timekeeping.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/timekeeper_internal.h>
  11. #include <linux/module.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/percpu.h>
  14. #include <linux/init.h>
  15. #include <linux/mm.h>
  16. #include <linux/sched.h>
  17. #include <linux/syscore_ops.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/time.h>
  21. #include <linux/tick.h>
  22. #include <linux/stop_machine.h>
  23. #include <linux/pvclock_gtod.h>
  24. #include <linux/compiler.h>
  25. #include "tick-internal.h"
  26. #include "ntp_internal.h"
  27. #include "timekeeping_internal.h"
  28. #define TK_CLEAR_NTP (1 << 0)
  29. #define TK_MIRROR (1 << 1)
  30. #define TK_CLOCK_WAS_SET (1 << 2)
  31. /*
  32. * The most important data for readout fits into a single 64 byte
  33. * cache line.
  34. */
  35. static struct {
  36. seqcount_t seq;
  37. struct timekeeper timekeeper;
  38. } tk_core ____cacheline_aligned;
  39. static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  40. static struct timekeeper shadow_timekeeper;
  41. /**
  42. * struct tk_fast - NMI safe timekeeper
  43. * @seq: Sequence counter for protecting updates. The lowest bit
  44. * is the index for the tk_read_base array
  45. * @base: tk_read_base array. Access is indexed by the lowest bit of
  46. * @seq.
  47. *
  48. * See @update_fast_timekeeper() below.
  49. */
  50. struct tk_fast {
  51. seqcount_t seq;
  52. struct tk_read_base base[2];
  53. };
  54. static struct tk_fast tk_fast_mono ____cacheline_aligned;
  55. static struct tk_fast tk_fast_raw ____cacheline_aligned;
  56. /* flag for if timekeeping is suspended */
  57. int __read_mostly timekeeping_suspended;
  58. static inline void tk_normalize_xtime(struct timekeeper *tk)
  59. {
  60. while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  61. tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  62. tk->xtime_sec++;
  63. }
  64. }
  65. static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  66. {
  67. struct timespec64 ts;
  68. ts.tv_sec = tk->xtime_sec;
  69. ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  70. return ts;
  71. }
  72. static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  73. {
  74. tk->xtime_sec = ts->tv_sec;
  75. tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  76. }
  77. static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  78. {
  79. tk->xtime_sec += ts->tv_sec;
  80. tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  81. tk_normalize_xtime(tk);
  82. }
  83. static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  84. {
  85. struct timespec64 tmp;
  86. /*
  87. * Verify consistency of: offset_real = -wall_to_monotonic
  88. * before modifying anything
  89. */
  90. set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
  91. -tk->wall_to_monotonic.tv_nsec);
  92. WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
  93. tk->wall_to_monotonic = wtm;
  94. set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
  95. tk->offs_real = timespec64_to_ktime(tmp);
  96. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
  97. }
  98. static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
  99. {
  100. tk->offs_boot = ktime_add(tk->offs_boot, delta);
  101. }
  102. #ifdef CONFIG_DEBUG_TIMEKEEPING
  103. #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
  104. static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
  105. {
  106. cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
  107. const char *name = tk->tkr_mono.clock->name;
  108. if (offset > max_cycles) {
  109. printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
  110. offset, name, max_cycles);
  111. printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
  112. } else {
  113. if (offset > (max_cycles >> 1)) {
  114. printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
  115. offset, name, max_cycles >> 1);
  116. printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
  117. }
  118. }
  119. if (tk->underflow_seen) {
  120. if (jiffies - tk->last_warning > WARNING_FREQ) {
  121. printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
  122. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  123. printk_deferred(" Your kernel is probably still fine.\n");
  124. tk->last_warning = jiffies;
  125. }
  126. tk->underflow_seen = 0;
  127. }
  128. if (tk->overflow_seen) {
  129. if (jiffies - tk->last_warning > WARNING_FREQ) {
  130. printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
  131. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  132. printk_deferred(" Your kernel is probably still fine.\n");
  133. tk->last_warning = jiffies;
  134. }
  135. tk->overflow_seen = 0;
  136. }
  137. }
  138. static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
  139. {
  140. struct timekeeper *tk = &tk_core.timekeeper;
  141. cycle_t now, last, mask, max, delta;
  142. unsigned int seq;
  143. /*
  144. * Since we're called holding a seqlock, the data may shift
  145. * under us while we're doing the calculation. This can cause
  146. * false positives, since we'd note a problem but throw the
  147. * results away. So nest another seqlock here to atomically
  148. * grab the points we are checking with.
  149. */
  150. do {
  151. seq = read_seqcount_begin(&tk_core.seq);
  152. now = tkr->read(tkr->clock);
  153. last = tkr->cycle_last;
  154. mask = tkr->mask;
  155. max = tkr->clock->max_cycles;
  156. } while (read_seqcount_retry(&tk_core.seq, seq));
  157. delta = clocksource_delta(now, last, mask);
  158. /*
  159. * Try to catch underflows by checking if we are seeing small
  160. * mask-relative negative values.
  161. */
  162. if (unlikely((~delta & mask) < (mask >> 3))) {
  163. tk->underflow_seen = 1;
  164. delta = 0;
  165. }
  166. /* Cap delta value to the max_cycles values to avoid mult overflows */
  167. if (unlikely(delta > max)) {
  168. tk->overflow_seen = 1;
  169. delta = tkr->clock->max_cycles;
  170. }
  171. return delta;
  172. }
  173. #else
  174. static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
  175. {
  176. }
  177. static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
  178. {
  179. cycle_t cycle_now, delta;
  180. /* read clocksource */
  181. cycle_now = tkr->read(tkr->clock);
  182. /* calculate the delta since the last update_wall_time */
  183. delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
  184. return delta;
  185. }
  186. #endif
  187. /**
  188. * tk_setup_internals - Set up internals to use clocksource clock.
  189. *
  190. * @tk: The target timekeeper to setup.
  191. * @clock: Pointer to clocksource.
  192. *
  193. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  194. * pair and interval request.
  195. *
  196. * Unless you're the timekeeping code, you should not be using this!
  197. */
  198. static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
  199. {
  200. cycle_t interval;
  201. u64 tmp, ntpinterval;
  202. struct clocksource *old_clock;
  203. ++tk->cs_was_changed_seq;
  204. old_clock = tk->tkr_mono.clock;
  205. tk->tkr_mono.clock = clock;
  206. tk->tkr_mono.read = clock->read;
  207. tk->tkr_mono.mask = clock->mask;
  208. tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
  209. tk->tkr_raw.clock = clock;
  210. tk->tkr_raw.read = clock->read;
  211. tk->tkr_raw.mask = clock->mask;
  212. tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
  213. /* Do the ns -> cycle conversion first, using original mult */
  214. tmp = NTP_INTERVAL_LENGTH;
  215. tmp <<= clock->shift;
  216. ntpinterval = tmp;
  217. tmp += clock->mult/2;
  218. do_div(tmp, clock->mult);
  219. if (tmp == 0)
  220. tmp = 1;
  221. interval = (cycle_t) tmp;
  222. tk->cycle_interval = interval;
  223. /* Go back from cycles -> shifted ns */
  224. tk->xtime_interval = (u64) interval * clock->mult;
  225. tk->xtime_remainder = ntpinterval - tk->xtime_interval;
  226. tk->raw_interval =
  227. ((u64) interval * clock->mult) >> clock->shift;
  228. /* if changing clocks, convert xtime_nsec shift units */
  229. if (old_clock) {
  230. int shift_change = clock->shift - old_clock->shift;
  231. if (shift_change < 0)
  232. tk->tkr_mono.xtime_nsec >>= -shift_change;
  233. else
  234. tk->tkr_mono.xtime_nsec <<= shift_change;
  235. }
  236. tk->tkr_raw.xtime_nsec = 0;
  237. tk->tkr_mono.shift = clock->shift;
  238. tk->tkr_raw.shift = clock->shift;
  239. tk->ntp_error = 0;
  240. tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  241. tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
  242. /*
  243. * The timekeeper keeps its own mult values for the currently
  244. * active clocksource. These value will be adjusted via NTP
  245. * to counteract clock drifting.
  246. */
  247. tk->tkr_mono.mult = clock->mult;
  248. tk->tkr_raw.mult = clock->mult;
  249. tk->ntp_err_mult = 0;
  250. }
  251. /* Timekeeper helper functions. */
  252. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  253. static u32 default_arch_gettimeoffset(void) { return 0; }
  254. u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
  255. #else
  256. static inline u32 arch_gettimeoffset(void) { return 0; }
  257. #endif
  258. static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
  259. cycle_t delta)
  260. {
  261. s64 nsec;
  262. nsec = delta * tkr->mult + tkr->xtime_nsec;
  263. nsec >>= tkr->shift;
  264. /* If arch requires, add in get_arch_timeoffset() */
  265. return nsec + arch_gettimeoffset();
  266. }
  267. static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
  268. {
  269. cycle_t delta;
  270. delta = timekeeping_get_delta(tkr);
  271. return timekeeping_delta_to_ns(tkr, delta);
  272. }
  273. static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
  274. cycle_t cycles)
  275. {
  276. cycle_t delta;
  277. /* calculate the delta since the last update_wall_time */
  278. delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
  279. return timekeeping_delta_to_ns(tkr, delta);
  280. }
  281. /**
  282. * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
  283. * @tkr: Timekeeping readout base from which we take the update
  284. *
  285. * We want to use this from any context including NMI and tracing /
  286. * instrumenting the timekeeping code itself.
