2843. goto out;
  2844. }
  2845. }
  2846. if (PageReadahead(page)) {
  2847. page_cache_async_readahead(inode->i_mapping,
  2848. ra, NULL, page, index,
  2849. last_index + 1 - index);
  2850. }
  2851. if (!PageUptodate(page)) {
  2852. btrfs_readpage(NULL, page);
  2853. lock_page(page);
  2854. if (!PageUptodate(page)) {
  2855. unlock_page(page);
  2856. put_page(page);
  2857. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2858. PAGE_SIZE);
  2859. ret = -EIO;
  2860. goto out;
  2861. }
  2862. }
  2863. page_start = page_offset(page);
  2864. page_end = page_start + PAGE_SIZE - 1;
  2865. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2866. set_page_extent_mapped(page);
  2867. if (nr < cluster->nr &&
  2868. page_start + offset == cluster->boundary[nr]) {
  2869. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2870. page_start, page_end,
  2871. EXTENT_BOUNDARY);
  2872. nr++;
  2873. }
  2874. btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
  2875. set_page_dirty(page);
  2876. unlock_extent(&BTRFS_I(inode)->io_tree,
  2877. page_start, page_end);
  2878. unlock_page(page);
  2879. put_page(page);
  2880. index++;
  2881. balance_dirty_pages_ratelimited(inode->i_mapping);
  2882. btrfs_throttle(fs_info);
  2883. }
  2884. WARN_ON(nr != cluster->nr);
  2885. out:
  2886. kfree(ra);
  2887. return ret;
  2888. }
  2889. static noinline_for_stack
  2890. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2891. struct file_extent_cluster *cluster)
  2892. {
  2893. int ret;
  2894. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2895. ret = relocate_file_extent_cluster(inode, cluster);
  2896. if (ret)
  2897. return ret;
  2898. cluster->nr = 0;
  2899. }
  2900. if (!cluster->nr)
  2901. cluster->start = extent_key->objectid;
  2902. else
  2903. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2904. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2905. cluster->boundary[cluster->nr] = extent_key->objectid;
  2906. cluster->nr++;
  2907. if (cluster->nr >= MAX_EXTENTS) {
  2908. ret = relocate_file_extent_cluster(inode, cluster);
  2909. if (ret)
  2910. return ret;
  2911. cluster->nr = 0;
  2912. }
  2913. return 0;
  2914. }
  2915. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2916. static int get_ref_objectid_v0(struct reloc_control *rc,
  2917. struct btrfs_path *path,
  2918. struct btrfs_key *extent_key,
  2919. u64 *ref_objectid, int *path_change)
  2920. {
  2921. struct btrfs_key key;
  2922. struct extent_buffer *leaf;
  2923. struct btrfs_extent_ref_v0 *ref0;
  2924. int ret;
  2925. int slot;
  2926. leaf = path->nodes[0];
  2927. slot = path->slots[0];
  2928. while (1) {
  2929. if (slot >= btrfs_header_nritems(leaf)) {
  2930. ret = btrfs_next_leaf(rc->extent_root, path);
  2931. if (ret < 0)
  2932. return ret;
  2933. BUG_ON(ret > 0);
  2934. leaf = path->nodes[0];
  2935. slot = path->slots[0];
  2936. if (path_change)
  2937. *path_change = 1;
  2938. }
  2939. btrfs_item_key_to_cpu(leaf, &key, slot);
  2940. if (key.objectid != extent_key->objectid)
  2941. return -ENOENT;
  2942. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2943. slot++;
  2944. continue;
  2945. }
  2946. ref0 = btrfs_item_ptr(leaf, slot,
  2947. struct btrfs_extent_ref_v0);
  2948. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2949. break;
  2950. }
  2951. return 0;
  2952. }
  2953. #endif
  2954. /*
  2955. * helper to add a tree block to the list.
  2956. * the major work is getting the generation and level of the block
  2957. */
  2958. static int add_tree_block(struct reloc_control *rc,
  2959. struct btrfs_key *extent_key,
  2960. struct btrfs_path *path,
  2961. struct rb_root *blocks)
  2962. {
  2963. struct extent_buffer *eb;
  2964. struct btrfs_extent_item *ei;
  2965. struct btrfs_tree_block_info *bi;
  2966. struct tree_block *block;
  2967. struct rb_node *rb_node;
  2968. u32 item_size;
  2969. int level = -1;
  2970. u64 generation;
  2971. eb = path->nodes[0];
  2972. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2973. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2974. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2975. ei = btrfs_item_ptr(eb, path->slots[0],
  2976. struct btrfs_extent_item);
  2977. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2978. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2979. level = btrfs_tree_block_level(eb, bi);
  2980. } else {
  2981. level = (int)extent_key->offset;
  2982. }
  2983. generation = btrfs_extent_generation(eb, ei);
  2984. } else {
  2985. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2986. u64 ref_owner;
  2987. int ret;
  2988. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2989. ret = get_ref_objectid_v0(rc, path, extent_key,
  2990. &ref_owner, NULL);
  2991. if (ret < 0)
  2992. return ret;
  2993. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  2994. level = (int)ref_owner;
  2995. /* FIXME: get real generation */
  2996. generation = 0;
  2997. #else
  2998. BUG();
  2999. #endif
  3000. }
  3001. btrfs_release_path(path);
  3002. BUG_ON(level == -1);
  3003. block = kmalloc(sizeof(*block), GFP_NOFS);
  3004. if (!block)
  3005. return -ENOMEM;
  3006. block->bytenr = extent_key->objectid;
