mr.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112
  1. /*
  2. * Copyright(c) 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/vmalloc.h>
  49. #include <rdma/ib_umem.h>
  50. #include <rdma/rdma_vt.h>
  51. #include "vt.h"
  52. #include "mr.h"
  53. #include "trace.h"
  54. /**
  55. * rvt_driver_mr_init - Init MR resources per driver
  56. * @rdi: rvt dev struct
  57. *
  58. * Do any intilization needed when a driver registers with rdmavt.
  59. *
  60. * Return: 0 on success or errno on failure
  61. */
  62. int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  63. {
  64. unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  65. unsigned lk_tab_size;
  66. int i;
  67. /*
  68. * The top hfi1_lkey_table_size bits are used to index the
  69. * table. The lower 8 bits can be owned by the user (copied from
  70. * the LKEY). The remaining bits act as a generation number or tag.
  71. */
  72. if (!lkey_table_size)
  73. return -EINVAL;
  74. spin_lock_init(&rdi->lkey_table.lock);
  75. /* ensure generation is at least 4 bits */
  76. if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  77. rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  78. lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  79. rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  80. lkey_table_size = rdi->dparms.lkey_table_size;
  81. }
  82. rdi->lkey_table.max = 1 << lkey_table_size;
  83. rdi->lkey_table.shift = 32 - lkey_table_size;
  84. lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  85. rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  86. vmalloc_node(lk_tab_size, rdi->dparms.node);
  87. if (!rdi->lkey_table.table)
  88. return -ENOMEM;
  89. RCU_INIT_POINTER(rdi->dma_mr, NULL);
  90. for (i = 0; i < rdi->lkey_table.max; i++)
  91. RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  92. return 0;
  93. }
  94. /**
  95. *rvt_mr_exit: clean up MR
  96. *@rdi: rvt dev structure
  97. *
  98. * called when drivers have unregistered or perhaps failed to register with us
  99. */
  100. void rvt_mr_exit(struct rvt_dev_info *rdi)
  101. {
  102. if (rdi->dma_mr)
  103. rvt_pr_err(rdi, "DMA MR not null!\n");
  104. vfree(rdi->lkey_table.table);
  105. }
  106. static void rvt_deinit_mregion(struct rvt_mregion *mr)
  107. {
  108. int i = mr->mapsz;
  109. mr->mapsz = 0;
  110. while (i)
  111. kfree(mr->map[--i]);
  112. percpu_ref_exit(&mr->refcount);
  113. }
  114. static void __rvt_mregion_complete(struct percpu_ref *ref)
  115. {
  116. struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
  117. refcount);
  118. complete(&mr->comp);
  119. }
  120. static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  121. int count, unsigned int percpu_flags)
  122. {
  123. int m, i = 0;
  124. struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  125. mr->mapsz = 0;
  126. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  127. for (; i < m; i++) {
  128. mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
  129. dev->dparms.node);
  130. if (!mr->map[i])
  131. goto bail;
  132. mr->mapsz++;
  133. }
  134. init_completion(&mr->comp);
  135. /* count returning the ptr to user */
  136. if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
  137. percpu_flags, GFP_KERNEL))
  138. goto bail;
  139. atomic_set(&mr->lkey_invalid, 0);
  140. mr->pd = pd;
  141. mr->max_segs = count;
  142. return 0;
  143. bail:
  144. rvt_deinit_mregion(mr);
  145. return -ENOMEM;
  146. }
  147. /**
  148. * rvt_alloc_lkey - allocate an lkey
  149. * @mr: memory region that this lkey protects
  150. * @dma_region: 0->normal key, 1->restricted DMA key
  151. *
  152. * Returns 0 if successful, otherwise returns -errno.
  153. *
  154. * Increments mr reference count as required.
  155. *
  156. * Sets the lkey field mr for non-dma regions.