  287. *
  288. * Employ the latch technique; see @raw_write_seqcount_latch.
  289. *
  290. * So if a NMI hits the update of base[0] then it will use base[1]
  291. * which is still consistent. In the worst case this can result is a
  292. * slightly wrong timestamp (a few nanoseconds). See
  293. * @ktime_get_mono_fast_ns.
  294. */
  295. static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
  296. {
  297. struct tk_read_base *base = tkf->base;
  298. /* Force readers off to base[1] */
  299. raw_write_seqcount_latch(&tkf->seq);
  300. /* Update base[0] */
  301. memcpy(base, tkr, sizeof(*base));
  302. /* Force readers back to base[0] */
  303. raw_write_seqcount_latch(&tkf->seq);
  304. /* Update base[1] */
  305. memcpy(base + 1, base, sizeof(*base));
  306. }
  307. /**
  308. * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
  309. *
  310. * This timestamp is not guaranteed to be monotonic across an update.
  311. * The timestamp is calculated by:
  312. *
  313. * now = base_mono + clock_delta * slope
  314. *
  315. * So if the update lowers the slope, readers who are forced to the
  316. * not yet updated second array are still using the old steeper slope.
  317. *
  318. * tmono
  319. * ^
  320. * | o n
  321. * | o n
  322. * | u
  323. * | o
  324. * |o
  325. * |12345678---> reader order
  326. *
  327. * o = old slope
  328. * u = update
  329. * n = new slope
  330. *
  331. * So reader 6 will observe time going backwards versus reader 5.
  332. *
  333. * While other CPUs are likely to be able observe that, the only way
  334. * for a CPU local observation is when an NMI hits in the middle of
  335. * the update. Timestamps taken from that NMI context might be ahead
  336. * of the following timestamps. Callers need to be aware of that and
  337. * deal with it.
  338. */
  339. static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
  340. {
  341. struct tk_read_base *tkr;
  342. unsigned int seq;
  343. u64 now;
  344. do {
  345. seq = raw_read_seqcount_latch(&tkf->seq);
  346. tkr = tkf->base + (seq & 0x01);
  347. now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
  348. } while (read_seqcount_retry(&tkf->seq, seq));
  349. return now;
  350. }
  351. u64 ktime_get_mono_fast_ns(void)
  352. {
  353. return __ktime_get_fast_ns(&tk_fast_mono);
  354. }
  355. EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
  356. u64 ktime_get_raw_fast_ns(void)
  357. {
  358. return __ktime_get_fast_ns(&tk_fast_raw);
  359. }
  360. EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
  361. /* Suspend-time cycles value for halted fast timekeeper. */
  362. static cycle_t cycles_at_suspend;
  363. static cycle_t dummy_clock_read(struct clocksource *cs)
  364. {
  365. return cycles_at_suspend;
  366. }
  367. /**
  368. * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
  369. * @tk: Timekeeper to snapshot.
  370. *
  371. * It generally is unsafe to access the clocksource after timekeeping has been
  372. * suspended, so take a snapshot of the readout base of @tk and use it as the
  373. * fast timekeeper's readout base while suspended. It will return the same
  374. * number of cycles every time until timekeeping is resumed at which time the
  375. * proper readout base for the fast timekeeper will be restored automatically.
  376. */
  377. static void halt_fast_timekeeper(struct timekeeper *tk)
  378. {
  379. static struct tk_read_base tkr_dummy;
  380. struct tk_read_base *tkr = &tk->tkr_mono;
  381. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  382. cycles_at_suspend = tkr->read(tkr->clock);
  383. tkr_dummy.read = dummy_clock_read;
  384. update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
  385. tkr = &tk->tkr_raw;
  386. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  387. tkr_dummy.read = dummy_clock_read;
  388. update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
  389. }
  390. #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
  391. static inline void update_vsyscall(struct timekeeper *tk)
  392. {
  393. struct timespec xt, wm;
  394. xt = timespec64_to_timespec(tk_xtime(tk));
  395. wm = timespec64_to_timespec(tk->wall_to_monotonic);
  396. update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
  397. tk->tkr_mono.cycle_last);
  398. }
  399. static inline void old_vsyscall_fixup(struct timekeeper *tk)
  400. {
  401. s64 remainder;
  402. /*
  403. * Store only full nanoseconds into xtime_nsec after rounding
  404. * it up and add the remainder to the error difference.
  405. * XXX - This is necessary to avoid small 1ns inconsistnecies caused
  406. * by truncating the remainder in vsyscalls. However, it causes
  407. * additional work to be done in timekeeping_adjust(). Once
  408. * the vsyscall implementations are converted to use xtime_nsec
  409. * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
  410. * users are removed, this can be killed.
  411. */
  412. remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
  413. if (remainder != 0) {
  414. tk->tkr_mono.xtime_nsec -= remainder;
  415. tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
  416. tk->ntp_error += remainder << tk->ntp_error_shift;
  417. tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
  418. }
  419. }
  420. #else
  421. #define old_vsyscall_fixup(tk)
  422. #endif
  423. static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
  424. static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
  425. {
  426. raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
  427. }
  428. /**
  429. * pvclock_gtod_register_notifier - register a pvclock timedata update listener
  430. */
  431. int pvclock_gtod_register_notifier(struct notifier_block *nb)
  432. {
  433. struct timekeeper *tk = &tk_core.timekeeper;
  434. unsigned long flags;
  435. int ret;
  436. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  437. ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
  438. update_pvclock_gtod(tk, true);
  439. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  440. return ret;
  441. }
  442. EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
  443. /**
  444. * pvclock_gtod_unregister_notifier - unregister a pvclock
  445. * timedata update listener
  446. */
  447. int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
  448. {
  449. unsigned long flags;
  450. int ret;
  451. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  452. ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
  453. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  454. return ret;
  455. }
  456. EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
  457. /*
  458. * tk_update_leap_state - helper to update the next_leap_ktime
  459. */
  460. static inline void tk_update_leap_state(struct timekeeper *tk)
  461. {
  462. tk->next_leap_ktime = ntp_get_next_leap();
  463. if (tk->next_leap_ktime.tv64 != KTIME_MAX)
  464. /* Convert to monotonic time */
  465. tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
  466. }
  467. /*
  468. * Update the ktime_t based scalar nsec members of the timekeeper
  469. */
  470. static inline void tk_update_ktime_data(struct timekeeper *tk)
  471. {
  472. u64 seconds;
  473. u32 nsec;
  474. /*
  475. * The xtime based monotonic readout is:
  476. * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
  477. * The ktime based monotonic readout is:
  478. * nsec = base_mono + now();
  479. * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
  480. */
  481. seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
  482. nsec = (u32) tk->wall_to_monotonic.tv_nsec;
  483. tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
  484. /* Update the monotonic raw base */
  485. tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
  486. /*
  487. * The sum of the nanoseconds portions of xtime and
  488. * wall_to_monotonic can be greater/equal one second. Take
  489. * this into account before updating tk->ktime_sec.
  490. */
  491. nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  492. if (nsec >= NSEC_PER_SEC)
  493. seconds++;
  494. tk->ktime_sec = seconds;
  495. }
  496. /* must hold timekeeper_lock */
  497. static void timekeeping_update(struct timekeeper *tk, unsigned int action)
  498. {
  499. if (action & TK_CLEAR_NTP) {
  500. tk->ntp_error = 0;
  501. ntp_clear();
  502. }
  503. tk_update_leap_state(tk);
  504. tk_update_ktime_data(tk);
  505. update_vsyscall(tk);
  506. update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
  507. update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
  508. update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
  509. if (action & TK_CLOCK_WAS_SET)
  510. tk->clock_was_set_seq++;
  511. /*
  512. * The mirroring of the data to the shadow-timekeeper needs
  513. * to happen last here to ensure we don't over-write the
  514. * timekeeper structure on the next update with stale data
  515. */
  516. if (action & TK_MIRROR)
  517. memcpy(&shadow_timekeeper, &tk_core.timekeeper,
  518. sizeof(tk_core.timekeeper));
  519. }
  520. /**
  521. * timekeeping_forward_now - update clock to the current time
  522. *
  523. * Forward the current clock to update its state since the last call to
  524. * update_wall_time(). This is useful before significant clock changes,
  525. * as it avoids having to deal with this time offset explicitly.
  526. */
  527. static void timekeeping_forward_now(struct timekeeper *tk)
  528. {
  529. struct clocksource *clock = tk->tkr_mono.clock;
  530. cycle_t cycle_now, delta;
  531. s64 nsec;
  532. cycle_now = tk->tkr_mono.read(clock);
  533. delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  534. tk->tkr_mono.cycle_last = cycle_now;
  535. tk->tkr_raw.cycle_last = cycle_now;
  536. tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
  537. /* If arch requires, add in get_arch_timeoffset() */
  538. tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
  539. tk_normalize_xtime(tk);
  540. nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
  541. timespec64_add_ns(&tk->raw_time, nsec);
  542. }
  543. /**
  544. * __getnstimeofday64 - Returns the time of day in a timespec64.
  545. * @ts: pointer to the timespec to be set
  546. *
  547. * Updates the time of day in the timespec.
  548. * Returns 0 on success, or -ve when suspended (timespec will be undefined).
