bpf_jit_comp_64.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/moduleloader.h>
  3. #include <linux/workqueue.h>
  4. #include <linux/netdevice.h>
  5. #include <linux/filter.h>
  6. #include <linux/bpf.h>
  7. #include <linux/cache.h>
  8. #include <linux/if_vlan.h>
  9. #include <asm/cacheflush.h>
  10. #include <asm/ptrace.h>
  11. #include "bpf_jit_64.h"
  12. int bpf_jit_enable __read_mostly;
  13. static inline bool is_simm13(unsigned int value)
  14. {
  15. return value + 0x1000 < 0x2000;
  16. }
  17. static inline bool is_simm10(unsigned int value)
  18. {
  19. return value + 0x200 < 0x400;
  20. }
  21. static inline bool is_simm5(unsigned int value)
  22. {
  23. return value + 0x10 < 0x20;
  24. }
  25. static inline bool is_sethi(unsigned int value)
  26. {
  27. return (value & ~0x3fffff) == 0;
  28. }
  29. static void bpf_flush_icache(void *start_, void *end_)
  30. {
  31. /* Cheetah's I-cache is fully coherent. */
  32. if (tlb_type == spitfire) {
  33. unsigned long start = (unsigned long) start_;
  34. unsigned long end = (unsigned long) end_;
  35. start &= ~7UL;
  36. end = (end + 7UL) & ~7UL;
  37. while (start < end) {
  38. flushi(start);
  39. start += 32;
  40. }
  41. }
  42. }
  43. #define SEEN_DATAREF 1 /* might call external helpers */
  44. #define SEEN_XREG 2 /* ebx is used */
  45. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  46. #define S13(X) ((X) & 0x1fff)
  47. #define S5(X) ((X) & 0x1f)
  48. #define IMMED 0x00002000
  49. #define RD(X) ((X) << 25)
  50. #define RS1(X) ((X) << 14)
  51. #define RS2(X) ((X))
  52. #define OP(X) ((X) << 30)
  53. #define OP2(X) ((X) << 22)
  54. #define OP3(X) ((X) << 19)
  55. #define COND(X) (((X) & 0xf) << 25)
  56. #define CBCOND(X) (((X) & 0x1f) << 25)
  57. #define F1(X) OP(X)
  58. #define F2(X, Y) (OP(X) | OP2(Y))
  59. #define F3(X, Y) (OP(X) | OP3(Y))
  60. #define ASI(X) (((X) & 0xff) << 5)
  61. #define CONDN COND(0x0)
  62. #define CONDE COND(0x1)
  63. #define CONDLE COND(0x2)
  64. #define CONDL COND(0x3)
  65. #define CONDLEU COND(0x4)
  66. #define CONDCS COND(0x5)
  67. #define CONDNEG COND(0x6)
  68. #define CONDVC COND(0x7)
  69. #define CONDA COND(0x8)
  70. #define CONDNE COND(0x9)
  71. #define CONDG COND(0xa)
  72. #define CONDGE COND(0xb)
  73. #define CONDGU COND(0xc)
  74. #define CONDCC COND(0xd)
  75. #define CONDPOS COND(0xe)
  76. #define CONDVS COND(0xf)
  77. #define CONDGEU CONDCC
  78. #define CONDLU CONDCS
  79. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  80. #define WDISP19(X) (((X) >> 2) & 0x7ffff)
  81. /* The 10-bit branch displacement for CBCOND is split into two fields */
  82. static u32 WDISP10(u32 off)
  83. {
  84. u32 ret = ((off >> 2) & 0xff) << 5;
  85. ret |= ((off >> (2 + 8)) & 0x03) << 19;
  86. return ret;
  87. }
  88. #define CBCONDE CBCOND(0x09)
  89. #define CBCONDLE CBCOND(0x0a)
  90. #define CBCONDL CBCOND(0x0b)
  91. #define CBCONDLEU CBCOND(0x0c)
  92. #define CBCONDCS CBCOND(0x0d)
  93. #define CBCONDN CBCOND(0x0e)
  94. #define CBCONDVS CBCOND(0x0f)
  95. #define CBCONDNE CBCOND(0x19)
  96. #define CBCONDG CBCOND(0x1a)
  97. #define CBCONDGE CBCOND(0x1b)
  98. #define CBCONDGU CBCOND(0x1c)
  99. #define CBCONDCC CBCOND(0x1d)
  100. #define CBCONDPOS CBCOND(0x1e)
  101. #define CBCONDVC CBCOND(0x1f)
  102. #define CBCONDGEU CBCONDCC
  103. #define CBCONDLU CBCONDCS
  104. #define ANNUL (1 << 29)
  105. #define XCC (1 << 21)
  106. #define BRANCH (F2(0, 1) | XCC)
  107. #define CBCOND_OP (F2(0, 3) | XCC)
  108. #define BA (BRANCH | CONDA)
  109. #define BG (BRANCH | CONDG)
  110. #define BL (BRANCH | CONDL)
  111. #define BLE (BRANCH | CONDLE)
  112. #define BGU (BRANCH | CONDGU)
  113. #define BLEU (BRANCH | CONDLEU)
  114. #define BGE (BRANCH | CONDGE)
  115. #define BGEU (BRANCH | CONDGEU)
  116. #define BLU (BRANCH | CONDLU)
  117. #define BE (BRANCH | CONDE)
  118. #define BNE (BRANCH | CONDNE)
  119. #define SETHI(K, REG) \
  120. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  121. #define OR_LO(K, REG) \
  122. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  123. #define ADD F3(2, 0x00)
  124. #define AND F3(2, 0x01)
  125. #define ANDCC F3(2, 0x11)
  126. #define OR F3(2, 0x02)
  127. #define XOR F3(2, 0x03)
  128. #define SUB F3(2, 0x04)
  129. #define SUBCC F3(2, 0x14)
  130. #define MUL F3(2, 0x0a)
  131. #define MULX F3(2, 0x09)
  132. #define UDIVX F3(2, 0x0d)
  133. #define DIV F3(2, 0x0e)
  134. #define SLL F3(2, 0x25)
  135. #define SLLX (F3(2, 0x25)|(1<<12))
  136. #define SRA F3(2, 0x27)
  137. #define SRAX (F3(2, 0x27)|(1<<12))
  138. #define SRL F3(2, 0x26)
  139. #define SRLX (F3(2, 0x26)|(1<<12))
  140. #define JMPL F3(2, 0x38)
  141. #define SAVE F3(2, 0x3c)
  142. #define RESTORE F3(2, 0x3d)
  143. #define CALL F1(1)
  144. #define BR F2(0, 0x01)
  145. #define RD_Y F3(2, 0x28)
  146. #define WR_Y F3(2, 0x30)
  147. #define LD32 F3(3, 0x00)
  148. #define LD8 F3(3, 0x01)
  149. #define LD16 F3(3, 0x02)
  150. #define LD64 F3(3, 0x0b)
  151. #define LD64A F3(3, 0x1b)
  152. #define ST8 F3(3, 0x05)
  153. #define ST16 F3(3, 0x06)
  154. #define ST32 F3(3, 0x04)
  155. #define ST64 F3(3, 0x0e)
  156. #define CAS F3(3, 0x3c)
  157. #define CASX F3(3, 0x3e)
  158. #define LDPTR LD64
  159. #define BASE_STACKFRAME 176
  160. #define LD32I (LD32 | IMMED)
  161. #define LD8I (LD8 | IMMED)
  162. #define LD16I (LD16 | IMMED)
  163. #define LD64I (LD64 | IMMED)
  164. #define LDPTRI (LDPTR | IMMED)
  165. #define ST32I (ST32 | IMMED)
  166. struct jit_ctx {
  167. struct bpf_prog *prog;
  168. unsigned int *offset;
  169. int idx;
  170. int epilogue_offset;
  171. bool tmp_1_used;
  172. bool tmp_2_used;
  173. bool tmp_3_used;
  174. bool saw_ld_abs_ind;
  175. bool saw_frame_pointer;
  176. bool saw_call;
