core.c 212 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/kasan.h>
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/context_tracking.h>
  74. #include <linux/compiler.h>
  75. #include <linux/frame.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. /*
  113. * Number of tasks to iterate in a single balance run.
  114. * Limited because this is done with IRQs disabled.
  115. */
  116. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  117. /*
  118. * period over which we average the RT time consumption, measured
  119. * in ms.
  120. *
  121. * default: 1s
  122. */
  123. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  124. /*
  125. * period over which we measure -rt task cpu usage in us.
  126. * default: 1s
  127. */
  128. unsigned int sysctl_sched_rt_period = 1000000;
  129. __read_mostly int scheduler_running;
  130. /*
  131. * part of the period that we allow rt tasks to run in us.
  132. * default: 0.95s
  133. */
  134. int sysctl_sched_rt_runtime = 950000;
  135. /* cpus with isolated domains */
  136. cpumask_var_t cpu_isolated_map;
  137. /*
  138. * this_rq_lock - lock this runqueue and disable interrupts.
  139. */
  140. static struct rq *this_rq_lock(void)
  141. __acquires(rq->lock)
  142. {
  143. struct rq *rq;
  144. local_irq_disable();
  145. rq = this_rq();
  146. raw_spin_lock(&rq->lock);
  147. return rq;
  148. }
  149. /*
  150. * __task_rq_lock - lock the rq @p resides on.
  151. */
  152. struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  153. __acquires(rq->lock)
  154. {
  155. struct rq *rq;
  156. lockdep_assert_held(&p->pi_lock);
  157. for (;;) {
  158. rq = task_rq(p);
  159. raw_spin_lock(&rq->lock);
  160. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  161. rf->cookie = lockdep_pin_lock(&rq->lock);
  162. return rq;
  163. }
  164. raw_spin_unlock(&rq->lock);
  165. while (unlikely(task_on_rq_migrating(p)))
  166. cpu_relax();
  167. }
  168. }
  169. /*
  170. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  171. */
  172. struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  173. __acquires(p->pi_lock)
  174. __acquires(rq->lock)
  175. {
  176. struct rq *rq;
  177. for (;;) {
  178. raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  179. rq = task_rq(p);
  180. raw_spin_lock(&rq->lock);
  181. /*
  182. * move_queued_task() task_rq_lock()
  183. *
  184. * ACQUIRE (rq->lock)
  185. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  186. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  187. * [S] ->cpu = new_cpu [L] task_rq()
  188. * [L] ->on_rq
  189. * RELEASE (rq->lock)
  190. *
  191. * If we observe the old cpu in task_rq_lock, the acquire of
  192. * the old rq->lock will fully serialize against the stores.
  193. *
  194. * If we observe the new cpu in task_rq_lock, the acquire will
  195. * pair with the WMB to ensure we must then also see migrating.
  196. */
  197. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  198. rf->cookie = lockdep_pin_lock(&rq->lock);
  199. return rq;
  200. }
  201. raw_spin_unlock(&rq->lock);
  202. raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  203. while (unlikely(task_on_rq_migrating(p)))
  204. cpu_relax();
  205. }
  206. }
  207. #ifdef CONFIG_SCHED_HRTICK
  208. /*
  209. * Use HR-timers to deliver accurate preemption points.
  210. */
  211. static void hrtick_clear(struct rq *rq)
  212. {
  213. if (hrtimer_active(&rq->hrtick_timer))
  214. hrtimer_cancel(&rq->hrtick_timer);
  215. }
  216. /*
  217. * High-resolution timer tick.
  218. * Runs from hardirq context with interrupts disabled.
  219. */
  220. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  221. {
  222. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  223. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  224. raw_spin_lock(&rq->lock);
  225. update_rq_clock(rq);
  226. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  227. raw_spin_unlock(&rq->lock);
  228. return HRTIMER_NORESTART;
  229. }
  230. #ifdef CONFIG_SMP
  231. static void __hrtick_restart(struct rq *rq)
  232. {
  233. struct hrtimer *timer = &rq->hrtick_timer;
  234. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  235. }
  236. /*
  237. * called from hardirq (IPI) context
  238. */
  239. static void __hrtick_start(void *arg)
  240. {
  241. struct rq *rq = arg;
  242. raw_spin_lock(&rq->lock);
  243. __hrtick_restart(rq);
  244. rq->hrtick_csd_pending = 0;
  245. raw_spin_unlock(&rq->lock);
  246. }
  247. /*
  248. * Called to set the hrtick timer state.
  249. *
  250. * called with rq->lock held and irqs disabled
  251. */
  252. void hrtick_start(struct rq *rq, u64 delay)
  253. {
  254. struct hrtimer *timer = &rq->hrtick_timer;
  255. ktime_t time;
  256. s64 delta;
  257. /*
  258. * Don't schedule slices shorter than 10000ns, that just
  259. * doesn't make sense and can cause timer DoS.
  260. */
  261. delta = max_t(s64, delay, 10000LL);
  262. time = ktime_add_ns(timer->base->get_time(), delta);
  263. hrtimer_set_expires(timer, time);
  264. if (rq == this_rq()) {
  265. __hrtick_restart(rq);
  266. } else if (!rq->hrtick_csd_pending) {
  267. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  268. rq->hrtick_csd_pending = 1;
  269. }
  270. }
  271. #else
  272. /*
  273. * Called to set the hrtick timer state.
  274. *
  275. * called with rq->lock held and irqs disabled
  276. */
  277. void hrtick_start(struct rq *rq, u64 delay)
  278. {
  279. /*
  280. * Don't schedule slices shorter than 10000ns, that just
  281. * doesn't make sense. Rely on vruntime for fairness.
  282. */
  283. delay = max_t(u64, delay, 10000LL);
  284. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  285. HRTIMER_MODE_REL_PINNED);
  286. }
  287. #endif /* CONFIG_SMP */
  288. static void init_rq_hrtick(struct rq *rq)
  289. {
  290. #ifdef CONFIG_SMP
  291. rq->hrtick_csd_pending = 0;
  292. rq->hrtick_csd.flags = 0;
  293. rq->hrtick_csd.func = __hrtick_start;
  294. rq->hrtick_csd.info = rq;
  295. #endif
  296. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  297. rq->hrtick_timer.function = hrtick;
  298. }
  299. #else /* CONFIG_SCHED_HRTICK */
  300. static inline void hrtick_clear(struct rq *rq)
  301. {
  302. }
  303. static inline void init_rq_hrtick(struct rq *rq)
  304. {
  305. }
  306. #endif /* CONFIG_SCHED_HRTICK */
  307. /*
  308. * cmpxchg based fetch_or, macro so it works for different integer types
  309. */
  310. #define fetch_or(ptr, mask) \
  311. ({ \
  312. typeof(ptr) _ptr = (ptr); \
  313. typeof(mask) _mask = (mask); \
  314. typeof(*_ptr) _old, _val = *_ptr; \
  315. \
  316. for (;;) { \
  317. _old = cmpxchg(_ptr, _val, _val | _mask); \
  318. if (_old == _val) \
  319. break; \
  320. _val = _old; \
  321. } \
  322. _old; \
  323. })
  324. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  325. /*
  326. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  327. * this avoids any races wrt polling state changes and thereby avoids
  328. * spurious IPIs.
  329. */
  330. static bool set_nr_and_not_polling(struct task_struct *p)
  331. {
  332. struct thread_info *ti = task_thread_info(p);
  333. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  334. }
  335. /*
  336. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  337. *
  338. * If this returns true, then the idle task promises to call
  339. * sched_ttwu_pending() and reschedule soon.
  340. */
  341. static bool set_nr_if_polling(struct task_struct *p)
  342. {
  343. struct thread_info *ti = task_thread_info(p);
  344. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  345. for (;;) {
  346. if (!(val & _TIF_POLLING_NRFLAG))
  347. return false;
  348. if (val & _TIF_NEED_RESCHED)
  349. return true;
  350. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  351. if (old == val)
  352. break;
  353. val = old;
  354. }
  355. return true;
  356. }
  357. #else
  358. static bool set_nr_and_not_polling(struct task_struct *p)
  359. {
  360. set_tsk_need_resched(p);
  361. return true;
  362. }
  363. #ifdef CONFIG_SMP
  364. static bool set_nr_if_polling(struct task_struct *p)
  365. {
  366. return false;
  367. }
  368. #endif
  369. #endif
  370. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  371. {
  372. struct wake_q_node *node = &task->wake_q;
  373. /*
  374. * Atomically grab the task, if ->wake_q is !nil already it means
  375. * its already queued (either by us or someone else) and will get the
  376. * wakeup due to that.
  377. *
  378. * This cmpxchg() implies a full barrier, which pairs with the write
  379. * barrier implied by the wakeup in wake_up_q().
  380. */
  381. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  382. return;
  383. get_task_struct(task);
  384. /*
  385. * The head is context local, there can be no concurrency.
  386. */
  387. *head->lastp = node;
  388. head->lastp = &node->next;
  389. }
  390. void wake_up_q(struct wake_q_head *head)
  391. {
  392. struct wake_q_node *node = head->first;
  393. while (node != WAKE_Q_TAIL) {
  394. struct task_struct *task;
  395. task = container_of(node, struct task_struct, wake_q);
  396. BUG_ON(!task);
  397. /* task can safely be re-inserted now */
  398. node = node->next;
  399. task->wake_q.next = NULL;
  400. /*
  401. * wake_up_process() implies a wmb() to pair with the queueing
  402. * in wake_q_add() so as not to miss wakeups.
  403. */
  404. wake_up_process(task);
  405. put_task_struct(task);
  406. }
  407. }
  408. /*
  409. * resched_curr - mark rq's current task 'to be rescheduled now'.
  410. *
  411. * On UP this means the setting of the need_resched flag, on SMP it
  412. * might also involve a cross-CPU call to trigger the scheduler on
  413. * the target CPU.
  414. */
  415. void resched_curr(struct rq *rq)
  416. {
  417. struct task_struct *curr = rq->curr;
  418. int cpu;
  419. lockdep_assert_held(&rq->lock);
  420. if (test_tsk_need_resched(curr))
  421. return;
  422. cpu = cpu_of(rq);
  423. if (cpu == smp_processor_id()) {
  424. set_tsk_need_resched(curr);
  425. set_preempt_need_resched();
  426. return;
  427. }
  428. if (set_nr_and_not_polling(curr))
  429. smp_send_reschedule(cpu);
  430. else
  431. trace_sched_wake_idle_without_ipi(cpu);
  432. }
  433. void resched_cpu(int cpu)
  434. {
  435. struct rq *rq = cpu_rq(cpu);
  436. unsigned long flags;
  437. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  438. return;
  439. resched_curr(rq);
  440. raw_spin_unlock_irqrestore(&rq->lock, flags);
  441. }
  442. #ifdef CONFIG_SMP
  443. #ifdef CONFIG_NO_HZ_COMMON
  444. /*
  445. * In the semi idle case, use the nearest busy cpu for migrating timers
  446. * from an idle cpu. This is good for power-savings.
  447. *
  448. * We don't do similar optimization for completely idle system, as
  449. * selecting an idle cpu will add more delays to the timers than intended
  450. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  451. */
  452. int get_nohz_timer_target(void)
  453. {
  454. int i, cpu = smp_processor_id();
  455. struct sched_domain *sd;
  456. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  457. return cpu;
  458. rcu_read_lock();
  459. for_each_domain(cpu, sd) {
  460. for_each_cpu(i, sched_domain_span(sd)) {
  461. if (cpu == i)
  462. continue;
  463. if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
  464. cpu = i;
  465. goto unlock;
  466. }
  467. }
  468. }
  469. if (!is_housekeeping_cpu(cpu))
  470. cpu = housekeeping_any_cpu();
  471. unlock:
  472. rcu_read_unlock();
  473. return cpu;
  474. }
  475. /*
  476. * When add_timer_on() enqueues a timer into the timer wheel of an
  477. * idle CPU then this timer might expire before the next timer event
  478. * which is scheduled to wake up that CPU. In case of a completely
  479. * idle system the next event might even be infinite time into the
  480. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  481. * leaves the inner idle loop so the newly added timer is taken into
  482. * account when the CPU goes back to idle and evaluates the timer
  483. * wheel for the next timer event.
  484. */
  485. static void wake_up_idle_cpu(int cpu)
  486. {
  487. struct rq *rq = cpu_rq(cpu);
  488. if (cpu == smp_processor_id())
  489. return;
  490. if (set_nr_and_not_polling(rq->idle))
  491. smp_send_reschedule(cpu);
  492. else
  493. trace_sched_wake_idle_without_ipi(cpu);
  494. }
  495. static bool wake_up_full_nohz_cpu(int cpu)
  496. {
  497. /*
  498. * We just need the target to call irq_exit() and re-evaluate
  499. * the next tick. The nohz full kick at least implies that.