  549. */
  550. int __getnstimeofday64(struct timespec64 *ts)
  551. {
  552. struct timekeeper *tk = &tk_core.timekeeper;
  553. unsigned long seq;
  554. s64 nsecs = 0;
  555. do {
  556. seq = read_seqcount_begin(&tk_core.seq);
  557. ts->tv_sec = tk->xtime_sec;
  558. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  559. } while (read_seqcount_retry(&tk_core.seq, seq));
  560. ts->tv_nsec = 0;
  561. timespec64_add_ns(ts, nsecs);
  562. /*
  563. * Do not bail out early, in case there were callers still using
  564. * the value, even in the face of the WARN_ON.
  565. */
  566. if (unlikely(timekeeping_suspended))
  567. return -EAGAIN;
  568. return 0;
  569. }
  570. EXPORT_SYMBOL(__getnstimeofday64);
  571. /**
  572. * getnstimeofday64 - Returns the time of day in a timespec64.
  573. * @ts: pointer to the timespec64 to be set
  574. *
  575. * Returns the time of day in a timespec64 (WARN if suspended).
  576. */
  577. void getnstimeofday64(struct timespec64 *ts)
  578. {
  579. WARN_ON(__getnstimeofday64(ts));
  580. }
  581. EXPORT_SYMBOL(getnstimeofday64);
  582. ktime_t ktime_get(void)
  583. {
  584. struct timekeeper *tk = &tk_core.timekeeper;
  585. unsigned int seq;
  586. ktime_t base;
  587. s64 nsecs;
  588. WARN_ON(timekeeping_suspended);
  589. do {
  590. seq = read_seqcount_begin(&tk_core.seq);
  591. base = tk->tkr_mono.base;
  592. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  593. } while (read_seqcount_retry(&tk_core.seq, seq));
  594. return ktime_add_ns(base, nsecs);
  595. }
  596. EXPORT_SYMBOL_GPL(ktime_get);
  597. u32 ktime_get_resolution_ns(void)
  598. {
  599. struct timekeeper *tk = &tk_core.timekeeper;
  600. unsigned int seq;
  601. u32 nsecs;
  602. WARN_ON(timekeeping_suspended);
  603. do {
  604. seq = read_seqcount_begin(&tk_core.seq);
  605. nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
  606. } while (read_seqcount_retry(&tk_core.seq, seq));
  607. return nsecs;
  608. }
  609. EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
  610. static ktime_t *offsets[TK_OFFS_MAX] = {
  611. [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
  612. [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
  613. [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
  614. };
  615. ktime_t ktime_get_with_offset(enum tk_offsets offs)
  616. {
  617. struct timekeeper *tk = &tk_core.timekeeper;
  618. unsigned int seq;
  619. ktime_t base, *offset = offsets[offs];
  620. s64 nsecs;
  621. WARN_ON(timekeeping_suspended);
  622. do {
  623. seq = read_seqcount_begin(&tk_core.seq);
  624. base = ktime_add(tk->tkr_mono.base, *offset);
  625. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  626. } while (read_seqcount_retry(&tk_core.seq, seq));
  627. return ktime_add_ns(base, nsecs);
  628. }
  629. EXPORT_SYMBOL_GPL(ktime_get_with_offset);
  630. /**
  631. * ktime_mono_to_any() - convert mononotic time to any other time
  632. * @tmono: time to convert.
  633. * @offs: which offset to use
  634. */
  635. ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
  636. {
  637. ktime_t *offset = offsets[offs];
  638. unsigned long seq;
  639. ktime_t tconv;
  640. do {
  641. seq = read_seqcount_begin(&tk_core.seq);
  642. tconv = ktime_add(tmono, *offset);
  643. } while (read_seqcount_retry(&tk_core.seq, seq));
  644. return tconv;
  645. }
  646. EXPORT_SYMBOL_GPL(ktime_mono_to_any);
  647. /**
  648. * ktime_get_raw - Returns the raw monotonic time in ktime_t format
  649. */
  650. ktime_t ktime_get_raw(void)
  651. {
  652. struct timekeeper *tk = &tk_core.timekeeper;
  653. unsigned int seq;
  654. ktime_t base;
  655. s64 nsecs;
  656. do {
  657. seq = read_seqcount_begin(&tk_core.seq);
  658. base = tk->tkr_raw.base;
  659. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  660. } while (read_seqcount_retry(&tk_core.seq, seq));
  661. return ktime_add_ns(base, nsecs);
  662. }
  663. EXPORT_SYMBOL_GPL(ktime_get_raw);
  664. /**
  665. * ktime_get_ts64 - get the monotonic clock in timespec64 format
  666. * @ts: pointer to timespec variable
  667. *
  668. * The function calculates the monotonic clock from the realtime
  669. * clock and the wall_to_monotonic offset and stores the result
  670. * in normalized timespec64 format in the variable pointed to by @ts.
  671. */
  672. void ktime_get_ts64(struct timespec64 *ts)
  673. {
  674. struct timekeeper *tk = &tk_core.timekeeper;
  675. struct timespec64 tomono;
  676. s64 nsec;
  677. unsigned int seq;
  678. WARN_ON(timekeeping_suspended);
  679. do {
  680. seq = read_seqcount_begin(&tk_core.seq);
  681. ts->tv_sec = tk->xtime_sec;
  682. nsec = timekeeping_get_ns(&tk->tkr_mono);
  683. tomono = tk->wall_to_monotonic;
  684. } while (read_seqcount_retry(&tk_core.seq, seq));
  685. ts->tv_sec += tomono.tv_sec;
  686. ts->tv_nsec = 0;
  687. timespec64_add_ns(ts, nsec + tomono.tv_nsec);
  688. }
  689. EXPORT_SYMBOL_GPL(ktime_get_ts64);
  690. /**
  691. * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
  692. *
  693. * Returns the seconds portion of CLOCK_MONOTONIC with a single non
  694. * serialized read. tk->ktime_sec is of type 'unsigned long' so this
  695. * works on both 32 and 64 bit systems. On 32 bit systems the readout
  696. * covers ~136 years of uptime which should be enough to prevent
  697. * premature wrap arounds.
  698. */
  699. time64_t ktime_get_seconds(void)
  700. {
  701. struct timekeeper *tk = &tk_core.timekeeper;
  702. WARN_ON(timekeeping_suspended);
  703. return tk->ktime_sec;
  704. }
  705. EXPORT_SYMBOL_GPL(ktime_get_seconds);
  706. /**
  707. * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
  708. *
  709. * Returns the wall clock seconds since 1970. This replaces the
  710. * get_seconds() interface which is not y2038 safe on 32bit systems.
  711. *
  712. * For 64bit systems the fast access to tk->xtime_sec is preserved. On
  713. * 32bit systems the access must be protected with the sequence
  714. * counter to provide "atomic" access to the 64bit tk->xtime_sec
  715. * value.
  716. */
  717. time64_t ktime_get_real_seconds(void)
  718. {
  719. struct timekeeper *tk = &tk_core.timekeeper;
  720. time64_t seconds;
  721. unsigned int seq;
  722. if (IS_ENABLED(CONFIG_64BIT))
  723. return tk->xtime_sec;
  724. do {
  725. seq = read_seqcount_begin(&tk_core.seq);
  726. seconds = tk->xtime_sec;
  727. } while (read_seqcount_retry(&tk_core.seq, seq));
  728. return seconds;
  729. }
  730. EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
  731. /**
  732. * __ktime_get_real_seconds - The same as ktime_get_real_seconds
  733. * but without the sequence counter protect. This internal function
  734. * is called just when timekeeping lock is already held.
  735. */
  736. time64_t __ktime_get_real_seconds(void)
  737. {
  738. struct timekeeper *tk = &tk_core.timekeeper;
  739. return tk->xtime_sec;
  740. }
  741. /**
  742. * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
  743. * @systime_snapshot: pointer to struct receiving the system time snapshot
  744. */
  745. void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
  746. {
  747. struct timekeeper *tk = &tk_core.timekeeper;
  748. unsigned long seq;
  749. ktime_t base_raw;
  750. ktime_t base_real;
  751. s64 nsec_raw;
  752. s64 nsec_real;
  753. cycle_t now;
  754. WARN_ON_ONCE(timekeeping_suspended);
  755. do {
  756. seq = read_seqcount_begin(&tk_core.seq);
  757. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  758. systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
  759. systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
  760. base_real = ktime_add(tk->tkr_mono.base,
  761. tk_core.timekeeper.offs_real);
  762. base_raw = tk->tkr_raw.base;
  763. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
  764. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
  765. } while (read_seqcount_retry(&tk_core.seq, seq));
  766. systime_snapshot->cycles = now;
  767. systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
  768. systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
  769. }
  770. EXPORT_SYMBOL_GPL(ktime_get_snapshot);
  771. /* Scale base by mult/div checking for overflow */
  772. static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
  773. {
  774. u64 tmp, rem;
  775. tmp = div64_u64_rem(*base, div, &rem);
  776. if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
  777. ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
  778. return -EOVERFLOW;
  779. tmp *= mult;
  780. rem *= mult;
  781. do_div(rem, div);
  782. *base = tmp + rem;
  783. return 0;
  784. }
  785. /**
  786. * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
  787. * @history: Snapshot representing start of history
  788. * @partial_history_cycles: Cycle offset into history (fractional part)
  789. * @total_history_cycles: Total history length in cycles
  790. * @discontinuity: True indicates clock was set on history period
  791. * @ts: Cross timestamp that should be adjusted using
  792. * partial/total ratio
  793. *
  794. * Helper function used by get_device_system_crosststamp() to correct the
  795. * crosstimestamp corresponding to the start of the current interval to the
  796. * system counter value (timestamp point) provided by the driver. The
  797. * total_history_* quantities are the total history starting at the provided
  798. * reference point and ending at the start of the current interval. The cycle
  799. * count between the driver timestamp point and the start of the current
  800. * interval is partial_history_cycles.