  177. bool saw_tail_call;
  178. u32 *image;
  179. };
  180. #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
  181. #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
  182. #define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2)
  183. #define SKB_DATA_REG (MAX_BPF_JIT_REG + 3)
  184. #define TMP_REG_3 (MAX_BPF_JIT_REG + 4)
  185. /* Map BPF registers to SPARC registers */
  186. static const int bpf2sparc[] = {
  187. /* return value from in-kernel function, and exit value from eBPF */
  188. [BPF_REG_0] = O5,
  189. /* arguments from eBPF program to in-kernel function */
  190. [BPF_REG_1] = O0,
  191. [BPF_REG_2] = O1,
  192. [BPF_REG_3] = O2,
  193. [BPF_REG_4] = O3,
  194. [BPF_REG_5] = O4,
  195. /* callee saved registers that in-kernel function will preserve */
  196. [BPF_REG_6] = L0,
  197. [BPF_REG_7] = L1,
  198. [BPF_REG_8] = L2,
  199. [BPF_REG_9] = L3,
  200. /* read-only frame pointer to access stack */
  201. [BPF_REG_FP] = L6,
  202. [BPF_REG_AX] = G7,
  203. /* temporary register for internal BPF JIT */
  204. [TMP_REG_1] = G1,
  205. [TMP_REG_2] = G2,
  206. [TMP_REG_3] = G3,
  207. [SKB_HLEN_REG] = L4,
  208. [SKB_DATA_REG] = L5,
  209. };
  210. static void emit(const u32 insn, struct jit_ctx *ctx)
  211. {
  212. if (ctx->image != NULL)
  213. ctx->image[ctx->idx] = insn;
  214. ctx->idx++;
  215. }
  216. static void emit_call(u32 *func, struct jit_ctx *ctx)
  217. {
  218. if (ctx->image != NULL) {
  219. void *here = &ctx->image[ctx->idx];
  220. unsigned int off;
  221. off = (void *)func - here;
  222. ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
  223. }
  224. ctx->idx++;
  225. }
  226. static void emit_nop(struct jit_ctx *ctx)
  227. {
  228. emit(SETHI(0, G0), ctx);
  229. }
  230. static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
  231. {
  232. emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
  233. }
  234. /* Emit 32-bit constant, zero extended. */
  235. static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
  236. {
  237. emit(SETHI(K, reg), ctx);
  238. emit(OR_LO(K, reg), ctx);
  239. }
  240. /* Emit 32-bit constant, sign extended. */
  241. static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
  242. {
  243. if (K >= 0) {
  244. emit(SETHI(K, reg), ctx);
  245. emit(OR_LO(K, reg), ctx);
  246. } else {
  247. u32 hbits = ~(u32) K;
  248. u32 lbits = -0x400 | (u32) K;
  249. emit(SETHI(hbits, reg), ctx);
  250. emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
  251. }
  252. }
  253. static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
  254. {
  255. emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
  256. }
  257. static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
  258. {
  259. emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
  260. }
  261. static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
  262. struct jit_ctx *ctx)
  263. {
  264. bool small_immed = is_simm13(imm);
  265. unsigned int insn = opcode;
  266. insn |= RS1(dst) | RD(dst);
  267. if (small_immed) {
  268. emit(insn | IMMED | S13(imm), ctx);
  269. } else {
  270. unsigned int tmp = bpf2sparc[TMP_REG_1];
  271. ctx->tmp_1_used = true;
  272. emit_set_const_sext(imm, tmp, ctx);
  273. emit(insn | RS2(tmp), ctx);
  274. }
  275. }
  276. static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
  277. unsigned int dst, struct jit_ctx *ctx)
  278. {
  279. bool small_immed = is_simm13(imm);
  280. unsigned int insn = opcode;
  281. insn |= RS1(src) | RD(dst);
  282. if (small_immed) {
  283. emit(insn | IMMED | S13(imm), ctx);
  284. } else {
  285. unsigned int tmp = bpf2sparc[TMP_REG_1];
  286. ctx->tmp_1_used = true;
  287. emit_set_const_sext(imm, tmp, ctx);
  288. emit(insn | RS2(tmp), ctx);
  289. }
  290. }
  291. static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
  292. {
  293. if (K >= 0 && is_simm13(K)) {
  294. /* or %g0, K, DEST */
  295. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  296. } else {
  297. emit_set_const(K, dest, ctx);
  298. }
  299. }
  300. static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
  301. {
  302. if (is_simm13(K)) {
  303. /* or %g0, K, DEST */
  304. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  305. } else {
  306. emit_set_const(K, dest, ctx);
  307. }
  308. }
  309. static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
  310. {
  311. if (is_simm13(K)) {
  312. /* or %g0, K, DEST */
  313. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  314. } else {
  315. emit_set_const_sext(K, dest, ctx);
  316. }
  317. }
  318. static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
  319. int *hbsp, int *lbsp, int *abbasp)
  320. {
  321. int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
  322. int i;
  323. lowest_bit_set = highest_bit_set = -1;
  324. i = 0;
  325. do {
  326. if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
  327. lowest_bit_set = i;
  328. if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
  329. highest_bit_set = (64 - i - 1);
  330. } while (++i < 32 && (highest_bit_set == -1 ||
  331. lowest_bit_set == -1));
  332. if (i == 32) {
  333. i = 0;
  334. do {
  335. if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
  336. lowest_bit_set = i + 32;
  337. if (highest_bit_set == -1 &&
  338. ((low_bits >> (32 - i - 1)) & 1))
  339. highest_bit_set = 32 - i - 1;
  340. } while (++i < 32 && (highest_bit_set == -1 ||
  341. lowest_bit_set == -1));
  342. }
  343. all_bits_between_are_set = 1;
  344. for (i = lowest_bit_set; i <= highest_bit_set; i++) {
  345. if (i < 32) {
  346. if ((low_bits & (1 << i)) != 0)
  347. continue;
  348. } else {
  349. if ((high_bits & (1 << (i - 32))) != 0)
  350. continue;
  351. }
  352. all_bits_between_are_set = 0;