  3007. block->key.objectid = rc->extent_root->fs_info->nodesize;
  3008. block->key.offset = generation;
  3009. block->level = level;
  3010. block->key_ready = 0;
  3011. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  3012. if (rb_node)
  3013. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  3014. return 0;
  3015. }
  3016. /*
  3017. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  3018. */
  3019. static int __add_tree_block(struct reloc_control *rc,
  3020. u64 bytenr, u32 blocksize,
  3021. struct rb_root *blocks)
  3022. {
  3023. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3024. struct btrfs_path *path;
  3025. struct btrfs_key key;
  3026. int ret;
  3027. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  3028. if (tree_block_processed(bytenr, rc))
  3029. return 0;
  3030. if (tree_search(blocks, bytenr))
  3031. return 0;
  3032. path = btrfs_alloc_path();
  3033. if (!path)
  3034. return -ENOMEM;
  3035. again:
  3036. key.objectid = bytenr;
  3037. if (skinny) {
  3038. key.type = BTRFS_METADATA_ITEM_KEY;
  3039. key.offset = (u64)-1;
  3040. } else {
  3041. key.type = BTRFS_EXTENT_ITEM_KEY;
  3042. key.offset = blocksize;
  3043. }
  3044. path->search_commit_root = 1;
  3045. path->skip_locking = 1;
  3046. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  3047. if (ret < 0)
  3048. goto out;
  3049. if (ret > 0 && skinny) {
  3050. if (path->slots[0]) {
  3051. path->slots[0]--;
  3052. btrfs_item_key_to_cpu(path->nodes[0], &key,
  3053. path->slots[0]);
  3054. if (key.objectid == bytenr &&
  3055. (key.type == BTRFS_METADATA_ITEM_KEY ||
  3056. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3057. key.offset == blocksize)))
  3058. ret = 0;
  3059. }
  3060. if (ret) {
  3061. skinny = false;
  3062. btrfs_release_path(path);
  3063. goto again;
  3064. }
  3065. }
  3066. if (ret) {
  3067. ASSERT(ret == 1);
  3068. btrfs_print_leaf(path->nodes[0]);
  3069. btrfs_err(fs_info,
  3070. "tree block extent item (%llu) is not found in extent tree",
  3071. bytenr);
  3072. WARN_ON(1);
  3073. ret = -EINVAL;
  3074. goto out;
  3075. }
  3076. ret = add_tree_block(rc, &key, path, blocks);
  3077. out:
  3078. btrfs_free_path(path);
  3079. return ret;
  3080. }
  3081. /*
  3082. * helper to check if the block use full backrefs for pointers in it
  3083. */
  3084. static int block_use_full_backref(struct reloc_control *rc,
  3085. struct extent_buffer *eb)
  3086. {
  3087. u64 flags;
  3088. int ret;
  3089. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3090. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3091. return 1;
  3092. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3093. eb->start, btrfs_header_level(eb), 1,
  3094. NULL, &flags);
  3095. BUG_ON(ret);
  3096. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3097. ret = 1;
  3098. else
  3099. ret = 0;
  3100. return ret;
  3101. }
  3102. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3103. struct btrfs_block_group_cache *block_group,
  3104. struct inode *inode,
  3105. u64 ino)
  3106. {
  3107. struct btrfs_key key;
  3108. struct btrfs_root *root = fs_info->tree_root;
  3109. struct btrfs_trans_handle *trans;
  3110. int ret = 0;
  3111. if (inode)
  3112. goto truncate;
  3113. key.objectid = ino;
  3114. key.type = BTRFS_INODE_ITEM_KEY;
  3115. key.offset = 0;
  3116. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3117. if (IS_ERR(inode) || is_bad_inode(inode)) {
  3118. if (!IS_ERR(inode))
  3119. iput(inode);
  3120. return -ENOENT;
  3121. }
  3122. truncate:
  3123. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3124. &fs_info->global_block_rsv);
  3125. if (ret)
  3126. goto out;
  3127. trans = btrfs_join_transaction(root);
  3128. if (IS_ERR(trans)) {
  3129. ret = PTR_ERR(trans);
  3130. goto out;
  3131. }
  3132. ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
  3133. btrfs_end_transaction(trans);
  3134. btrfs_btree_balance_dirty(fs_info);
  3135. out:
  3136. iput(inode);
  3137. return ret;
  3138. }
  3139. /*
  3140. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3141. * this function scans fs tree to find blocks reference the data extent
  3142. */
  3143. static int find_data_references(struct reloc_control *rc,
  3144. struct btrfs_key *extent_key,
  3145. struct extent_buffer *leaf,
  3146. struct btrfs_extent_data_ref *ref,
  3147. struct rb_root *blocks)
  3148. {
  3149. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3150. struct btrfs_path *path;
  3151. struct tree_block *block;
  3152. struct btrfs_root *root;
  3153. struct btrfs_file_extent_item *fi;
  3154. struct rb_node *rb_node;
  3155. struct btrfs_key key;
  3156. u64 ref_root;
  3157. u64 ref_objectid;
  3158. u64 ref_offset;
  3159. u32 ref_count;
  3160. u32 nritems;
  3161. int err = 0;
  3162. int added = 0;
  3163. int counted;
  3164. int ret;
  3165. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3166. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3167. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3168. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3169. /*
  3170. * This is an extent belonging to the free space cache, lets just delete
  3171. * it and redo the search.