  157. *
  158. */
  159. static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
  160. {
  161. unsigned long flags;
  162. u32 r;
  163. u32 n;
  164. int ret = 0;
  165. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  166. struct rvt_lkey_table *rkt = &dev->lkey_table;
  167. rvt_get_mr(mr);
  168. spin_lock_irqsave(&rkt->lock, flags);
  169. /* special case for dma_mr lkey == 0 */
  170. if (dma_region) {
  171. struct rvt_mregion *tmr;
  172. tmr = rcu_access_pointer(dev->dma_mr);
  173. if (!tmr) {
  174. mr->lkey_published = 1;
  175. /* Insure published written first */
  176. rcu_assign_pointer(dev->dma_mr, mr);
  177. rvt_get_mr(mr);
  178. }
  179. goto success;
  180. }
  181. /* Find the next available LKEY */
  182. r = rkt->next;
  183. n = r;
  184. for (;;) {
  185. if (!rcu_access_pointer(rkt->table[r]))
  186. break;
  187. r = (r + 1) & (rkt->max - 1);
  188. if (r == n)
  189. goto bail;
  190. }
  191. rkt->next = (r + 1) & (rkt->max - 1);
  192. /*
  193. * Make sure lkey is never zero which is reserved to indicate an
  194. * unrestricted LKEY.
  195. */
  196. rkt->gen++;
  197. /*
  198. * bits are capped to ensure enough bits for generation number
  199. */
  200. mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
  201. ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
  202. << 8);
  203. if (mr->lkey == 0) {
  204. mr->lkey |= 1 << 8;
  205. rkt->gen++;
  206. }
  207. mr->lkey_published = 1;
  208. /* Insure published written first */
  209. rcu_assign_pointer(rkt->table[r], mr);
  210. success:
  211. spin_unlock_irqrestore(&rkt->lock, flags);
  212. out:
  213. return ret;
  214. bail:
  215. rvt_put_mr(mr);
  216. spin_unlock_irqrestore(&rkt->lock, flags);
  217. ret = -ENOMEM;
  218. goto out;
  219. }
  220. /**
  221. * rvt_free_lkey - free an lkey
  222. * @mr: mr to free from tables
  223. */
  224. static void rvt_free_lkey(struct rvt_mregion *mr)
  225. {
  226. unsigned long flags;
  227. u32 lkey = mr->lkey;
  228. u32 r;
  229. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  230. struct rvt_lkey_table *rkt = &dev->lkey_table;
  231. int freed = 0;
  232. spin_lock_irqsave(&rkt->lock, flags);
  233. if (!lkey) {
  234. if (mr->lkey_published) {
  235. mr->lkey_published = 0;
  236. /* insure published is written before pointer */
  237. rcu_assign_pointer(dev->dma_mr, NULL);
  238. rvt_put_mr(mr);
  239. }
  240. } else {
  241. if (!mr->lkey_published)
  242. goto out;
  243. r = lkey >> (32 - dev->dparms.lkey_table_size);
  244. mr->lkey_published = 0;
  245. /* insure published is written before pointer */
  246. rcu_assign_pointer(rkt->table[r], NULL);
  247. }
  248. freed++;
  249. out:
  250. spin_unlock_irqrestore(&rkt->lock, flags);
  251. if (freed)
  252. percpu_ref_kill(&mr->refcount);
  253. }
  254. static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
  255. {
  256. struct rvt_mr *mr;
  257. int rval = -ENOMEM;
  258. int m;
  259. /* Allocate struct plus pointers to first level page tables. */
  260. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  261. mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
  262. if (!mr)
  263. goto bail;
  264. rval = rvt_init_mregion(&mr->mr, pd, count, 0);
  265. if (rval)
  266. goto bail;
  267. /*
  268. * ib_reg_phys_mr() will initialize mr->ibmr except for
  269. * lkey and rkey.
  270. */
  271. rval = rvt_alloc_lkey(&mr->mr, 0);
  272. if (rval)
  273. goto bail_mregion;
  274. mr->ibmr.lkey = mr->mr.lkey;
  275. mr->ibmr.rkey = mr->mr.lkey;
  276. done:
  277. return mr;
  278. bail_mregion:
  279. rvt_deinit_mregion(&mr->mr);
  280. bail:
  281. kfree(mr);
  282. mr = ERR_PTR(rval);
  283. goto done;
  284. }
  285. static void __rvt_free_mr(struct rvt_mr *mr)
  286. {
  287. rvt_free_lkey(&mr->mr);
  288. rvt_deinit_mregion(&mr->mr);
  289. kfree(mr);
  290. }
  291. /**
  292. * rvt_get_dma_mr - get a DMA memory region
  293. * @pd: protection domain for this memory region
  294. * @acc: access flags
  295. *
  296. * Return: the memory region on success, otherwise returns an errno.
