safexcel_cipher.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aead.h>
  14. #include <crypto/aes.h>
  15. #include <crypto/authenc.h>
  16. #include <crypto/sha.h>
  17. #include <crypto/skcipher.h>
  18. #include <crypto/internal/aead.h>
  19. #include <crypto/internal/skcipher.h>
  20. #include "safexcel.h"
  21. enum safexcel_cipher_direction {
  22. SAFEXCEL_ENCRYPT,
  23. SAFEXCEL_DECRYPT,
  24. };
  25. struct safexcel_cipher_ctx {
  26. struct safexcel_context base;
  27. struct safexcel_crypto_priv *priv;
  28. u32 mode;
  29. bool aead;
  30. __le32 key[8];
  31. unsigned int key_len;
  32. /* All the below is AEAD specific */
  33. u32 alg;
  34. u32 state_sz;
  35. u32 ipad[SHA256_DIGEST_SIZE / sizeof(u32)];
  36. u32 opad[SHA256_DIGEST_SIZE / sizeof(u32)];
  37. };
  38. struct safexcel_cipher_req {
  39. enum safexcel_cipher_direction direction;
  40. bool needs_inv;
  41. };
  42. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  43. struct safexcel_command_desc *cdesc,
  44. u32 length)
  45. {
  46. struct safexcel_token *token;
  47. unsigned offset = 0;
  48. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  49. offset = AES_BLOCK_SIZE / sizeof(u32);
  50. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  51. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  52. }
  53. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  54. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  55. token[0].packet_length = length;
  56. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  57. EIP197_TOKEN_STAT_LAST_HASH;
  58. token[0].instructions = EIP197_TOKEN_INS_LAST |
  59. EIP197_TOKEN_INS_TYPE_CRYTO |
  60. EIP197_TOKEN_INS_TYPE_OUTPUT;
  61. }
  62. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  63. struct safexcel_command_desc *cdesc,
  64. enum safexcel_cipher_direction direction,
  65. u32 cryptlen, u32 assoclen, u32 digestsize)
  66. {
  67. struct safexcel_token *token;
  68. unsigned offset = 0;
  69. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  70. offset = AES_BLOCK_SIZE / sizeof(u32);
  71. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  72. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  73. }
  74. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  75. if (direction == SAFEXCEL_DECRYPT)
  76. cryptlen -= digestsize;
  77. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  78. token[0].packet_length = assoclen;
  79. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  80. EIP197_TOKEN_INS_TYPE_OUTPUT;
  81. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  82. token[1].packet_length = cryptlen;
  83. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  84. token[1].instructions = EIP197_TOKEN_INS_LAST |
  85. EIP197_TOKEN_INS_TYPE_CRYTO |
  86. EIP197_TOKEN_INS_TYPE_HASH |
  87. EIP197_TOKEN_INS_TYPE_OUTPUT;
  88. if (direction == SAFEXCEL_ENCRYPT) {
  89. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  90. token[2].packet_length = digestsize;
  91. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  92. EIP197_TOKEN_STAT_LAST_PACKET;
  93. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  94. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  95. } else {
  96. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  97. token[2].packet_length = digestsize;
  98. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  99. EIP197_TOKEN_STAT_LAST_PACKET;
  100. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  101. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  102. token[3].packet_length = digestsize |
  103. EIP197_TOKEN_HASH_RESULT_VERIFY;
  104. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  105. EIP197_TOKEN_STAT_LAST_PACKET;
  106. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  107. }
  108. }
  109. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  110. const u8 *key, unsigned int len)
  111. {
  112. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  113. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  114. struct safexcel_crypto_priv *priv = ctx->priv;
  115. struct crypto_aes_ctx aes;
  116. int ret, i;
  117. ret = crypto_aes_expand_key(&aes, key, len);
  118. if (ret) {
  119. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  120. return ret;
  121. }
  122. if (priv->version == EIP197 && ctx->base.ctxr_dma) {
  123. for (i = 0; i < len / sizeof(u32); i++) {