  500. * If needed we can still optimize that later with an
  501. * empty IRQ.
  502. */
  503. if (tick_nohz_full_cpu(cpu)) {
  504. if (cpu != smp_processor_id() ||
  505. tick_nohz_tick_stopped())
  506. tick_nohz_full_kick_cpu(cpu);
  507. return true;
  508. }
  509. return false;
  510. }
  511. void wake_up_nohz_cpu(int cpu)
  512. {
  513. if (!wake_up_full_nohz_cpu(cpu))
  514. wake_up_idle_cpu(cpu);
  515. }
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. int cpu = smp_processor_id();
  519. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  520. return false;
  521. if (idle_cpu(cpu) && !need_resched())
  522. return true;
  523. /*
  524. * We can't run Idle Load Balance on this CPU for this time so we
  525. * cancel it and clear NOHZ_BALANCE_KICK
  526. */
  527. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  528. return false;
  529. }
  530. #else /* CONFIG_NO_HZ_COMMON */
  531. static inline bool got_nohz_idle_kick(void)
  532. {
  533. return false;
  534. }
  535. #endif /* CONFIG_NO_HZ_COMMON */
  536. #ifdef CONFIG_NO_HZ_FULL
  537. bool sched_can_stop_tick(struct rq *rq)
  538. {
  539. int fifo_nr_running;
  540. /* Deadline tasks, even if single, need the tick */
  541. if (rq->dl.dl_nr_running)
  542. return false;
  543. /*
  544. * If there are more than one RR tasks, we need the tick to effect the
  545. * actual RR behaviour.
  546. */
  547. if (rq->rt.rr_nr_running) {
  548. if (rq->rt.rr_nr_running == 1)
  549. return true;
  550. else
  551. return false;
  552. }
  553. /*
  554. * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
  555. * forced preemption between FIFO tasks.
  556. */
  557. fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
  558. if (fifo_nr_running)
  559. return true;
  560. /*
  561. * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
  562. * if there's more than one we need the tick for involuntary
  563. * preemption.
  564. */
  565. if (rq->nr_running > 1)
  566. return false;
  567. return true;
  568. }
  569. #endif /* CONFIG_NO_HZ_FULL */
  570. void sched_avg_update(struct rq *rq)
  571. {
  572. s64 period = sched_avg_period();
  573. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  574. /*
  575. * Inline assembly required to prevent the compiler
  576. * optimising this loop into a divmod call.
  577. * See __iter_div_u64_rem() for another example of this.
  578. */
  579. asm("" : "+rm" (rq->age_stamp));
  580. rq->age_stamp += period;
  581. rq->rt_avg /= 2;
  582. }
  583. }
  584. #endif /* CONFIG_SMP */
  585. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  586. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  587. /*
  588. * Iterate task_group tree rooted at *from, calling @down when first entering a
  589. * node and @up when leaving it for the final time.
  590. *
  591. * Caller must hold rcu_lock or sufficient equivalent.
  592. */
  593. int walk_tg_tree_from(struct task_group *from,
  594. tg_visitor down, tg_visitor up, void *data)
  595. {
  596. struct task_group *parent, *child;
  597. int ret;
  598. parent = from;
  599. down:
  600. ret = (*down)(parent, data);
  601. if (ret)
  602. goto out;
  603. list_for_each_entry_rcu(child, &parent->children, siblings) {
  604. parent = child;
  605. goto down;
  606. up:
  607. continue;
  608. }
  609. ret = (*up)(parent, data);
  610. if (ret || parent == from)
  611. goto out;
  612. child = parent;
  613. parent = parent->parent;
  614. if (parent)
  615. goto up;
  616. out:
  617. return ret;
  618. }
  619. int tg_nop(struct task_group *tg, void *data)
  620. {
  621. return 0;
  622. }
  623. #endif
  624. static void set_load_weight(struct task_struct *p)
  625. {
  626. int prio = p->static_prio - MAX_RT_PRIO;
  627. struct load_weight *load = &p->se.load;
  628. /*
  629. * SCHED_IDLE tasks get minimal weight:
  630. */
  631. if (idle_policy(p->policy)) {
  632. load->weight = scale_load(WEIGHT_IDLEPRIO);
  633. load->inv_weight = WMULT_IDLEPRIO;
  634. return;
  635. }
  636. load->weight = scale_load(sched_prio_to_weight[prio]);
  637. load->inv_weight = sched_prio_to_wmult[prio];
  638. }
  639. static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  640. {
  641. update_rq_clock(rq);
  642. if (!(flags & ENQUEUE_RESTORE))
  643. sched_info_queued(rq, p);
  644. p->sched_class->enqueue_task(rq, p, flags);
  645. }
  646. static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  647. {
  648. update_rq_clock(rq);
  649. if (!(flags & DEQUEUE_SAVE))
  650. sched_info_dequeued(rq, p);
  651. p->sched_class->dequeue_task(rq, p, flags);
  652. }
  653. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible--;
  657. enqueue_task(rq, p, flags);
  658. }
  659. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  660. {
  661. if (task_contributes_to_load(p))
  662. rq->nr_uninterruptible++;
  663. dequeue_task(rq, p, flags);
  664. }
  665. static void update_rq_clock_task(struct rq *rq, s64 delta)
  666. {
  667. /*
  668. * In theory, the compile should just see 0 here, and optimize out the call
  669. * to sched_rt_avg_update. But I don't trust it...
  670. */
  671. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  672. s64 steal = 0, irq_delta = 0;
  673. #endif
  674. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  675. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  676. /*
  677. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  678. * this case when a previous update_rq_clock() happened inside a
  679. * {soft,}irq region.
  680. *
  681. * When this happens, we stop ->clock_task and only update the
  682. * prev_irq_time stamp to account for the part that fit, so that a next
  683. * update will consume the rest. This ensures ->clock_task is
  684. * monotonic.
  685. *
  686. * It does however cause some slight miss-attribution of {soft,}irq
  687. * time, a more accurate solution would be to update the irq_time using
  688. * the current rq->clock timestamp, except that would require using
  689. * atomic ops.
  690. */
  691. if (irq_delta > delta)
  692. irq_delta = delta;
  693. rq->prev_irq_time += irq_delta;
  694. delta -= irq_delta;
  695. #endif
  696. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  697. if (static_key_false((&paravirt_steal_rq_enabled))) {
  698. steal = paravirt_steal_clock(cpu_of(rq));
  699. steal -= rq->prev_steal_time_rq;
  700. if (unlikely(steal > delta))
  701. steal = delta;
  702. rq->prev_steal_time_rq += steal;
  703. delta -= steal;
  704. }
  705. #endif
  706. rq->clock_task += delta;
  707. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  708. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  709. sched_rt_avg_update(rq, irq_delta + steal);
  710. #endif
  711. }
  712. void sched_set_stop_task(int cpu, struct task_struct *stop)
  713. {
  714. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  715. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  716. if (stop) {
  717. /*
  718. * Make it appear like a SCHED_FIFO task, its something
  719. * userspace knows about and won't get confused about.
  720. *
  721. * Also, it will make PI more or less work without too
  722. * much confusion -- but then, stop work should not
  723. * rely on PI working anyway.
  724. */
  725. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  726. stop->sched_class = &stop_sched_class;
  727. }
  728. cpu_rq(cpu)->stop = stop;
  729. if (old_stop) {
  730. /*
  731. * Reset it back to a normal scheduling class so that
  732. * it can die in pieces.
  733. */
  734. old_stop->sched_class = &rt_sched_class;
  735. }
  736. }
  737. /*
  738. * __normal_prio - return the priority that is based on the static prio
  739. */
  740. static inline int __normal_prio(struct task_struct *p)
  741. {
  742. return p->static_prio;
  743. }
  744. /*
  745. * Calculate the expected normal priority: i.e. priority
  746. * without taking RT-inheritance into account. Might be
  747. * boosted by interactivity modifiers. Changes upon fork,
  748. * setprio syscalls, and whenever the interactivity
  749. * estimator recalculates.
  750. */
  751. static inline int normal_prio(struct task_struct *p)
  752. {
  753. int prio;
  754. if (task_has_dl_policy(p))
  755. prio = MAX_DL_PRIO-1;
  756. else if (task_has_rt_policy(p))
  757. prio = MAX_RT_PRIO-1 - p->rt_priority;
  758. else
  759. prio = __normal_prio(p);
  760. return prio;
  761. }
  762. /*
  763. * Calculate the current priority, i.e. the priority
  764. * taken into account by the scheduler. This value might
  765. * be boosted by RT tasks, or might be boosted by
  766. * interactivity modifiers. Will be RT if the task got
  767. * RT-boosted. If not then it returns p->normal_prio.
  768. */
  769. static int effective_prio(struct task_struct *p)
  770. {
  771. p->normal_prio = normal_prio(p);
  772. /*
  773. * If we are RT tasks or we were boosted to RT priority,
  774. * keep the priority unchanged. Otherwise, update priority
  775. * to the normal priority:
  776. */
  777. if (!rt_prio(p->prio))
  778. return p->normal_prio;
  779. return p->prio;
  780. }
  781. /**
  782. * task_curr - is this task currently executing on a CPU?
  783. * @p: the task in question.
  784. *
  785. * Return: 1 if the task is currently executing. 0 otherwise.
  786. */
  787. inline int task_curr(const struct task_struct *p)
  788. {
  789. return cpu_curr(task_cpu(p)) == p;
  790. }
  791. /*
  792. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  793. * use the balance_callback list if you want balancing.
  794. *
  795. * this means any call to check_class_changed() must be followed by a call to
  796. * balance_callback().
  797. */
  798. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  799. const struct sched_class *prev_class,
  800. int oldprio)
  801. {
  802. if (prev_class != p->sched_class) {
  803. if (prev_class->switched_from)
  804. prev_class->switched_from(rq, p);
  805. p->sched_class->switched_to(rq, p);
  806. } else if (oldprio != p->prio || dl_task(p))
  807. p->sched_class->prio_changed(rq, p, oldprio);
  808. }
  809. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  810. {
  811. const struct sched_class *class;
  812. if (p->sched_class == rq->curr->sched_class) {
  813. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  814. } else {
  815. for_each_class(class) {
  816. if (class == rq->curr->sched_class)
  817. break;
  818. if (class == p->sched_class) {
  819. resched_curr(rq);
  820. break;
  821. }
  822. }
  823. }
  824. /*
  825. * A queue event has occurred, and we're going to schedule. In
  826. * this case, we can save a useless back to back clock update.
  827. */
  828. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  829. rq_clock_skip_update(rq, true);
  830. }
  831. #ifdef CONFIG_SMP
  832. /*
  833. * This is how migration works:
  834. *
  835. * 1) we invoke migration_cpu_stop() on the target CPU using
  836. * stop_one_cpu().
  837. * 2) stopper starts to run (implicitly forcing the migrated thread
  838. * off the CPU)
  839. * 3) it checks whether the migrated task is still in the wrong runqueue.
  840. * 4) if it's in the wrong runqueue then the migration thread removes
  841. * it and puts it into the right queue.
  842. * 5) stopper completes and stop_one_cpu() returns and the migration
  843. * is done.
  844. */
  845. /*
  846. * move_queued_task - move a queued task to new rq.
  847. *
  848. * Returns (locked) new rq. Old rq's lock is released.
  849. */
  850. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  851. {
  852. lockdep_assert_held(&rq->lock);
  853. p->on_rq = TASK_ON_RQ_MIGRATING;
  854. dequeue_task(rq, p, 0);
  855. set_task_cpu(p, new_cpu);
  856. raw_spin_unlock(&rq->lock);
  857. rq = cpu_rq(new_cpu);
  858. raw_spin_lock(&rq->lock);
  859. BUG_ON(task_cpu(p) != new_cpu);
  860. enqueue_task(rq, p, 0);
  861. p->on_rq = TASK_ON_RQ_QUEUED;
  862. check_preempt_curr(rq, p, 0);
  863. return rq;
  864. }
  865. struct migration_arg {
  866. struct task_struct *task;
  867. int dest_cpu;
  868. };
  869. /*
  870. * Move (not current) task off this cpu, onto dest cpu. We're doing
  871. * this because either it can't run here any more (set_cpus_allowed()
  872. * away from this CPU, or CPU going down), or because we're
  873. * attempting to rebalance this task on exec (sched_exec).
  874. *
  875. * So we race with normal scheduler movements, but that's OK, as long
  876. * as the task is no longer on this CPU.
  877. */
  878. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  879. {
  880. if (unlikely(!cpu_active(dest_cpu)))
  881. return rq;
  882. /* Affinity changed (again). */
  883. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  884. return rq;
  885. rq = move_queued_task(rq, p, dest_cpu);
  886. return rq;
  887. }
  888. /*
  889. * migration_cpu_stop - this will be executed by a highprio stopper thread
  890. * and performs thread migration by bumping thread off CPU then
  891. * 'pushing' onto another runqueue.