  3172. */
  3173. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3174. ret = delete_block_group_cache(fs_info, rc->block_group,
  3175. NULL, ref_objectid);
  3176. if (ret != -ENOENT)
  3177. return ret;
  3178. ret = 0;
  3179. }
  3180. path = btrfs_alloc_path();
  3181. if (!path)
  3182. return -ENOMEM;
  3183. path->reada = READA_FORWARD;
  3184. root = read_fs_root(fs_info, ref_root);
  3185. if (IS_ERR(root)) {
  3186. err = PTR_ERR(root);
  3187. goto out;
  3188. }
  3189. key.objectid = ref_objectid;
  3190. key.type = BTRFS_EXTENT_DATA_KEY;
  3191. if (ref_offset > ((u64)-1 << 32))
  3192. key.offset = 0;
  3193. else
  3194. key.offset = ref_offset;
  3195. path->search_commit_root = 1;
  3196. path->skip_locking = 1;
  3197. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3198. if (ret < 0) {
  3199. err = ret;
  3200. goto out;
  3201. }
  3202. leaf = path->nodes[0];
  3203. nritems = btrfs_header_nritems(leaf);
  3204. /*
  3205. * the references in tree blocks that use full backrefs
  3206. * are not counted in
  3207. */
  3208. if (block_use_full_backref(rc, leaf))
  3209. counted = 0;
  3210. else
  3211. counted = 1;
  3212. rb_node = tree_search(blocks, leaf->start);
  3213. if (rb_node) {
  3214. if (counted)
  3215. added = 1;
  3216. else
  3217. path->slots[0] = nritems;
  3218. }
  3219. while (ref_count > 0) {
  3220. while (path->slots[0] >= nritems) {
  3221. ret = btrfs_next_leaf(root, path);
  3222. if (ret < 0) {
  3223. err = ret;
  3224. goto out;
  3225. }
  3226. if (WARN_ON(ret > 0))
  3227. goto out;
  3228. leaf = path->nodes[0];
  3229. nritems = btrfs_header_nritems(leaf);
  3230. added = 0;
  3231. if (block_use_full_backref(rc, leaf))
  3232. counted = 0;
  3233. else
  3234. counted = 1;
  3235. rb_node = tree_search(blocks, leaf->start);
  3236. if (rb_node) {
  3237. if (counted)
  3238. added = 1;
  3239. else
  3240. path->slots[0] = nritems;
  3241. }
  3242. }
  3243. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3244. if (WARN_ON(key.objectid != ref_objectid ||
  3245. key.type != BTRFS_EXTENT_DATA_KEY))
  3246. break;
  3247. fi = btrfs_item_ptr(leaf, path->slots[0],
  3248. struct btrfs_file_extent_item);
  3249. if (btrfs_file_extent_type(leaf, fi) ==
  3250. BTRFS_FILE_EXTENT_INLINE)
  3251. goto next;
  3252. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3253. extent_key->objectid)
  3254. goto next;
  3255. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3256. if (key.offset != ref_offset)
  3257. goto next;
  3258. if (counted)
  3259. ref_count--;
  3260. if (added)
  3261. goto next;
  3262. if (!tree_block_processed(leaf->start, rc)) {
  3263. block = kmalloc(sizeof(*block), GFP_NOFS);
  3264. if (!block) {
  3265. err = -ENOMEM;
  3266. break;
  3267. }
  3268. block->bytenr = leaf->start;
  3269. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3270. block->level = 0;
  3271. block->key_ready = 1;
  3272. rb_node = tree_insert(blocks, block->bytenr,
  3273. &block->rb_node);
  3274. if (rb_node)
  3275. backref_tree_panic(rb_node, -EEXIST,
  3276. block->bytenr);
  3277. }
  3278. if (counted)
  3279. added = 1;
  3280. else
  3281. path->slots[0] = nritems;
  3282. next:
  3283. path->slots[0]++;
  3284. }
  3285. out:
  3286. btrfs_free_path(path);
  3287. return err;
  3288. }
  3289. /*
  3290. * helper to find all tree blocks that reference a given data extent
  3291. */
  3292. static noinline_for_stack
  3293. int add_data_references(struct reloc_control *rc,
  3294. struct btrfs_key *extent_key,
  3295. struct btrfs_path *path,
  3296. struct rb_root *blocks)
  3297. {
  3298. struct btrfs_key key;
  3299. struct extent_buffer *eb;
  3300. struct btrfs_extent_data_ref *dref;
  3301. struct btrfs_extent_inline_ref *iref;
  3302. unsigned long ptr;
  3303. unsigned long end;
  3304. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3305. int ret = 0;
  3306. int err = 0;
  3307. eb = path->nodes[0];
  3308. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3309. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3310. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3311. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  3312. ptr = end;
  3313. else
  3314. #endif
  3315. ptr += sizeof(struct btrfs_extent_item);
  3316. while (ptr < end) {
  3317. iref = (struct btrfs_extent_inline_ref *)ptr;
  3318. key.type = btrfs_get_extent_inline_ref_type(eb, iref,
  3319. BTRFS_REF_TYPE_DATA);
  3320. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3321. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3322. ret = __add_tree_block(rc, key.offset, blocksize,
  3323. blocks);
  3324. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3325. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3326. ret = find_data_references(rc, extent_key,
  3327. eb, dref, blocks);
  3328. } else {
  3329. ret = -EINVAL;
  3330. btrfs_err(rc->extent_root->fs_info,
  3331. "extent %llu slot %d has an invalid inline ref type",
  3332. eb->start, path->slots[0]);
  3333. }
  3334. if (ret) {
  3335. err = ret;
  3336. goto out;
  3337. }
  3338. ptr += btrfs_extent_inline_ref_size(key.type);
  3339. }
  3340. WARN_ON(ptr > end);
  3341. while (1) {
  3342. cond_resched();
  3343. eb = path->nodes[0];
  3344. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3345. ret = btrfs_next_leaf(rc->extent_root, path);
  3346. if (ret < 0) {
  3347. err = ret;
  3348. break;
  3349. }
  3350. if (ret > 0)
  3351. break;
  3352. eb = path->nodes[0];
  3353. }