  801. */
  802. static int adjust_historical_crosststamp(struct system_time_snapshot *history,
  803. cycle_t partial_history_cycles,
  804. cycle_t total_history_cycles,
  805. bool discontinuity,
  806. struct system_device_crosststamp *ts)
  807. {
  808. struct timekeeper *tk = &tk_core.timekeeper;
  809. u64 corr_raw, corr_real;
  810. bool interp_forward;
  811. int ret;
  812. if (total_history_cycles == 0 || partial_history_cycles == 0)
  813. return 0;
  814. /* Interpolate shortest distance from beginning or end of history */
  815. interp_forward = partial_history_cycles > total_history_cycles/2 ?
  816. true : false;
  817. partial_history_cycles = interp_forward ?
  818. total_history_cycles - partial_history_cycles :
  819. partial_history_cycles;
  820. /*
  821. * Scale the monotonic raw time delta by:
  822. * partial_history_cycles / total_history_cycles
  823. */
  824. corr_raw = (u64)ktime_to_ns(
  825. ktime_sub(ts->sys_monoraw, history->raw));
  826. ret = scale64_check_overflow(partial_history_cycles,
  827. total_history_cycles, &corr_raw);
  828. if (ret)
  829. return ret;
  830. /*
  831. * If there is a discontinuity in the history, scale monotonic raw
  832. * correction by:
  833. * mult(real)/mult(raw) yielding the realtime correction
  834. * Otherwise, calculate the realtime correction similar to monotonic
  835. * raw calculation
  836. */
  837. if (discontinuity) {
  838. corr_real = mul_u64_u32_div
  839. (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
  840. } else {
  841. corr_real = (u64)ktime_to_ns(
  842. ktime_sub(ts->sys_realtime, history->real));
  843. ret = scale64_check_overflow(partial_history_cycles,
  844. total_history_cycles, &corr_real);
  845. if (ret)
  846. return ret;
  847. }
  848. /* Fixup monotonic raw and real time time values */
  849. if (interp_forward) {
  850. ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
  851. ts->sys_realtime = ktime_add_ns(history->real, corr_real);
  852. } else {
  853. ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
  854. ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
  855. }
  856. return 0;
  857. }
  858. /*
  859. * cycle_between - true if test occurs chronologically between before and after
  860. */
  861. static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
  862. {
  863. if (test > before && test < after)
  864. return true;
  865. if (test < before && before > after)
  866. return true;
  867. return false;
  868. }
  869. /**
  870. * get_device_system_crosststamp - Synchronously capture system/device timestamp
  871. * @get_time_fn: Callback to get simultaneous device time and
  872. * system counter from the device driver
  873. * @ctx: Context passed to get_time_fn()
  874. * @history_begin: Historical reference point used to interpolate system
  875. * time when counter provided by the driver is before the current interval
  876. * @xtstamp: Receives simultaneously captured system and device time
  877. *
  878. * Reads a timestamp from a device and correlates it to system time
  879. */
  880. int get_device_system_crosststamp(int (*get_time_fn)
  881. (ktime_t *device_time,
  882. struct system_counterval_t *sys_counterval,
  883. void *ctx),
  884. void *ctx,
  885. struct system_time_snapshot *history_begin,
  886. struct system_device_crosststamp *xtstamp)
  887. {
  888. struct system_counterval_t system_counterval;
  889. struct timekeeper *tk = &tk_core.timekeeper;
  890. cycle_t cycles, now, interval_start;
  891. unsigned int clock_was_set_seq = 0;
  892. ktime_t base_real, base_raw;
  893. s64 nsec_real, nsec_raw;
  894. u8 cs_was_changed_seq;
  895. unsigned long seq;
  896. bool do_interp;
  897. int ret;
  898. do {
  899. seq = read_seqcount_begin(&tk_core.seq);
  900. /*
  901. * Try to synchronously capture device time and a system
  902. * counter value calling back into the device driver
  903. */
  904. ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
  905. if (ret)
  906. return ret;
  907. /*
  908. * Verify that the clocksource associated with the captured
  909. * system counter value is the same as the currently installed
  910. * timekeeper clocksource
  911. */
  912. if (tk->tkr_mono.clock != system_counterval.cs)
  913. return -ENODEV;
  914. cycles = system_counterval.cycles;
  915. /*
  916. * Check whether the system counter value provided by the
  917. * device driver is on the current timekeeping interval.
  918. */
  919. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  920. interval_start = tk->tkr_mono.cycle_last;
  921. if (!cycle_between(interval_start, cycles, now)) {
  922. clock_was_set_seq = tk->clock_was_set_seq;
  923. cs_was_changed_seq = tk->cs_was_changed_seq;
  924. cycles = interval_start;
  925. do_interp = true;
  926. } else {
  927. do_interp = false;
  928. }
  929. base_real = ktime_add(tk->tkr_mono.base,
  930. tk_core.timekeeper.offs_real);
  931. base_raw = tk->tkr_raw.base;
  932. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
  933. system_counterval.cycles);
  934. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
  935. system_counterval.cycles);
  936. } while (read_seqcount_retry(&tk_core.seq, seq));
  937. xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
  938. xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
  939. /*
  940. * Interpolate if necessary, adjusting back from the start of the
  941. * current interval
  942. */
  943. if (do_interp) {
  944. cycle_t partial_history_cycles, total_history_cycles;
  945. bool discontinuity;
  946. /*
  947. * Check that the counter value occurs after the provided
  948. * history reference and that the history doesn't cross a
  949. * clocksource change
  950. */
  951. if (!history_begin ||
  952. !cycle_between(history_begin->cycles,
  953. system_counterval.cycles, cycles) ||
  954. history_begin->cs_was_changed_seq != cs_was_changed_seq)
  955. return -EINVAL;
  956. partial_history_cycles = cycles - system_counterval.cycles;
  957. total_history_cycles = cycles - history_begin->cycles;
  958. discontinuity =
  959. history_begin->clock_was_set_seq != clock_was_set_seq;
  960. ret = adjust_historical_crosststamp(history_begin,
  961. partial_history_cycles,
  962. total_history_cycles,
  963. discontinuity, xtstamp);
  964. if (ret)
  965. return ret;
  966. }
  967. return 0;
  968. }
  969. EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
  970. /**
  971. * do_gettimeofday - Returns the time of day in a timeval
  972. * @tv: pointer to the timeval to be set
  973. *
  974. * NOTE: Users should be converted to using getnstimeofday()
  975. */
  976. void do_gettimeofday(struct timeval *tv)
  977. {
  978. struct timespec64 now;
  979. getnstimeofday64(&now);
  980. tv->tv_sec = now.tv_sec;
  981. tv->tv_usec = now.tv_nsec/1000;
  982. }
  983. EXPORT_SYMBOL(do_gettimeofday);
  984. /**
  985. * do_settimeofday64 - Sets the time of day.
  986. * @ts: pointer to the timespec64 variable containing the new time
  987. *
  988. * Sets the time of day to the new time and update NTP and notify hrtimers
  989. */
  990. int do_settimeofday64(const struct timespec64 *ts)
  991. {
  992. struct timekeeper *tk = &tk_core.timekeeper;
  993. struct timespec64 ts_delta, xt;
  994. unsigned long flags;
  995. int ret = 0;
  996. if (!timespec64_valid_strict(ts))
  997. return -EINVAL;
  998. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  999. write_seqcount_begin(&tk_core.seq);
  1000. timekeeping_forward_now(tk);
  1001. xt = tk_xtime(tk);
  1002. ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
  1003. ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
  1004. if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
  1005. ret = -EINVAL;
  1006. goto out;
  1007. }
  1008. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
  1009. tk_set_xtime(tk, ts);
  1010. out:
  1011. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1012. write_seqcount_end(&tk_core.seq);
  1013. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1014. /* signal hrtimers about time change */
  1015. clock_was_set();
  1016. return ret;
  1017. }
  1018. EXPORT_SYMBOL(do_settimeofday64);
  1019. /**
  1020. * timekeeping_inject_offset - Adds or subtracts from the current time.
  1021. * @tv: pointer to the timespec variable containing the offset
  1022. *
  1023. * Adds or subtracts an offset value from the current time.