  892. */
  893. static int migration_cpu_stop(void *data)
  894. {
  895. struct migration_arg *arg = data;
  896. struct task_struct *p = arg->task;
  897. struct rq *rq = this_rq();
  898. /*
  899. * The original target cpu might have gone down and we might
  900. * be on another cpu but it doesn't matter.
  901. */
  902. local_irq_disable();
  903. /*
  904. * We need to explicitly wake pending tasks before running
  905. * __migrate_task() such that we will not miss enforcing cpus_allowed
  906. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  907. */
  908. sched_ttwu_pending();
  909. raw_spin_lock(&p->pi_lock);
  910. raw_spin_lock(&rq->lock);
  911. /*
  912. * If task_rq(p) != rq, it cannot be migrated here, because we're
  913. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  914. * we're holding p->pi_lock.
  915. */
  916. if (task_rq(p) == rq && task_on_rq_queued(p))
  917. rq = __migrate_task(rq, p, arg->dest_cpu);
  918. raw_spin_unlock(&rq->lock);
  919. raw_spin_unlock(&p->pi_lock);
  920. local_irq_enable();
  921. return 0;
  922. }
  923. /*
  924. * sched_class::set_cpus_allowed must do the below, but is not required to
  925. * actually call this function.
  926. */
  927. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  928. {
  929. cpumask_copy(&p->cpus_allowed, new_mask);
  930. p->nr_cpus_allowed = cpumask_weight(new_mask);
  931. }
  932. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  933. {
  934. struct rq *rq = task_rq(p);
  935. bool queued, running;
  936. lockdep_assert_held(&p->pi_lock);
  937. queued = task_on_rq_queued(p);
  938. running = task_current(rq, p);
  939. if (queued) {
  940. /*
  941. * Because __kthread_bind() calls this on blocked tasks without
  942. * holding rq->lock.
  943. */
  944. lockdep_assert_held(&rq->lock);
  945. dequeue_task(rq, p, DEQUEUE_SAVE);
  946. }
  947. if (running)
  948. put_prev_task(rq, p);
  949. p->sched_class->set_cpus_allowed(p, new_mask);
  950. if (running)
  951. p->sched_class->set_curr_task(rq);
  952. if (queued)
  953. enqueue_task(rq, p, ENQUEUE_RESTORE);
  954. }
  955. /*
  956. * Change a given task's CPU affinity. Migrate the thread to a
  957. * proper CPU and schedule it away if the CPU it's executing on
  958. * is removed from the allowed bitmask.
  959. *
  960. * NOTE: the caller must have a valid reference to the task, the
  961. * task must not exit() & deallocate itself prematurely. The
  962. * call is not atomic; no spinlocks may be held.
  963. */
  964. static int __set_cpus_allowed_ptr(struct task_struct *p,
  965. const struct cpumask *new_mask, bool check)
  966. {
  967. const struct cpumask *cpu_valid_mask = cpu_active_mask;
  968. unsigned int dest_cpu;
  969. struct rq_flags rf;
  970. struct rq *rq;
  971. int ret = 0;
  972. rq = task_rq_lock(p, &rf);
  973. if (p->flags & PF_KTHREAD) {
  974. /*
  975. * Kernel threads are allowed on online && !active CPUs
  976. */
  977. cpu_valid_mask = cpu_online_mask;
  978. }
  979. /*
  980. * Must re-check here, to close a race against __kthread_bind(),
  981. * sched_setaffinity() is not guaranteed to observe the flag.
  982. */
  983. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  984. ret = -EINVAL;
  985. goto out;
  986. }
  987. if (cpumask_equal(&p->cpus_allowed, new_mask))
  988. goto out;
  989. if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
  990. ret = -EINVAL;
  991. goto out;
  992. }
  993. do_set_cpus_allowed(p, new_mask);
  994. if (p->flags & PF_KTHREAD) {
  995. /*
  996. * For kernel threads that do indeed end up on online &&
  997. * !active we want to ensure they are strict per-cpu threads.
  998. */
  999. WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
  1000. !cpumask_intersects(new_mask, cpu_active_mask) &&
  1001. p->nr_cpus_allowed != 1);
  1002. }
  1003. /* Can the task run on the task's current CPU? If so, we're done */
  1004. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1005. goto out;
  1006. dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
  1007. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1008. struct migration_arg arg = { p, dest_cpu };
  1009. /* Need help from migration thread: drop lock and wait. */
  1010. task_rq_unlock(rq, p, &rf);
  1011. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1012. tlb_migrate_finish(p->mm);
  1013. return 0;
  1014. } else if (task_on_rq_queued(p)) {
  1015. /*
  1016. * OK, since we're going to drop the lock immediately
  1017. * afterwards anyway.
  1018. */
  1019. lockdep_unpin_lock(&rq->lock, rf.cookie);
  1020. rq = move_queued_task(rq, p, dest_cpu);
  1021. lockdep_repin_lock(&rq->lock, rf.cookie);
  1022. }
  1023. out:
  1024. task_rq_unlock(rq, p, &rf);
  1025. return ret;
  1026. }
  1027. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  1028. {
  1029. return __set_cpus_allowed_ptr(p, new_mask, false);
  1030. }
  1031. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1032. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1033. {
  1034. #ifdef CONFIG_SCHED_DEBUG
  1035. /*
  1036. * We should never call set_task_cpu() on a blocked task,
  1037. * ttwu() will sort out the placement.
  1038. */
  1039. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1040. !p->on_rq);
  1041. /*
  1042. * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
  1043. * because schedstat_wait_{start,end} rebase migrating task's wait_start
  1044. * time relying on p->on_rq.
  1045. */
  1046. WARN_ON_ONCE(p->state == TASK_RUNNING &&
  1047. p->sched_class == &fair_sched_class &&
  1048. (p->on_rq && !task_on_rq_migrating(p)));
  1049. #ifdef CONFIG_LOCKDEP
  1050. /*
  1051. * The caller should hold either p->pi_lock or rq->lock, when changing
  1052. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1053. *
  1054. * sched_move_task() holds both and thus holding either pins the cgroup,
  1055. * see task_group().
  1056. *
  1057. * Furthermore, all task_rq users should acquire both locks, see
  1058. * task_rq_lock().
  1059. */
  1060. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1061. lockdep_is_held(&task_rq(p)->lock)));
  1062. #endif
  1063. #endif
  1064. trace_sched_migrate_task(p, new_cpu);
  1065. if (task_cpu(p) != new_cpu) {
  1066. if (p->sched_class->migrate_task_rq)
  1067. p->sched_class->migrate_task_rq(p);
  1068. p->se.nr_migrations++;
  1069. perf_event_task_migrate(p);
  1070. }
  1071. __set_task_cpu(p, new_cpu);
  1072. }
  1073. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1074. {
  1075. if (task_on_rq_queued(p)) {
  1076. struct rq *src_rq, *dst_rq;
  1077. src_rq = task_rq(p);
  1078. dst_rq = cpu_rq(cpu);
  1079. p->on_rq = TASK_ON_RQ_MIGRATING;
  1080. deactivate_task(src_rq, p, 0);
  1081. set_task_cpu(p, cpu);
  1082. activate_task(dst_rq, p, 0);
  1083. p->on_rq = TASK_ON_RQ_QUEUED;
  1084. check_preempt_curr(dst_rq, p, 0);
  1085. } else {
  1086. /*
  1087. * Task isn't running anymore; make it appear like we migrated
  1088. * it before it went to sleep. This means on wakeup we make the
  1089. * previous cpu our targer instead of where it really is.
  1090. */
  1091. p->wake_cpu = cpu;
  1092. }
  1093. }
  1094. struct migration_swap_arg {
  1095. struct task_struct *src_task, *dst_task;
  1096. int src_cpu, dst_cpu;
  1097. };
  1098. static int migrate_swap_stop(void *data)
  1099. {
  1100. struct migration_swap_arg *arg = data;
  1101. struct rq *src_rq, *dst_rq;
  1102. int ret = -EAGAIN;
  1103. if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
  1104. return -EAGAIN;
  1105. src_rq = cpu_rq(arg->src_cpu);
  1106. dst_rq = cpu_rq(arg->dst_cpu);
  1107. double_raw_lock(&arg->src_task->pi_lock,
  1108. &arg->dst_task->pi_lock);
  1109. double_rq_lock(src_rq, dst_rq);
  1110. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1111. goto unlock;
  1112. if (task_cpu(arg->src_task) != arg->src_cpu)
  1113. goto unlock;
  1114. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1115. goto unlock;
  1116. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1117. goto unlock;
  1118. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1119. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1120. ret = 0;
  1121. unlock:
  1122. double_rq_unlock(src_rq, dst_rq);
  1123. raw_spin_unlock(&arg->dst_task->pi_lock);
  1124. raw_spin_unlock(&arg->src_task->pi_lock);
  1125. return ret;
  1126. }
  1127. /*
  1128. * Cross migrate two tasks
  1129. */
  1130. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1131. {
  1132. struct migration_swap_arg arg;
  1133. int ret = -EINVAL;
  1134. arg = (struct migration_swap_arg){
  1135. .src_task = cur,
  1136. .src_cpu = task_cpu(cur),
  1137. .dst_task = p,
  1138. .dst_cpu = task_cpu(p),
  1139. };
  1140. if (arg.src_cpu == arg.dst_cpu)
  1141. goto out;
  1142. /*
  1143. * These three tests are all lockless; this is OK since all of them
  1144. * will be re-checked with proper locks held further down the line.
  1145. */
  1146. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1147. goto out;
  1148. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1149. goto out;
  1150. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1151. goto out;
  1152. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1153. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1154. out:
  1155. return ret;
  1156. }
  1157. /*
  1158. * wait_task_inactive - wait for a thread to unschedule.
  1159. *
  1160. * If @match_state is nonzero, it's the @p->state value just checked and
  1161. * not expected to change. If it changes, i.e. @p might have woken up,
  1162. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1163. * we return a positive number (its total switch count). If a second call
  1164. * a short while later returns the same number, the caller can be sure that
  1165. * @p has remained unscheduled the whole time.
  1166. *
  1167. * The caller must ensure that the task *will* unschedule sometime soon,
  1168. * else this function might spin for a *long* time. This function can't
  1169. * be called with interrupts off, or it may introduce deadlock with
  1170. * smp_call_function() if an IPI is sent by the same process we are
  1171. * waiting to become inactive.
  1172. */
  1173. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1174. {
  1175. int running, queued;
  1176. struct rq_flags rf;
  1177. unsigned long ncsw;
  1178. struct rq *rq;
  1179. for (;;) {
  1180. /*
  1181. * We do the initial early heuristics without holding
  1182. * any task-queue locks at all. We'll only try to get
  1183. * the runqueue lock when things look like they will
  1184. * work out!
  1185. */
  1186. rq = task_rq(p);
  1187. /*
  1188. * If the task is actively running on another CPU
  1189. * still, just relax and busy-wait without holding
  1190. * any locks.
  1191. *
  1192. * NOTE! Since we don't hold any locks, it's not
  1193. * even sure that "rq" stays as the right runqueue!
  1194. * But we don't care, since "task_running()" will
  1195. * return false if the runqueue has changed and p
  1196. * is actually now running somewhere else!
  1197. */
  1198. while (task_running(rq, p)) {
  1199. if (match_state && unlikely(p->state != match_state))
  1200. return 0;
  1201. cpu_relax();
  1202. }
  1203. /*
  1204. * Ok, time to look more closely! We need the rq
  1205. * lock now, to be *sure*. If we're wrong, we'll
  1206. * just go back and repeat.
  1207. */
  1208. rq = task_rq_lock(p, &rf);
  1209. trace_sched_wait_task(p);
  1210. running = task_running(rq, p);
  1211. queued = task_on_rq_queued(p);
  1212. ncsw = 0;
  1213. if (!match_state || p->state == match_state)
  1214. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1215. task_rq_unlock(rq, p, &rf);
  1216. /*
  1217. * If it changed from the expected state, bail out now.
  1218. */
  1219. if (unlikely(!ncsw))
  1220. break;
  1221. /*
  1222. * Was it really running after all now that we
  1223. * checked with the proper locks actually held?
  1224. *
  1225. * Oops. Go back and try again..
  1226. */
  1227. if (unlikely(running)) {
  1228. cpu_relax();
  1229. continue;
  1230. }
  1231. /*
  1232. * It's not enough that it's not actively running,
  1233. * it must be off the runqueue _entirely_, and not
  1234. * preempted!
  1235. *
  1236. * So if it was still runnable (but just not actively
  1237. * running right now), it's preempted, and we should
  1238. * yield - it could be a while.
  1239. */
  1240. if (unlikely(queued)) {
  1241. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1242. set_current_state(TASK_UNINTERRUPTIBLE);
  1243. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1244. continue;
  1245. }
  1246. /*
  1247. * Ahh, all good. It wasn't running, and it wasn't
  1248. * runnable, which means that it will never become
  1249. * running in the future either. We're all done!