  3354. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3355. if (key.objectid != extent_key->objectid)
  3356. break;
  3357. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3358. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  3359. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  3360. #else
  3361. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  3362. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3363. #endif
  3364. ret = __add_tree_block(rc, key.offset, blocksize,
  3365. blocks);
  3366. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3367. dref = btrfs_item_ptr(eb, path->slots[0],
  3368. struct btrfs_extent_data_ref);
  3369. ret = find_data_references(rc, extent_key,
  3370. eb, dref, blocks);
  3371. } else {
  3372. ret = 0;
  3373. }
  3374. if (ret) {
  3375. err = ret;
  3376. break;
  3377. }
  3378. path->slots[0]++;
  3379. }
  3380. out:
  3381. btrfs_release_path(path);
  3382. if (err)
  3383. free_block_list(blocks);
  3384. return err;
  3385. }
  3386. /*
  3387. * helper to find next unprocessed extent
  3388. */
  3389. static noinline_for_stack
  3390. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3391. struct btrfs_key *extent_key)
  3392. {
  3393. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3394. struct btrfs_key key;
  3395. struct extent_buffer *leaf;
  3396. u64 start, end, last;
  3397. int ret;
  3398. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3399. while (1) {
  3400. cond_resched();
  3401. if (rc->search_start >= last) {
  3402. ret = 1;
  3403. break;
  3404. }
  3405. key.objectid = rc->search_start;
  3406. key.type = BTRFS_EXTENT_ITEM_KEY;
  3407. key.offset = 0;
  3408. path->search_commit_root = 1;
  3409. path->skip_locking = 1;
  3410. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3411. 0, 0);
  3412. if (ret < 0)
  3413. break;
  3414. next:
  3415. leaf = path->nodes[0];
  3416. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3417. ret = btrfs_next_leaf(rc->extent_root, path);
  3418. if (ret != 0)
  3419. break;
  3420. leaf = path->nodes[0];
  3421. }
  3422. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3423. if (key.objectid >= last) {
  3424. ret = 1;
  3425. break;
  3426. }
  3427. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3428. key.type != BTRFS_METADATA_ITEM_KEY) {
  3429. path->slots[0]++;
  3430. goto next;
  3431. }
  3432. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3433. key.objectid + key.offset <= rc->search_start) {
  3434. path->slots[0]++;
  3435. goto next;
  3436. }
  3437. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3438. key.objectid + fs_info->nodesize <=
  3439. rc->search_start) {
  3440. path->slots[0]++;
  3441. goto next;
  3442. }
  3443. ret = find_first_extent_bit(&rc->processed_blocks,
  3444. key.objectid, &start, &end,
  3445. EXTENT_DIRTY, NULL);
  3446. if (ret == 0 && start <= key.objectid) {
  3447. btrfs_release_path(path);
  3448. rc->search_start = end + 1;
  3449. } else {
  3450. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3451. rc->search_start = key.objectid + key.offset;
  3452. else
  3453. rc->search_start = key.objectid +
  3454. fs_info->nodesize;
  3455. memcpy(extent_key, &key, sizeof(key));
  3456. return 0;
  3457. }
  3458. }
  3459. btrfs_release_path(path);
  3460. return ret;
  3461. }
  3462. static void set_reloc_control(struct reloc_control *rc)
  3463. {
  3464. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3465. mutex_lock(&fs_info->reloc_mutex);
  3466. fs_info->reloc_ctl = rc;
  3467. mutex_unlock(&fs_info->reloc_mutex);
  3468. }
  3469. static void unset_reloc_control(struct reloc_control *rc)
  3470. {
  3471. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3472. mutex_lock(&fs_info->reloc_mutex);
  3473. fs_info->reloc_ctl = NULL;
  3474. mutex_unlock(&fs_info->reloc_mutex);
  3475. }
  3476. static int check_extent_flags(u64 flags)
  3477. {
  3478. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3479. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3480. return 1;
  3481. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3482. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3483. return 1;
  3484. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3485. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3486. return 1;
  3487. return 0;
  3488. }
  3489. static noinline_for_stack
  3490. int prepare_to_relocate(struct reloc_control *rc)
  3491. {
  3492. struct btrfs_trans_handle *trans;
  3493. int ret;
  3494. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3495. BTRFS_BLOCK_RSV_TEMP);
  3496. if (!rc->block_rsv)
  3497. return -ENOMEM;
  3498. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3499. rc->search_start = rc->block_group->key.objectid;
  3500. rc->extents_found = 0;
  3501. rc->nodes_relocated = 0;
  3502. rc->merging_rsv_size = 0;
  3503. rc->reserved_bytes = 0;
  3504. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3505. RELOCATION_RESERVED_NODES;
  3506. ret = btrfs_block_rsv_refill(rc->extent_root,
  3507. rc->block_rsv, rc->block_rsv->size,
  3508. BTRFS_RESERVE_FLUSH_ALL);
  3509. if (ret)
  3510. return ret;
  3511. rc->create_reloc_tree = 1;
  3512. set_reloc_control(rc);
  3513. trans = btrfs_join_transaction(rc->extent_root);
  3514. if (IS_ERR(trans)) {
  3515. unset_reloc_control(rc);
  3516. /*
  3517. * extent tree is not a ref_cow tree and has no reloc_root to
  3518. * cleanup. And callers are responsible to free the above
  3519. * block rsv.