  297. * Note that all DMA addresses should be created via the functions in
  298. * struct dma_virt_ops.
  299. */
  300. struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
  301. {
  302. struct rvt_mr *mr;
  303. struct ib_mr *ret;
  304. int rval;
  305. if (ibpd_to_rvtpd(pd)->user)
  306. return ERR_PTR(-EPERM);
  307. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  308. if (!mr) {
  309. ret = ERR_PTR(-ENOMEM);
  310. goto bail;
  311. }
  312. rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
  313. if (rval) {
  314. ret = ERR_PTR(rval);
  315. goto bail;
  316. }
  317. rval = rvt_alloc_lkey(&mr->mr, 1);
  318. if (rval) {
  319. ret = ERR_PTR(rval);
  320. goto bail_mregion;
  321. }
  322. mr->mr.access_flags = acc;
  323. ret = &mr->ibmr;
  324. done:
  325. return ret;
  326. bail_mregion:
  327. rvt_deinit_mregion(&mr->mr);
  328. bail:
  329. kfree(mr);
  330. goto done;
  331. }
  332. /**
  333. * rvt_reg_user_mr - register a userspace memory region
  334. * @pd: protection domain for this memory region
  335. * @start: starting userspace address
  336. * @length: length of region to register
  337. * @mr_access_flags: access flags for this memory region
  338. * @udata: unused by the driver
  339. *
  340. * Return: the memory region on success, otherwise returns an errno.
  341. */
  342. struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  343. u64 virt_addr, int mr_access_flags,
  344. struct ib_udata *udata)
  345. {
  346. struct rvt_mr *mr;
  347. struct ib_umem *umem;
  348. struct scatterlist *sg;
  349. int n, m, entry;
  350. struct ib_mr *ret;
  351. if (length == 0)
  352. return ERR_PTR(-EINVAL);
  353. umem = ib_umem_get(pd->uobject->context, start, length,
  354. mr_access_flags, 0);
  355. if (IS_ERR(umem))
  356. return (void *)umem;
  357. n = umem->nmap;
  358. mr = __rvt_alloc_mr(n, pd);
  359. if (IS_ERR(mr)) {
  360. ret = (struct ib_mr *)mr;
  361. goto bail_umem;
  362. }
  363. mr->mr.user_base = start;
  364. mr->mr.iova = virt_addr;
  365. mr->mr.length = length;
  366. mr->mr.offset = ib_umem_offset(umem);
  367. mr->mr.access_flags = mr_access_flags;
  368. mr->umem = umem;
  369. mr->mr.page_shift = umem->page_shift;
  370. m = 0;
  371. n = 0;
  372. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  373. void *vaddr;
  374. vaddr = page_address(sg_page(sg));
  375. if (!vaddr) {
  376. ret = ERR_PTR(-EINVAL);
  377. goto bail_inval;
  378. }
  379. mr->mr.map[m]->segs[n].vaddr = vaddr;
  380. mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
  381. trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
  382. BIT(umem->page_shift));
  383. n++;
  384. if (n == RVT_SEGSZ) {
  385. m++;
  386. n = 0;
  387. }
  388. }
  389. return &mr->ibmr;
  390. bail_inval:
  391. __rvt_free_mr(mr);
  392. bail_umem:
  393. ib_umem_release(umem);
  394. return ret;
  395. }
  396. /**
  397. * rvt_dereg_clean_qp_cb - callback from iterator
  398. * @qp - the qp
  399. * @v - the mregion (as u64)
  400. *
  401. * This routine fields the callback for all QPs and
  402. * for QPs in the same PD as the MR will call the
  403. * rvt_qp_mr_clean() to potentially cleanup references.