  1250. */
  1251. break;
  1252. }
  1253. return ncsw;
  1254. }
  1255. /***
  1256. * kick_process - kick a running thread to enter/exit the kernel
  1257. * @p: the to-be-kicked thread
  1258. *
  1259. * Cause a process which is running on another CPU to enter
  1260. * kernel-mode, without any delay. (to get signals handled.)
  1261. *
  1262. * NOTE: this function doesn't have to take the runqueue lock,
  1263. * because all it wants to ensure is that the remote task enters
  1264. * the kernel. If the IPI races and the task has been migrated
  1265. * to another CPU then no harm is done and the purpose has been
  1266. * achieved as well.
  1267. */
  1268. void kick_process(struct task_struct *p)
  1269. {
  1270. int cpu;
  1271. preempt_disable();
  1272. cpu = task_cpu(p);
  1273. if ((cpu != smp_processor_id()) && task_curr(p))
  1274. smp_send_reschedule(cpu);
  1275. preempt_enable();
  1276. }
  1277. EXPORT_SYMBOL_GPL(kick_process);
  1278. /*
  1279. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1280. *
  1281. * A few notes on cpu_active vs cpu_online:
  1282. *
  1283. * - cpu_active must be a subset of cpu_online
  1284. *
  1285. * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
  1286. * see __set_cpus_allowed_ptr(). At this point the newly online
  1287. * cpu isn't yet part of the sched domains, and balancing will not
  1288. * see it.
  1289. *
  1290. * - on cpu-down we clear cpu_active() to mask the sched domains and
  1291. * avoid the load balancer to place new tasks on the to be removed
  1292. * cpu. Existing tasks will remain running there and will be taken
  1293. * off.
  1294. *
  1295. * This means that fallback selection must not select !active CPUs.
  1296. * And can assume that any active CPU must be online. Conversely
  1297. * select_task_rq() below may allow selection of !active CPUs in order
  1298. * to satisfy the above rules.
  1299. */
  1300. static int select_fallback_rq(int cpu, struct task_struct *p)
  1301. {
  1302. int nid = cpu_to_node(cpu);
  1303. const struct cpumask *nodemask = NULL;
  1304. enum { cpuset, possible, fail } state = cpuset;
  1305. int dest_cpu;
  1306. /*
  1307. * If the node that the cpu is on has been offlined, cpu_to_node()
  1308. * will return -1. There is no cpu on the node, and we should
  1309. * select the cpu on the other node.
  1310. */
  1311. if (nid != -1) {
  1312. nodemask = cpumask_of_node(nid);
  1313. /* Look for allowed, online CPU in same node. */
  1314. for_each_cpu(dest_cpu, nodemask) {
  1315. if (!cpu_active(dest_cpu))
  1316. continue;
  1317. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1318. return dest_cpu;
  1319. }
  1320. }
  1321. for (;;) {
  1322. /* Any allowed, online CPU? */
  1323. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1324. if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
  1325. continue;
  1326. if (!cpu_online(dest_cpu))
  1327. continue;
  1328. goto out;
  1329. }
  1330. /* No more Mr. Nice Guy. */
  1331. switch (state) {
  1332. case cpuset:
  1333. if (IS_ENABLED(CONFIG_CPUSETS)) {
  1334. cpuset_cpus_allowed_fallback(p);
  1335. state = possible;
  1336. break;
  1337. }
  1338. /* fall-through */
  1339. case possible:
  1340. do_set_cpus_allowed(p, cpu_possible_mask);
  1341. state = fail;
  1342. break;
  1343. case fail:
  1344. BUG();
  1345. break;
  1346. }
  1347. }
  1348. out:
  1349. if (state != cpuset) {
  1350. /*
  1351. * Don't tell them about moving exiting tasks or
  1352. * kernel threads (both mm NULL), since they never
  1353. * leave kernel.
  1354. */
  1355. if (p->mm && printk_ratelimit()) {
  1356. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1357. task_pid_nr(p), p->comm, cpu);
  1358. }
  1359. }
  1360. return dest_cpu;
  1361. }
  1362. /*
  1363. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1364. */
  1365. static inline
  1366. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1367. {
  1368. lockdep_assert_held(&p->pi_lock);
  1369. if (tsk_nr_cpus_allowed(p) > 1)
  1370. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1371. else
  1372. cpu = cpumask_any(tsk_cpus_allowed(p));
  1373. /*
  1374. * In order not to call set_task_cpu() on a blocking task we need
  1375. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1376. * cpu.
  1377. *
  1378. * Since this is common to all placement strategies, this lives here.
  1379. *
  1380. * [ this allows ->select_task() to simply return task_cpu(p) and
  1381. * not worry about this generic constraint ]
  1382. */
  1383. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1384. !cpu_online(cpu)))
  1385. cpu = select_fallback_rq(task_cpu(p), p);
  1386. return cpu;
  1387. }
  1388. static void update_avg(u64 *avg, u64 sample)
  1389. {
  1390. s64 diff = sample - *avg;
  1391. *avg += diff >> 3;
  1392. }
  1393. #else
  1394. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1395. const struct cpumask *new_mask, bool check)
  1396. {
  1397. return set_cpus_allowed_ptr(p, new_mask);
  1398. }
  1399. #endif /* CONFIG_SMP */
  1400. static void
  1401. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1402. {
  1403. #ifdef CONFIG_SCHEDSTATS
  1404. struct rq *rq = this_rq();
  1405. #ifdef CONFIG_SMP
  1406. int this_cpu = smp_processor_id();
  1407. if (cpu == this_cpu) {
  1408. schedstat_inc(rq, ttwu_local);
  1409. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1410. } else {
  1411. struct sched_domain *sd;
  1412. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1413. rcu_read_lock();
  1414. for_each_domain(this_cpu, sd) {
  1415. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1416. schedstat_inc(sd, ttwu_wake_remote);
  1417. break;
  1418. }
  1419. }
  1420. rcu_read_unlock();
  1421. }
  1422. if (wake_flags & WF_MIGRATED)
  1423. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1424. #endif /* CONFIG_SMP */
  1425. schedstat_inc(rq, ttwu_count);
  1426. schedstat_inc(p, se.statistics.nr_wakeups);
  1427. if (wake_flags & WF_SYNC)
  1428. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1429. #endif /* CONFIG_SCHEDSTATS */
  1430. }
  1431. static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1432. {
  1433. activate_task(rq, p, en_flags);
  1434. p->on_rq = TASK_ON_RQ_QUEUED;
  1435. /* if a worker is waking up, notify workqueue */
  1436. if (p->flags & PF_WQ_WORKER)
  1437. wq_worker_waking_up(p, cpu_of(rq));
  1438. }
  1439. /*
  1440. * Mark the task runnable and perform wakeup-preemption.
  1441. */
  1442. static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
  1443. struct pin_cookie cookie)
  1444. {
  1445. check_preempt_curr(rq, p, wake_flags);
  1446. p->state = TASK_RUNNING;
  1447. trace_sched_wakeup(p);
  1448. #ifdef CONFIG_SMP
  1449. if (p->sched_class->task_woken) {
  1450. /*
  1451. * Our task @p is fully woken up and running; so its safe to
  1452. * drop the rq->lock, hereafter rq is only used for statistics.
  1453. */
  1454. lockdep_unpin_lock(&rq->lock, cookie);
  1455. p->sched_class->task_woken(rq, p);
  1456. lockdep_repin_lock(&rq->lock, cookie);
  1457. }
  1458. if (rq->idle_stamp) {
  1459. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1460. u64 max = 2*rq->max_idle_balance_cost;
  1461. update_avg(&rq->avg_idle, delta);
  1462. if (rq->avg_idle > max)
  1463. rq->avg_idle = max;
  1464. rq->idle_stamp = 0;
  1465. }
  1466. #endif
  1467. }
  1468. static void
  1469. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
  1470. struct pin_cookie cookie)
  1471. {
  1472. int en_flags = ENQUEUE_WAKEUP;
  1473. lockdep_assert_held(&rq->lock);
  1474. #ifdef CONFIG_SMP
  1475. if (p->sched_contributes_to_load)
  1476. rq->nr_uninterruptible--;
  1477. if (wake_flags & WF_MIGRATED)
  1478. en_flags |= ENQUEUE_MIGRATED;
  1479. #endif
  1480. ttwu_activate(rq, p, en_flags);
  1481. ttwu_do_wakeup(rq, p, wake_flags, cookie);
  1482. }
  1483. /*
  1484. * Called in case the task @p isn't fully descheduled from its runqueue,
  1485. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1486. * since all we need to do is flip p->state to TASK_RUNNING, since
  1487. * the task is still ->on_rq.
  1488. */
  1489. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1490. {
  1491. struct rq_flags rf;
  1492. struct rq *rq;
  1493. int ret = 0;
  1494. rq = __task_rq_lock(p, &rf);
  1495. if (task_on_rq_queued(p)) {
  1496. /* check_preempt_curr() may use rq clock */
  1497. update_rq_clock(rq);
  1498. ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
  1499. ret = 1;
  1500. }
  1501. __task_rq_unlock(rq, &rf);
  1502. return ret;
  1503. }
  1504. #ifdef CONFIG_SMP
  1505. void sched_ttwu_pending(void)
  1506. {
  1507. struct rq *rq = this_rq();
  1508. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1509. struct pin_cookie cookie;
  1510. struct task_struct *p;
  1511. unsigned long flags;
  1512. if (!llist)
  1513. return;
  1514. raw_spin_lock_irqsave(&rq->lock, flags);
  1515. cookie = lockdep_pin_lock(&rq->lock);
  1516. while (llist) {
  1517. int wake_flags = 0;
  1518. p = llist_entry(llist, struct task_struct, wake_entry);
  1519. llist = llist_next(llist);
  1520. if (p->sched_remote_wakeup)
  1521. wake_flags = WF_MIGRATED;
  1522. ttwu_do_activate(rq, p, wake_flags, cookie);
  1523. }
  1524. lockdep_unpin_lock(&rq->lock, cookie);
  1525. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1526. }
  1527. void scheduler_ipi(void)
  1528. {
  1529. /*
  1530. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1531. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1532. * this IPI.
  1533. */
  1534. preempt_fold_need_resched();
  1535. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1536. return;
  1537. /*
  1538. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1539. * traditionally all their work was done from the interrupt return
  1540. * path. Now that we actually do some work, we need to make sure
  1541. * we do call them.
  1542. *
  1543. * Some archs already do call them, luckily irq_enter/exit nest
  1544. * properly.
  1545. *
  1546. * Arguably we should visit all archs and update all handlers,
  1547. * however a fair share of IPIs are still resched only so this would
  1548. * somewhat pessimize the simple resched case.
  1549. */
  1550. irq_enter();
  1551. sched_ttwu_pending();
  1552. /*
  1553. * Check if someone kicked us for doing the nohz idle load balance.
  1554. */
  1555. if (unlikely(got_nohz_idle_kick())) {
  1556. this_rq()->idle_balance = 1;
  1557. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1558. }
  1559. irq_exit();
  1560. }
  1561. static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
  1562. {
  1563. struct rq *rq = cpu_rq(cpu);
  1564. p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
  1565. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1566. if (!set_nr_if_polling(rq->idle))
  1567. smp_send_reschedule(cpu);
  1568. else
  1569. trace_sched_wake_idle_without_ipi(cpu);
  1570. }
  1571. }
  1572. void wake_up_if_idle(int cpu)
  1573. {
  1574. struct rq *rq = cpu_rq(cpu);
  1575. unsigned long flags;
  1576. rcu_read_lock();
  1577. if (!is_idle_task(rcu_dereference(rq->curr)))
  1578. goto out;
  1579. if (set_nr_if_polling(rq->idle)) {
  1580. trace_sched_wake_idle_without_ipi(cpu);
  1581. } else {
  1582. raw_spin_lock_irqsave(&rq->lock, flags);
  1583. if (is_idle_task(rq->curr))
  1584. smp_send_reschedule(cpu);
  1585. /* Else cpu is not in idle, do nothing here */
  1586. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1587. }
  1588. out:
  1589. rcu_read_unlock();
  1590. }
  1591. bool cpus_share_cache(int this_cpu, int that_cpu)
  1592. {
  1593. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1594. }
  1595. #endif /* CONFIG_SMP */
  1596. static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  1597. {
  1598. struct rq *rq = cpu_rq(cpu);
  1599. struct pin_cookie cookie;
  1600. #if defined(CONFIG_SMP)
  1601. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1602. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1603. ttwu_queue_remote(p, cpu, wake_flags);
  1604. return;
  1605. }
  1606. #endif
  1607. raw_spin_lock(&rq->lock);
  1608. cookie = lockdep_pin_lock(&rq->lock);
  1609. ttwu_do_activate(rq, p, wake_flags, cookie);
  1610. lockdep_unpin_lock(&rq->lock, cookie);
  1611. raw_spin_unlock(&rq->lock);
  1612. }
  1613. /*
  1614. * Notes on Program-Order guarantees on SMP systems.