  3520. */
  3521. return PTR_ERR(trans);
  3522. }
  3523. btrfs_commit_transaction(trans);
  3524. return 0;
  3525. }
  3526. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3527. {
  3528. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3529. struct rb_root blocks = RB_ROOT;
  3530. struct btrfs_key key;
  3531. struct btrfs_trans_handle *trans = NULL;
  3532. struct btrfs_path *path;
  3533. struct btrfs_extent_item *ei;
  3534. u64 flags;
  3535. u32 item_size;
  3536. int ret;
  3537. int err = 0;
  3538. int progress = 0;
  3539. path = btrfs_alloc_path();
  3540. if (!path)
  3541. return -ENOMEM;
  3542. path->reada = READA_FORWARD;
  3543. ret = prepare_to_relocate(rc);
  3544. if (ret) {
  3545. err = ret;
  3546. goto out_free;
  3547. }
  3548. while (1) {
  3549. rc->reserved_bytes = 0;
  3550. ret = btrfs_block_rsv_refill(rc->extent_root,
  3551. rc->block_rsv, rc->block_rsv->size,
  3552. BTRFS_RESERVE_FLUSH_ALL);
  3553. if (ret) {
  3554. err = ret;
  3555. break;
  3556. }
  3557. progress++;
  3558. trans = btrfs_start_transaction(rc->extent_root, 0);
  3559. if (IS_ERR(trans)) {
  3560. err = PTR_ERR(trans);
  3561. trans = NULL;
  3562. break;
  3563. }
  3564. restart:
  3565. if (update_backref_cache(trans, &rc->backref_cache)) {
  3566. btrfs_end_transaction(trans);
  3567. continue;
  3568. }
  3569. ret = find_next_extent(rc, path, &key);
  3570. if (ret < 0)
  3571. err = ret;
  3572. if (ret != 0)
  3573. break;
  3574. rc->extents_found++;
  3575. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3576. struct btrfs_extent_item);
  3577. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3578. if (item_size >= sizeof(*ei)) {
  3579. flags = btrfs_extent_flags(path->nodes[0], ei);
  3580. ret = check_extent_flags(flags);
  3581. BUG_ON(ret);
  3582. } else {
  3583. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3584. u64 ref_owner;
  3585. int path_change = 0;
  3586. BUG_ON(item_size !=
  3587. sizeof(struct btrfs_extent_item_v0));
  3588. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  3589. &path_change);
  3590. if (ret < 0) {
  3591. err = ret;
  3592. break;
  3593. }
  3594. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  3595. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  3596. else
  3597. flags = BTRFS_EXTENT_FLAG_DATA;
  3598. if (path_change) {
  3599. btrfs_release_path(path);
  3600. path->search_commit_root = 1;
  3601. path->skip_locking = 1;
  3602. ret = btrfs_search_slot(NULL, rc->extent_root,
  3603. &key, path, 0, 0);
  3604. if (ret < 0) {
  3605. err = ret;
  3606. break;
  3607. }
  3608. BUG_ON(ret > 0);
  3609. }
  3610. #else
  3611. BUG();
  3612. #endif
  3613. }
  3614. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3615. ret = add_tree_block(rc, &key, path, &blocks);
  3616. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3617. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3618. ret = add_data_references(rc, &key, path, &blocks);
  3619. } else {
  3620. btrfs_release_path(path);
  3621. ret = 0;
  3622. }
  3623. if (ret < 0) {
  3624. err = ret;
  3625. break;
  3626. }
  3627. if (!RB_EMPTY_ROOT(&blocks)) {
  3628. ret = relocate_tree_blocks(trans, rc, &blocks);
  3629. if (ret < 0) {
  3630. /*
  3631. * if we fail to relocate tree blocks, force to update
  3632. * backref cache when committing transaction.
  3633. */
  3634. rc->backref_cache.last_trans = trans->transid - 1;
  3635. if (ret != -EAGAIN) {
  3636. err = ret;
  3637. break;
  3638. }
  3639. rc->extents_found--;
  3640. rc->search_start = key.objectid;
  3641. }
  3642. }
  3643. btrfs_end_transaction_throttle(trans);
  3644. btrfs_btree_balance_dirty(fs_info);
  3645. trans = NULL;
  3646. if (rc->stage == MOVE_DATA_EXTENTS &&
  3647. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3648. rc->found_file_extent = 1;
  3649. ret = relocate_data_extent(rc->data_inode,
  3650. &key, &rc->cluster);
  3651. if (ret < 0) {
  3652. err = ret;
  3653. break;
  3654. }
  3655. }
  3656. }
  3657. if (trans && progress && err == -ENOSPC) {
  3658. ret = btrfs_force_chunk_alloc(trans, fs_info,
  3659. rc->block_group->flags);
  3660. if (ret == 1) {
  3661. err = 0;
  3662. progress = 0;
  3663. goto restart;
  3664. }
  3665. }
  3666. btrfs_release_path(path);
  3667. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3668. if (trans) {
  3669. btrfs_end_transaction_throttle(trans);
  3670. btrfs_btree_balance_dirty(fs_info);
  3671. }
  3672. if (!err) {
  3673. ret = relocate_file_extent_cluster(rc->data_inode,
  3674. &rc->cluster);
  3675. if (ret < 0)
  3676. err = ret;
  3677. }
  3678. rc->create_reloc_tree = 0;
  3679. set_reloc_control(rc);
  3680. backref_cache_cleanup(&rc->backref_cache);
  3681. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3682. err = prepare_to_merge(rc, err);
  3683. merge_reloc_roots(rc);
  3684. rc->merge_reloc_tree = 0;
  3685. unset_reloc_control(rc);
  3686. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3687. /* get rid of pinned extents */
  3688. trans = btrfs_join_transaction(rc->extent_root);
  3689. if (IS_ERR(trans)) {
  3690. err = PTR_ERR(trans);
  3691. goto out_free;
  3692. }
  3693. btrfs_commit_transaction(trans);
  3694. out_free:
  3695. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3696. btrfs_free_path(path);
  3697. return err;
  3698. }
  3699. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3700. struct btrfs_root *root, u64 objectid)
  3701. {
  3702. struct btrfs_path *path;
  3703. struct btrfs_inode_item *item;
  3704. struct extent_buffer *leaf;
  3705. int ret;
  3706. path = btrfs_alloc_path();
  3707. if (!path)
  3708. return -ENOMEM;
  3709. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3710. if (ret)
  3711. goto out;
  3712. leaf = path->nodes[0];
  3713. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3714. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3715. btrfs_set_inode_generation(leaf, item, 1);
  3716. btrfs_set_inode_size(leaf, item, 0);
  3717. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3718. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3719. BTRFS_INODE_PREALLOC);
  3720. btrfs_mark_buffer_dirty(leaf);
  3721. out:
  3722. btrfs_free_path(path);
  3723. return ret;
  3724. }
  3725. /*
  3726. * helper to create inode for data relocation.
