super.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. /* AFS superblock handling
  2. *
  3. * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
  4. *
  5. * This software may be freely redistributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * You should have received a copy of the GNU General Public License
  9. * along with this program; if not, write to the Free Software
  10. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  11. *
  12. * Authors: David Howells <dhowells@redhat.com>
  13. * David Woodhouse <dwmw2@infradead.org>
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/mount.h>
  19. #include <linux/init.h>
  20. #include <linux/slab.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/parser.h>
  24. #include <linux/statfs.h>
  25. #include <linux/sched.h>
  26. #include <linux/nsproxy.h>
  27. #include <net/net_namespace.h>
  28. #include "internal.h"
  29. #define AFS_FS_MAGIC 0x6B414653 /* 'kAFS' */
  30. static void afs_i_init_once(void *foo);
  31. static struct dentry *afs_mount(struct file_system_type *fs_type,
  32. int flags, const char *dev_name, void *data);
  33. static void afs_kill_super(struct super_block *sb);
  34. static struct inode *afs_alloc_inode(struct super_block *sb);
  35. static void afs_destroy_inode(struct inode *inode);
  36. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
  37. static int afs_show_devname(struct seq_file *m, struct dentry *root);
  38. static int afs_show_options(struct seq_file *m, struct dentry *root);
  39. struct file_system_type afs_fs_type = {
  40. .owner = THIS_MODULE,
  41. .name = "afs",
  42. .mount = afs_mount,
  43. .kill_sb = afs_kill_super,
  44. .fs_flags = 0,
  45. };
  46. MODULE_ALIAS_FS("afs");
  47. static const struct super_operations afs_super_ops = {
  48. .statfs = afs_statfs,
  49. .alloc_inode = afs_alloc_inode,
  50. .drop_inode = afs_drop_inode,
  51. .destroy_inode = afs_destroy_inode,
  52. .evict_inode = afs_evict_inode,
  53. .show_devname = afs_show_devname,
  54. .show_options = afs_show_options,
  55. };
  56. static struct kmem_cache *afs_inode_cachep;
  57. static atomic_t afs_count_active_inodes;
  58. enum {
  59. afs_no_opt,
  60. afs_opt_cell,
  61. afs_opt_rwpath,
  62. afs_opt_vol,
  63. afs_opt_autocell,
  64. };
  65. static const match_table_t afs_options_list = {
  66. { afs_opt_cell, "cell=%s" },
  67. { afs_opt_rwpath, "rwpath" },
  68. { afs_opt_vol, "vol=%s" },
  69. { afs_opt_autocell, "autocell" },
  70. { afs_no_opt, NULL },
  71. };
  72. /*
  73. * initialise the filesystem
  74. */
  75. int __init afs_fs_init(void)
  76. {
  77. int ret;
  78. _enter("");
  79. /* create ourselves an inode cache */
  80. atomic_set(&afs_count_active_inodes, 0);
  81. ret = -ENOMEM;
  82. afs_inode_cachep = kmem_cache_create("afs_inode_cache",
  83. sizeof(struct afs_vnode),
  84. 0,
  85. SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
  86. afs_i_init_once);
  87. if (!afs_inode_cachep) {
  88. printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
  89. return ret;
  90. }
  91. /* now export our filesystem to lesser mortals */
  92. ret = register_filesystem(&afs_fs_type);
  93. if (ret < 0) {
  94. kmem_cache_destroy(afs_inode_cachep);
  95. _leave(" = %d", ret);
  96. return ret;
  97. }
  98. _leave(" = 0");
  99. return 0;
  100. }
  101. /*
  102. * clean up the filesystem
  103. */
  104. void __exit afs_fs_exit(void)
  105. {
  106. _enter("");
  107. afs_mntpt_kill_timer();
  108. unregister_filesystem(&afs_fs_type);
  109. if (atomic_read(&afs_count_active_inodes) != 0) {
  110. printk("kAFS: %d active inode objects still present\n",
  111. atomic_read(&afs_count_active_inodes));
  112. BUG();
  113. }
  114. /*
  115. * Make sure all delayed rcu free inodes are flushed before we
  116. * destroy cache.
  117. */
  118. rcu_barrier();
  119. kmem_cache_destroy(afs_inode_cachep);
  120. _leave("");
  121. }
  122. /*
  123. * Display the mount device name in /proc/mounts.