  124. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  125. ctx->base.needs_inv = true;
  126. break;
  127. }
  128. }
  129. }
  130. for (i = 0; i < len / sizeof(u32); i++)
  131. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  132. ctx->key_len = len;
  133. memzero_explicit(&aes, sizeof(aes));
  134. return 0;
  135. }
  136. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  137. unsigned int len)
  138. {
  139. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  140. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  141. struct safexcel_ahash_export_state istate, ostate;
  142. struct safexcel_crypto_priv *priv = ctx->priv;
  143. struct crypto_authenc_keys keys;
  144. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  145. goto badkey;
  146. if (keys.enckeylen > sizeof(ctx->key))
  147. goto badkey;
  148. /* Encryption key */
  149. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  150. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  151. ctx->base.needs_inv = true;
  152. /* Auth key */
  153. switch (ctx->alg) {
  154. case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
  155. if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
  156. keys.authkeylen, &istate, &ostate))
  157. goto badkey;
  158. break;
  159. case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
  160. if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
  161. keys.authkeylen, &istate, &ostate))
  162. goto badkey;
  163. break;
  164. case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
  165. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  166. keys.authkeylen, &istate, &ostate))
  167. goto badkey;
  168. break;
  169. default:
  170. dev_err(priv->dev, "aead: unsupported hash algorithm\n");
  171. goto badkey;
  172. }
  173. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  174. CRYPTO_TFM_RES_MASK);
  175. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  176. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  177. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  178. ctx->base.needs_inv = true;
  179. /* Now copy the keys into the context */
  180. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  181. ctx->key_len = keys.enckeylen;
  182. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  183. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  184. memzero_explicit(&keys, sizeof(keys));
  185. return 0;
  186. badkey:
  187. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  188. memzero_explicit(&keys, sizeof(keys));
  189. return -EINVAL;
  190. }
  191. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  192. struct crypto_async_request *async,
  193. struct safexcel_cipher_req *sreq,
  194. struct safexcel_command_desc *cdesc)
  195. {
  196. struct safexcel_crypto_priv *priv = ctx->priv;
  197. int ctrl_size;
  198. if (ctx->aead) {
  199. if (sreq->direction == SAFEXCEL_ENCRYPT)
  200. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  201. else
  202. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  203. } else {
  204. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  205. /* The decryption control type is a combination of the
  206. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  207. * types.
  208. */
  209. if (sreq->direction == SAFEXCEL_DECRYPT)
  210. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  211. }
  212. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  213. cdesc->control_data.control1 |= ctx->mode;
  214. if (ctx->aead)
  215. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  216. ctx->alg;
  217. switch (ctx->key_len) {
  218. case AES_KEYSIZE_128:
  219. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  220. break;
  221. case AES_KEYSIZE_192:
  222. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  223. break;
  224. case AES_KEYSIZE_256:
  225. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  226. break;
  227. default:
  228. dev_err(priv->dev, "aes keysize not supported: %u\n",
  229. ctx->key_len);
  230. return -EINVAL;
  231. }
  232. ctrl_size = ctx->key_len / sizeof(u32);
  233. if (ctx->aead)
  234. /* Take in account the ipad+opad digests */
  235. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  236. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  237. return 0;
  238. }
  239. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  240. struct crypto_async_request *async,
  241. struct scatterlist *src,