  353. break;
  354. }
  355. *hbsp = highest_bit_set;
  356. *lbsp = lowest_bit_set;
  357. *abbasp = all_bits_between_are_set;
  358. }
  359. static unsigned long create_simple_focus_bits(unsigned long high_bits,
  360. unsigned long low_bits,
  361. int lowest_bit_set, int shift)
  362. {
  363. long hi, lo;
  364. if (lowest_bit_set < 32) {
  365. lo = (low_bits >> lowest_bit_set) << shift;
  366. hi = ((high_bits << (32 - lowest_bit_set)) << shift);
  367. } else {
  368. lo = 0;
  369. hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
  370. }
  371. return hi | lo;
  372. }
  373. static bool const64_is_2insns(unsigned long high_bits,
  374. unsigned long low_bits)
  375. {
  376. int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
  377. if (high_bits == 0 || high_bits == 0xffffffff)
  378. return true;
  379. analyze_64bit_constant(high_bits, low_bits,
  380. &highest_bit_set, &lowest_bit_set,
  381. &all_bits_between_are_set);
  382. if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
  383. all_bits_between_are_set != 0)
  384. return true;
  385. if (highest_bit_set - lowest_bit_set < 21)
  386. return true;
  387. return false;
  388. }
  389. static void sparc_emit_set_const64_quick2(unsigned long high_bits,
  390. unsigned long low_imm,
  391. unsigned int dest,
  392. int shift_count, struct jit_ctx *ctx)
  393. {
  394. emit_loadimm32(high_bits, dest, ctx);
  395. /* Now shift it up into place. */
  396. emit_alu_K(SLLX, dest, shift_count, ctx);
  397. /* If there is a low immediate part piece, finish up by
  398. * putting that in as well.
  399. */
  400. if (low_imm != 0)
  401. emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
  402. }
  403. static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
  404. {
  405. int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
  406. unsigned int tmp = bpf2sparc[TMP_REG_1];
  407. u32 low_bits = (K & 0xffffffff);
  408. u32 high_bits = (K >> 32);
  409. /* These two tests also take care of all of the one
  410. * instruction cases.
  411. */
  412. if (high_bits == 0xffffffff && (low_bits & 0x80000000))
  413. return emit_loadimm_sext(K, dest, ctx);
  414. if (high_bits == 0x00000000)
  415. return emit_loadimm32(K, dest, ctx);
  416. analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
  417. &lowest_bit_set, &all_bits_between_are_set);
  418. /* 1) mov -1, %reg
  419. * sllx %reg, shift, %reg
  420. * 2) mov -1, %reg
  421. * srlx %reg, shift, %reg
  422. * 3) mov some_small_const, %reg
  423. * sllx %reg, shift, %reg
  424. */
  425. if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
  426. all_bits_between_are_set != 0) ||
  427. ((highest_bit_set - lowest_bit_set) < 12)) {
  428. int shift = lowest_bit_set;
  429. long the_const = -1;
  430. if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
  431. all_bits_between_are_set == 0) {
  432. the_const =
  433. create_simple_focus_bits(high_bits, low_bits,
  434. lowest_bit_set, 0);
  435. } else if (lowest_bit_set == 0)
  436. shift = -(63 - highest_bit_set);
  437. emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
  438. if (shift > 0)
  439. emit_alu_K(SLLX, dest, shift, ctx);
  440. else if (shift < 0)
  441. emit_alu_K(SRLX, dest, -shift, ctx);
  442. return;
  443. }
  444. /* Now a range of 22 or less bits set somewhere.
  445. * 1) sethi %hi(focus_bits), %reg
  446. * sllx %reg, shift, %reg
  447. * 2) sethi %hi(focus_bits), %reg
  448. * srlx %reg, shift, %reg
  449. */
  450. if ((highest_bit_set - lowest_bit_set) < 21) {
  451. unsigned long focus_bits =
  452. create_simple_focus_bits(high_bits, low_bits,
  453. lowest_bit_set, 10);
  454. emit(SETHI(focus_bits, dest), ctx);
  455. /* If lowest_bit_set == 10 then a sethi alone could
  456. * have done it.
  457. */
  458. if (lowest_bit_set < 10)
  459. emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
  460. else if (lowest_bit_set > 10)
  461. emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
  462. return;
  463. }
  464. /* Ok, now 3 instruction sequences. */
  465. if (low_bits == 0) {
  466. emit_loadimm32(high_bits, dest, ctx);
  467. emit_alu_K(SLLX, dest, 32, ctx);
  468. return;
  469. }
  470. /* We may be able to do something quick
  471. * when the constant is negated, so try that.
  472. */
  473. if (const64_is_2insns((~high_bits) & 0xffffffff,
  474. (~low_bits) & 0xfffffc00)) {
  475. /* NOTE: The trailing bits get XOR'd so we need the
  476. * non-negated bits, not the negated ones.
  477. */
  478. unsigned long trailing_bits = low_bits & 0x3ff;
  479. if ((((~high_bits) & 0xffffffff) == 0 &&
  480. ((~low_bits) & 0x80000000) == 0) ||
  481. (((~high_bits) & 0xffffffff) == 0xffffffff &&
  482. ((~low_bits) & 0x80000000) != 0)) {
  483. unsigned long fast_int = (~low_bits & 0xffffffff);
  484. if ((is_sethi(fast_int) &&
  485. (~high_bits & 0xffffffff) == 0)) {
  486. emit(SETHI(fast_int, dest), ctx);
  487. } else if (is_simm13(fast_int)) {
  488. emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
  489. } else {
  490. emit_loadimm64(fast_int, dest, ctx);
  491. }
  492. } else {
  493. u64 n = ((~low_bits) & 0xfffffc00) |
  494. (((unsigned long)((~high_bits) & 0xffffffff))<<32);
  495. emit_loadimm64(n, dest, ctx);
  496. }
  497. low_bits = -0x400 | trailing_bits;
  498. emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
  499. return;
  500. }
  501. /* 1) sethi %hi(xxx), %reg
  502. * or %reg, %lo(xxx), %reg
  503. * sllx %reg, yyy, %reg
  504. */
  505. if ((highest_bit_set - lowest_bit_set) < 32) {
  506. unsigned long focus_bits =
  507. create_simple_focus_bits(high_bits, low_bits,
  508. lowest_bit_set, 0);
  509. /* So what we know is that the set bits straddle the
  510. * middle of the 64-bit word.