  404. */
  405. static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
  406. {
  407. struct rvt_mregion *mr = (struct rvt_mregion *)v;
  408. /* skip PDs that are not ours */
  409. if (mr->pd != qp->ibqp.pd)
  410. return;
  411. rvt_qp_mr_clean(qp, mr->lkey);
  412. }
  413. /**
  414. * rvt_dereg_clean_qps - find QPs for reference cleanup
  415. * @mr - the MR that is being deregistered
  416. *
  417. * This routine iterates RC QPs looking for references
  418. * to the lkey noted in mr.
  419. */
  420. static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
  421. {
  422. struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
  423. rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
  424. }
  425. /**
  426. * rvt_check_refs - check references
  427. * @mr - the megion
  428. * @t - the caller identification
  429. *
  430. * This routine checks MRs holding a reference during
  431. * when being de-registered.
  432. *
  433. * If the count is non-zero, the code calls a clean routine then
  434. * waits for the timeout for the count to zero.
  435. */
  436. static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
  437. {
  438. unsigned long timeout;
  439. struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
  440. if (percpu_ref_is_zero(&mr->refcount))
  441. return 0;
  442. /* avoid dma mr */
  443. if (mr->lkey)
  444. rvt_dereg_clean_qps(mr);
  445. timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
  446. if (!timeout) {
  447. rvt_pr_err(rdi,
  448. "%s timeout mr %p pd %p lkey %x refcount %ld\n",
  449. t, mr, mr->pd, mr->lkey,
  450. atomic_long_read(&mr->refcount.count));
  451. rvt_get_mr(mr);
  452. return -EBUSY;
  453. }
  454. return 0;
  455. }
  456. /**
  457. * rvt_mr_has_lkey - is MR
  458. * @mr - the mregion
  459. * @lkey - the lkey
  460. */
  461. bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
  462. {
  463. return mr && lkey == mr->lkey;
  464. }
  465. /**
  466. * rvt_ss_has_lkey - is mr in sge tests
  467. * @ss - the sge state
  468. * @lkey
  469. *
  470. * This code tests for an MR in the indicated
  471. * sge state.
  472. */
  473. bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
  474. {
  475. int i;
  476. bool rval = false;
  477. if (!ss->num_sge)
  478. return rval;
  479. /* first one */
  480. rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
  481. /* any others */
  482. for (i = 0; !rval && i < ss->num_sge - 1; i++)
  483. rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
  484. return rval;
  485. }
  486. /**
  487. * rvt_dereg_mr - unregister and free a memory region
  488. * @ibmr: the memory region to free
  489. *
  490. *
  491. * Note that this is called to free MRs created by rvt_get_dma_mr()
  492. * or rvt_reg_user_mr().
  493. *
  494. * Returns 0 on success.
  495. */
  496. int rvt_dereg_mr(struct ib_mr *ibmr)
  497. {
  498. struct rvt_mr *mr = to_imr(ibmr);
  499. int ret;
  500. rvt_free_lkey(&mr->mr);
  501. rvt_put_mr(&mr->mr); /* will set completion if last */
  502. ret = rvt_check_refs(&mr->mr, __func__);
  503. if (ret)
  504. goto out;
  505. rvt_deinit_mregion(&mr->mr);
  506. if (mr->umem)
  507. ib_umem_release(mr->umem);
  508. kfree(mr);
  509. out:
  510. return ret;
  511. }
  512. /**
  513. * rvt_alloc_mr - Allocate a memory region usable with the
  514. * @pd: protection domain for this memory region
  515. * @mr_type: mem region type
  516. * @max_num_sg: Max number of segments allowed
  517. *
  518. * Return: the memory region on success, otherwise return an errno.