  1024. */
  1025. int timekeeping_inject_offset(struct timespec *ts)
  1026. {
  1027. struct timekeeper *tk = &tk_core.timekeeper;
  1028. unsigned long flags;
  1029. struct timespec64 ts64, tmp;
  1030. int ret = 0;
  1031. if (!timespec_inject_offset_valid(ts))
  1032. return -EINVAL;
  1033. ts64 = timespec_to_timespec64(*ts);
  1034. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1035. write_seqcount_begin(&tk_core.seq);
  1036. timekeeping_forward_now(tk);
  1037. /* Make sure the proposed value is valid */
  1038. tmp = timespec64_add(tk_xtime(tk), ts64);
  1039. if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
  1040. !timespec64_valid_strict(&tmp)) {
  1041. ret = -EINVAL;
  1042. goto error;
  1043. }
  1044. tk_xtime_add(tk, &ts64);
  1045. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
  1046. error: /* even if we error out, we forwarded the time, so call update */
  1047. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1048. write_seqcount_end(&tk_core.seq);
  1049. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1050. /* signal hrtimers about time change */
  1051. clock_was_set();
  1052. return ret;
  1053. }
  1054. EXPORT_SYMBOL(timekeeping_inject_offset);
  1055. /**
  1056. * timekeeping_get_tai_offset - Returns current TAI offset from UTC
  1057. *
  1058. */
  1059. s32 timekeeping_get_tai_offset(void)
  1060. {
  1061. struct timekeeper *tk = &tk_core.timekeeper;
  1062. unsigned int seq;
  1063. s32 ret;
  1064. do {
  1065. seq = read_seqcount_begin(&tk_core.seq);
  1066. ret = tk->tai_offset;
  1067. } while (read_seqcount_retry(&tk_core.seq, seq));
  1068. return ret;
  1069. }
  1070. /**
  1071. * __timekeeping_set_tai_offset - Lock free worker function
  1072. *
  1073. */
  1074. static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
  1075. {
  1076. tk->tai_offset = tai_offset;
  1077. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
  1078. }
  1079. /**
  1080. * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
  1081. *
  1082. */
  1083. void timekeeping_set_tai_offset(s32 tai_offset)
  1084. {
  1085. struct timekeeper *tk = &tk_core.timekeeper;
  1086. unsigned long flags;
  1087. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1088. write_seqcount_begin(&tk_core.seq);
  1089. __timekeeping_set_tai_offset(tk, tai_offset);
  1090. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1091. write_seqcount_end(&tk_core.seq);
  1092. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1093. clock_was_set();
  1094. }
  1095. /**
  1096. * change_clocksource - Swaps clocksources if a new one is available
  1097. *
  1098. * Accumulates current time interval and initializes new clocksource
  1099. */
  1100. static int change_clocksource(void *data)
  1101. {
  1102. struct timekeeper *tk = &tk_core.timekeeper;
  1103. struct clocksource *new, *old;
  1104. unsigned long flags;
  1105. new = (struct clocksource *) data;
  1106. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1107. write_seqcount_begin(&tk_core.seq);
  1108. timekeeping_forward_now(tk);
  1109. /*
  1110. * If the cs is in module, get a module reference. Succeeds
  1111. * for built-in code (owner == NULL) as well.
  1112. */
  1113. if (try_module_get(new->owner)) {
  1114. if (!new->enable || new->enable(new) == 0) {
  1115. old = tk->tkr_mono.clock;
  1116. tk_setup_internals(tk, new);
  1117. if (old->disable)
  1118. old->disable(old);
  1119. module_put(old->owner);
  1120. } else {
  1121. module_put(new->owner);
  1122. }
  1123. }
  1124. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1125. write_seqcount_end(&tk_core.seq);
  1126. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1127. return 0;
  1128. }
  1129. /**
  1130. * timekeeping_notify - Install a new clock source
  1131. * @clock: pointer to the clock source
  1132. *
  1133. * This function is called from clocksource.c after a new, better clock
  1134. * source has been registered. The caller holds the clocksource_mutex.
  1135. */
  1136. int timekeeping_notify(struct clocksource *clock)
  1137. {
  1138. struct timekeeper *tk = &tk_core.timekeeper;
  1139. if (tk->tkr_mono.clock == clock)
  1140. return 0;
  1141. stop_machine(change_clocksource, clock, NULL);
  1142. tick_clock_notify();
  1143. return tk->tkr_mono.clock == clock ? 0 : -1;
  1144. }
  1145. /**
  1146. * getrawmonotonic64 - Returns the raw monotonic time in a timespec
  1147. * @ts: pointer to the timespec64 to be set
  1148. *
  1149. * Returns the raw monotonic time (completely un-modified by ntp)
  1150. */
  1151. void getrawmonotonic64(struct timespec64 *ts)
  1152. {
  1153. struct timekeeper *tk = &tk_core.timekeeper;
  1154. struct timespec64 ts64;
  1155. unsigned long seq;
  1156. s64 nsecs;
  1157. do {
  1158. seq = read_seqcount_begin(&tk_core.seq);
  1159. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  1160. ts64 = tk->raw_time;
  1161. } while (read_seqcount_retry(&tk_core.seq, seq));
  1162. timespec64_add_ns(&ts64, nsecs);
  1163. *ts = ts64;
  1164. }
  1165. EXPORT_SYMBOL(getrawmonotonic64);
  1166. /**
  1167. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  1168. */
  1169. int timekeeping_valid_for_hres(void)
  1170. {
  1171. struct timekeeper *tk = &tk_core.timekeeper;
  1172. unsigned long seq;
  1173. int ret;
  1174. do {
  1175. seq = read_seqcount_begin(&tk_core.seq);
  1176. ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  1177. } while (read_seqcount_retry(&tk_core.seq, seq));
  1178. return ret;
  1179. }
  1180. /**
  1181. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  1182. */
  1183. u64 timekeeping_max_deferment(void)
  1184. {
  1185. struct timekeeper *tk = &tk_core.timekeeper;
  1186. unsigned long seq;
  1187. u64 ret;
  1188. do {
  1189. seq = read_seqcount_begin(&tk_core.seq);
  1190. ret = tk->tkr_mono.clock->max_idle_ns;
  1191. } while (read_seqcount_retry(&tk_core.seq, seq));
  1192. return ret;
  1193. }
  1194. /**
  1195. * read_persistent_clock - Return time from the persistent clock.
  1196. *
  1197. * Weak dummy function for arches that do not yet support it.
  1198. * Reads the time from the battery backed persistent clock.
  1199. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  1200. *
  1201. * XXX - Do be sure to remove it once all arches implement it.
  1202. */
  1203. void __weak read_persistent_clock(struct timespec *ts)
  1204. {
  1205. ts->tv_sec = 0;
  1206. ts->tv_nsec = 0;
  1207. }
  1208. void __weak read_persistent_clock64(struct timespec64 *ts64)
  1209. {
  1210. struct timespec ts;
  1211. read_persistent_clock(&ts);
  1212. *ts64 = timespec_to_timespec64(ts);
  1213. }
  1214. /**
  1215. * read_boot_clock64 - Return time of the system start.
  1216. *
  1217. * Weak dummy function for arches that do not yet support it.
  1218. * Function to read the exact time the system has been started.
  1219. * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
  1220. *
  1221. * XXX - Do be sure to remove it once all arches implement it.
  1222. */
  1223. void __weak read_boot_clock64(struct timespec64 *ts)
  1224. {
  1225. ts->tv_sec = 0;
  1226. ts->tv_nsec = 0;
  1227. }
  1228. /* Flag for if timekeeping_resume() has injected sleeptime */
  1229. static bool sleeptime_injected;
  1230. /* Flag for if there is a persistent clock on this platform */
  1231. static bool persistent_clock_exists;
  1232. /*
  1233. * timekeeping_init - Initializes the clocksource and common timekeeping values
  1234. */
  1235. void __init timekeeping_init(void)
  1236. {
  1237. struct timekeeper *tk = &tk_core.timekeeper;
  1238. struct clocksource *clock;
  1239. unsigned long flags;
  1240. struct timespec64 now, boot, tmp;
  1241. read_persistent_clock64(&now);
  1242. if (!timespec64_valid_strict(&now)) {
  1243. pr_warn("WARNING: Persistent clock returned invalid value!\n"
  1244. " Check your CMOS/BIOS settings.\n");
  1245. now.tv_sec = 0;
  1246. now.tv_nsec = 0;
  1247. } else if (now.tv_sec || now.tv_nsec)
  1248. persistent_clock_exists = true;
  1249. read_boot_clock64(&boot);
  1250. if (!timespec64_valid_strict(&boot)) {
  1251. pr_warn("WARNING: Boot clock returned invalid value!\n"
  1252. " Check your CMOS/BIOS settings.\n");
  1253. boot.tv_sec = 0;
  1254. boot.tv_nsec = 0;
  1255. }
  1256. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1257. write_seqcount_begin(&tk_core.seq);
  1258. ntp_init();
  1259. clock = clocksource_default_clock();
  1260. if (clock->enable)
  1261. clock->enable(clock);
  1262. tk_setup_internals(tk, clock);
  1263. tk_set_xtime(tk, &now);
  1264. tk->raw_time.tv_sec = 0;
  1265. tk->raw_time.tv_nsec = 0;
  1266. if (boot.tv_sec == 0 && boot.tv_nsec == 0)
  1267. boot = tk_xtime(tk);
  1268. set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
  1269. tk_set_wall_to_mono(tk, tmp);
  1270. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1271. write_seqcount_end(&tk_core.seq);
  1272. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1273. }
  1274. /* time in seconds when suspend began for persistent clock */
  1275. static struct timespec64 timekeeping_suspend_time;
  1276. /**
  1277. * __timekeeping_inject_sleeptime - Internal function to add sleep interval
  1278. * @delta: pointer to a timespec delta value
  1279. *
  1280. * Takes a timespec offset measuring a suspend interval and properly
  1281. * adds the sleep offset to the timekeeping variables.