  1615. *
  1616. * MIGRATION
  1617. *
  1618. * The basic program-order guarantee on SMP systems is that when a task [t]
  1619. * migrates, all its activity on its old cpu [c0] happens-before any subsequent
  1620. * execution on its new cpu [c1].
  1621. *
  1622. * For migration (of runnable tasks) this is provided by the following means:
  1623. *
  1624. * A) UNLOCK of the rq(c0)->lock scheduling out task t
  1625. * B) migration for t is required to synchronize *both* rq(c0)->lock and
  1626. * rq(c1)->lock (if not at the same time, then in that order).
  1627. * C) LOCK of the rq(c1)->lock scheduling in task
  1628. *
  1629. * Transitivity guarantees that B happens after A and C after B.
  1630. * Note: we only require RCpc transitivity.
  1631. * Note: the cpu doing B need not be c0 or c1
  1632. *
  1633. * Example:
  1634. *
  1635. * CPU0 CPU1 CPU2
  1636. *
  1637. * LOCK rq(0)->lock
  1638. * sched-out X
  1639. * sched-in Y
  1640. * UNLOCK rq(0)->lock
  1641. *
  1642. * LOCK rq(0)->lock // orders against CPU0
  1643. * dequeue X
  1644. * UNLOCK rq(0)->lock
  1645. *
  1646. * LOCK rq(1)->lock
  1647. * enqueue X
  1648. * UNLOCK rq(1)->lock
  1649. *
  1650. * LOCK rq(1)->lock // orders against CPU2
  1651. * sched-out Z
  1652. * sched-in X
  1653. * UNLOCK rq(1)->lock
  1654. *
  1655. *
  1656. * BLOCKING -- aka. SLEEP + WAKEUP
  1657. *
  1658. * For blocking we (obviously) need to provide the same guarantee as for
  1659. * migration. However the means are completely different as there is no lock
  1660. * chain to provide order. Instead we do:
  1661. *
  1662. * 1) smp_store_release(X->on_cpu, 0)
  1663. * 2) smp_cond_load_acquire(!X->on_cpu)
  1664. *
  1665. * Example:
  1666. *
  1667. * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
  1668. *
  1669. * LOCK rq(0)->lock LOCK X->pi_lock
  1670. * dequeue X
  1671. * sched-out X
  1672. * smp_store_release(X->on_cpu, 0);
  1673. *
  1674. * smp_cond_load_acquire(&X->on_cpu, !VAL);
  1675. * X->state = WAKING
  1676. * set_task_cpu(X,2)
  1677. *
  1678. * LOCK rq(2)->lock
  1679. * enqueue X
  1680. * X->state = RUNNING
  1681. * UNLOCK rq(2)->lock
  1682. *
  1683. * LOCK rq(2)->lock // orders against CPU1
  1684. * sched-out Z
  1685. * sched-in X
  1686. * UNLOCK rq(2)->lock
  1687. *
  1688. * UNLOCK X->pi_lock
  1689. * UNLOCK rq(0)->lock
  1690. *
  1691. *
  1692. * However; for wakeups there is a second guarantee we must provide, namely we
  1693. * must observe the state that lead to our wakeup. That is, not only must our
  1694. * task observe its own prior state, it must also observe the stores prior to
  1695. * its wakeup.
  1696. *
  1697. * This means that any means of doing remote wakeups must order the CPU doing
  1698. * the wakeup against the CPU the task is going to end up running on. This,
  1699. * however, is already required for the regular Program-Order guarantee above,
  1700. * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
  1701. *
  1702. */
  1703. /**
  1704. * try_to_wake_up - wake up a thread
  1705. * @p: the thread to be awakened
  1706. * @state: the mask of task states that can be woken
  1707. * @wake_flags: wake modifier flags (WF_*)
  1708. *
  1709. * Put it on the run-queue if it's not already there. The "current"
  1710. * thread is always on the run-queue (except when the actual
  1711. * re-schedule is in progress), and as such you're allowed to do
  1712. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1713. * runnable without the overhead of this.
  1714. *
  1715. * Return: %true if @p was woken up, %false if it was already running.
  1716. * or @state didn't match @p's state.
  1717. */
  1718. static int
  1719. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1720. {
  1721. unsigned long flags;
  1722. int cpu, success = 0;
  1723. /*
  1724. * If we are going to wake up a thread waiting for CONDITION we
  1725. * need to ensure that CONDITION=1 done by the caller can not be
  1726. * reordered with p->state check below. This pairs with mb() in
  1727. * set_current_state() the waiting thread does.
  1728. */
  1729. smp_mb__before_spinlock();
  1730. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1731. if (!(p->state & state))
  1732. goto out;
  1733. trace_sched_waking(p);
  1734. success = 1; /* we're going to change ->state */
  1735. cpu = task_cpu(p);
  1736. if (p->on_rq && ttwu_remote(p, wake_flags))
  1737. goto stat;
  1738. #ifdef CONFIG_SMP
  1739. /*
  1740. * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
  1741. * possible to, falsely, observe p->on_cpu == 0.
  1742. *
  1743. * One must be running (->on_cpu == 1) in order to remove oneself
  1744. * from the runqueue.
  1745. *
  1746. * [S] ->on_cpu = 1; [L] ->on_rq
  1747. * UNLOCK rq->lock
  1748. * RMB
  1749. * LOCK rq->lock
  1750. * [S] ->on_rq = 0; [L] ->on_cpu
  1751. *
  1752. * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
  1753. * from the consecutive calls to schedule(); the first switching to our
  1754. * task, the second putting it to sleep.
  1755. */
  1756. smp_rmb();
  1757. /*
  1758. * If the owning (remote) cpu is still in the middle of schedule() with
  1759. * this task as prev, wait until its done referencing the task.
  1760. *
  1761. * Pairs with the smp_store_release() in finish_lock_switch().
  1762. *
  1763. * This ensures that tasks getting woken will be fully ordered against
  1764. * their previous state and preserve Program Order.
  1765. */
  1766. smp_cond_load_acquire(&p->on_cpu, !VAL);
  1767. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1768. p->state = TASK_WAKING;
  1769. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1770. if (task_cpu(p) != cpu) {
  1771. wake_flags |= WF_MIGRATED;
  1772. set_task_cpu(p, cpu);
  1773. }
  1774. #endif /* CONFIG_SMP */
  1775. ttwu_queue(p, cpu, wake_flags);
  1776. stat:
  1777. if (schedstat_enabled())
  1778. ttwu_stat(p, cpu, wake_flags);
  1779. out:
  1780. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1781. return success;
  1782. }
  1783. /**
  1784. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1785. * @p: the thread to be awakened
  1786. *
  1787. * Put @p on the run-queue if it's not already there. The caller must
  1788. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1789. * the current task.
  1790. */
  1791. static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
  1792. {
  1793. struct rq *rq = task_rq(p);
  1794. if (WARN_ON_ONCE(rq != this_rq()) ||
  1795. WARN_ON_ONCE(p == current))
  1796. return;
  1797. lockdep_assert_held(&rq->lock);
  1798. if (!raw_spin_trylock(&p->pi_lock)) {
  1799. /*
  1800. * This is OK, because current is on_cpu, which avoids it being
  1801. * picked for load-balance and preemption/IRQs are still
  1802. * disabled avoiding further scheduler activity on it and we've
  1803. * not yet picked a replacement task.
  1804. */
  1805. lockdep_unpin_lock(&rq->lock, cookie);
  1806. raw_spin_unlock(&rq->lock);
  1807. raw_spin_lock(&p->pi_lock);
  1808. raw_spin_lock(&rq->lock);
  1809. lockdep_repin_lock(&rq->lock, cookie);
  1810. }
  1811. if (!(p->state & TASK_NORMAL))
  1812. goto out;
  1813. trace_sched_waking(p);
  1814. if (!task_on_rq_queued(p))
  1815. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1816. ttwu_do_wakeup(rq, p, 0, cookie);
  1817. if (schedstat_enabled())
  1818. ttwu_stat(p, smp_processor_id(), 0);
  1819. out:
  1820. raw_spin_unlock(&p->pi_lock);
  1821. }
  1822. /**
  1823. * wake_up_process - Wake up a specific process
  1824. * @p: The process to be woken up.
  1825. *
  1826. * Attempt to wake up the nominated process and move it to the set of runnable
  1827. * processes.
  1828. *
  1829. * Return: 1 if the process was woken up, 0 if it was already running.
  1830. *
  1831. * It may be assumed that this function implies a write memory barrier before
  1832. * changing the task state if and only if any tasks are woken up.
  1833. */
  1834. int wake_up_process(struct task_struct *p)
  1835. {
  1836. return try_to_wake_up(p, TASK_NORMAL, 0);
  1837. }
  1838. EXPORT_SYMBOL(wake_up_process);
  1839. int wake_up_state(struct task_struct *p, unsigned int state)
  1840. {
  1841. return try_to_wake_up(p, state, 0);
  1842. }
  1843. /*
  1844. * This function clears the sched_dl_entity static params.
  1845. */
  1846. void __dl_clear_params(struct task_struct *p)
  1847. {
  1848. struct sched_dl_entity *dl_se = &p->dl;
  1849. dl_se->dl_runtime = 0;
  1850. dl_se->dl_deadline = 0;
  1851. dl_se->dl_period = 0;
  1852. dl_se->flags = 0;
  1853. dl_se->dl_bw = 0;
  1854. dl_se->dl_throttled = 0;
  1855. dl_se->dl_yielded = 0;
  1856. }
  1857. /*
  1858. * Perform scheduler related setup for a newly forked process p.
  1859. * p is forked by current.
  1860. *
  1861. * __sched_fork() is basic setup used by init_idle() too:
  1862. */
  1863. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1864. {
  1865. p->on_rq = 0;
  1866. p->se.on_rq = 0;
  1867. p->se.exec_start = 0;
  1868. p->se.sum_exec_runtime = 0;
  1869. p->se.prev_sum_exec_runtime = 0;
  1870. p->se.nr_migrations = 0;
  1871. p->se.vruntime = 0;
  1872. INIT_LIST_HEAD(&p->se.group_node);
  1873. #ifdef CONFIG_FAIR_GROUP_SCHED
  1874. p->se.cfs_rq = NULL;
  1875. #endif
  1876. #ifdef CONFIG_SCHEDSTATS
  1877. /* Even if schedstat is disabled, there should not be garbage */
  1878. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1879. #endif
  1880. RB_CLEAR_NODE(&p->dl.rb_node);
  1881. init_dl_task_timer(&p->dl);
  1882. __dl_clear_params(p);
  1883. INIT_LIST_HEAD(&p->rt.run_list);
  1884. p->rt.timeout = 0;
  1885. p->rt.time_slice = sched_rr_timeslice;
  1886. p->rt.on_rq = 0;
  1887. p->rt.on_list = 0;
  1888. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1889. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1890. #endif
  1891. #ifdef CONFIG_NUMA_BALANCING
  1892. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1893. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1894. p->mm->numa_scan_seq = 0;
  1895. }
  1896. if (clone_flags & CLONE_VM)
  1897. p->numa_preferred_nid = current->numa_preferred_nid;
  1898. else
  1899. p->numa_preferred_nid = -1;
  1900. p->node_stamp = 0ULL;
  1901. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1902. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1903. p->numa_work.next = &p->numa_work;
  1904. p->numa_faults = NULL;
  1905. p->last_task_numa_placement = 0;
  1906. p->last_sum_exec_runtime = 0;
  1907. p->numa_group = NULL;
  1908. #endif /* CONFIG_NUMA_BALANCING */
  1909. }
  1910. DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
  1911. #ifdef CONFIG_NUMA_BALANCING
  1912. void set_numabalancing_state(bool enabled)
  1913. {
  1914. if (enabled)
  1915. static_branch_enable(&sched_numa_balancing);
  1916. else
  1917. static_branch_disable(&sched_numa_balancing);
  1918. }
  1919. #ifdef CONFIG_PROC_SYSCTL
  1920. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1921. void __user *buffer, size_t *lenp, loff_t *ppos)
  1922. {
  1923. struct ctl_table t;
  1924. int err;
  1925. int state = static_branch_likely(&sched_numa_balancing);
  1926. if (write && !capable(CAP_SYS_ADMIN))
  1927. return -EPERM;
  1928. t = *table;
  1929. t.data = &state;
  1930. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1931. if (err < 0)
  1932. return err;
  1933. if (write)
  1934. set_numabalancing_state(state);
  1935. return err;
  1936. }
  1937. #endif
  1938. #endif
  1939. #ifdef CONFIG_SCHEDSTATS
  1940. DEFINE_STATIC_KEY_FALSE(sched_schedstats);
  1941. static bool __initdata __sched_schedstats = false;
  1942. static void set_schedstats(bool enabled)
  1943. {
  1944. if (enabled)
  1945. static_branch_enable(&sched_schedstats);
  1946. else
  1947. static_branch_disable(&sched_schedstats);
  1948. }
  1949. void force_schedstat_enabled(void)
  1950. {
  1951. if (!schedstat_enabled()) {
  1952. pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
  1953. static_branch_enable(&sched_schedstats);
  1954. }
  1955. }
  1956. static int __init setup_schedstats(char *str)
  1957. {
  1958. int ret = 0;
  1959. if (!str)
  1960. goto out;
  1961. /*
  1962. * This code is called before jump labels have been set up, so we can't
  1963. * change the static branch directly just yet. Instead set a temporary
  1964. * variable so init_schedstats() can do it later.