  242. struct scatterlist *dst,
  243. unsigned int cryptlen,
  244. struct safexcel_cipher_req *sreq,
  245. bool *should_complete, int *ret)
  246. {
  247. struct safexcel_result_desc *rdesc;
  248. int ndesc = 0;
  249. *ret = 0;
  250. spin_lock_bh(&priv->ring[ring].egress_lock);
  251. do {
  252. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  253. if (IS_ERR(rdesc)) {
  254. dev_err(priv->dev,
  255. "cipher: result: could not retrieve the result descriptor\n");
  256. *ret = PTR_ERR(rdesc);
  257. break;
  258. }
  259. if (likely(!*ret))
  260. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  261. ndesc++;
  262. } while (!rdesc->last_seg);
  263. safexcel_complete(priv, ring);
  264. spin_unlock_bh(&priv->ring[ring].egress_lock);
  265. if (src == dst) {
  266. dma_unmap_sg(priv->dev, src,
  267. sg_nents_for_len(src, cryptlen),
  268. DMA_BIDIRECTIONAL);
  269. } else {
  270. dma_unmap_sg(priv->dev, src,
  271. sg_nents_for_len(src, cryptlen),
  272. DMA_TO_DEVICE);
  273. dma_unmap_sg(priv->dev, dst,
  274. sg_nents_for_len(dst, cryptlen),
  275. DMA_FROM_DEVICE);
  276. }
  277. *should_complete = true;
  278. return ndesc;
  279. }
  280. static int safexcel_aes_send(struct crypto_async_request *base, int ring,
  281. struct safexcel_request *request,
  282. struct safexcel_cipher_req *sreq,
  283. struct scatterlist *src, struct scatterlist *dst,
  284. unsigned int cryptlen, unsigned int assoclen,
  285. unsigned int digestsize, u8 *iv, int *commands,
  286. int *results)
  287. {
  288. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  289. struct safexcel_crypto_priv *priv = ctx->priv;
  290. struct safexcel_command_desc *cdesc;
  291. struct safexcel_result_desc *rdesc;
  292. struct scatterlist *sg;
  293. unsigned int totlen = cryptlen + assoclen;
  294. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  295. int i, ret = 0;
  296. if (src == dst) {
  297. nr_src = dma_map_sg(priv->dev, src,
  298. sg_nents_for_len(src, totlen),
  299. DMA_BIDIRECTIONAL);
  300. nr_dst = nr_src;
  301. if (!nr_src)
  302. return -EINVAL;
  303. } else {
  304. nr_src = dma_map_sg(priv->dev, src,
  305. sg_nents_for_len(src, totlen),
  306. DMA_TO_DEVICE);
  307. if (!nr_src)
  308. return -EINVAL;
  309. nr_dst = dma_map_sg(priv->dev, dst,
  310. sg_nents_for_len(dst, totlen),
  311. DMA_FROM_DEVICE);
  312. if (!nr_dst) {
  313. dma_unmap_sg(priv->dev, src,
  314. sg_nents_for_len(src, totlen),
  315. DMA_TO_DEVICE);
  316. return -EINVAL;
  317. }
  318. }
  319. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  320. if (ctx->aead) {
  321. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  322. ctx->ipad, ctx->state_sz);
  323. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  324. ctx->opad, ctx->state_sz);
  325. }
  326. spin_lock_bh(&priv->ring[ring].egress_lock);
  327. /* command descriptors */
  328. for_each_sg(src, sg, nr_src, i) {
  329. int len = sg_dma_len(sg);
  330. /* Do not overflow the request */
  331. if (queued - len < 0)
  332. len = queued;
  333. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  334. sg_dma_address(sg), len, totlen,
  335. ctx->base.ctxr_dma);
  336. if (IS_ERR(cdesc)) {
  337. /* No space left in the command descriptor ring */
  338. ret = PTR_ERR(cdesc);
  339. goto cdesc_rollback;
  340. }
  341. n_cdesc++;
  342. if (n_cdesc == 1) {
  343. safexcel_context_control(ctx, base, sreq, cdesc);
  344. if (ctx->aead)
  345. safexcel_aead_token(ctx, iv, cdesc,
  346. sreq->direction, cryptlen,
  347. assoclen, digestsize);
  348. else
  349. safexcel_skcipher_token(ctx, iv, cdesc,
  350. cryptlen);
  351. }
  352. queued -= len;
  353. if (!queued)
  354. break;
  355. }
  356. /* result descriptors */
  357. for_each_sg(dst, sg, nr_dst, i) {
  358. bool first = !i, last = (i == nr_dst - 1);
  359. u32 len = sg_dma_len(sg);
  360. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  361. sg_dma_address(sg), len);
  362. if (IS_ERR(rdesc)) {
  363. /* No space left in the result descriptor ring */
  364. ret = PTR_ERR(rdesc);
  365. goto rdesc_rollback;
  366. }
  367. n_rdesc++;
  368. }
  369. spin_unlock_bh(&priv->ring[ring].egress_lock);
  370. request->req = base;
  371. *commands = n_cdesc;
  372. *results = n_rdesc;
  373. return 0;
  374. rdesc_rollback:
  375. for (i = 0; i < n_rdesc; i++)
  376. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  377. cdesc_rollback:
  378. for (i = 0; i < n_cdesc; i++)
  379. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  380. spin_unlock_bh(&priv->ring[ring].egress_lock);
  381. if (src == dst) {
  382. dma_unmap_sg(priv->dev, src,
  383. sg_nents_for_len(src, totlen),
  384. DMA_BIDIRECTIONAL);
  385. } else {
  386. dma_unmap_sg(priv->dev, src,
  387. sg_nents_for_len(src, totlen),
  388. DMA_TO_DEVICE);
  389. dma_unmap_sg(priv->dev, dst,
  390. sg_nents_for_len(dst, totlen),
  391. DMA_FROM_DEVICE);
  392. }
  393. return ret;
  394. }
  395. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  396. int ring,
  397. struct crypto_async_request *base,
  398. bool *should_complete, int *ret)
  399. {
  400. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  401. struct safexcel_result_desc *rdesc;
  402. int ndesc = 0, enq_ret;
  403. *ret = 0;
  404. spin_lock_bh(&priv->ring[ring].egress_lock);
  405. do {
  406. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  407. if (IS_ERR(rdesc)) {
  408. dev_err(priv->dev,
  409. "cipher: invalidate: could not retrieve the result descriptor\n");
  410. *ret = PTR_ERR(rdesc);
  411. break;
  412. }
  413. if (rdesc->result_data.error_code) {
  414. dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
  415. rdesc->result_data.error_code);
  416. *ret = -EIO;
  417. }
  418. ndesc++;
  419. } while (!rdesc->last_seg);
  420. safexcel_complete(priv, ring);
  421. spin_unlock_bh(&priv->ring[ring].egress_lock);
  422. if (ctx->base.exit_inv) {
  423. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  424. ctx->base.ctxr_dma);
  425. *should_complete = true;
  426. return ndesc;
  427. }
  428. ring = safexcel_select_ring(priv);
  429. ctx->base.ring = ring;
  430. spin_lock_bh(&priv->ring[ring].queue_lock);
  431. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  432. spin_unlock_bh(&priv->ring[ring].queue_lock);
  433. if (enq_ret != -EINPROGRESS)
  434. *ret = enq_ret;
  435. queue_work(priv->ring[ring].workqueue,
  436. &priv->ring[ring].work_data.work);
  437. *should_complete = false;
  438. return ndesc;
  439. }
  440. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  441. int ring,
  442. struct crypto_async_request *async,
  443. bool *should_complete, int *ret)
  444. {
  445. struct skcipher_request *req = skcipher_request_cast(async);
  446. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  447. int err;
  448. if (sreq->needs_inv) {
  449. sreq->needs_inv = false;
  450. err = safexcel_handle_inv_result(priv, ring, async,
  451. should_complete, ret);
  452. } else {
  453. err = safexcel_handle_req_result(priv, ring, async, req->src,
  454. req->dst, req->cryptlen, sreq,
  455. should_complete, ret);
  456. }
  457. return err;
  458. }
  459. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  460. int ring,
  461. struct crypto_async_request *async,
  462. bool *should_complete, int *ret)
  463. {
  464. struct aead_request *req = aead_request_cast(async);
  465. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  466. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  467. int err;
  468. if (sreq->needs_inv) {
  469. sreq->needs_inv = false;
  470. err = safexcel_handle_inv_result(priv, ring, async,
  471. should_complete, ret);
  472. } else {
  473. err = safexcel_handle_req_result(priv, ring, async, req->src,
  474. req->dst,
  475. req->cryptlen + crypto_aead_authsize(tfm),
  476. sreq, should_complete, ret);
  477. }
  478. return err;
  479. }
  480. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  481. int ring, struct safexcel_request *request,
  482. int *commands, int *results)
  483. {
  484. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  485. struct safexcel_crypto_priv *priv = ctx->priv;
  486. int ret;
  487. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  488. request);
  489. if (unlikely(ret))
  490. return ret;
  491. *commands = 1;
  492. *results = 1;
  493. return 0;
  494. }
  495. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  496. struct safexcel_request *request,
  497. int *commands, int *results)
  498. {
  499. struct skcipher_request *req = skcipher_request_cast(async);
  500. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  501. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  502. struct safexcel_crypto_priv *priv = ctx->priv;
  503. int ret;
  504. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  505. if (sreq->needs_inv)