  1282. */
  1283. static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
  1284. struct timespec64 *delta)
  1285. {
  1286. if (!timespec64_valid_strict(delta)) {
  1287. printk_deferred(KERN_WARNING
  1288. "__timekeeping_inject_sleeptime: Invalid "
  1289. "sleep delta value!\n");
  1290. return;
  1291. }
  1292. tk_xtime_add(tk, delta);
  1293. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
  1294. tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
  1295. tk_debug_account_sleep_time(delta);
  1296. }
  1297. #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
  1298. /**
  1299. * We have three kinds of time sources to use for sleep time
  1300. * injection, the preference order is:
  1301. * 1) non-stop clocksource
  1302. * 2) persistent clock (ie: RTC accessible when irqs are off)
  1303. * 3) RTC
  1304. *
  1305. * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
  1306. * If system has neither 1) nor 2), 3) will be used finally.
  1307. *
  1308. *
  1309. * If timekeeping has injected sleeptime via either 1) or 2),
  1310. * 3) becomes needless, so in this case we don't need to call
  1311. * rtc_resume(), and this is what timekeeping_rtc_skipresume()
  1312. * means.
  1313. */
  1314. bool timekeeping_rtc_skipresume(void)
  1315. {
  1316. return sleeptime_injected;
  1317. }
  1318. /**
  1319. * 1) can be determined whether to use or not only when doing
  1320. * timekeeping_resume() which is invoked after rtc_suspend(),
  1321. * so we can't skip rtc_suspend() surely if system has 1).
  1322. *
  1323. * But if system has 2), 2) will definitely be used, so in this
  1324. * case we don't need to call rtc_suspend(), and this is what
  1325. * timekeeping_rtc_skipsuspend() means.
  1326. */
  1327. bool timekeeping_rtc_skipsuspend(void)
  1328. {
  1329. return persistent_clock_exists;
  1330. }
  1331. /**
  1332. * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
  1333. * @delta: pointer to a timespec64 delta value
  1334. *
  1335. * This hook is for architectures that cannot support read_persistent_clock64
  1336. * because their RTC/persistent clock is only accessible when irqs are enabled.
  1337. * and also don't have an effective nonstop clocksource.
  1338. *
  1339. * This function should only be called by rtc_resume(), and allows
  1340. * a suspend offset to be injected into the timekeeping values.
  1341. */
  1342. void timekeeping_inject_sleeptime64(struct timespec64 *delta)
  1343. {
  1344. struct timekeeper *tk = &tk_core.timekeeper;
  1345. unsigned long flags;
  1346. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1347. write_seqcount_begin(&tk_core.seq);
  1348. timekeeping_forward_now(tk);
  1349. __timekeeping_inject_sleeptime(tk, delta);
  1350. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1351. write_seqcount_end(&tk_core.seq);
  1352. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1353. /* signal hrtimers about time change */
  1354. clock_was_set();
  1355. }
  1356. #endif
  1357. /**
  1358. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  1359. */
  1360. void timekeeping_resume(void)
  1361. {
  1362. struct timekeeper *tk = &tk_core.timekeeper;
  1363. struct clocksource *clock = tk->tkr_mono.clock;
  1364. unsigned long flags;
  1365. struct timespec64 ts_new, ts_delta;
  1366. cycle_t cycle_now, cycle_delta;
  1367. sleeptime_injected = false;
  1368. read_persistent_clock64(&ts_new);
  1369. clockevents_resume();
  1370. clocksource_resume();
  1371. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1372. write_seqcount_begin(&tk_core.seq);
  1373. /*
  1374. * After system resumes, we need to calculate the suspended time and
  1375. * compensate it for the OS time. There are 3 sources that could be
  1376. * used: Nonstop clocksource during suspend, persistent clock and rtc
  1377. * device.
  1378. *
  1379. * One specific platform may have 1 or 2 or all of them, and the
  1380. * preference will be:
  1381. * suspend-nonstop clocksource -> persistent clock -> rtc
  1382. * The less preferred source will only be tried if there is no better
  1383. * usable source. The rtc part is handled separately in rtc core code.
  1384. */
  1385. cycle_now = tk->tkr_mono.read(clock);
  1386. if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
  1387. cycle_now > tk->tkr_mono.cycle_last) {
  1388. u64 num, max = ULLONG_MAX;
  1389. u32 mult = clock->mult;
  1390. u32 shift = clock->shift;
  1391. s64 nsec = 0;
  1392. cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
  1393. tk->tkr_mono.mask);
  1394. /*
  1395. * "cycle_delta * mutl" may cause 64 bits overflow, if the
  1396. * suspended time is too long. In that case we need do the
  1397. * 64 bits math carefully
  1398. */
  1399. do_div(max, mult);
  1400. if (cycle_delta > max) {
  1401. num = div64_u64(cycle_delta, max);
  1402. nsec = (((u64) max * mult) >> shift) * num;
  1403. cycle_delta -= num * max;
  1404. }
  1405. nsec += ((u64) cycle_delta * mult) >> shift;
  1406. ts_delta = ns_to_timespec64(nsec);
  1407. sleeptime_injected = true;
  1408. } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
  1409. ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
  1410. sleeptime_injected = true;
  1411. }
  1412. if (sleeptime_injected)
  1413. __timekeeping_inject_sleeptime(tk, &ts_delta);
  1414. /* Re-base the last cycle value */
  1415. tk->tkr_mono.cycle_last = cycle_now;
  1416. tk->tkr_raw.cycle_last = cycle_now;
  1417. tk->ntp_error = 0;
  1418. timekeeping_suspended = 0;
  1419. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1420. write_seqcount_end(&tk_core.seq);
  1421. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1422. touch_softlockup_watchdog();
  1423. tick_resume();
  1424. hrtimers_resume();
  1425. }
  1426. int timekeeping_suspend(void)
  1427. {
  1428. struct timekeeper *tk = &tk_core.timekeeper;
  1429. unsigned long flags;
  1430. struct timespec64 delta, delta_delta;
  1431. static struct timespec64 old_delta;
  1432. read_persistent_clock64(&timekeeping_suspend_time);
  1433. /*
  1434. * On some systems the persistent_clock can not be detected at
  1435. * timekeeping_init by its return value, so if we see a valid
  1436. * value returned, update the persistent_clock_exists flag.
  1437. */
  1438. if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
  1439. persistent_clock_exists = true;
  1440. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1441. write_seqcount_begin(&tk_core.seq);
  1442. timekeeping_forward_now(tk);
  1443. timekeeping_suspended = 1;
  1444. if (persistent_clock_exists) {
  1445. /*
  1446. * To avoid drift caused by repeated suspend/resumes,
  1447. * which each can add ~1 second drift error,
  1448. * try to compensate so the difference in system time
  1449. * and persistent_clock time stays close to constant.
  1450. */
  1451. delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
  1452. delta_delta = timespec64_sub(delta, old_delta);
  1453. if (abs(delta_delta.tv_sec) >= 2) {
  1454. /*
  1455. * if delta_delta is too large, assume time correction
  1456. * has occurred and set old_delta to the current delta.
  1457. */
  1458. old_delta = delta;
  1459. } else {
  1460. /* Otherwise try to adjust old_system to compensate */
  1461. timekeeping_suspend_time =
  1462. timespec64_add(timekeeping_suspend_time, delta_delta);
  1463. }
  1464. }
  1465. timekeeping_update(tk, TK_MIRROR);
  1466. halt_fast_timekeeper(tk);
  1467. write_seqcount_end(&tk_core.seq);
  1468. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1469. tick_suspend();
  1470. clocksource_suspend();
  1471. clockevents_suspend();
  1472. return 0;
  1473. }
  1474. /* sysfs resume/suspend bits for timekeeping */
  1475. static struct syscore_ops timekeeping_syscore_ops = {
  1476. .resume = timekeeping_resume,
  1477. .suspend = timekeeping_suspend,
  1478. };
  1479. static int __init timekeeping_init_ops(void)
  1480. {
  1481. register_syscore_ops(&timekeeping_syscore_ops);
  1482. return 0;
  1483. }
  1484. device_initcall(timekeeping_init_ops);
  1485. /*
  1486. * Apply a multiplier adjustment to the timekeeper
  1487. */
  1488. static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
  1489. s64 offset,
  1490. bool negative,
  1491. int adj_scale)
  1492. {
  1493. s64 interval = tk->cycle_interval;
  1494. s32 mult_adj = 1;
  1495. if (negative) {
  1496. mult_adj = -mult_adj;
  1497. interval = -interval;
  1498. offset = -offset;
  1499. }
  1500. mult_adj <<= adj_scale;
  1501. interval <<= adj_scale;
  1502. offset <<= adj_scale;
  1503. /*
  1504. * So the following can be confusing.
  1505. *
  1506. * To keep things simple, lets assume mult_adj == 1 for now.
  1507. *
  1508. * When mult_adj != 1, remember that the interval and offset values
  1509. * have been appropriately scaled so the math is the same.
  1510. *
  1511. * The basic idea here is that we're increasing the multiplier
  1512. * by one, this causes the xtime_interval to be incremented by
  1513. * one cycle_interval. This is because:
  1514. * xtime_interval = cycle_interval * mult
  1515. * So if mult is being incremented by one:
  1516. * xtime_interval = cycle_interval * (mult + 1)
  1517. * Its the same as:
  1518. * xtime_interval = (cycle_interval * mult) + cycle_interval
  1519. * Which can be shortened to:
  1520. * xtime_interval += cycle_interval
  1521. *
  1522. * So offset stores the non-accumulated cycles. Thus the current
  1523. * time (in shifted nanoseconds) is:
  1524. * now = (offset * adj) + xtime_nsec
  1525. * Now, even though we're adjusting the clock frequency, we have
  1526. * to keep time consistent. In other words, we can't jump back
  1527. * in time, and we also want to avoid jumping forward in time.