  124. */
  125. static int afs_show_devname(struct seq_file *m, struct dentry *root)
  126. {
  127. struct afs_super_info *as = root->d_sb->s_fs_info;
  128. struct afs_volume *volume = as->volume;
  129. struct afs_cell *cell = volume->cell;
  130. const char *suf = "";
  131. char pref = '%';
  132. switch (volume->type) {
  133. case AFSVL_RWVOL:
  134. break;
  135. case AFSVL_ROVOL:
  136. pref = '#';
  137. if (volume->type_force)
  138. suf = ".readonly";
  139. break;
  140. case AFSVL_BACKVOL:
  141. pref = '#';
  142. suf = ".backup";
  143. break;
  144. }
  145. seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->vlocation->vldb.name, suf);
  146. return 0;
  147. }
  148. /*
  149. * Display the mount options in /proc/mounts.
  150. */
  151. static int afs_show_options(struct seq_file *m, struct dentry *root)
  152. {
  153. if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
  154. seq_puts(m, "autocell");
  155. return 0;
  156. }
  157. /*
  158. * parse the mount options
  159. * - this function has been shamelessly adapted from the ext3 fs which
  160. * shamelessly adapted it from the msdos fs
  161. */
  162. static int afs_parse_options(struct afs_mount_params *params,
  163. char *options, const char **devname)
  164. {
  165. struct afs_cell *cell;
  166. substring_t args[MAX_OPT_ARGS];
  167. char *p;
  168. int token;
  169. _enter("%s", options);
  170. options[PAGE_SIZE - 1] = 0;
  171. while ((p = strsep(&options, ","))) {
  172. if (!*p)
  173. continue;
  174. token = match_token(p, afs_options_list, args);
  175. switch (token) {
  176. case afs_opt_cell:
  177. cell = afs_cell_lookup(args[0].from,
  178. args[0].to - args[0].from,
  179. false);
  180. if (IS_ERR(cell))
  181. return PTR_ERR(cell);
  182. afs_put_cell(params->cell);
  183. params->cell = cell;
  184. break;
  185. case afs_opt_rwpath:
  186. params->rwpath = 1;
  187. break;
  188. case afs_opt_vol:
  189. *devname = args[0].from;
  190. break;
  191. case afs_opt_autocell:
  192. params->autocell = 1;
  193. break;
  194. default:
  195. printk(KERN_ERR "kAFS:"
  196. " Unknown or invalid mount option: '%s'\n", p);
  197. return -EINVAL;
  198. }
  199. }
  200. _leave(" = 0");
  201. return 0;
  202. }
  203. /*
  204. * parse a device name to get cell name, volume name, volume type and R/W
  205. * selector
  206. * - this can be one of the following:
  207. * "%[cell:]volume[.]" R/W volume
  208. * "#[cell:]volume[.]" R/O or R/W volume (rwpath=0),
  209. * or R/W (rwpath=1) volume
  210. * "%[cell:]volume.readonly" R/O volume
  211. * "#[cell:]volume.readonly" R/O volume
  212. * "%[cell:]volume.backup" Backup volume
  213. * "#[cell:]volume.backup" Backup volume
  214. */
  215. static int afs_parse_device_name(struct afs_mount_params *params,
  216. const char *name)
  217. {
  218. struct afs_cell *cell;
  219. const char *cellname, *suffix;
  220. int cellnamesz;
  221. _enter(",%s", name);
  222. if (!name) {
  223. printk(KERN_ERR "kAFS: no volume name specified\n");
  224. return -EINVAL;
  225. }
  226. if ((name[0] != '%' && name[0] != '#') || !name[1]) {
  227. printk(KERN_ERR "kAFS: unparsable volume name\n");
  228. return -EINVAL;
  229. }
  230. /* determine the type of volume we're looking for */
  231. params->type = AFSVL_ROVOL;
  232. params->force = false;
  233. if (params->rwpath || name[0] == '%') {
  234. params->type = AFSVL_RWVOL;
  235. params->force = true;
  236. }
  237. name++;
  238. /* split the cell name out if there is one */
  239. params->volname = strchr(name, ':');
  240. if (params->volname) {
  241. cellname = name;
  242. cellnamesz = params->volname - name;
  243. params->volname++;
  244. } else {
  245. params->volname = name;
  246. cellname = NULL;
  247. cellnamesz = 0;
  248. }
  249. /* the volume type is further affected by a possible suffix */
  250. suffix = strrchr(params->volname, '.');
  251. if (suffix) {
  252. if (strcmp(suffix, ".readonly") == 0) {
  253. params->type = AFSVL_ROVOL;
  254. params->force = true;
  255. } else if (strcmp(suffix, ".backup") == 0) {
  256. params->type = AFSVL_BACKVOL;
  257. params->force = true;
  258. } else if (suffix[1] == 0) {
  259. } else {
  260. suffix = NULL;
  261. }
  262. }
  263. params->volnamesz = suffix ?