  506. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  507. results);
  508. else
  509. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  510. req->dst, req->cryptlen, 0, 0, req->iv,
  511. commands, results);
  512. return ret;
  513. }
  514. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  515. struct safexcel_request *request, int *commands,
  516. int *results)
  517. {
  518. struct aead_request *req = aead_request_cast(async);
  519. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  520. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  521. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  522. struct safexcel_crypto_priv *priv = ctx->priv;
  523. int ret;
  524. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  525. if (sreq->needs_inv)
  526. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  527. results);
  528. else
  529. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  530. req->dst, req->cryptlen, req->assoclen,
  531. crypto_aead_authsize(tfm), req->iv,
  532. commands, results);
  533. return ret;
  534. }
  535. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  536. struct crypto_async_request *base,
  537. struct safexcel_cipher_req *sreq,
  538. struct safexcel_inv_result *result)
  539. {
  540. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  541. struct safexcel_crypto_priv *priv = ctx->priv;
  542. int ring = ctx->base.ring;
  543. init_completion(&result->completion);
  544. ctx = crypto_tfm_ctx(base->tfm);
  545. ctx->base.exit_inv = true;
  546. sreq->needs_inv = true;
  547. spin_lock_bh(&priv->ring[ring].queue_lock);
  548. crypto_enqueue_request(&priv->ring[ring].queue, base);
  549. spin_unlock_bh(&priv->ring[ring].queue_lock);
  550. queue_work(priv->ring[ring].workqueue,
  551. &priv->ring[ring].work_data.work);
  552. wait_for_completion(&result->completion);
  553. if (result->error) {
  554. dev_warn(priv->dev,
  555. "cipher: sync: invalidate: completion error %d\n",
  556. result->error);
  557. return result->error;
  558. }
  559. return 0;
  560. }
  561. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  562. {
  563. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  564. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  565. struct safexcel_inv_result result = {};
  566. memset(req, 0, sizeof(struct skcipher_request));
  567. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  568. safexcel_inv_complete, &result);
  569. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  570. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  571. }
  572. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  573. {
  574. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  575. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  576. struct safexcel_inv_result result = {};
  577. memset(req, 0, sizeof(struct aead_request));
  578. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  579. safexcel_inv_complete, &result);
  580. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  581. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  582. }
  583. static int safexcel_aes(struct crypto_async_request *base,
  584. struct safexcel_cipher_req *sreq,
  585. enum safexcel_cipher_direction dir, u32 mode)
  586. {
  587. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  588. struct safexcel_crypto_priv *priv = ctx->priv;
  589. int ret, ring;
  590. sreq->needs_inv = false;
  591. sreq->direction = dir;
  592. ctx->mode = mode;
  593. if (ctx->base.ctxr) {
  594. if (priv->version == EIP197 && ctx->base.needs_inv) {
  595. sreq->needs_inv = true;
  596. ctx->base.needs_inv = false;
  597. }
  598. } else {
  599. ctx->base.ring = safexcel_select_ring(priv);
  600. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  601. EIP197_GFP_FLAGS(*base),
  602. &ctx->base.ctxr_dma);
  603. if (!ctx->base.ctxr)
  604. return -ENOMEM;
  605. }
  606. ring = ctx->base.ring;
  607. spin_lock_bh(&priv->ring[ring].queue_lock);
  608. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  609. spin_unlock_bh(&priv->ring[ring].queue_lock);
  610. queue_work(priv->ring[ring].workqueue,
  611. &priv->ring[ring].work_data.work);
  612. return ret;
  613. }
  614. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  615. {
  616. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  617. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  618. }