  3727. * the inode is in data relocation tree and its link count is 0
  3728. */
  3729. static noinline_for_stack
  3730. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3731. struct btrfs_block_group_cache *group)
  3732. {
  3733. struct inode *inode = NULL;
  3734. struct btrfs_trans_handle *trans;
  3735. struct btrfs_root *root;
  3736. struct btrfs_key key;
  3737. u64 objectid;
  3738. int err = 0;
  3739. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3740. if (IS_ERR(root))
  3741. return ERR_CAST(root);
  3742. trans = btrfs_start_transaction(root, 6);
  3743. if (IS_ERR(trans))
  3744. return ERR_CAST(trans);
  3745. err = btrfs_find_free_objectid(root, &objectid);
  3746. if (err)
  3747. goto out;
  3748. err = __insert_orphan_inode(trans, root, objectid);
  3749. BUG_ON(err);
  3750. key.objectid = objectid;
  3751. key.type = BTRFS_INODE_ITEM_KEY;
  3752. key.offset = 0;
  3753. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3754. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3755. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3756. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3757. out:
  3758. btrfs_end_transaction(trans);
  3759. btrfs_btree_balance_dirty(fs_info);
  3760. if (err) {
  3761. if (inode)
  3762. iput(inode);
  3763. inode = ERR_PTR(err);
  3764. }
  3765. return inode;
  3766. }
  3767. static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
  3768. {
  3769. struct reloc_control *rc;
  3770. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3771. if (!rc)
  3772. return NULL;
  3773. INIT_LIST_HEAD(&rc->reloc_roots);
  3774. backref_cache_init(&rc->backref_cache);
  3775. mapping_tree_init(&rc->reloc_root_tree);
  3776. extent_io_tree_init(&rc->processed_blocks, NULL);
  3777. return rc;
  3778. }
  3779. /*
  3780. * Print the block group being relocated
  3781. */
  3782. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3783. struct btrfs_block_group_cache *block_group)
  3784. {
  3785. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3786. u64 flags = block_group->flags;
  3787. /* Shouldn't happen */
  3788. if (!flags) {
  3789. strcpy(buf, "|NONE");
  3790. } else {
  3791. char *bp = buf;
  3792. #define DESCRIBE_FLAG(f, d) \
  3793. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3794. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3795. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3796. }
  3797. DESCRIBE_FLAG(DATA, "data");
  3798. DESCRIBE_FLAG(SYSTEM, "system");
  3799. DESCRIBE_FLAG(METADATA, "metadata");
  3800. DESCRIBE_FLAG(RAID0, "raid0");
  3801. DESCRIBE_FLAG(RAID1, "raid1");
  3802. DESCRIBE_FLAG(DUP, "dup");
  3803. DESCRIBE_FLAG(RAID10, "raid10");
  3804. DESCRIBE_FLAG(RAID5, "raid5");
  3805. DESCRIBE_FLAG(RAID6, "raid6");
  3806. if (flags)
  3807. snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
  3808. #undef DESCRIBE_FLAG
  3809. }
  3810. btrfs_info(fs_info,
  3811. "relocating block group %llu flags %s",
  3812. block_group->key.objectid, buf + 1);
  3813. }
  3814. /*
  3815. * function to relocate all extents in a block group.
  3816. */
  3817. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3818. {
  3819. struct btrfs_root *extent_root = fs_info->extent_root;
  3820. struct reloc_control *rc;
  3821. struct inode *inode;
  3822. struct btrfs_path *path;
  3823. int ret;
  3824. int rw = 0;
  3825. int err = 0;
  3826. rc = alloc_reloc_control(fs_info);
  3827. if (!rc)
  3828. return -ENOMEM;
  3829. rc->extent_root = extent_root;
  3830. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3831. BUG_ON(!rc->block_group);
  3832. ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
  3833. if (ret) {
  3834. err = ret;
  3835. goto out;
  3836. }
  3837. rw = 1;
  3838. path = btrfs_alloc_path();
  3839. if (!path) {
  3840. err = -ENOMEM;
  3841. goto out;
  3842. }
  3843. inode = lookup_free_space_inode(fs_info, rc->block_group, path);
  3844. btrfs_free_path(path);
  3845. if (!IS_ERR(inode))
  3846. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3847. else
  3848. ret = PTR_ERR(inode);
  3849. if (ret && ret != -ENOENT) {
  3850. err = ret;
  3851. goto out;
  3852. }
  3853. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3854. if (IS_ERR(rc->data_inode)) {
  3855. err = PTR_ERR(rc->data_inode);
  3856. rc->data_inode = NULL;
  3857. goto out;
  3858. }
  3859. describe_relocation(fs_info, rc->block_group);
  3860. btrfs_wait_block_group_reservations(rc->block_group);
  3861. btrfs_wait_nocow_writers(rc->block_group);
  3862. btrfs_wait_ordered_roots(fs_info, U64_MAX,
  3863. rc->block_group->key.objectid,
  3864. rc->block_group->key.offset);
  3865. while (1) {
  3866. mutex_lock(&fs_info->cleaner_mutex);
  3867. ret = relocate_block_group(rc);
  3868. mutex_unlock(&fs_info->cleaner_mutex);
  3869. if (ret < 0) {
  3870. err = ret;
  3871. goto out;
  3872. }
  3873. if (rc->extents_found == 0)
  3874. break;
  3875. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3876. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3877. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3878. (u64)-1);
  3879. if (ret) {
  3880. err = ret;
  3881. goto out;
  3882. }
  3883. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3884. 0, -1);
  3885. rc->stage = UPDATE_DATA_PTRS;
  3886. }
  3887. }
  3888. WARN_ON(rc->block_group->pinned > 0);
  3889. WARN_ON(rc->block_group->reserved > 0);
  3890. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3891. out:
  3892. if (err && rw)
  3893. btrfs_dec_block_group_ro(rc->block_group);
  3894. iput(rc->data_inode);
  3895. btrfs_put_block_group(rc->block_group);
  3896. kfree(rc);
  3897. return err;
  3898. }
  3899. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3900. {
  3901. struct btrfs_fs_info *fs_info = root->fs_info;
  3902. struct btrfs_trans_handle *trans;
  3903. int ret, err;
  3904. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3905. if (IS_ERR(trans))
  3906. return PTR_ERR(trans);
  3907. memset(&root->root_item.drop_progress, 0,
  3908. sizeof(root->root_item.drop_progress));
  3909. root->root_item.drop_level = 0;
  3910. btrfs_set_root_refs(&root->root_item, 0);
  3911. ret = btrfs_update_root(trans, fs_info->tree_root,
  3912. &root->root_key, &root->root_item);
  3913. err = btrfs_end_transaction(trans);
  3914. if (err)
  3915. return err;
  3916. return ret;
  3917. }
  3918. /*
  3919. * recover relocation interrupted by system crash.