  511. */
  512. sparc_emit_set_const64_quick2(focus_bits, 0, dest,
  513. lowest_bit_set, ctx);
  514. return;
  515. }
  516. /* 1) sethi %hi(high_bits), %reg
  517. * or %reg, %lo(high_bits), %reg
  518. * sllx %reg, 32, %reg
  519. * or %reg, low_bits, %reg
  520. */
  521. if (is_simm13(low_bits) && ((int)low_bits > 0)) {
  522. sparc_emit_set_const64_quick2(high_bits, low_bits,
  523. dest, 32, ctx);
  524. return;
  525. }
  526. /* Oh well, we tried... Do a full 64-bit decomposition. */
  527. ctx->tmp_1_used = true;
  528. emit_loadimm32(high_bits, tmp, ctx);
  529. emit_loadimm32(low_bits, dest, ctx);
  530. emit_alu_K(SLLX, tmp, 32, ctx);
  531. emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
  532. }
  533. static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
  534. struct jit_ctx *ctx)
  535. {
  536. unsigned int off = to_idx - from_idx;
  537. if (br_opc & XCC)
  538. emit(br_opc | WDISP19(off << 2), ctx);
  539. else
  540. emit(br_opc | WDISP22(off << 2), ctx);
  541. }
  542. static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  543. const u8 dst, const u8 src, struct jit_ctx *ctx)
  544. {
  545. unsigned int off = to_idx - from_idx;
  546. emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
  547. }
  548. static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  549. const u8 dst, s32 imm, struct jit_ctx *ctx)
  550. {
  551. unsigned int off = to_idx - from_idx;
  552. emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
  553. }
  554. #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
  555. #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
  556. #define emit_cmp(R1, R2, CTX) \
  557. emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  558. #define emit_cmpi(R1, IMM, CTX) \
  559. emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  560. #define emit_btst(R1, R2, CTX) \
  561. emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  562. #define emit_btsti(R1, IMM, CTX) \
  563. emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  564. static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
  565. const s32 imm, bool is_imm, int branch_dst,
  566. struct jit_ctx *ctx)
  567. {
  568. bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
  569. const u8 tmp = bpf2sparc[TMP_REG_1];
  570. branch_dst = ctx->offset[branch_dst];
  571. if (!is_simm10(branch_dst - ctx->idx) ||
  572. BPF_OP(code) == BPF_JSET)
  573. use_cbcond = false;
  574. if (is_imm) {
  575. bool fits = true;
  576. if (use_cbcond) {
  577. if (!is_simm5(imm))
  578. fits = false;
  579. } else if (!is_simm13(imm)) {
  580. fits = false;
  581. }
  582. if (!fits) {
  583. ctx->tmp_1_used = true;
  584. emit_loadimm_sext(imm, tmp, ctx);
  585. src = tmp;
  586. is_imm = false;
  587. }
  588. }
  589. if (!use_cbcond) {
  590. u32 br_opcode;
  591. if (BPF_OP(code) == BPF_JSET) {
  592. if (is_imm)
  593. emit_btsti(dst, imm, ctx);
  594. else
  595. emit_btst(dst, src, ctx);
  596. } else {
  597. if (is_imm)
  598. emit_cmpi(dst, imm, ctx);
  599. else
  600. emit_cmp(dst, src, ctx);
  601. }
  602. switch (BPF_OP(code)) {
  603. case BPF_JEQ:
  604. br_opcode = BE;
  605. break;
  606. case BPF_JGT:
  607. br_opcode = BGU;
  608. break;
  609. case BPF_JLT:
  610. br_opcode = BLU;
  611. break;
  612. case BPF_JGE:
  613. br_opcode = BGEU;
  614. break;
  615. case BPF_JLE:
  616. br_opcode = BLEU;
  617. break;
  618. case BPF_JSET:
  619. case BPF_JNE:
  620. br_opcode = BNE;
  621. break;
  622. case BPF_JSGT:
  623. br_opcode = BG;
  624. break;
  625. case BPF_JSLT:
  626. br_opcode = BL;
  627. break;
  628. case BPF_JSGE:
  629. br_opcode = BGE;
  630. break;
  631. case BPF_JSLE:
  632. br_opcode = BLE;
  633. break;
  634. default:
  635. /* Make sure we dont leak kernel information to the
  636. * user.
  637. */
  638. return -EFAULT;
  639. }
  640. emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
  641. emit_nop(ctx);
  642. } else {
  643. u32 cbcond_opcode;
  644. switch (BPF_OP(code)) {
  645. case BPF_JEQ:
  646. cbcond_opcode = CBCONDE;
  647. break;
  648. case BPF_JGT:
  649. cbcond_opcode = CBCONDGU;
  650. break;
  651. case BPF_JLT:
  652. cbcond_opcode = CBCONDLU;
  653. break;
  654. case BPF_JGE:
  655. cbcond_opcode = CBCONDGEU;
  656. break;
  657. case BPF_JLE:
  658. cbcond_opcode = CBCONDLEU;
  659. break;
  660. case BPF_JNE:
  661. cbcond_opcode = CBCONDNE;
  662. break;
  663. case BPF_JSGT:
  664. cbcond_opcode = CBCONDG;
  665. break;
  666. case BPF_JSLT:
  667. cbcond_opcode = CBCONDL;
  668. break;
  669. case BPF_JSGE:
  670. cbcond_opcode = CBCONDGE;
  671. break;
  672. case BPF_JSLE:
  673. cbcond_opcode = CBCONDLE;
  674. break;
  675. default:
  676. /* Make sure we dont leak kernel information to the
  677. * user.