  1528. *
  1529. * So given the same offset value, we need the time to be the same
  1530. * both before and after the freq adjustment.
  1531. * now = (offset * adj_1) + xtime_nsec_1
  1532. * now = (offset * adj_2) + xtime_nsec_2
  1533. * So:
  1534. * (offset * adj_1) + xtime_nsec_1 =
  1535. * (offset * adj_2) + xtime_nsec_2
  1536. * And we know:
  1537. * adj_2 = adj_1 + 1
  1538. * So:
  1539. * (offset * adj_1) + xtime_nsec_1 =
  1540. * (offset * (adj_1+1)) + xtime_nsec_2
  1541. * (offset * adj_1) + xtime_nsec_1 =
  1542. * (offset * adj_1) + offset + xtime_nsec_2
  1543. * Canceling the sides:
  1544. * xtime_nsec_1 = offset + xtime_nsec_2
  1545. * Which gives us:
  1546. * xtime_nsec_2 = xtime_nsec_1 - offset
  1547. * Which simplfies to:
  1548. * xtime_nsec -= offset
  1549. *
  1550. * XXX - TODO: Doc ntp_error calculation.
  1551. */
  1552. if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
  1553. /* NTP adjustment caused clocksource mult overflow */
  1554. WARN_ON_ONCE(1);
  1555. return;
  1556. }
  1557. tk->tkr_mono.mult += mult_adj;
  1558. tk->xtime_interval += interval;
  1559. tk->tkr_mono.xtime_nsec -= offset;
  1560. tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
  1561. }
  1562. /*
  1563. * Calculate the multiplier adjustment needed to match the frequency
  1564. * specified by NTP
  1565. */
  1566. static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
  1567. s64 offset)
  1568. {
  1569. s64 interval = tk->cycle_interval;
  1570. s64 xinterval = tk->xtime_interval;
  1571. u32 base = tk->tkr_mono.clock->mult;
  1572. u32 max = tk->tkr_mono.clock->maxadj;
  1573. u32 cur_adj = tk->tkr_mono.mult;
  1574. s64 tick_error;
  1575. bool negative;
  1576. u32 adj_scale;
  1577. /* Remove any current error adj from freq calculation */
  1578. if (tk->ntp_err_mult)
  1579. xinterval -= tk->cycle_interval;
  1580. tk->ntp_tick = ntp_tick_length();
  1581. /* Calculate current error per tick */
  1582. tick_error = ntp_tick_length() >> tk->ntp_error_shift;
  1583. tick_error -= (xinterval + tk->xtime_remainder);
  1584. /* Don't worry about correcting it if its small */
  1585. if (likely((tick_error >= 0) && (tick_error <= interval)))
  1586. return;
  1587. /* preserve the direction of correction */
  1588. negative = (tick_error < 0);
  1589. /* If any adjustment would pass the max, just return */
  1590. if (negative && (cur_adj - 1) <= (base - max))
  1591. return;
  1592. if (!negative && (cur_adj + 1) >= (base + max))
  1593. return;
  1594. /*
  1595. * Sort out the magnitude of the correction, but
  1596. * avoid making so large a correction that we go
  1597. * over the max adjustment.
  1598. */
  1599. adj_scale = 0;
  1600. tick_error = abs(tick_error);
  1601. while (tick_error > interval) {
  1602. u32 adj = 1 << (adj_scale + 1);
  1603. /* Check if adjustment gets us within 1 unit from the max */
  1604. if (negative && (cur_adj - adj) <= (base - max))
  1605. break;
  1606. if (!negative && (cur_adj + adj) >= (base + max))
  1607. break;
  1608. adj_scale++;
  1609. tick_error >>= 1;
  1610. }
  1611. /* scale the corrections */
  1612. timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
  1613. }
  1614. /*
  1615. * Adjust the timekeeper's multiplier to the correct frequency
  1616. * and also to reduce the accumulated error value.
  1617. */
  1618. static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
  1619. {
  1620. /* Correct for the current frequency error */
  1621. timekeeping_freqadjust(tk, offset);
  1622. /* Next make a small adjustment to fix any cumulative error */
  1623. if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
  1624. tk->ntp_err_mult = 1;
  1625. timekeeping_apply_adjustment(tk, offset, 0, 0);
  1626. } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
  1627. /* Undo any existing error adjustment */
  1628. timekeeping_apply_adjustment(tk, offset, 1, 0);
  1629. tk->ntp_err_mult = 0;
  1630. }
  1631. if (unlikely(tk->tkr_mono.clock->maxadj &&
  1632. (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
  1633. > tk->tkr_mono.clock->maxadj))) {
  1634. printk_once(KERN_WARNING
  1635. "Adjusting %s more than 11%% (%ld vs %ld)\n",
  1636. tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
  1637. (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
  1638. }
  1639. /*
  1640. * It may be possible that when we entered this function, xtime_nsec
  1641. * was very small. Further, if we're slightly speeding the clocksource
  1642. * in the code above, its possible the required corrective factor to
  1643. * xtime_nsec could cause it to underflow.
  1644. *
  1645. * Now, since we already accumulated the second, cannot simply roll
  1646. * the accumulated second back, since the NTP subsystem has been
  1647. * notified via second_overflow. So instead we push xtime_nsec forward
  1648. * by the amount we underflowed, and add that amount into the error.
  1649. *
  1650. * We'll correct this error next time through this function, when
  1651. * xtime_nsec is not as small.
  1652. */
  1653. if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
  1654. s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
  1655. tk->tkr_mono.xtime_nsec = 0;
  1656. tk->ntp_error += neg << tk->ntp_error_shift;
  1657. }
  1658. }
  1659. /**
  1660. * accumulate_nsecs_to_secs - Accumulates nsecs into secs
  1661. *
  1662. * Helper function that accumulates the nsecs greater than a second
  1663. * from the xtime_nsec field to the xtime_secs field.
  1664. * It also calls into the NTP code to handle leapsecond processing.
  1665. *
  1666. */
  1667. static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
  1668. {
  1669. u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  1670. unsigned int clock_set = 0;
  1671. while (tk->tkr_mono.xtime_nsec >= nsecps) {
  1672. int leap;
  1673. tk->tkr_mono.xtime_nsec -= nsecps;
  1674. tk->xtime_sec++;
  1675. /* Figure out if its a leap sec and apply if needed */
  1676. leap = second_overflow(tk->xtime_sec);
  1677. if (unlikely(leap)) {
  1678. struct timespec64 ts;
  1679. tk->xtime_sec += leap;
  1680. ts.tv_sec = leap;
  1681. ts.tv_nsec = 0;
  1682. tk_set_wall_to_mono(tk,
  1683. timespec64_sub(tk->wall_to_monotonic, ts));
  1684. __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
  1685. clock_set = TK_CLOCK_WAS_SET;
  1686. }
  1687. }
  1688. return clock_set;
  1689. }
  1690. /**
  1691. * logarithmic_accumulation - shifted accumulation of cycles
  1692. *
  1693. * This functions accumulates a shifted interval of cycles into
  1694. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  1695. * loop.
  1696. *
  1697. * Returns the unconsumed cycles.
  1698. */
  1699. static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
  1700. u32 shift,
  1701. unsigned int *clock_set)
  1702. {
  1703. cycle_t interval = tk->cycle_interval << shift;
  1704. u64 raw_nsecs;
  1705. /* If the offset is smaller than a shifted interval, do nothing */
  1706. if (offset < interval)
  1707. return offset;
  1708. /* Accumulate one shifted interval */
  1709. offset -= interval;
  1710. tk->tkr_mono.cycle_last += interval;
  1711. tk->tkr_raw.cycle_last += interval;
  1712. tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
  1713. *clock_set |= accumulate_nsecs_to_secs(tk);
  1714. /* Accumulate raw time */
  1715. raw_nsecs = (u64)tk->raw_interval << shift;
  1716. raw_nsecs += tk->raw_time.tv_nsec;
  1717. if (raw_nsecs >= NSEC_PER_SEC) {
  1718. u64 raw_secs = raw_nsecs;
  1719. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  1720. tk->raw_time.tv_sec += raw_secs;
  1721. }
  1722. tk->raw_time.tv_nsec = raw_nsecs;
  1723. /* Accumulate error between NTP and clock interval */
  1724. tk->ntp_error += tk->ntp_tick << shift;
  1725. tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
  1726. (tk->ntp_error_shift + shift);
  1727. return offset;
  1728. }
  1729. /**
  1730. * update_wall_time - Uses the current clocksource to increment the wall time
  1731. *
  1732. */
  1733. void update_wall_time(void)
  1734. {
  1735. struct timekeeper *real_tk = &tk_core.timekeeper;
  1736. struct timekeeper *tk = &shadow_timekeeper;
  1737. cycle_t offset;
  1738. int shift = 0, maxshift;
  1739. unsigned int clock_set = 0;
  1740. unsigned long flags;
  1741. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1742. /* Make sure we're fully resumed: */
  1743. if (unlikely(timekeeping_suspended))
  1744. goto out;
  1745. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  1746. offset = real_tk->cycle_interval;
  1747. #else
  1748. offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
  1749. tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  1750. #endif
  1751. /* Check if there's really nothing to do */
  1752. if (offset < real_tk->cycle_interval)
  1753. goto out;
  1754. /* Do some additional sanity checking */
  1755. timekeeping_check_update(real_tk, offset);
  1756. /*
  1757. * With NO_HZ we may have to accumulate many cycle_intervals
  1758. * (think "ticks") worth of time at once. To do this efficiently,
  1759. * we calculate the largest doubling multiple of cycle_intervals
  1760. * that is smaller than the offset. We then accumulate that
  1761. * chunk in one go, and then try to consume the next smaller
  1762. * doubled multiple.