  519. */
  520. struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
  521. enum ib_mr_type mr_type,
  522. u32 max_num_sg)
  523. {
  524. struct rvt_mr *mr;
  525. if (mr_type != IB_MR_TYPE_MEM_REG)
  526. return ERR_PTR(-EINVAL);
  527. mr = __rvt_alloc_mr(max_num_sg, pd);
  528. if (IS_ERR(mr))
  529. return (struct ib_mr *)mr;
  530. return &mr->ibmr;
  531. }
  532. /**
  533. * rvt_set_page - page assignment function called by ib_sg_to_pages
  534. * @ibmr: memory region
  535. * @addr: dma address of mapped page
  536. *
  537. * Return: 0 on success
  538. */
  539. static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
  540. {
  541. struct rvt_mr *mr = to_imr(ibmr);
  542. u32 ps = 1 << mr->mr.page_shift;
  543. u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
  544. int m, n;
  545. if (unlikely(mapped_segs == mr->mr.max_segs))
  546. return -ENOMEM;
  547. if (mr->mr.length == 0) {
  548. mr->mr.user_base = addr;
  549. mr->mr.iova = addr;
  550. }
  551. m = mapped_segs / RVT_SEGSZ;
  552. n = mapped_segs % RVT_SEGSZ;
  553. mr->mr.map[m]->segs[n].vaddr = (void *)addr;
  554. mr->mr.map[m]->segs[n].length = ps;
  555. trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
  556. mr->mr.length += ps;
  557. return 0;
  558. }
  559. /**
  560. * rvt_map_mr_sg - map sg list and set it the memory region
  561. * @ibmr: memory region
  562. * @sg: dma mapped scatterlist
  563. * @sg_nents: number of entries in sg
  564. * @sg_offset: offset in bytes into sg
  565. *
  566. * Return: number of sg elements mapped to the memory region
  567. */
  568. int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
  569. int sg_nents, unsigned int *sg_offset)
  570. {
  571. struct rvt_mr *mr = to_imr(ibmr);
  572. mr->mr.length = 0;
  573. mr->mr.page_shift = PAGE_SHIFT;
  574. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  575. rvt_set_page);
  576. }
  577. /**
  578. * rvt_fast_reg_mr - fast register physical MR
  579. * @qp: the queue pair where the work request comes from
  580. * @ibmr: the memory region to be registered
  581. * @key: updated key for this memory region
  582. * @access: access flags for this memory region
  583. *
  584. * Returns 0 on success.
  585. */
  586. int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
  587. int access)
  588. {
  589. struct rvt_mr *mr = to_imr(ibmr);
  590. if (qp->ibqp.pd != mr->mr.pd)
  591. return -EACCES;
  592. /* not applicable to dma MR or user MR */
  593. if (!mr->mr.lkey || mr->umem)
  594. return -EINVAL;
  595. if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
  596. return -EINVAL;
  597. ibmr->lkey = key;
  598. ibmr->rkey = key;
  599. mr->mr.lkey = key;
  600. mr->mr.access_flags = access;
  601. atomic_set(&mr->mr.lkey_invalid, 0);
  602. return 0;
  603. }
  604. EXPORT_SYMBOL(rvt_fast_reg_mr);
  605. /**
  606. * rvt_invalidate_rkey - invalidate an MR rkey
  607. * @qp: queue pair associated with the invalidate op
  608. * @rkey: rkey to invalidate
  609. *
  610. * Returns 0 on success.
  611. */
  612. int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
  613. {
  614. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  615. struct rvt_lkey_table *rkt = &dev->lkey_table;
  616. struct rvt_mregion *mr;
  617. if (rkey == 0)
  618. return -EINVAL;
  619. rcu_read_lock();
  620. mr = rcu_dereference(
  621. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  622. if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  623. goto bail;
  624. atomic_set(&mr->lkey_invalid, 1);
  625. rcu_read_unlock();
  626. return 0;
  627. bail:
  628. rcu_read_unlock();
  629. return -EINVAL;
  630. }
  631. EXPORT_SYMBOL(rvt_invalidate_rkey);
  632. /**
  633. * rvt_alloc_fmr - allocate a fast memory region
  634. * @pd: the protection domain for this memory region
  635. * @mr_access_flags: access flags for this memory region
  636. * @fmr_attr: fast memory region attributes
  637. *
  638. * Return: the memory region on success, otherwise returns an errno.
  639. */
  640. struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
  641. struct ib_fmr_attr *fmr_attr)
  642. {
  643. struct rvt_fmr *fmr;
  644. int m;
  645. struct ib_fmr *ret;
  646. int rval = -ENOMEM;
  647. /* Allocate struct plus pointers to first level page tables. */
  648. m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
  649. fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
  650. if (!fmr)
  651. goto bail;
  652. rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
  653. PERCPU_REF_INIT_ATOMIC);
  654. if (rval)
  655. goto bail;
  656. /*
  657. * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
  658. * rkey.