  619. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  620. {
  621. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  622. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  623. }
  624. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  625. {
  626. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  627. struct safexcel_alg_template *tmpl =
  628. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  629. alg.skcipher.base);
  630. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  631. sizeof(struct safexcel_cipher_req));
  632. ctx->priv = tmpl->priv;
  633. ctx->base.send = safexcel_skcipher_send;
  634. ctx->base.handle_result = safexcel_skcipher_handle_result;
  635. return 0;
  636. }
  637. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  638. {
  639. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  640. memzero_explicit(ctx->key, sizeof(ctx->key));
  641. /* context not allocated, skip invalidation */
  642. if (!ctx->base.ctxr)
  643. return -ENOMEM;
  644. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  645. return 0;
  646. }
  647. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  648. {
  649. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  650. struct safexcel_crypto_priv *priv = ctx->priv;
  651. int ret;
  652. if (safexcel_cipher_cra_exit(tfm))
  653. return;
  654. if (priv->version == EIP197) {
  655. ret = safexcel_skcipher_exit_inv(tfm);
  656. if (ret)
  657. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  658. ret);
  659. } else {
  660. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  661. ctx->base.ctxr_dma);
  662. }
  663. }
  664. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  665. {
  666. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  667. struct safexcel_crypto_priv *priv = ctx->priv;
  668. int ret;
  669. if (safexcel_cipher_cra_exit(tfm))
  670. return;
  671. if (priv->version == EIP197) {
  672. ret = safexcel_aead_exit_inv(tfm);
  673. if (ret)
  674. dev_warn(priv->dev, "aead: invalidation error %d\n",
  675. ret);
  676. } else {
  677. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  678. ctx->base.ctxr_dma);
  679. }
  680. }
  681. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  682. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  683. .alg.skcipher = {
  684. .setkey = safexcel_skcipher_aes_setkey,
  685. .encrypt = safexcel_ecb_aes_encrypt,
  686. .decrypt = safexcel_ecb_aes_decrypt,
  687. .min_keysize = AES_MIN_KEY_SIZE,
  688. .max_keysize = AES_MAX_KEY_SIZE,
  689. .base = {
  690. .cra_name = "ecb(aes)",
  691. .cra_driver_name = "safexcel-ecb-aes",
  692. .cra_priority = 300,
  693. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  694. CRYPTO_ALG_KERN_DRIVER_ONLY,
  695. .cra_blocksize = AES_BLOCK_SIZE,
  696. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  697. .cra_alignmask = 0,
  698. .cra_init = safexcel_skcipher_cra_init,
  699. .cra_exit = safexcel_skcipher_cra_exit,
  700. .cra_module = THIS_MODULE,
  701. },
  702. },
  703. };
  704. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  705. {
  706. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  707. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  708. }
  709. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  710. {
  711. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  712. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  713. }
  714. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  715. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  716. .alg.skcipher = {
  717. .setkey = safexcel_skcipher_aes_setkey,
  718. .encrypt = safexcel_cbc_aes_encrypt,
  719. .decrypt = safexcel_cbc_aes_decrypt,
  720. .min_keysize = AES_MIN_KEY_SIZE,
  721. .max_keysize = AES_MAX_KEY_SIZE,
  722. .ivsize = AES_BLOCK_SIZE,
  723. .base = {
  724. .cra_name = "cbc(aes)",
  725. .cra_driver_name = "safexcel-cbc-aes",
  726. .cra_priority = 300,
  727. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  728. CRYPTO_ALG_KERN_DRIVER_ONLY,
  729. .cra_blocksize = AES_BLOCK_SIZE,
  730. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  731. .cra_alignmask = 0,
  732. .cra_init = safexcel_skcipher_cra_init,
  733. .cra_exit = safexcel_skcipher_cra_exit,
  734. .cra_module = THIS_MODULE,
  735. },
  736. },
  737. };
  738. static int safexcel_aead_encrypt(struct aead_request *req)
  739. {