  1763. */
  1764. shift = ilog2(offset) - ilog2(tk->cycle_interval);
  1765. shift = max(0, shift);
  1766. /* Bound shift to one less than what overflows tick_length */
  1767. maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
  1768. shift = min(shift, maxshift);
  1769. while (offset >= tk->cycle_interval) {
  1770. offset = logarithmic_accumulation(tk, offset, shift,
  1771. &clock_set);
  1772. if (offset < tk->cycle_interval<<shift)
  1773. shift--;
  1774. }
  1775. /* correct the clock when NTP error is too big */
  1776. timekeeping_adjust(tk, offset);
  1777. /*
  1778. * XXX This can be killed once everyone converts
  1779. * to the new update_vsyscall.
  1780. */
  1781. old_vsyscall_fixup(tk);
  1782. /*
  1783. * Finally, make sure that after the rounding
  1784. * xtime_nsec isn't larger than NSEC_PER_SEC
  1785. */
  1786. clock_set |= accumulate_nsecs_to_secs(tk);
  1787. write_seqcount_begin(&tk_core.seq);
  1788. /*
  1789. * Update the real timekeeper.
  1790. *
  1791. * We could avoid this memcpy by switching pointers, but that
  1792. * requires changes to all other timekeeper usage sites as
  1793. * well, i.e. move the timekeeper pointer getter into the
  1794. * spinlocked/seqcount protected sections. And we trade this
  1795. * memcpy under the tk_core.seq against one before we start
  1796. * updating.
  1797. */
  1798. timekeeping_update(tk, clock_set);
  1799. memcpy(real_tk, tk, sizeof(*tk));
  1800. /* The memcpy must come last. Do not put anything here! */
  1801. write_seqcount_end(&tk_core.seq);
  1802. out:
  1803. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1804. if (clock_set)
  1805. /* Have to call _delayed version, since in irq context*/
  1806. clock_was_set_delayed();
  1807. }
  1808. /**
  1809. * getboottime64 - Return the real time of system boot.
  1810. * @ts: pointer to the timespec64 to be set
  1811. *
  1812. * Returns the wall-time of boot in a timespec64.
  1813. *
  1814. * This is based on the wall_to_monotonic offset and the total suspend
  1815. * time. Calls to settimeofday will affect the value returned (which
  1816. * basically means that however wrong your real time clock is at boot time,
  1817. * you get the right time here).
  1818. */
  1819. void getboottime64(struct timespec64 *ts)
  1820. {
  1821. struct timekeeper *tk = &tk_core.timekeeper;
  1822. ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
  1823. *ts = ktime_to_timespec64(t);
  1824. }
  1825. EXPORT_SYMBOL_GPL(getboottime64);
  1826. unsigned long get_seconds(void)
  1827. {
  1828. struct timekeeper *tk = &tk_core.timekeeper;
  1829. return tk->xtime_sec;
  1830. }
  1831. EXPORT_SYMBOL(get_seconds);
  1832. struct timespec __current_kernel_time(void)
  1833. {
  1834. struct timekeeper *tk = &tk_core.timekeeper;
  1835. return timespec64_to_timespec(tk_xtime(tk));
  1836. }
  1837. struct timespec64 current_kernel_time64(void)
  1838. {
  1839. struct timekeeper *tk = &tk_core.timekeeper;
  1840. struct timespec64 now;
  1841. unsigned long seq;
  1842. do {
  1843. seq = read_seqcount_begin(&tk_core.seq);
  1844. now = tk_xtime(tk);
  1845. } while (read_seqcount_retry(&tk_core.seq, seq));
  1846. return now;
  1847. }
  1848. EXPORT_SYMBOL(current_kernel_time64);
  1849. struct timespec64 get_monotonic_coarse64(void)
  1850. {
  1851. struct timekeeper *tk = &tk_core.timekeeper;
  1852. struct timespec64 now, mono;
  1853. unsigned long seq;
  1854. do {
  1855. seq = read_seqcount_begin(&tk_core.seq);
  1856. now = tk_xtime(tk);
  1857. mono = tk->wall_to_monotonic;
  1858. } while (read_seqcount_retry(&tk_core.seq, seq));
  1859. set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
  1860. now.tv_nsec + mono.tv_nsec);
  1861. return now;
  1862. }
  1863. EXPORT_SYMBOL(get_monotonic_coarse64);
  1864. /*
  1865. * Must hold jiffies_lock
  1866. */
  1867. void do_timer(unsigned long ticks)
  1868. {
  1869. jiffies_64 += ticks;
  1870. calc_global_load(ticks);
  1871. }
  1872. /**
  1873. * ktime_get_update_offsets_now - hrtimer helper
  1874. * @cwsseq: pointer to check and store the clock was set sequence number
  1875. * @offs_real: pointer to storage for monotonic -> realtime offset
  1876. * @offs_boot: pointer to storage for monotonic -> boottime offset
  1877. * @offs_tai: pointer to storage for monotonic -> clock tai offset
  1878. *
  1879. * Returns current monotonic time and updates the offsets if the
  1880. * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
  1881. * different.
  1882. *
  1883. * Called from hrtimer_interrupt() or retrigger_next_event()
  1884. */
  1885. ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
  1886. ktime_t *offs_boot, ktime_t *offs_tai)
  1887. {
  1888. struct timekeeper *tk = &tk_core.timekeeper;
  1889. unsigned int seq;
  1890. ktime_t base;
  1891. u64 nsecs;
  1892. do {
  1893. seq = read_seqcount_begin(&tk_core.seq);
  1894. base = tk->tkr_mono.base;
  1895. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  1896. base = ktime_add_ns(base, nsecs);
  1897. if (*cwsseq != tk->clock_was_set_seq) {
  1898. *cwsseq = tk->clock_was_set_seq;
  1899. *offs_real = tk->offs_real;
  1900. *offs_boot = tk->offs_boot;
  1901. *offs_tai = tk->offs_tai;
  1902. }
  1903. /* Handle leapsecond insertion adjustments */
  1904. if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
  1905. *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
  1906. } while (read_seqcount_retry(&tk_core.seq, seq));
  1907. return base;
  1908. }
  1909. /**
  1910. * do_adjtimex() - Accessor function to NTP __do_adjtimex function
  1911. */
  1912. int do_adjtimex(struct timex *txc)
  1913. {
  1914. struct timekeeper *tk = &tk_core.timekeeper;
  1915. unsigned long flags;
  1916. struct timespec64 ts;
  1917. s32 orig_tai, tai;
  1918. int ret;
  1919. /* Validate the data before disabling interrupts */
  1920. ret = ntp_validate_timex(txc);
  1921. if (ret)
  1922. return ret;
  1923. if (txc->modes & ADJ_SETOFFSET) {
  1924. struct timespec delta;
  1925. delta.tv_sec = txc->time.tv_sec;
  1926. delta.tv_nsec = txc->time.tv_usec;
  1927. if (!(txc->modes & ADJ_NANO))
  1928. delta.tv_nsec *= 1000;
  1929. ret = timekeeping_inject_offset(&delta);
  1930. if (ret)
  1931. return ret;
  1932. }
  1933. getnstimeofday64(&ts);
  1934. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1935. write_seqcount_begin(&tk_core.seq);
  1936. orig_tai = tai = tk->tai_offset;
  1937. ret = __do_adjtimex(txc, &ts, &tai);
  1938. if (tai != orig_tai) {
  1939. __timekeeping_set_tai_offset(tk, tai);
  1940. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1941. }
  1942. tk_update_leap_state(tk);
  1943. write_seqcount_end(&tk_core.seq);
  1944. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1945. if (tai != orig_tai)
  1946. clock_was_set();
  1947. ntp_notify_cmos_timer();
  1948. return ret;
  1949. }
  1950. #ifdef CONFIG_NTP_PPS
  1951. /**
  1952. * hardpps() - Accessor function to NTP __hardpps function
  1953. */
  1954. void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
  1955. {
  1956. unsigned long flags;
  1957. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1958. write_seqcount_begin(&tk_core.seq);
  1959. __hardpps(phase_ts, raw_ts);
  1960. write_seqcount_end(&tk_core.seq);
  1961. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1962. }
  1963. EXPORT_SYMBOL(hardpps);
  1964. #endif
  1965. /**
  1966. * xtime_update() - advances the timekeeping infrastructure
  1967. * @ticks: number of ticks, that have elapsed since the last call.
  1968. *
  1969. * Must be called with interrupts disabled.
  1970. */
  1971. void xtime_update(unsigned long ticks)
  1972. {
  1973. write_seqlock(&jiffies_lock);
  1974. do_timer(ticks);
  1975. write_sequnlock(&jiffies_lock);
  1976. update_wall_time();
  1977. }