  1965. */
  1966. if (!strcmp(str, "enable")) {
  1967. __sched_schedstats = true;
  1968. ret = 1;
  1969. } else if (!strcmp(str, "disable")) {
  1970. __sched_schedstats = false;
  1971. ret = 1;
  1972. }
  1973. out:
  1974. if (!ret)
  1975. pr_warn("Unable to parse schedstats=\n");
  1976. return ret;
  1977. }
  1978. __setup("schedstats=", setup_schedstats);
  1979. static void __init init_schedstats(void)
  1980. {
  1981. set_schedstats(__sched_schedstats);
  1982. }
  1983. #ifdef CONFIG_PROC_SYSCTL
  1984. int sysctl_schedstats(struct ctl_table *table, int write,
  1985. void __user *buffer, size_t *lenp, loff_t *ppos)
  1986. {
  1987. struct ctl_table t;
  1988. int err;
  1989. int state = static_branch_likely(&sched_schedstats);
  1990. if (write && !capable(CAP_SYS_ADMIN))
  1991. return -EPERM;
  1992. t = *table;
  1993. t.data = &state;
  1994. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1995. if (err < 0)
  1996. return err;
  1997. if (write)
  1998. set_schedstats(state);
  1999. return err;
  2000. }
  2001. #endif /* CONFIG_PROC_SYSCTL */
  2002. #else /* !CONFIG_SCHEDSTATS */
  2003. static inline void init_schedstats(void) {}
  2004. #endif /* CONFIG_SCHEDSTATS */
  2005. /*
  2006. * fork()/clone()-time setup:
  2007. */
  2008. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  2009. {
  2010. unsigned long flags;
  2011. int cpu = get_cpu();
  2012. __sched_fork(clone_flags, p);
  2013. /*
  2014. * We mark the process as NEW here. This guarantees that
  2015. * nobody will actually run it, and a signal or other external
  2016. * event cannot wake it up and insert it on the runqueue either.
  2017. */
  2018. p->state = TASK_NEW;
  2019. /*
  2020. * Make sure we do not leak PI boosting priority to the child.
  2021. */
  2022. p->prio = current->normal_prio;
  2023. /*
  2024. * Revert to default priority/policy on fork if requested.
  2025. */
  2026. if (unlikely(p->sched_reset_on_fork)) {
  2027. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2028. p->policy = SCHED_NORMAL;
  2029. p->static_prio = NICE_TO_PRIO(0);
  2030. p->rt_priority = 0;
  2031. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2032. p->static_prio = NICE_TO_PRIO(0);
  2033. p->prio = p->normal_prio = __normal_prio(p);
  2034. set_load_weight(p);
  2035. /*
  2036. * We don't need the reset flag anymore after the fork. It has
  2037. * fulfilled its duty:
  2038. */
  2039. p->sched_reset_on_fork = 0;
  2040. }
  2041. if (dl_prio(p->prio)) {
  2042. put_cpu();
  2043. return -EAGAIN;
  2044. } else if (rt_prio(p->prio)) {
  2045. p->sched_class = &rt_sched_class;
  2046. } else {
  2047. p->sched_class = &fair_sched_class;
  2048. }
  2049. init_entity_runnable_average(&p->se);
  2050. /*
  2051. * The child is not yet in the pid-hash so no cgroup attach races,
  2052. * and the cgroup is pinned to this child due to cgroup_fork()
  2053. * is ran before sched_fork().
  2054. *
  2055. * Silence PROVE_RCU.
  2056. */
  2057. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2058. /*
  2059. * We're setting the cpu for the first time, we don't migrate,
  2060. * so use __set_task_cpu().
  2061. */
  2062. __set_task_cpu(p, cpu);
  2063. if (p->sched_class->task_fork)
  2064. p->sched_class->task_fork(p);
  2065. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2066. #ifdef CONFIG_SCHED_INFO
  2067. if (likely(sched_info_on()))
  2068. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2069. #endif
  2070. #if defined(CONFIG_SMP)
  2071. p->on_cpu = 0;
  2072. #endif
  2073. init_task_preempt_count(p);
  2074. #ifdef CONFIG_SMP
  2075. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2076. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  2077. #endif
  2078. put_cpu();
  2079. return 0;
  2080. }
  2081. unsigned long to_ratio(u64 period, u64 runtime)
  2082. {
  2083. if (runtime == RUNTIME_INF)
  2084. return 1ULL << 20;
  2085. /*
  2086. * Doing this here saves a lot of checks in all
  2087. * the calling paths, and returning zero seems
  2088. * safe for them anyway.
  2089. */
  2090. if (period == 0)
  2091. return 0;
  2092. return div64_u64(runtime << 20, period);
  2093. }
  2094. #ifdef CONFIG_SMP
  2095. inline struct dl_bw *dl_bw_of(int i)
  2096. {
  2097. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2098. "sched RCU must be held");
  2099. return &cpu_rq(i)->rd->dl_bw;
  2100. }
  2101. static inline int dl_bw_cpus(int i)
  2102. {
  2103. struct root_domain *rd = cpu_rq(i)->rd;
  2104. int cpus = 0;
  2105. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2106. "sched RCU must be held");
  2107. for_each_cpu_and(i, rd->span, cpu_active_mask)
  2108. cpus++;
  2109. return cpus;
  2110. }
  2111. #else
  2112. inline struct dl_bw *dl_bw_of(int i)
  2113. {
  2114. return &cpu_rq(i)->dl.dl_bw;
  2115. }
  2116. static inline int dl_bw_cpus(int i)
  2117. {
  2118. return 1;
  2119. }
  2120. #endif
  2121. /*
  2122. * We must be sure that accepting a new task (or allowing changing the
  2123. * parameters of an existing one) is consistent with the bandwidth
  2124. * constraints. If yes, this function also accordingly updates the currently
  2125. * allocated bandwidth to reflect the new situation.
  2126. *
  2127. * This function is called while holding p's rq->lock.
  2128. *
  2129. * XXX we should delay bw change until the task's 0-lag point, see
  2130. * __setparam_dl().
  2131. */
  2132. static int dl_overflow(struct task_struct *p, int policy,
  2133. const struct sched_attr *attr)
  2134. {
  2135. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  2136. u64 period = attr->sched_period ?: attr->sched_deadline;
  2137. u64 runtime = attr->sched_runtime;
  2138. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  2139. int cpus, err = -1;
  2140. /* !deadline task may carry old deadline bandwidth */
  2141. if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
  2142. return 0;
  2143. /*
  2144. * Either if a task, enters, leave, or stays -deadline but changes
  2145. * its parameters, we may need to update accordingly the total
  2146. * allocated bandwidth of the container.
  2147. */
  2148. raw_spin_lock(&dl_b->lock);
  2149. cpus = dl_bw_cpus(task_cpu(p));
  2150. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  2151. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  2152. __dl_add(dl_b, new_bw);
  2153. err = 0;
  2154. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  2155. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  2156. __dl_clear(dl_b, p->dl.dl_bw);
  2157. __dl_add(dl_b, new_bw);
  2158. err = 0;
  2159. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  2160. __dl_clear(dl_b, p->dl.dl_bw);
  2161. err = 0;
  2162. }
  2163. raw_spin_unlock(&dl_b->lock);
  2164. return err;
  2165. }
  2166. extern void init_dl_bw(struct dl_bw *dl_b);
  2167. /*
  2168. * wake_up_new_task - wake up a newly created task for the first time.
  2169. *
  2170. * This function will do some initial scheduler statistics housekeeping
  2171. * that must be done for every newly created context, then puts the task
  2172. * on the runqueue and wakes it.
  2173. */
  2174. void wake_up_new_task(struct task_struct *p)
  2175. {
  2176. struct rq_flags rf;
  2177. struct rq *rq;
  2178. raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
  2179. p->state = TASK_RUNNING;
  2180. #ifdef CONFIG_SMP
  2181. /*
  2182. * Fork balancing, do it here and not earlier because:
  2183. * - cpus_allowed can change in the fork path
  2184. * - any previously selected cpu might disappear through hotplug
  2185. *
  2186. * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
  2187. * as we're not fully set-up yet.
  2188. */
  2189. __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2190. #endif
  2191. rq = __task_rq_lock(p, &rf);
  2192. post_init_entity_util_avg(&p->se);
  2193. activate_task(rq, p, 0);
  2194. p->on_rq = TASK_ON_RQ_QUEUED;
  2195. trace_sched_wakeup_new(p);
  2196. check_preempt_curr(rq, p, WF_FORK);
  2197. #ifdef CONFIG_SMP
  2198. if (p->sched_class->task_woken) {
  2199. /*
  2200. * Nothing relies on rq->lock after this, so its fine to
  2201. * drop it.
  2202. */
  2203. lockdep_unpin_lock(&rq->lock, rf.cookie);
  2204. p->sched_class->task_woken(rq, p);
  2205. lockdep_repin_lock(&rq->lock, rf.cookie);
  2206. }
  2207. #endif
  2208. task_rq_unlock(rq, p, &rf);
  2209. }
  2210. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2211. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2212. void preempt_notifier_inc(void)
  2213. {
  2214. static_key_slow_inc(&preempt_notifier_key);
  2215. }
  2216. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2217. void preempt_notifier_dec(void)
  2218. {
  2219. static_key_slow_dec(&preempt_notifier_key);
  2220. }
  2221. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2222. /**
  2223. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2224. * @notifier: notifier struct to register
  2225. */
  2226. void preempt_notifier_register(struct preempt_notifier *notifier)
  2227. {
  2228. if (!static_key_false(&preempt_notifier_key))
  2229. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2230. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2231. }
  2232. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2233. /**
  2234. * preempt_notifier_unregister - no longer interested in preemption notifications
  2235. * @notifier: notifier struct to unregister
  2236. *
  2237. * This is *not* safe to call from within a preemption notifier.
  2238. */
  2239. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2240. {
  2241. hlist_del(&notifier->link);
  2242. }
  2243. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2244. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2245. {
  2246. struct preempt_notifier *notifier;
  2247. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2248. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2249. }
  2250. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2251. {
  2252. if (static_key_false(&preempt_notifier_key))
  2253. __fire_sched_in_preempt_notifiers(curr);
  2254. }
  2255. static void
  2256. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. struct preempt_notifier *notifier;
  2260. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2261. notifier->ops->sched_out(notifier, next);
  2262. }
  2263. static __always_inline void
  2264. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2265. struct task_struct *next)
  2266. {
  2267. if (static_key_false(&preempt_notifier_key))
  2268. __fire_sched_out_preempt_notifiers(curr, next);
  2269. }
  2270. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2271. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2272. {
  2273. }
  2274. static inline void
  2275. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2276. struct task_struct *next)
  2277. {
  2278. }
  2279. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2280. /**
  2281. * prepare_task_switch - prepare to switch tasks
  2282. * @rq: the runqueue preparing to switch
  2283. * @prev: the current task that is being switched out
  2284. * @next: the task we are going to switch to.
  2285. *
  2286. * This is called with the rq lock held and interrupts off. It must
  2287. * be paired with a subsequent finish_task_switch after the context
  2288. * switch.
  2289. *
  2290. * prepare_task_switch sets up locking and calls architecture specific
  2291. * hooks.
  2292. */
  2293. static inline void
  2294. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2295. struct task_struct *next)
  2296. {
  2297. sched_info_switch(rq, prev, next);
  2298. perf_event_task_sched_out(prev, next);
  2299. fire_sched_out_preempt_notifiers(prev, next);
  2300. prepare_lock_switch(rq, next);
  2301. prepare_arch_switch(next);
  2302. }
  2303. /**
  2304. * finish_task_switch - clean up after a task-switch
  2305. * @prev: the thread we just switched away from.
  2306. *
  2307. * finish_task_switch must be called after the context switch, paired
  2308. * with a prepare_task_switch call before the context switch.
  2309. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2310. * and do any other architecture-specific cleanup actions.
  2311. *
  2312. * Note that we may have delayed dropping an mm in context_switch(). If
  2313. * so, we finish that here outside of the runqueue lock. (Doing it
  2314. * with the lock held can cause deadlocks; see schedule() for
  2315. * details.)