  659. */
  660. rval = rvt_alloc_lkey(&fmr->mr, 0);
  661. if (rval)
  662. goto bail_mregion;
  663. fmr->ibfmr.rkey = fmr->mr.lkey;
  664. fmr->ibfmr.lkey = fmr->mr.lkey;
  665. /*
  666. * Resources are allocated but no valid mapping (RKEY can't be
  667. * used).
  668. */
  669. fmr->mr.access_flags = mr_access_flags;
  670. fmr->mr.max_segs = fmr_attr->max_pages;
  671. fmr->mr.page_shift = fmr_attr->page_shift;
  672. ret = &fmr->ibfmr;
  673. done:
  674. return ret;
  675. bail_mregion:
  676. rvt_deinit_mregion(&fmr->mr);
  677. bail:
  678. kfree(fmr);
  679. ret = ERR_PTR(rval);
  680. goto done;
  681. }
  682. /**
  683. * rvt_map_phys_fmr - set up a fast memory region
  684. * @ibmfr: the fast memory region to set up
  685. * @page_list: the list of pages to associate with the fast memory region
  686. * @list_len: the number of pages to associate with the fast memory region
  687. * @iova: the virtual address of the start of the fast memory region
  688. *
  689. * This may be called from interrupt context.
  690. *
  691. * Return: 0 on success
  692. */
  693. int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
  694. int list_len, u64 iova)
  695. {
  696. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  697. struct rvt_lkey_table *rkt;
  698. unsigned long flags;
  699. int m, n;
  700. unsigned long i;
  701. u32 ps;
  702. struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
  703. i = atomic_long_read(&fmr->mr.refcount.count);
  704. if (i > 2)
  705. return -EBUSY;
  706. if (list_len > fmr->mr.max_segs)
  707. return -EINVAL;
  708. rkt = &rdi->lkey_table;
  709. spin_lock_irqsave(&rkt->lock, flags);
  710. fmr->mr.user_base = iova;
  711. fmr->mr.iova = iova;
  712. ps = 1 << fmr->mr.page_shift;
  713. fmr->mr.length = list_len * ps;
  714. m = 0;
  715. n = 0;
  716. for (i = 0; i < list_len; i++) {
  717. fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
  718. fmr->mr.map[m]->segs[n].length = ps;
  719. trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
  720. if (++n == RVT_SEGSZ) {
  721. m++;
  722. n = 0;
  723. }
  724. }
  725. spin_unlock_irqrestore(&rkt->lock, flags);
  726. return 0;
  727. }
  728. /**
  729. * rvt_unmap_fmr - unmap fast memory regions
  730. * @fmr_list: the list of fast memory regions to unmap
  731. *
  732. * Return: 0 on success.
  733. */
  734. int rvt_unmap_fmr(struct list_head *fmr_list)
  735. {
  736. struct rvt_fmr *fmr;
  737. struct rvt_lkey_table *rkt;
  738. unsigned long flags;
  739. struct rvt_dev_info *rdi;
  740. list_for_each_entry(fmr, fmr_list, ibfmr.list) {
  741. rdi = ib_to_rvt(fmr->ibfmr.device);
  742. rkt = &rdi->lkey_table;
  743. spin_lock_irqsave(&rkt->lock, flags);
  744. fmr->mr.user_base = 0;
  745. fmr->mr.iova = 0;
  746. fmr->mr.length = 0;
  747. spin_unlock_irqrestore(&rkt->lock, flags);
  748. }
  749. return 0;
  750. }
  751. /**
  752. * rvt_dealloc_fmr - deallocate a fast memory region
  753. * @ibfmr: the fast memory region to deallocate
  754. *
  755. * Return: 0 on success.