  678. */
  679. return -EFAULT;
  680. }
  681. cbcond_opcode |= CBCOND_OP;
  682. if (is_imm)
  683. emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
  684. dst, imm, ctx);
  685. else
  686. emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
  687. dst, src, ctx);
  688. }
  689. return 0;
  690. }
  691. static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
  692. {
  693. const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
  694. const u8 r_data = bpf2sparc[SKB_DATA_REG];
  695. const u8 r_tmp = bpf2sparc[TMP_REG_1];
  696. unsigned int off;
  697. off = offsetof(struct sk_buff, len);
  698. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
  699. off = offsetof(struct sk_buff, data_len);
  700. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
  701. emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
  702. off = offsetof(struct sk_buff, data);
  703. emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
  704. }
  705. /* Just skip the save instruction and the ctx register move. */
  706. #define BPF_TAILCALL_PROLOGUE_SKIP 16
  707. #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
  708. static void build_prologue(struct jit_ctx *ctx)
  709. {
  710. s32 stack_needed = BASE_STACKFRAME;
  711. if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
  712. struct bpf_prog *prog = ctx->prog;
  713. u32 stack_depth;
  714. stack_depth = prog->aux->stack_depth;
  715. stack_needed += round_up(stack_depth, 16);
  716. }
  717. if (ctx->saw_tail_call)
  718. stack_needed += 8;
  719. /* save %sp, -176, %sp */
  720. emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
  721. /* tail_call_cnt = 0 */
  722. if (ctx->saw_tail_call) {
  723. u32 off = BPF_TAILCALL_CNT_SP_OFF;
  724. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
  725. } else {
  726. emit_nop(ctx);
  727. }
  728. if (ctx->saw_frame_pointer) {
  729. const u8 vfp = bpf2sparc[BPF_REG_FP];
  730. emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
  731. }
  732. emit_reg_move(I0, O0, ctx);
  733. /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
  734. if (ctx->saw_ld_abs_ind)
  735. load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
  736. }
  737. static void build_epilogue(struct jit_ctx *ctx)
  738. {
  739. ctx->epilogue_offset = ctx->idx;
  740. /* ret (jmpl %i7 + 8, %g0) */
  741. emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
  742. /* restore %i5, %g0, %o0 */
  743. emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
  744. }
  745. static void emit_tail_call(struct jit_ctx *ctx)
  746. {
  747. const u8 bpf_array = bpf2sparc[BPF_REG_2];
  748. const u8 bpf_index = bpf2sparc[BPF_REG_3];
  749. const u8 tmp = bpf2sparc[TMP_REG_1];
  750. u32 off;
  751. ctx->saw_tail_call = true;
  752. off = offsetof(struct bpf_array, map.max_entries);
  753. emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
  754. emit_cmp(bpf_index, tmp, ctx);
  755. #define OFFSET1 17
  756. emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
  757. emit_nop(ctx);
  758. off = BPF_TAILCALL_CNT_SP_OFF;
  759. emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  760. emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
  761. #define OFFSET2 13
  762. emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
  763. emit_nop(ctx);
  764. emit_alu_K(ADD, tmp, 1, ctx);
  765. off = BPF_TAILCALL_CNT_SP_OFF;
  766. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  767. emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
  768. emit_alu(ADD, bpf_array, tmp, ctx);
  769. off = offsetof(struct bpf_array, ptrs);
  770. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  771. emit_cmpi(tmp, 0, ctx);
  772. #define OFFSET3 5
  773. emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
  774. emit_nop(ctx);
  775. off = offsetof(struct bpf_prog, bpf_func);
  776. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  777. off = BPF_TAILCALL_PROLOGUE_SKIP;
  778. emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
  779. emit_nop(ctx);
  780. }
  781. static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
  782. {
  783. const u8 code = insn->code;
  784. const u8 dst = bpf2sparc[insn->dst_reg];
  785. const u8 src = bpf2sparc[insn->src_reg];
  786. const int i = insn - ctx->prog->insnsi;
  787. const s16 off = insn->off;
  788. const s32 imm = insn->imm;
  789. u32 *func;
  790. if (insn->src_reg == BPF_REG_FP)
  791. ctx->saw_frame_pointer = true;
  792. switch (code) {
  793. /* dst = src */
  794. case BPF_ALU | BPF_MOV | BPF_X:
  795. emit_alu3_K(SRL, src, 0, dst, ctx);
  796. break;
  797. case BPF_ALU64 | BPF_MOV | BPF_X:
  798. emit_reg_move(src, dst, ctx);
  799. break;
  800. /* dst = dst OP src */
  801. case BPF_ALU | BPF_ADD | BPF_X:
  802. case BPF_ALU64 | BPF_ADD | BPF_X:
  803. emit_alu(ADD, src, dst, ctx);
  804. goto do_alu32_trunc;
  805. case BPF_ALU | BPF_SUB | BPF_X:
  806. case BPF_ALU64 | BPF_SUB | BPF_X:
  807. emit_alu(SUB, src, dst, ctx);
  808. goto do_alu32_trunc;
  809. case BPF_ALU | BPF_AND | BPF_X:
  810. case BPF_ALU64 | BPF_AND | BPF_X:
  811. emit_alu(AND, src, dst, ctx);
  812. goto do_alu32_trunc;
  813. case BPF_ALU | BPF_OR | BPF_X:
  814. case BPF_ALU64 | BPF_OR | BPF_X:
  815. emit_alu(OR, src, dst, ctx);
  816. goto do_alu32_trunc;
  817. case BPF_ALU | BPF_XOR | BPF_X:
  818. case BPF_ALU64 | BPF_XOR | BPF_X:
  819. emit_alu(XOR, src, dst, ctx);
  820. goto do_alu32_trunc;
  821. case BPF_ALU | BPF_MUL | BPF_X:
  822. emit_alu(MUL, src, dst, ctx);
  823. goto do_alu32_trunc;
  824. case BPF_ALU64 | BPF_MUL | BPF_X:
  825. emit_alu(MULX, src, dst, ctx);
  826. break;
  827. case BPF_ALU | BPF_DIV | BPF_X:
  828. emit_cmp(src, G0, ctx);
  829. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  830. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  831. emit_write_y(G0, ctx);
  832. emit_alu(DIV, src, dst, ctx);
  833. break;
  834. case BPF_ALU64 | BPF_DIV | BPF_X:
  835. emit_cmp(src, G0, ctx);
  836. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  837. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  838. emit_alu(UDIVX, src, dst, ctx);