  2316. *
  2317. * The context switch have flipped the stack from under us and restored the
  2318. * local variables which were saved when this task called schedule() in the
  2319. * past. prev == current is still correct but we need to recalculate this_rq
  2320. * because prev may have moved to another CPU.
  2321. */
  2322. static struct rq *finish_task_switch(struct task_struct *prev)
  2323. __releases(rq->lock)
  2324. {
  2325. struct rq *rq = this_rq();
  2326. struct mm_struct *mm = rq->prev_mm;
  2327. long prev_state;
  2328. /*
  2329. * The previous task will have left us with a preempt_count of 2
  2330. * because it left us after:
  2331. *
  2332. * schedule()
  2333. * preempt_disable(); // 1
  2334. * __schedule()
  2335. * raw_spin_lock_irq(&rq->lock) // 2
  2336. *
  2337. * Also, see FORK_PREEMPT_COUNT.
  2338. */
  2339. if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
  2340. "corrupted preempt_count: %s/%d/0x%x\n",
  2341. current->comm, current->pid, preempt_count()))
  2342. preempt_count_set(FORK_PREEMPT_COUNT);
  2343. rq->prev_mm = NULL;
  2344. /*
  2345. * A task struct has one reference for the use as "current".
  2346. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2347. * schedule one last time. The schedule call will never return, and
  2348. * the scheduled task must drop that reference.
  2349. *
  2350. * We must observe prev->state before clearing prev->on_cpu (in
  2351. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  2352. * running on another CPU and we could rave with its RUNNING -> DEAD
  2353. * transition, resulting in a double drop.
  2354. */
  2355. prev_state = prev->state;
  2356. vtime_task_switch(prev);
  2357. perf_event_task_sched_in(prev, current);
  2358. finish_lock_switch(rq, prev);
  2359. finish_arch_post_lock_switch();
  2360. fire_sched_in_preempt_notifiers(current);
  2361. if (mm)
  2362. mmdrop(mm);
  2363. if (unlikely(prev_state == TASK_DEAD)) {
  2364. if (prev->sched_class->task_dead)
  2365. prev->sched_class->task_dead(prev);
  2366. /*
  2367. * Remove function-return probe instances associated with this
  2368. * task and put them back on the free list.
  2369. */
  2370. kprobe_flush_task(prev);
  2371. put_task_struct(prev);
  2372. }
  2373. tick_nohz_task_switch();
  2374. return rq;
  2375. }
  2376. #ifdef CONFIG_SMP
  2377. /* rq->lock is NOT held, but preemption is disabled */
  2378. static void __balance_callback(struct rq *rq)
  2379. {
  2380. struct callback_head *head, *next;
  2381. void (*func)(struct rq *rq);
  2382. unsigned long flags;
  2383. raw_spin_lock_irqsave(&rq->lock, flags);
  2384. head = rq->balance_callback;
  2385. rq->balance_callback = NULL;
  2386. while (head) {
  2387. func = (void (*)(struct rq *))head->func;
  2388. next = head->next;
  2389. head->next = NULL;
  2390. head = next;
  2391. func(rq);
  2392. }
  2393. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2394. }
  2395. static inline void balance_callback(struct rq *rq)
  2396. {
  2397. if (unlikely(rq->balance_callback))
  2398. __balance_callback(rq);
  2399. }
  2400. #else
  2401. static inline void balance_callback(struct rq *rq)
  2402. {
  2403. }
  2404. #endif
  2405. /**
  2406. * schedule_tail - first thing a freshly forked thread must call.
  2407. * @prev: the thread we just switched away from.
  2408. */
  2409. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2410. __releases(rq->lock)
  2411. {
  2412. struct rq *rq;
  2413. /*
  2414. * New tasks start with FORK_PREEMPT_COUNT, see there and
  2415. * finish_task_switch() for details.
  2416. *
  2417. * finish_task_switch() will drop rq->lock() and lower preempt_count
  2418. * and the preempt_enable() will end up enabling preemption (on
  2419. * PREEMPT_COUNT kernels).
  2420. */
  2421. rq = finish_task_switch(prev);
  2422. balance_callback(rq);
  2423. preempt_enable();
  2424. if (current->set_child_tid)
  2425. put_user(task_pid_vnr(current), current->set_child_tid);
  2426. }
  2427. /*
  2428. * context_switch - switch to the new MM and the new thread's register state.
  2429. */
  2430. static __always_inline struct rq *
  2431. context_switch(struct rq *rq, struct task_struct *prev,
  2432. struct task_struct *next, struct pin_cookie cookie)
  2433. {
  2434. struct mm_struct *mm, *oldmm;
  2435. prepare_task_switch(rq, prev, next);
  2436. mm = next->mm;
  2437. oldmm = prev->active_mm;
  2438. /*
  2439. * For paravirt, this is coupled with an exit in switch_to to
  2440. * combine the page table reload and the switch backend into
  2441. * one hypercall.
  2442. */
  2443. arch_start_context_switch(prev);
  2444. if (!mm) {
  2445. next->active_mm = oldmm;
  2446. atomic_inc(&oldmm->mm_count);
  2447. enter_lazy_tlb(oldmm, next);
  2448. } else
  2449. switch_mm_irqs_off(oldmm, mm, next);
  2450. if (!prev->mm) {
  2451. prev->active_mm = NULL;
  2452. rq->prev_mm = oldmm;
  2453. }
  2454. /*
  2455. * Since the runqueue lock will be released by the next
  2456. * task (which is an invalid locking op but in the case
  2457. * of the scheduler it's an obvious special-case), so we
  2458. * do an early lockdep release here:
  2459. */
  2460. lockdep_unpin_lock(&rq->lock, cookie);
  2461. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2462. /* Here we just switch the register state and the stack. */
  2463. switch_to(prev, next, prev);
  2464. barrier();
  2465. return finish_task_switch(prev);
  2466. }
  2467. /*
  2468. * nr_running and nr_context_switches:
  2469. *
  2470. * externally visible scheduler statistics: current number of runnable
  2471. * threads, total number of context switches performed since bootup.
  2472. */
  2473. unsigned long nr_running(void)
  2474. {
  2475. unsigned long i, sum = 0;
  2476. for_each_online_cpu(i)
  2477. sum += cpu_rq(i)->nr_running;
  2478. return sum;
  2479. }
  2480. /*
  2481. * Check if only the current task is running on the cpu.
  2482. *
  2483. * Caution: this function does not check that the caller has disabled
  2484. * preemption, thus the result might have a time-of-check-to-time-of-use
  2485. * race. The caller is responsible to use it correctly, for example:
  2486. *
  2487. * - from a non-preemptable section (of course)
  2488. *
  2489. * - from a thread that is bound to a single CPU
  2490. *
  2491. * - in a loop with very short iterations (e.g. a polling loop)
  2492. */
  2493. bool single_task_running(void)
  2494. {
  2495. return raw_rq()->nr_running == 1;
  2496. }
  2497. EXPORT_SYMBOL(single_task_running);
  2498. unsigned long long nr_context_switches(void)
  2499. {
  2500. int i;
  2501. unsigned long long sum = 0;
  2502. for_each_possible_cpu(i)
  2503. sum += cpu_rq(i)->nr_switches;
  2504. return sum;
  2505. }
  2506. unsigned long nr_iowait(void)
  2507. {
  2508. unsigned long i, sum = 0;
  2509. for_each_possible_cpu(i)
  2510. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2511. return sum;
  2512. }
  2513. unsigned long nr_iowait_cpu(int cpu)
  2514. {
  2515. struct rq *this = cpu_rq(cpu);
  2516. return atomic_read(&this->nr_iowait);
  2517. }
  2518. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2519. {
  2520. struct rq *rq = this_rq();
  2521. *nr_waiters = atomic_read(&rq->nr_iowait);
  2522. *load = rq->load.weight;
  2523. }
  2524. #ifdef CONFIG_SMP
  2525. /*
  2526. * sched_exec - execve() is a valuable balancing opportunity, because at
  2527. * this point the task has the smallest effective memory and cache footprint.
  2528. */
  2529. void sched_exec(void)
  2530. {
  2531. struct task_struct *p = current;
  2532. unsigned long flags;
  2533. int dest_cpu;
  2534. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2535. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2536. if (dest_cpu == smp_processor_id())
  2537. goto unlock;
  2538. if (likely(cpu_active(dest_cpu))) {
  2539. struct migration_arg arg = { p, dest_cpu };
  2540. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2541. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2542. return;
  2543. }
  2544. unlock:
  2545. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2546. }
  2547. #endif
  2548. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2549. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2550. EXPORT_PER_CPU_SYMBOL(kstat);
  2551. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2552. /*
  2553. * Return accounted runtime for the task.
  2554. * In case the task is currently running, return the runtime plus current's
  2555. * pending runtime that have not been accounted yet.
  2556. */
  2557. unsigned long long task_sched_runtime(struct task_struct *p)
  2558. {
  2559. struct rq_flags rf;
  2560. struct rq *rq;
  2561. u64 ns;
  2562. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2563. /*
  2564. * 64-bit doesn't need locks to atomically read a 64bit value.
  2565. * So we have a optimization chance when the task's delta_exec is 0.
  2566. * Reading ->on_cpu is racy, but this is ok.
  2567. *
  2568. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2569. * If we race with it entering cpu, unaccounted time is 0. This is
  2570. * indistinguishable from the read occurring a few cycles earlier.
  2571. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2572. * been accounted, so we're correct here as well.
  2573. */
  2574. if (!p->on_cpu || !task_on_rq_queued(p))
  2575. return p->se.sum_exec_runtime;
  2576. #endif
  2577. rq = task_rq_lock(p, &rf);
  2578. /*
  2579. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2580. * project cycles that may never be accounted to this
  2581. * thread, breaking clock_gettime().
  2582. */
  2583. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2584. update_rq_clock(rq);
  2585. p->sched_class->update_curr(rq);
  2586. }
  2587. ns = p->se.sum_exec_runtime;
  2588. task_rq_unlock(rq, p, &rf);
  2589. return ns;
  2590. }
  2591. /*
  2592. * This function gets called by the timer code, with HZ frequency.
  2593. * We call it with interrupts disabled.
  2594. */
  2595. void scheduler_tick(void)
  2596. {
  2597. int cpu = smp_processor_id();
  2598. struct rq *rq = cpu_rq(cpu);
  2599. struct task_struct *curr = rq->curr;
  2600. sched_clock_tick();
  2601. raw_spin_lock(&rq->lock);
  2602. update_rq_clock(rq);
  2603. curr->sched_class->task_tick(rq, curr, 0);
  2604. cpu_load_update_active(rq);
  2605. calc_global_load_tick(rq);
  2606. raw_spin_unlock(&rq->lock);
  2607. perf_event_task_tick();
  2608. #ifdef CONFIG_SMP
  2609. rq->idle_balance = idle_cpu(cpu);
  2610. trigger_load_balance(rq);
  2611. #endif
  2612. rq_last_tick_reset(rq);
  2613. }
  2614. #ifdef CONFIG_NO_HZ_FULL
  2615. /**
  2616. * scheduler_tick_max_deferment
  2617. *
  2618. * Keep at least one tick per second when a single
  2619. * active task is running because the scheduler doesn't
  2620. * yet completely support full dynticks environment.
  2621. *
  2622. * This makes sure that uptime, CFS vruntime, load
  2623. * balancing, etc... continue to move forward, even
  2624. * with a very low granularity.
  2625. *
  2626. * Return: Maximum deferment in nanoseconds.
  2627. */
  2628. u64 scheduler_tick_max_deferment(void)
  2629. {
  2630. struct rq *rq = this_rq();
  2631. unsigned long next, now = READ_ONCE(jiffies);
  2632. next = rq->last_sched_tick + HZ;
  2633. if (time_before_eq(next, now))
  2634. return 0;
  2635. return jiffies_to_nsecs(next - now);
  2636. }
  2637. #endif
  2638. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2639. defined(CONFIG_PREEMPT_TRACER))
  2640. /*
  2641. * If the value passed in is equal to the current preempt count
  2642. * then we just disabled preemption. Start timing the latency.
  2643. */
  2644. static inline void preempt_latency_start(int val)
  2645. {
  2646. if (preempt_count() == val) {
  2647. unsigned long ip = get_lock_parent_ip();
  2648. #ifdef CONFIG_DEBUG_PREEMPT
  2649. current->preempt_disable_ip = ip;
  2650. #endif
  2651. trace_preempt_off(CALLER_ADDR0, ip);
  2652. }
  2653. }
  2654. void preempt_count_add(int val)
  2655. {
  2656. #ifdef CONFIG_DEBUG_PREEMPT
  2657. /*
  2658. * Underflow?