  756. */
  757. int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
  758. {
  759. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  760. int ret = 0;
  761. rvt_free_lkey(&fmr->mr);
  762. rvt_put_mr(&fmr->mr); /* will set completion if last */
  763. ret = rvt_check_refs(&fmr->mr, __func__);
  764. if (ret)
  765. goto out;
  766. rvt_deinit_mregion(&fmr->mr);
  767. kfree(fmr);
  768. out:
  769. return ret;
  770. }
  771. /**
  772. * rvt_sge_adjacent - is isge compressible
  773. * @last_sge: last outgoing SGE written
  774. * @sge: SGE to check
  775. *
  776. * If adjacent will update last_sge to add length.
  777. *
  778. * Return: true if isge is adjacent to last sge
  779. */
  780. static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
  781. struct ib_sge *sge)
  782. {
  783. if (last_sge && sge->lkey == last_sge->mr->lkey &&
  784. ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
  785. if (sge->lkey) {
  786. if (unlikely((sge->addr - last_sge->mr->user_base +
  787. sge->length > last_sge->mr->length)))
  788. return false; /* overrun, caller will catch */
  789. } else {
  790. last_sge->length += sge->length;
  791. }
  792. last_sge->sge_length += sge->length;
  793. trace_rvt_sge_adjacent(last_sge, sge);
  794. return true;
  795. }
  796. return false;
  797. }
  798. /**
  799. * rvt_lkey_ok - check IB SGE for validity and initialize
  800. * @rkt: table containing lkey to check SGE against
  801. * @pd: protection domain
  802. * @isge: outgoing internal SGE
  803. * @last_sge: last outgoing SGE written
  804. * @sge: SGE to check
  805. * @acc: access flags
  806. *
  807. * Check the IB SGE for validity and initialize our internal version
  808. * of it.
  809. *
  810. * Increments the reference count when a new sge is stored.
  811. *
  812. * Return: 0 if compressed, 1 if added , otherwise returns -errno.
  813. */
  814. int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
  815. struct rvt_sge *isge, struct rvt_sge *last_sge,
  816. struct ib_sge *sge, int acc)
  817. {
  818. struct rvt_mregion *mr;
  819. unsigned n, m;
  820. size_t off;
  821. /*
  822. * We use LKEY == zero for kernel virtual addresses
  823. * (see rvt_get_dma_mr() and dma_virt_ops).
  824. */
  825. if (sge->lkey == 0) {
  826. struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
  827. if (pd->user)
  828. return -EINVAL;
  829. if (rvt_sge_adjacent(last_sge, sge))
  830. return 0;
  831. rcu_read_lock();
  832. mr = rcu_dereference(dev->dma_mr);
  833. if (!mr)
  834. goto bail;
  835. rvt_get_mr(mr);
  836. rcu_read_unlock();
  837. isge->mr = mr;
  838. isge->vaddr = (void *)sge->addr;
  839. isge->length = sge->length;
  840. isge->sge_length = sge->length;
  841. isge->m = 0;
  842. isge->n = 0;
  843. goto ok;
  844. }
  845. if (rvt_sge_adjacent(last_sge, sge))
  846. return 0;
  847. rcu_read_lock();
  848. mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
  849. if (!mr)
  850. goto bail;
  851. rvt_get_mr(mr);
  852. if (!READ_ONCE(mr->lkey_published))
  853. goto bail_unref;
  854. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  855. mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
  856. goto bail_unref;
  857. off = sge->addr - mr->user_base;
  858. if (unlikely(sge->addr < mr->user_base ||
  859. off + sge->length > mr->length ||
  860. (mr->access_flags & acc) != acc))
  861. goto bail_unref;
  862. rcu_read_unlock();
  863. off += mr->offset;
  864. if (mr->page_shift) {
  865. /*
  866. * page sizes are uniform power of 2 so no loop is necessary
  867. * entries_spanned_by_off is the number of times the loop below
  868. * would have executed.