  839. break;
  840. case BPF_ALU | BPF_MOD | BPF_X: {
  841. const u8 tmp = bpf2sparc[TMP_REG_1];
  842. ctx->tmp_1_used = true;
  843. emit_cmp(src, G0, ctx);
  844. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  845. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  846. emit_write_y(G0, ctx);
  847. emit_alu3(DIV, dst, src, tmp, ctx);
  848. emit_alu3(MULX, tmp, src, tmp, ctx);
  849. emit_alu3(SUB, dst, tmp, dst, ctx);
  850. goto do_alu32_trunc;
  851. }
  852. case BPF_ALU64 | BPF_MOD | BPF_X: {
  853. const u8 tmp = bpf2sparc[TMP_REG_1];
  854. ctx->tmp_1_used = true;
  855. emit_cmp(src, G0, ctx);
  856. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  857. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  858. emit_alu3(UDIVX, dst, src, tmp, ctx);
  859. emit_alu3(MULX, tmp, src, tmp, ctx);
  860. emit_alu3(SUB, dst, tmp, dst, ctx);
  861. break;
  862. }
  863. case BPF_ALU | BPF_LSH | BPF_X:
  864. emit_alu(SLL, src, dst, ctx);
  865. goto do_alu32_trunc;
  866. case BPF_ALU64 | BPF_LSH | BPF_X:
  867. emit_alu(SLLX, src, dst, ctx);
  868. break;
  869. case BPF_ALU | BPF_RSH | BPF_X:
  870. emit_alu(SRL, src, dst, ctx);
  871. break;
  872. case BPF_ALU64 | BPF_RSH | BPF_X:
  873. emit_alu(SRLX, src, dst, ctx);
  874. break;
  875. case BPF_ALU | BPF_ARSH | BPF_X:
  876. emit_alu(SRA, src, dst, ctx);
  877. goto do_alu32_trunc;
  878. case BPF_ALU64 | BPF_ARSH | BPF_X:
  879. emit_alu(SRAX, src, dst, ctx);
  880. break;
  881. /* dst = -dst */
  882. case BPF_ALU | BPF_NEG:
  883. case BPF_ALU64 | BPF_NEG:
  884. emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
  885. goto do_alu32_trunc;
  886. case BPF_ALU | BPF_END | BPF_FROM_BE:
  887. switch (imm) {
  888. case 16:
  889. emit_alu_K(SLL, dst, 16, ctx);
  890. emit_alu_K(SRL, dst, 16, ctx);
  891. break;
  892. case 32:
  893. emit_alu_K(SRL, dst, 0, ctx);
  894. break;
  895. case 64:
  896. /* nop */
  897. break;
  898. }
  899. break;
  900. /* dst = BSWAP##imm(dst) */
  901. case BPF_ALU | BPF_END | BPF_FROM_LE: {
  902. const u8 tmp = bpf2sparc[TMP_REG_1];
  903. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  904. ctx->tmp_1_used = true;
  905. switch (imm) {
  906. case 16:
  907. emit_alu3_K(AND, dst, 0xff, tmp, ctx);
  908. emit_alu3_K(SRL, dst, 8, dst, ctx);
  909. emit_alu3_K(AND, dst, 0xff, dst, ctx);
  910. emit_alu3_K(SLL, tmp, 8, tmp, ctx);
  911. emit_alu(OR, tmp, dst, ctx);
  912. break;
  913. case 32:
  914. ctx->tmp_2_used = true;
  915. emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
  916. emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
  917. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  918. emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
  919. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  920. emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
  921. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  922. emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
  923. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  924. emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
  925. emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
  926. emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
  927. break;
  928. case 64:
  929. emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
  930. emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  931. emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  932. break;
  933. }
  934. break;
  935. }
  936. /* dst = imm */
  937. case BPF_ALU | BPF_MOV | BPF_K:
  938. emit_loadimm32(imm, dst, ctx);
  939. break;
  940. case BPF_ALU64 | BPF_MOV | BPF_K:
  941. emit_loadimm_sext(imm, dst, ctx);
  942. break;
  943. /* dst = dst OP imm */
  944. case BPF_ALU | BPF_ADD | BPF_K:
  945. case BPF_ALU64 | BPF_ADD | BPF_K:
  946. emit_alu_K(ADD, dst, imm, ctx);
  947. goto do_alu32_trunc;
  948. case BPF_ALU | BPF_SUB | BPF_K:
  949. case BPF_ALU64 | BPF_SUB | BPF_K:
  950. emit_alu_K(SUB, dst, imm, ctx);
  951. goto do_alu32_trunc;
  952. case BPF_ALU | BPF_AND | BPF_K:
  953. case BPF_ALU64 | BPF_AND | BPF_K:
  954. emit_alu_K(AND, dst, imm, ctx);
  955. goto do_alu32_trunc;
  956. case BPF_ALU | BPF_OR | BPF_K:
  957. case BPF_ALU64 | BPF_OR | BPF_K:
  958. emit_alu_K(OR, dst, imm, ctx);
  959. goto do_alu32_trunc;
  960. case BPF_ALU | BPF_XOR | BPF_K:
  961. case BPF_ALU64 | BPF_XOR | BPF_K:
  962. emit_alu_K(XOR, dst, imm, ctx);
  963. goto do_alu32_trunc;
  964. case BPF_ALU | BPF_MUL | BPF_K:
  965. emit_alu_K(MUL, dst, imm, ctx);
  966. goto do_alu32_trunc;
  967. case BPF_ALU64 | BPF_MUL | BPF_K:
  968. emit_alu_K(MULX, dst, imm, ctx);
  969. break;
  970. case BPF_ALU | BPF_DIV | BPF_K:
  971. if (imm == 0)
  972. return -EINVAL;
  973. emit_write_y(G0, ctx);
  974. emit_alu_K(DIV, dst, imm, ctx);
  975. goto do_alu32_trunc;
  976. case BPF_ALU64 | BPF_DIV | BPF_K:
  977. if (imm == 0)
  978. return -EINVAL;
  979. emit_alu_K(UDIVX, dst, imm, ctx);
  980. break;
  981. case BPF_ALU64 | BPF_MOD | BPF_K:
  982. case BPF_ALU | BPF_MOD | BPF_K: {
  983. const u8 tmp = bpf2sparc[TMP_REG_2];
  984. unsigned int div;
  985. if (imm == 0)
  986. return -EINVAL;
  987. div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
  988. ctx->tmp_2_used = true;
  989. if (BPF_CLASS(code) != BPF_ALU64)
  990. emit_write_y(G0, ctx);
  991. if (is_simm13(imm)) {
  992. emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
  993. emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
  994. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  995. } else {
  996. const u8 tmp1 = bpf2sparc[TMP_REG_1];
  997. ctx->tmp_1_used = true;
  998. emit_set_const_sext(imm, tmp1, ctx);
  999. emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
  1000. emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
  1001. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  1002. }
  1003. goto do_alu32_trunc;
  1004. }
  1005. case BPF_ALU | BPF_LSH | BPF_K:
  1006. emit_alu_K(SLL, dst, imm, ctx);