  264. suffix - params->volname : strlen(params->volname);
  265. _debug("cell %*.*s [%p]",
  266. cellnamesz, cellnamesz, cellname ?: "", params->cell);
  267. /* lookup the cell record */
  268. if (cellname || !params->cell) {
  269. cell = afs_cell_lookup(cellname, cellnamesz, true);
  270. if (IS_ERR(cell)) {
  271. printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
  272. cellnamesz, cellnamesz, cellname ?: "");
  273. return PTR_ERR(cell);
  274. }
  275. afs_put_cell(params->cell);
  276. params->cell = cell;
  277. }
  278. _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
  279. params->cell->name, params->cell,
  280. params->volnamesz, params->volnamesz, params->volname,
  281. suffix ?: "-", params->type, params->force ? " FORCE" : "");
  282. return 0;
  283. }
  284. /*
  285. * check a superblock to see if it's the one we're looking for
  286. */
  287. static int afs_test_super(struct super_block *sb, void *data)
  288. {
  289. struct afs_super_info *as1 = data;
  290. struct afs_super_info *as = sb->s_fs_info;
  291. return as->volume == as1->volume;
  292. }
  293. static int afs_set_super(struct super_block *sb, void *data)
  294. {
  295. sb->s_fs_info = data;
  296. return set_anon_super(sb, NULL);
  297. }
  298. /*
  299. * fill in the superblock
  300. */
  301. static int afs_fill_super(struct super_block *sb,
  302. struct afs_mount_params *params)
  303. {
  304. struct afs_super_info *as = sb->s_fs_info;
  305. struct afs_fid fid;
  306. struct inode *inode = NULL;
  307. int ret;
  308. _enter("");
  309. /* fill in the superblock */
  310. sb->s_blocksize = PAGE_SIZE;
  311. sb->s_blocksize_bits = PAGE_SHIFT;
  312. sb->s_magic = AFS_FS_MAGIC;
  313. sb->s_op = &afs_super_ops;
  314. sb->s_xattr = afs_xattr_handlers;
  315. ret = super_setup_bdi(sb);
  316. if (ret)
  317. return ret;
  318. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  319. strlcpy(sb->s_id, as->volume->vlocation->vldb.name, sizeof(sb->s_id));
  320. /* allocate the root inode and dentry */
  321. fid.vid = as->volume->vid;
  322. fid.vnode = 1;
  323. fid.unique = 1;
  324. inode = afs_iget(sb, params->key, &fid, NULL, NULL);
  325. if (IS_ERR(inode))
  326. return PTR_ERR(inode);
  327. if (params->autocell)
  328. set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
  329. ret = -ENOMEM;
  330. sb->s_root = d_make_root(inode);
  331. if (!sb->s_root)
  332. goto error;
  333. sb->s_d_op = &afs_fs_dentry_operations;
  334. _leave(" = 0");
  335. return 0;
  336. error:
  337. _leave(" = %d", ret);
  338. return ret;
  339. }
  340. /*
  341. * get an AFS superblock
  342. */
  343. static struct dentry *afs_mount(struct file_system_type *fs_type,
  344. int flags, const char *dev_name, void *options)
  345. {
  346. struct afs_mount_params params;
  347. struct super_block *sb;
  348. struct afs_volume *vol;
  349. struct key *key;
  350. char *new_opts = kstrdup(options, GFP_KERNEL);
  351. struct afs_super_info *as;
  352. int ret;
  353. _enter(",,%s,%p", dev_name, options);
  354. memset(&params, 0, sizeof(params));
  355. ret = -EINVAL;
  356. if (current->nsproxy->net_ns != &init_net)
  357. goto error;
  358. /* parse the options and device name */
  359. if (options) {
  360. ret = afs_parse_options(&params, options, &dev_name);
  361. if (ret < 0)
  362. goto error;
  363. }
  364. ret = afs_parse_device_name(&params, dev_name);
  365. if (ret < 0)
  366. goto error;
  367. /* try and do the mount securely */
  368. key = afs_request_key(params.cell);
  369. if (IS_ERR(key)) {
  370. _leave(" = %ld [key]", PTR_ERR(key));
  371. ret = PTR_ERR(key);
  372. goto error;
  373. }
  374. params.key = key;
  375. /* parse the device name */
  376. vol = afs_volume_lookup(&params);
  377. if (IS_ERR(vol)) {
  378. ret = PTR_ERR(vol);
  379. goto error;
  380. }
  381. /* allocate a superblock info record */
  382. as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
  383. if (!as) {
  384. ret = -ENOMEM;
  385. afs_put_volume(vol);
  386. goto error;
  387. }
  388. as->volume = vol;