  740. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  741. return safexcel_aes(&req->base, creq, SAFEXCEL_ENCRYPT,
  742. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  743. }
  744. static int safexcel_aead_decrypt(struct aead_request *req)
  745. {
  746. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  747. return safexcel_aes(&req->base, creq, SAFEXCEL_DECRYPT,
  748. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  749. }
  750. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  751. {
  752. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  753. struct safexcel_alg_template *tmpl =
  754. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  755. alg.aead.base);
  756. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  757. sizeof(struct safexcel_cipher_req));
  758. ctx->priv = tmpl->priv;
  759. ctx->aead = true;
  760. ctx->base.send = safexcel_aead_send;
  761. ctx->base.handle_result = safexcel_aead_handle_result;
  762. return 0;
  763. }
  764. static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
  765. {
  766. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  767. safexcel_aead_cra_init(tfm);
  768. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
  769. ctx->state_sz = SHA1_DIGEST_SIZE;
  770. return 0;
  771. }
  772. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
  773. .type = SAFEXCEL_ALG_TYPE_AEAD,
  774. .alg.aead = {
  775. .setkey = safexcel_aead_aes_setkey,
  776. .encrypt = safexcel_aead_encrypt,
  777. .decrypt = safexcel_aead_decrypt,
  778. .ivsize = AES_BLOCK_SIZE,
  779. .maxauthsize = SHA1_DIGEST_SIZE,
  780. .base = {
  781. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  782. .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
  783. .cra_priority = 300,
  784. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  785. CRYPTO_ALG_KERN_DRIVER_ONLY,
  786. .cra_blocksize = AES_BLOCK_SIZE,
  787. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  788. .cra_alignmask = 0,
  789. .cra_init = safexcel_aead_sha1_cra_init,
  790. .cra_exit = safexcel_aead_cra_exit,
  791. .cra_module = THIS_MODULE,
  792. },
  793. },
  794. };
  795. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  796. {
  797. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  798. safexcel_aead_cra_init(tfm);
  799. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  800. ctx->state_sz = SHA256_DIGEST_SIZE;
  801. return 0;
  802. }
  803. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  804. .type = SAFEXCEL_ALG_TYPE_AEAD,
  805. .alg.aead = {
  806. .setkey = safexcel_aead_aes_setkey,
  807. .encrypt = safexcel_aead_encrypt,
  808. .decrypt = safexcel_aead_decrypt,
  809. .ivsize = AES_BLOCK_SIZE,
  810. .maxauthsize = SHA256_DIGEST_SIZE,
  811. .base = {
  812. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  813. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  814. .cra_priority = 300,
  815. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  816. CRYPTO_ALG_KERN_DRIVER_ONLY,
  817. .cra_blocksize = AES_BLOCK_SIZE,
  818. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  819. .cra_alignmask = 0,
  820. .cra_init = safexcel_aead_sha256_cra_init,
  821. .cra_exit = safexcel_aead_cra_exit,
  822. .cra_module = THIS_MODULE,
  823. },
  824. },
  825. };
  826. static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
  827. {
  828. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  829. safexcel_aead_cra_init(tfm);
  830. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
  831. ctx->state_sz = SHA256_DIGEST_SIZE;
  832. return 0;
  833. }
  834. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
  835. .type = SAFEXCEL_ALG_TYPE_AEAD,
  836. .alg.aead = {
  837. .setkey = safexcel_aead_aes_setkey,
  838. .encrypt = safexcel_aead_encrypt,
  839. .decrypt = safexcel_aead_decrypt,
  840. .ivsize = AES_BLOCK_SIZE,
  841. .maxauthsize = SHA224_DIGEST_SIZE,
  842. .base = {
  843. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  844. .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
  845. .cra_priority = 300,
  846. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  847. CRYPTO_ALG_KERN_DRIVER_ONLY,
  848. .cra_blocksize = AES_BLOCK_SIZE,
  849. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  850. .cra_alignmask = 0,
  851. .cra_init = safexcel_aead_sha224_cra_init,
  852. .cra_exit = safexcel_aead_cra_exit,
  853. .cra_module = THIS_MODULE,
  854. },
  855. },
  856. };