  3920. *
  3921. * this function resumes merging reloc trees with corresponding fs trees.
  3922. * this is important for keeping the sharing of tree blocks
  3923. */
  3924. int btrfs_recover_relocation(struct btrfs_root *root)
  3925. {
  3926. struct btrfs_fs_info *fs_info = root->fs_info;
  3927. LIST_HEAD(reloc_roots);
  3928. struct btrfs_key key;
  3929. struct btrfs_root *fs_root;
  3930. struct btrfs_root *reloc_root;
  3931. struct btrfs_path *path;
  3932. struct extent_buffer *leaf;
  3933. struct reloc_control *rc = NULL;
  3934. struct btrfs_trans_handle *trans;
  3935. int ret;
  3936. int err = 0;
  3937. path = btrfs_alloc_path();
  3938. if (!path)
  3939. return -ENOMEM;
  3940. path->reada = READA_BACK;
  3941. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3942. key.type = BTRFS_ROOT_ITEM_KEY;
  3943. key.offset = (u64)-1;
  3944. while (1) {
  3945. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3946. path, 0, 0);
  3947. if (ret < 0) {
  3948. err = ret;
  3949. goto out;
  3950. }
  3951. if (ret > 0) {
  3952. if (path->slots[0] == 0)
  3953. break;
  3954. path->slots[0]--;
  3955. }
  3956. leaf = path->nodes[0];
  3957. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3958. btrfs_release_path(path);
  3959. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3960. key.type != BTRFS_ROOT_ITEM_KEY)
  3961. break;
  3962. reloc_root = btrfs_read_fs_root(root, &key);
  3963. if (IS_ERR(reloc_root)) {
  3964. err = PTR_ERR(reloc_root);
  3965. goto out;
  3966. }
  3967. list_add(&reloc_root->root_list, &reloc_roots);
  3968. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3969. fs_root = read_fs_root(fs_info,
  3970. reloc_root->root_key.offset);
  3971. if (IS_ERR(fs_root)) {
  3972. ret = PTR_ERR(fs_root);
  3973. if (ret != -ENOENT) {
  3974. err = ret;
  3975. goto out;
  3976. }
  3977. ret = mark_garbage_root(reloc_root);
  3978. if (ret < 0) {
  3979. err = ret;
  3980. goto out;
  3981. }
  3982. }
  3983. }
  3984. if (key.offset == 0)
  3985. break;
  3986. key.offset--;
  3987. }
  3988. btrfs_release_path(path);
  3989. if (list_empty(&reloc_roots))
  3990. goto out;
  3991. rc = alloc_reloc_control(fs_info);
  3992. if (!rc) {
  3993. err = -ENOMEM;
  3994. goto out;
  3995. }
  3996. rc->extent_root = fs_info->extent_root;
  3997. set_reloc_control(rc);
  3998. trans = btrfs_join_transaction(rc->extent_root);
  3999. if (IS_ERR(trans)) {
  4000. unset_reloc_control(rc);
  4001. err = PTR_ERR(trans);
  4002. goto out_free;
  4003. }
  4004. rc->merge_reloc_tree = 1;
  4005. while (!list_empty(&reloc_roots)) {
  4006. reloc_root = list_entry(reloc_roots.next,
  4007. struct btrfs_root, root_list);
  4008. list_del(&reloc_root->root_list);
  4009. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  4010. list_add_tail(&reloc_root->root_list,
  4011. &rc->reloc_roots);
  4012. continue;
  4013. }
  4014. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  4015. if (IS_ERR(fs_root)) {
  4016. err = PTR_ERR(fs_root);
  4017. goto out_free;
  4018. }
  4019. err = __add_reloc_root(reloc_root);
  4020. BUG_ON(err < 0); /* -ENOMEM or logic error */
  4021. fs_root->reloc_root = reloc_root;
  4022. }
  4023. err = btrfs_commit_transaction(trans);
  4024. if (err)
  4025. goto out_free;
  4026. merge_reloc_roots(rc);
  4027. unset_reloc_control(rc);
  4028. trans = btrfs_join_transaction(rc->extent_root);
  4029. if (IS_ERR(trans)) {
  4030. err = PTR_ERR(trans);
  4031. goto out_free;
  4032. }
  4033. err = btrfs_commit_transaction(trans);
  4034. out_free:
  4035. kfree(rc);
  4036. out:
  4037. if (!list_empty(&reloc_roots))
  4038. free_reloc_roots(&reloc_roots);
  4039. btrfs_free_path(path);
  4040. if (err == 0) {
  4041. /* cleanup orphan inode in data relocation tree */
  4042. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  4043. if (IS_ERR(fs_root))
  4044. err = PTR_ERR(fs_root);
  4045. else
  4046. err = btrfs_orphan_cleanup(fs_root);
  4047. }
  4048. return err;
  4049. }
  4050. /*
  4051. * helper to add ordered checksum for data relocation.