  389. /* allocate a deviceless superblock */
  390. sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
  391. if (IS_ERR(sb)) {
  392. ret = PTR_ERR(sb);
  393. afs_put_volume(vol);
  394. kfree(as);
  395. goto error;
  396. }
  397. if (!sb->s_root) {
  398. /* initial superblock/root creation */
  399. _debug("create");
  400. ret = afs_fill_super(sb, &params);
  401. if (ret < 0) {
  402. deactivate_locked_super(sb);
  403. goto error;
  404. }
  405. sb->s_flags |= MS_ACTIVE;
  406. } else {
  407. _debug("reuse");
  408. ASSERTCMP(sb->s_flags, &, MS_ACTIVE);
  409. afs_put_volume(vol);
  410. kfree(as);
  411. }
  412. afs_put_cell(params.cell);
  413. kfree(new_opts);
  414. _leave(" = 0 [%p]", sb);
  415. return dget(sb->s_root);
  416. error:
  417. afs_put_cell(params.cell);
  418. key_put(params.key);
  419. kfree(new_opts);
  420. _leave(" = %d", ret);
  421. return ERR_PTR(ret);
  422. }
  423. static void afs_kill_super(struct super_block *sb)
  424. {
  425. struct afs_super_info *as = sb->s_fs_info;
  426. kill_anon_super(sb);
  427. afs_put_volume(as->volume);
  428. kfree(as);
  429. }
  430. /*
  431. * initialise an inode cache slab element prior to any use
  432. */
  433. static void afs_i_init_once(void *_vnode)
  434. {
  435. struct afs_vnode *vnode = _vnode;
  436. memset(vnode, 0, sizeof(*vnode));
  437. inode_init_once(&vnode->vfs_inode);
  438. init_waitqueue_head(&vnode->update_waitq);
  439. mutex_init(&vnode->permits_lock);
  440. mutex_init(&vnode->validate_lock);
  441. spin_lock_init(&vnode->writeback_lock);
  442. spin_lock_init(&vnode->lock);
  443. INIT_LIST_HEAD(&vnode->writebacks);
  444. INIT_LIST_HEAD(&vnode->pending_locks);
  445. INIT_LIST_HEAD(&vnode->granted_locks);
  446. INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
  447. INIT_WORK(&vnode->cb_broken_work, afs_broken_callback_work);
  448. }
  449. /*
  450. * allocate an AFS inode struct from our slab cache
  451. */
  452. static struct inode *afs_alloc_inode(struct super_block *sb)
  453. {
  454. struct afs_vnode *vnode;
  455. vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
  456. if (!vnode)
  457. return NULL;
  458. atomic_inc(&afs_count_active_inodes);
  459. memset(&vnode->fid, 0, sizeof(vnode->fid));
  460. memset(&vnode->status, 0, sizeof(vnode->status));
  461. vnode->volume = NULL;
  462. vnode->update_cnt = 0;
  463. vnode->flags = 1 << AFS_VNODE_UNSET;
  464. vnode->cb_promised = false;
  465. _leave(" = %p", &vnode->vfs_inode);
  466. return &vnode->vfs_inode;
  467. }
  468. static void afs_i_callback(struct rcu_head *head)
  469. {
  470. struct inode *inode = container_of(head, struct inode, i_rcu);
  471. struct afs_vnode *vnode = AFS_FS_I(inode);
  472. kmem_cache_free(afs_inode_cachep, vnode);
  473. }
  474. /*
  475. * destroy an AFS inode struct
  476. */
  477. static void afs_destroy_inode(struct inode *inode)
  478. {
  479. struct afs_vnode *vnode = AFS_FS_I(inode);
  480. _enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
  481. _debug("DESTROY INODE %p", inode);
  482. ASSERTCMP(vnode->server, ==, NULL);
  483. call_rcu(&inode->i_rcu, afs_i_callback);
  484. atomic_dec(&afs_count_active_inodes);
  485. }
  486. /*
  487. * return information about an AFS volume
  488. */
  489. static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
  490. {
  491. struct afs_volume_status vs;
  492. struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
  493. struct key *key;
  494. int ret;
  495. key = afs_request_key(vnode->volume->cell);
  496. if (IS_ERR(key))
  497. return PTR_ERR(key);
  498. ret = afs_vnode_get_volume_status(vnode, key, &vs);
  499. key_put(key);
  500. if (ret < 0) {
  501. _leave(" = %d", ret);
  502. return ret;
  503. }
  504. buf->f_type = dentry->d_sb->s_magic;
  505. buf->f_bsize = AFS_BLOCK_SIZE;
  506. buf->f_namelen = AFSNAMEMAX - 1;
  507. if (vs.max_quota == 0)
  508. buf->f_blocks = vs.part_max_blocks;
  509. else
  510. buf->f_blocks = vs.max_quota;
  511. buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
  512. return 0;
  513. }