  869. */
  870. size_t entries_spanned_by_off;
  871. entries_spanned_by_off = off >> mr->page_shift;
  872. off -= (entries_spanned_by_off << mr->page_shift);
  873. m = entries_spanned_by_off / RVT_SEGSZ;
  874. n = entries_spanned_by_off % RVT_SEGSZ;
  875. } else {
  876. m = 0;
  877. n = 0;
  878. while (off >= mr->map[m]->segs[n].length) {
  879. off -= mr->map[m]->segs[n].length;
  880. n++;
  881. if (n >= RVT_SEGSZ) {
  882. m++;
  883. n = 0;
  884. }
  885. }
  886. }
  887. isge->mr = mr;
  888. isge->vaddr = mr->map[m]->segs[n].vaddr + off;
  889. isge->length = mr->map[m]->segs[n].length - off;
  890. isge->sge_length = sge->length;
  891. isge->m = m;
  892. isge->n = n;
  893. ok:
  894. trace_rvt_sge_new(isge, sge);
  895. return 1;
  896. bail_unref:
  897. rvt_put_mr(mr);
  898. bail:
  899. rcu_read_unlock();
  900. return -EINVAL;
  901. }
  902. EXPORT_SYMBOL(rvt_lkey_ok);
  903. /**
  904. * rvt_rkey_ok - check the IB virtual address, length, and RKEY
  905. * @qp: qp for validation
  906. * @sge: SGE state
  907. * @len: length of data
  908. * @vaddr: virtual address to place data
  909. * @rkey: rkey to check
  910. * @acc: access flags
  911. *
  912. * Return: 1 if successful, otherwise 0.
  913. *
  914. * increments the reference count upon success
  915. */
  916. int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
  917. u32 len, u64 vaddr, u32 rkey, int acc)
  918. {
  919. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  920. struct rvt_lkey_table *rkt = &dev->lkey_table;
  921. struct rvt_mregion *mr;
  922. unsigned n, m;
  923. size_t off;
  924. /*
  925. * We use RKEY == zero for kernel virtual addresses
  926. * (see rvt_get_dma_mr() and dma_virt_ops).
  927. */
  928. rcu_read_lock();
  929. if (rkey == 0) {
  930. struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
  931. struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
  932. if (pd->user)
  933. goto bail;
  934. mr = rcu_dereference(rdi->dma_mr);
  935. if (!mr)
  936. goto bail;
  937. rvt_get_mr(mr);
  938. rcu_read_unlock();
  939. sge->mr = mr;
  940. sge->vaddr = (void *)vaddr;
  941. sge->length = len;
  942. sge->sge_length = len;
  943. sge->m = 0;
  944. sge->n = 0;
  945. goto ok;
  946. }
  947. mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
  948. if (!mr)
  949. goto bail;
  950. rvt_get_mr(mr);
  951. /* insure mr read is before test */
  952. if (!READ_ONCE(mr->lkey_published))
  953. goto bail_unref;
  954. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  955. mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  956. goto bail_unref;
  957. off = vaddr - mr->iova;
  958. if (unlikely(vaddr < mr->iova || off + len > mr->length ||
  959. (mr->access_flags & acc) == 0))
  960. goto bail_unref;
  961. rcu_read_unlock();
  962. off += mr->offset;
  963. if (mr->page_shift) {
  964. /*
  965. * page sizes are uniform power of 2 so no loop is necessary
  966. * entries_spanned_by_off is the number of times the loop below
  967. * would have executed.
  968. */
  969. size_t entries_spanned_by_off;
  970. entries_spanned_by_off = off >> mr->page_shift;
  971. off -= (entries_spanned_by_off << mr->page_shift);
  972. m = entries_spanned_by_off / RVT_SEGSZ;
  973. n = entries_spanned_by_off % RVT_SEGSZ;
  974. } else {
  975. m = 0;
  976. n = 0;
  977. while (off >= mr->map[m]->segs[n].length) {
  978. off -= mr->map[m]->segs[n].length;
  979. n++;
  980. if (n >= RVT_SEGSZ) {
  981. m++;
  982. n = 0;
  983. }
  984. }
  985. }
  986. sge->mr = mr;
  987. sge->vaddr = mr->map[m]->segs[n].vaddr + off;
  988. sge->length = mr->map[m]->segs[n].length - off;
  989. sge->sge_length = len;
  990. sge->m = m;
  991. sge->n = n;
  992. ok:
  993. return 1;
  994. bail_unref:
  995. rvt_put_mr(mr);
  996. bail:
  997. rcu_read_unlock();
  998. return 0;
  999. }
  1000. EXPORT_SYMBOL(rvt_rkey_ok);