  1007. goto do_alu32_trunc;
  1008. case BPF_ALU64 | BPF_LSH | BPF_K:
  1009. emit_alu_K(SLLX, dst, imm, ctx);
  1010. break;
  1011. case BPF_ALU | BPF_RSH | BPF_K:
  1012. emit_alu_K(SRL, dst, imm, ctx);
  1013. break;
  1014. case BPF_ALU64 | BPF_RSH | BPF_K:
  1015. emit_alu_K(SRLX, dst, imm, ctx);
  1016. break;
  1017. case BPF_ALU | BPF_ARSH | BPF_K:
  1018. emit_alu_K(SRA, dst, imm, ctx);
  1019. goto do_alu32_trunc;
  1020. case BPF_ALU64 | BPF_ARSH | BPF_K:
  1021. emit_alu_K(SRAX, dst, imm, ctx);
  1022. break;
  1023. do_alu32_trunc:
  1024. if (BPF_CLASS(code) == BPF_ALU)
  1025. emit_alu_K(SRL, dst, 0, ctx);
  1026. break;
  1027. /* JUMP off */
  1028. case BPF_JMP | BPF_JA:
  1029. emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
  1030. emit_nop(ctx);
  1031. break;
  1032. /* IF (dst COND src) JUMP off */
  1033. case BPF_JMP | BPF_JEQ | BPF_X:
  1034. case BPF_JMP | BPF_JGT | BPF_X:
  1035. case BPF_JMP | BPF_JLT | BPF_X:
  1036. case BPF_JMP | BPF_JGE | BPF_X:
  1037. case BPF_JMP | BPF_JLE | BPF_X:
  1038. case BPF_JMP | BPF_JNE | BPF_X:
  1039. case BPF_JMP | BPF_JSGT | BPF_X:
  1040. case BPF_JMP | BPF_JSLT | BPF_X:
  1041. case BPF_JMP | BPF_JSGE | BPF_X:
  1042. case BPF_JMP | BPF_JSLE | BPF_X:
  1043. case BPF_JMP | BPF_JSET | BPF_X: {
  1044. int err;
  1045. err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
  1046. if (err)
  1047. return err;
  1048. break;
  1049. }
  1050. /* IF (dst COND imm) JUMP off */
  1051. case BPF_JMP | BPF_JEQ | BPF_K:
  1052. case BPF_JMP | BPF_JGT | BPF_K:
  1053. case BPF_JMP | BPF_JLT | BPF_K:
  1054. case BPF_JMP | BPF_JGE | BPF_K:
  1055. case BPF_JMP | BPF_JLE | BPF_K:
  1056. case BPF_JMP | BPF_JNE | BPF_K:
  1057. case BPF_JMP | BPF_JSGT | BPF_K:
  1058. case BPF_JMP | BPF_JSLT | BPF_K:
  1059. case BPF_JMP | BPF_JSGE | BPF_K:
  1060. case BPF_JMP | BPF_JSLE | BPF_K:
  1061. case BPF_JMP | BPF_JSET | BPF_K: {
  1062. int err;
  1063. err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
  1064. if (err)
  1065. return err;
  1066. break;
  1067. }
  1068. /* function call */
  1069. case BPF_JMP | BPF_CALL:
  1070. {
  1071. u8 *func = ((u8 *)__bpf_call_base) + imm;
  1072. ctx->saw_call = true;
  1073. if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
  1074. emit_reg_move(bpf2sparc[BPF_REG_1], L7, ctx);
  1075. emit_call((u32 *)func, ctx);
  1076. emit_nop(ctx);
  1077. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1078. if (ctx->saw_ld_abs_ind && bpf_helper_changes_pkt_data(func))
  1079. load_skb_regs(ctx, L7);
  1080. break;
  1081. }
  1082. /* tail call */
  1083. case BPF_JMP | BPF_TAIL_CALL:
  1084. emit_tail_call(ctx);
  1085. break;
  1086. /* function return */
  1087. case BPF_JMP | BPF_EXIT:
  1088. /* Optimization: when last instruction is EXIT,
  1089. simply fallthrough to epilogue. */
  1090. if (i == ctx->prog->len - 1)
  1091. break;
  1092. emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
  1093. emit_nop(ctx);
  1094. break;
  1095. /* dst = imm64 */
  1096. case BPF_LD | BPF_IMM | BPF_DW:
  1097. {
  1098. const struct bpf_insn insn1 = insn[1];
  1099. u64 imm64;
  1100. imm64 = (u64)insn1.imm << 32 | (u32)imm;
  1101. emit_loadimm64(imm64, dst, ctx);
  1102. return 1;
  1103. }
  1104. /* LDX: dst = *(size *)(src + off) */
  1105. case BPF_LDX | BPF_MEM | BPF_W:
  1106. case BPF_LDX | BPF_MEM | BPF_H:
  1107. case BPF_LDX | BPF_MEM | BPF_B:
  1108. case BPF_LDX | BPF_MEM | BPF_DW: {
  1109. const u8 tmp = bpf2sparc[TMP_REG_1];
  1110. u32 opcode = 0, rs2;
  1111. ctx->tmp_1_used = true;
  1112. switch (BPF_SIZE(code)) {
  1113. case BPF_W:
  1114. opcode = LD32;
  1115. break;
  1116. case BPF_H:
  1117. opcode = LD16;
  1118. break;
  1119. case BPF_B:
  1120. opcode = LD8;
  1121. break;
  1122. case BPF_DW:
  1123. opcode = LD64;
  1124. break;
  1125. }
  1126. if (is_simm13(off)) {
  1127. opcode |= IMMED;
  1128. rs2 = S13(off);
  1129. } else {
  1130. emit_loadimm(off, tmp, ctx);
  1131. rs2 = RS2(tmp);
  1132. }
  1133. emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
  1134. break;
  1135. }
  1136. /* ST: *(size *)(dst + off) = imm */
  1137. case BPF_ST | BPF_MEM | BPF_W:
  1138. case BPF_ST | BPF_MEM | BPF_H:
  1139. case BPF_ST | BPF_MEM | BPF_B:
  1140. case BPF_ST | BPF_MEM | BPF_DW: {
  1141. const u8 tmp = bpf2sparc[TMP_REG_1];
  1142. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1143. u32 opcode = 0, rs2;
  1144. ctx->tmp_2_used = true;
  1145. emit_loadimm(imm, tmp2, ctx);
  1146. switch (BPF_SIZE(code)) {
  1147. case BPF_W:
  1148. opcode = ST32;
  1149. break;
  1150. case BPF_H:
  1151. opcode = ST16;
  1152. break;
  1153. case BPF_B:
  1154. opcode = ST8;
  1155. break;
  1156. case BPF_DW:
  1157. opcode = ST64;
  1158. break;
  1159. }
  1160. if (is_simm13(off)) {
  1161. opcode |= IMMED;
  1162. rs2 = S13(off);
  1163. } else {
  1164. ctx->tmp_1_used = true;
  1165. emit_loadimm(off, tmp, ctx);
  1166. rs2 = RS2(tmp);
  1167. }
  1168. emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
  1169. break;
  1170. }
  1171. /* STX: *(size *)(dst + off) = src */
  1172. case BPF_STX | BPF_MEM | BPF_W:
  1173. case BPF_STX | BPF_MEM | BPF_H:
  1174. case BPF_STX | BPF_MEM | BPF_B:
  1175. case BPF_STX | BPF_MEM | BPF_DW: {
  1176. const u8 tmp = bpf2sparc[TMP_REG_1];
  1177. u32 opcode = 0, rs2;
  1178. switch (BPF_SIZE(code)) {
  1179. case BPF_W:
  1180. opcode = ST32;
  1181. break;
  1182. case BPF_H:
  1183. opcode = ST16;
  1184. break;
  1185. case BPF_B:
  1186. opcode = ST8;
  1187. break;
  1188. case BPF_DW:
  1189. opcode = ST64;
  1190. break;
  1191. }
  1192. if (is_simm13(off)) {
  1193. opcode |= IMMED;
  1194. rs2 = S13(off);
  1195. } else {
  1196. ctx->tmp_1_used = true;
  1197. emit_loadimm(off, tmp, ctx);
  1198. rs2 = RS2(tmp);
  1199. }
  1200. emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
  1201. break;
  1202. }
  1203. /* STX XADD: lock *(u32 *)(dst + off) += src */
  1204. case BPF_STX | BPF_XADD | BPF_W: {
  1205. const u8 tmp = bpf2sparc[TMP_REG_1];