  4052. *
  4053. * cloning checksum properly handles the nodatasum extents.
  4054. * it also saves CPU time to re-calculate the checksum.
  4055. */
  4056. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  4057. {
  4058. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4059. struct btrfs_ordered_sum *sums;
  4060. struct btrfs_ordered_extent *ordered;
  4061. int ret;
  4062. u64 disk_bytenr;
  4063. u64 new_bytenr;
  4064. LIST_HEAD(list);
  4065. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  4066. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  4067. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  4068. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  4069. disk_bytenr + len - 1, &list, 0);
  4070. if (ret)
  4071. goto out;
  4072. while (!list_empty(&list)) {
  4073. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  4074. list_del_init(&sums->list);
  4075. /*
  4076. * We need to offset the new_bytenr based on where the csum is.
  4077. * We need to do this because we will read in entire prealloc
  4078. * extents but we may have written to say the middle of the
  4079. * prealloc extent, so we need to make sure the csum goes with
  4080. * the right disk offset.
  4081. *
  4082. * We can do this because the data reloc inode refers strictly
  4083. * to the on disk bytes, so we don't have to worry about
  4084. * disk_len vs real len like with real inodes since it's all
  4085. * disk length.
  4086. */
  4087. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  4088. sums->bytenr = new_bytenr;
  4089. btrfs_add_ordered_sum(inode, ordered, sums);
  4090. }
  4091. out:
  4092. btrfs_put_ordered_extent(ordered);
  4093. return ret;
  4094. }
  4095. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4096. struct btrfs_root *root, struct extent_buffer *buf,
  4097. struct extent_buffer *cow)
  4098. {
  4099. struct btrfs_fs_info *fs_info = root->fs_info;
  4100. struct reloc_control *rc;
  4101. struct backref_node *node;
  4102. int first_cow = 0;
  4103. int level;
  4104. int ret = 0;
  4105. rc = fs_info->reloc_ctl;
  4106. if (!rc)
  4107. return 0;
  4108. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4109. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4110. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4111. if (buf == root->node)
  4112. __update_reloc_root(root, cow->start);
  4113. }
  4114. level = btrfs_header_level(buf);
  4115. if (btrfs_header_generation(buf) <=
  4116. btrfs_root_last_snapshot(&root->root_item))
  4117. first_cow = 1;
  4118. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4119. rc->create_reloc_tree) {
  4120. WARN_ON(!first_cow && level == 0);
  4121. node = rc->backref_cache.path[level];
  4122. BUG_ON(node->bytenr != buf->start &&
  4123. node->new_bytenr != buf->start);
  4124. drop_node_buffer(node);
  4125. extent_buffer_get(cow);
  4126. node->eb = cow;
  4127. node->new_bytenr = cow->start;
  4128. if (!node->pending) {
  4129. list_move_tail(&node->list,
  4130. &rc->backref_cache.pending[level]);
  4131. node->pending = 1;
  4132. }
  4133. if (first_cow)
  4134. __mark_block_processed(rc, node);
  4135. if (first_cow && level > 0)
  4136. rc->nodes_relocated += buf->len;
  4137. }
  4138. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4139. ret = replace_file_extents(trans, rc, root, cow);
  4140. return ret;
  4141. }
  4142. /*
  4143. * called before creating snapshot. it calculates metadata reservation
  4144. * required for relocating tree blocks in the snapshot
  4145. */
  4146. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4147. u64 *bytes_to_reserve)
  4148. {
  4149. struct btrfs_root *root;
  4150. struct reloc_control *rc;
  4151. root = pending->root;
  4152. if (!root->reloc_root)
  4153. return;
  4154. rc = root->fs_info->reloc_ctl;
  4155. if (!rc->merge_reloc_tree)
  4156. return;
  4157. root = root->reloc_root;
  4158. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4159. /*
  4160. * relocation is in the stage of merging trees. the space
  4161. * used by merging a reloc tree is twice the size of
  4162. * relocated tree nodes in the worst case. half for cowing
  4163. * the reloc tree, half for cowing the fs tree. the space
  4164. * used by cowing the reloc tree will be freed after the
  4165. * tree is dropped. if we create snapshot, cowing the fs
  4166. * tree may use more space than it frees. so we need
  4167. * reserve extra space.
  4168. */
  4169. *bytes_to_reserve += rc->nodes_relocated;
  4170. }
  4171. /*
  4172. * called after snapshot is created. migrate block reservation
  4173. * and create reloc root for the newly created snapshot
  4174. */
  4175. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4176. struct btrfs_pending_snapshot *pending)
  4177. {
  4178. struct btrfs_root *root = pending->root;
  4179. struct btrfs_root *reloc_root;
  4180. struct btrfs_root *new_root;
  4181. struct reloc_control *rc;
  4182. int ret;
  4183. if (!root->reloc_root)
  4184. return 0;
  4185. rc = root->fs_info->reloc_ctl;
  4186. rc->merging_rsv_size += rc->nodes_relocated;
  4187. if (rc->merge_reloc_tree) {
  4188. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4189. rc->block_rsv,
  4190. rc->nodes_relocated, 1);
  4191. if (ret)
  4192. return ret;
  4193. }
  4194. new_root = pending->snap;
  4195. reloc_root = create_reloc_root(trans, root->reloc_root,
  4196. new_root->root_key.objectid);
  4197. if (IS_ERR(reloc_root))
  4198. return PTR_ERR(reloc_root);
  4199. ret = __add_reloc_root(reloc_root);
  4200. BUG_ON(ret < 0);
  4201. new_root->reloc_root = reloc_root;
  4202. if (rc->create_reloc_tree)
  4203. ret = clone_backref_node(trans, rc, root, reloc_root);
  4204. return ret;
  4205. }