  1206. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1207. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1208. ctx->tmp_1_used = true;
  1209. ctx->tmp_2_used = true;
  1210. ctx->tmp_3_used = true;
  1211. emit_loadimm(off, tmp, ctx);
  1212. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1213. emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1214. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1215. emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1216. emit_cmp(tmp2, tmp3, ctx);
  1217. emit_branch(BNE, 4, 0, ctx);
  1218. emit_nop(ctx);
  1219. break;
  1220. }
  1221. /* STX XADD: lock *(u64 *)(dst + off) += src */
  1222. case BPF_STX | BPF_XADD | BPF_DW: {
  1223. const u8 tmp = bpf2sparc[TMP_REG_1];
  1224. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1225. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1226. ctx->tmp_1_used = true;
  1227. ctx->tmp_2_used = true;
  1228. ctx->tmp_3_used = true;
  1229. emit_loadimm(off, tmp, ctx);
  1230. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1231. emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1232. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1233. emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1234. emit_cmp(tmp2, tmp3, ctx);
  1235. emit_branch(BNE, 4, 0, ctx);
  1236. emit_nop(ctx);
  1237. break;
  1238. }
  1239. #define CHOOSE_LOAD_FUNC(K, func) \
  1240. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  1241. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
  1242. case BPF_LD | BPF_ABS | BPF_W:
  1243. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
  1244. goto common_load;
  1245. case BPF_LD | BPF_ABS | BPF_H:
  1246. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
  1247. goto common_load;
  1248. case BPF_LD | BPF_ABS | BPF_B:
  1249. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
  1250. goto common_load;
  1251. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
  1252. case BPF_LD | BPF_IND | BPF_W:
  1253. func = bpf_jit_load_word;
  1254. goto common_load;
  1255. case BPF_LD | BPF_IND | BPF_H:
  1256. func = bpf_jit_load_half;
  1257. goto common_load;
  1258. case BPF_LD | BPF_IND | BPF_B:
  1259. func = bpf_jit_load_byte;
  1260. common_load:
  1261. ctx->saw_ld_abs_ind = true;
  1262. emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
  1263. emit_loadimm(imm, O1, ctx);
  1264. if (BPF_MODE(code) == BPF_IND)
  1265. emit_alu(ADD, src, O1, ctx);
  1266. emit_call(func, ctx);
  1267. emit_alu_K(SRA, O1, 0, ctx);
  1268. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1269. break;
  1270. default:
  1271. pr_err_once("unknown opcode %02x\n", code);
  1272. return -EINVAL;
  1273. }
  1274. return 0;
  1275. }
  1276. static int build_body(struct jit_ctx *ctx)
  1277. {
  1278. const struct bpf_prog *prog = ctx->prog;
  1279. int i;
  1280. for (i = 0; i < prog->len; i++) {
  1281. const struct bpf_insn *insn = &prog->insnsi[i];
  1282. int ret;
  1283. ret = build_insn(insn, ctx);
  1284. if (ret > 0) {
  1285. i++;
  1286. ctx->offset[i] = ctx->idx;
  1287. continue;
  1288. }
  1289. ctx->offset[i] = ctx->idx;
  1290. if (ret)
  1291. return ret;
  1292. }
  1293. return 0;
  1294. }
  1295. static void jit_fill_hole(void *area, unsigned int size)
  1296. {
  1297. u32 *ptr;
  1298. /* We are guaranteed to have aligned memory. */
  1299. for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
  1300. *ptr++ = 0x91d02005; /* ta 5 */
  1301. }
  1302. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  1303. {
  1304. struct bpf_prog *tmp, *orig_prog = prog;
  1305. struct bpf_binary_header *header;
  1306. bool tmp_blinded = false;
  1307. struct jit_ctx ctx;
  1308. u32 image_size;
  1309. u8 *image_ptr;
  1310. int pass;
  1311. if (!bpf_jit_enable)
  1312. return orig_prog;
  1313. tmp = bpf_jit_blind_constants(prog);
  1314. /* If blinding was requested and we failed during blinding,
  1315. * we must fall back to the interpreter.
  1316. */
  1317. if (IS_ERR(tmp))
  1318. return orig_prog;
  1319. if (tmp != prog) {
  1320. tmp_blinded = true;
  1321. prog = tmp;
  1322. }
  1323. memset(&ctx, 0, sizeof(ctx));
  1324. ctx.prog = prog;
  1325. ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
  1326. if (ctx.offset == NULL) {
  1327. prog = orig_prog;
  1328. goto out;
  1329. }
  1330. /* Fake pass to detect features used, and get an accurate assessment
  1331. * of what the final image size will be.
  1332. */
  1333. if (build_body(&ctx)) {
  1334. prog = orig_prog;
  1335. goto out_off;
  1336. }
  1337. build_prologue(&ctx);
  1338. build_epilogue(&ctx);
  1339. /* Now we know the actual image size. */
  1340. image_size = sizeof(u32) * ctx.idx;
  1341. header = bpf_jit_binary_alloc(image_size, &image_ptr,
  1342. sizeof(u32), jit_fill_hole);
  1343. if (header == NULL) {
  1344. prog = orig_prog;
  1345. goto out_off;
  1346. }
  1347. ctx.image = (u32 *)image_ptr;
  1348. for (pass = 1; pass < 3; pass++) {
  1349. ctx.idx = 0;
  1350. build_prologue(&ctx);
  1351. if (build_body(&ctx)) {
  1352. bpf_jit_binary_free(header);
  1353. prog = orig_prog;
  1354. goto out_off;
  1355. }
  1356. build_epilogue(&ctx);
  1357. if (bpf_jit_enable > 1)
  1358. pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
  1359. image_size - (ctx.idx * 4),
  1360. ctx.tmp_1_used ? '1' : ' ',
  1361. ctx.tmp_2_used ? '2' : ' ',
  1362. ctx.tmp_3_used ? '3' : ' ',
  1363. ctx.saw_ld_abs_ind ? 'L' : ' ',
  1364. ctx.saw_frame_pointer ? 'F' : ' ',
  1365. ctx.saw_call ? 'C' : ' ',
  1366. ctx.saw_tail_call ? 'T' : ' ');
  1367. }
  1368. if (bpf_jit_enable > 1)
  1369. bpf_jit_dump(prog->len, image_size, pass, ctx.image);
  1370. bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
  1371. bpf_jit_binary_lock_ro(header);
  1372. prog->bpf_func = (void *)ctx.image;
  1373. prog->jited = 1;
  1374. prog->jited_len = image_size;
  1375. out_off:
  1376. kfree(ctx.offset);
  1377. out:
  1378. if (tmp_blinded)
  1379. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  1380. tmp : orig_prog);
  1381. return prog;
  1382. }