  2659. */
  2660. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2661. return;
  2662. #endif
  2663. __preempt_count_add(val);
  2664. #ifdef CONFIG_DEBUG_PREEMPT
  2665. /*
  2666. * Spinlock count overflowing soon?
  2667. */
  2668. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2669. PREEMPT_MASK - 10);
  2670. #endif
  2671. preempt_latency_start(val);
  2672. }
  2673. EXPORT_SYMBOL(preempt_count_add);
  2674. NOKPROBE_SYMBOL(preempt_count_add);
  2675. /*
  2676. * If the value passed in equals to the current preempt count
  2677. * then we just enabled preemption. Stop timing the latency.
  2678. */
  2679. static inline void preempt_latency_stop(int val)
  2680. {
  2681. if (preempt_count() == val)
  2682. trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
  2683. }
  2684. void preempt_count_sub(int val)
  2685. {
  2686. #ifdef CONFIG_DEBUG_PREEMPT
  2687. /*
  2688. * Underflow?
  2689. */
  2690. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2691. return;
  2692. /*
  2693. * Is the spinlock portion underflowing?
  2694. */
  2695. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2696. !(preempt_count() & PREEMPT_MASK)))
  2697. return;
  2698. #endif
  2699. preempt_latency_stop(val);
  2700. __preempt_count_sub(val);
  2701. }
  2702. EXPORT_SYMBOL(preempt_count_sub);
  2703. NOKPROBE_SYMBOL(preempt_count_sub);
  2704. #else
  2705. static inline void preempt_latency_start(int val) { }
  2706. static inline void preempt_latency_stop(int val) { }
  2707. #endif
  2708. /*
  2709. * Print scheduling while atomic bug:
  2710. */
  2711. static noinline void __schedule_bug(struct task_struct *prev)
  2712. {
  2713. if (oops_in_progress)
  2714. return;
  2715. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2716. prev->comm, prev->pid, preempt_count());
  2717. debug_show_held_locks(prev);
  2718. print_modules();
  2719. if (irqs_disabled())
  2720. print_irqtrace_events(prev);
  2721. #ifdef CONFIG_DEBUG_PREEMPT
  2722. if (in_atomic_preempt_off()) {
  2723. pr_err("Preemption disabled at:");
  2724. print_ip_sym(current->preempt_disable_ip);
  2725. pr_cont("\n");
  2726. }
  2727. #endif
  2728. if (panic_on_warn)
  2729. panic("scheduling while atomic\n");
  2730. dump_stack();
  2731. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2732. }
  2733. /*
  2734. * Various schedule()-time debugging checks and statistics:
  2735. */
  2736. static inline void schedule_debug(struct task_struct *prev)
  2737. {
  2738. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2739. if (task_stack_end_corrupted(prev))
  2740. panic("corrupted stack end detected inside scheduler\n");
  2741. #endif
  2742. if (unlikely(in_atomic_preempt_off())) {
  2743. __schedule_bug(prev);
  2744. preempt_count_set(PREEMPT_DISABLED);
  2745. }
  2746. rcu_sleep_check();
  2747. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2748. schedstat_inc(this_rq(), sched_count);
  2749. }
  2750. /*
  2751. * Pick up the highest-prio task:
  2752. */
  2753. static inline struct task_struct *
  2754. pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
  2755. {
  2756. const struct sched_class *class = &fair_sched_class;
  2757. struct task_struct *p;
  2758. /*
  2759. * Optimization: we know that if all tasks are in
  2760. * the fair class we can call that function directly:
  2761. */
  2762. if (likely(prev->sched_class == class &&
  2763. rq->nr_running == rq->cfs.h_nr_running)) {
  2764. p = fair_sched_class.pick_next_task(rq, prev, cookie);
  2765. if (unlikely(p == RETRY_TASK))
  2766. goto again;
  2767. /* assumes fair_sched_class->next == idle_sched_class */
  2768. if (unlikely(!p))
  2769. p = idle_sched_class.pick_next_task(rq, prev, cookie);
  2770. return p;
  2771. }
  2772. again:
  2773. for_each_class(class) {
  2774. p = class->pick_next_task(rq, prev, cookie);
  2775. if (p) {
  2776. if (unlikely(p == RETRY_TASK))
  2777. goto again;
  2778. return p;
  2779. }
  2780. }
  2781. BUG(); /* the idle class will always have a runnable task */
  2782. }
  2783. /*
  2784. * __schedule() is the main scheduler function.
  2785. *
  2786. * The main means of driving the scheduler and thus entering this function are:
  2787. *
  2788. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2789. *
  2790. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2791. * paths. For example, see arch/x86/entry_64.S.
  2792. *
  2793. * To drive preemption between tasks, the scheduler sets the flag in timer
  2794. * interrupt handler scheduler_tick().
  2795. *
  2796. * 3. Wakeups don't really cause entry into schedule(). They add a
  2797. * task to the run-queue and that's it.
  2798. *
  2799. * Now, if the new task added to the run-queue preempts the current
  2800. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2801. * called on the nearest possible occasion:
  2802. *
  2803. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2804. *
  2805. * - in syscall or exception context, at the next outmost
  2806. * preempt_enable(). (this might be as soon as the wake_up()'s
  2807. * spin_unlock()!)
  2808. *
  2809. * - in IRQ context, return from interrupt-handler to
  2810. * preemptible context
  2811. *
  2812. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2813. * then at the next:
  2814. *
  2815. * - cond_resched() call
  2816. * - explicit schedule() call
  2817. * - return from syscall or exception to user-space
  2818. * - return from interrupt-handler to user-space
  2819. *
  2820. * WARNING: must be called with preemption disabled!
  2821. */
  2822. static void __sched notrace __schedule(bool preempt)
  2823. {
  2824. struct task_struct *prev, *next;
  2825. unsigned long *switch_count;
  2826. struct pin_cookie cookie;
  2827. struct rq *rq;
  2828. int cpu;
  2829. cpu = smp_processor_id();
  2830. rq = cpu_rq(cpu);
  2831. prev = rq->curr;
  2832. /*
  2833. * do_exit() calls schedule() with preemption disabled as an exception;
  2834. * however we must fix that up, otherwise the next task will see an
  2835. * inconsistent (higher) preempt count.
  2836. *
  2837. * It also avoids the below schedule_debug() test from complaining
  2838. * about this.
  2839. */
  2840. if (unlikely(prev->state == TASK_DEAD))
  2841. preempt_enable_no_resched_notrace();
  2842. schedule_debug(prev);
  2843. if (sched_feat(HRTICK))
  2844. hrtick_clear(rq);
  2845. local_irq_disable();
  2846. rcu_note_context_switch();
  2847. /*
  2848. * Make sure that signal_pending_state()->signal_pending() below
  2849. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2850. * done by the caller to avoid the race with signal_wake_up().
  2851. */
  2852. smp_mb__before_spinlock();
  2853. raw_spin_lock(&rq->lock);
  2854. cookie = lockdep_pin_lock(&rq->lock);
  2855. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2856. switch_count = &prev->nivcsw;
  2857. if (!preempt && prev->state) {
  2858. if (unlikely(signal_pending_state(prev->state, prev))) {
  2859. prev->state = TASK_RUNNING;
  2860. } else {
  2861. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2862. prev->on_rq = 0;
  2863. /*
  2864. * If a worker went to sleep, notify and ask workqueue
  2865. * whether it wants to wake up a task to maintain
  2866. * concurrency.
  2867. */
  2868. if (prev->flags & PF_WQ_WORKER) {
  2869. struct task_struct *to_wakeup;
  2870. to_wakeup = wq_worker_sleeping(prev);
  2871. if (to_wakeup)
  2872. try_to_wake_up_local(to_wakeup, cookie);
  2873. }
  2874. }
  2875. switch_count = &prev->nvcsw;
  2876. }
  2877. if (task_on_rq_queued(prev))
  2878. update_rq_clock(rq);
  2879. next = pick_next_task(rq, prev, cookie);
  2880. clear_tsk_need_resched(prev);
  2881. clear_preempt_need_resched();
  2882. rq->clock_skip_update = 0;
  2883. if (likely(prev != next)) {
  2884. rq->nr_switches++;
  2885. rq->curr = next;
  2886. ++*switch_count;
  2887. trace_sched_switch(preempt, prev, next);
  2888. rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
  2889. } else {
  2890. lockdep_unpin_lock(&rq->lock, cookie);
  2891. raw_spin_unlock_irq(&rq->lock);
  2892. }
  2893. balance_callback(rq);
  2894. }
  2895. STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
  2896. static inline void sched_submit_work(struct task_struct *tsk)
  2897. {
  2898. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2899. return;
  2900. /*
  2901. * If we are going to sleep and we have plugged IO queued,
  2902. * make sure to submit it to avoid deadlocks.
  2903. */
  2904. if (blk_needs_flush_plug(tsk))
  2905. blk_schedule_flush_plug(tsk);
  2906. }
  2907. asmlinkage __visible void __sched schedule(void)
  2908. {
  2909. struct task_struct *tsk = current;
  2910. sched_submit_work(tsk);
  2911. do {
  2912. preempt_disable();
  2913. __schedule(false);
  2914. sched_preempt_enable_no_resched();
  2915. } while (need_resched());
  2916. }
  2917. EXPORT_SYMBOL(schedule);
  2918. #ifdef CONFIG_CONTEXT_TRACKING
  2919. asmlinkage __visible void __sched schedule_user(void)
  2920. {
  2921. /*
  2922. * If we come here after a random call to set_need_resched(),
  2923. * or we have been woken up remotely but the IPI has not yet arrived,
  2924. * we haven't yet exited the RCU idle mode. Do it here manually until
  2925. * we find a better solution.
  2926. *
  2927. * NB: There are buggy callers of this function. Ideally we
  2928. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2929. * too frequently to make sense yet.
  2930. */
  2931. enum ctx_state prev_state = exception_enter();
  2932. schedule();
  2933. exception_exit(prev_state);
  2934. }
  2935. #endif
  2936. /**
  2937. * schedule_preempt_disabled - called with preemption disabled
  2938. *
  2939. * Returns with preemption disabled. Note: preempt_count must be 1
  2940. */
  2941. void __sched schedule_preempt_disabled(void)
  2942. {
  2943. sched_preempt_enable_no_resched();
  2944. schedule();
  2945. preempt_disable();
  2946. }
  2947. static void __sched notrace preempt_schedule_common(void)
  2948. {
  2949. do {
  2950. /*
  2951. * Because the function tracer can trace preempt_count_sub()
  2952. * and it also uses preempt_enable/disable_notrace(), if
  2953. * NEED_RESCHED is set, the preempt_enable_notrace() called
  2954. * by the function tracer will call this function again and
  2955. * cause infinite recursion.
  2956. *
  2957. * Preemption must be disabled here before the function
  2958. * tracer can trace. Break up preempt_disable() into two
  2959. * calls. One to disable preemption without fear of being
  2960. * traced. The other to still record the preemption latency,
  2961. * which can also be traced by the function tracer.
  2962. */
  2963. preempt_disable_notrace();
  2964. preempt_latency_start(1);
  2965. __schedule(true);
  2966. preempt_latency_stop(1);
  2967. preempt_enable_no_resched_notrace();
  2968. /*
  2969. * Check again in case we missed a preemption opportunity
  2970. * between schedule and now.
  2971. */
  2972. } while (need_resched());
  2973. }
  2974. #ifdef CONFIG_PREEMPT
  2975. /*
  2976. * this is the entry point to schedule() from in-kernel preemption
  2977. * off of preempt_enable. Kernel preemptions off return from interrupt
  2978. * occur there and call schedule directly.
  2979. */
  2980. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2981. {
  2982. /*
  2983. * If there is a non-zero preempt_count or interrupts are disabled,
  2984. * we do not want to preempt the current task. Just return..
  2985. */
  2986. if (likely(!preemptible()))
  2987. return;
  2988. preempt_schedule_common();
  2989. }
  2990. NOKPROBE_SYMBOL(preempt_schedule);
  2991. EXPORT_SYMBOL(preempt_schedule);
  2992. /**
  2993. * preempt_schedule_notrace - preempt_schedule called by tracing
  2994. *
  2995. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2996. * recursion and tracing preempt enabling caused by the tracing
  2997. * infrastructure itself. But as tracing can happen in areas coming
  2998. * from userspace or just about to enter userspace, a preempt enable
  2999. * can occur before user_exit() is called. This will cause the scheduler
  3000. * to be called when the system is still in usermode.
  3001. *
  3002. * To prevent this, the preempt_enable_notrace will use this function
  3003. * instead of preempt_schedule() to exit user context if needed before
  3004. * calling the scheduler.
  3005. */
  3006. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  3007. {
  3008. enum ctx_state prev_ctx;
  3009. if (likely(!preemptible()))
  3010. return;
  3011. do {
  3012. /*
  3013. * Because the function tracer can trace preempt_count_sub()
  3014. * and it also uses preempt_enable/disable_notrace(), if
  3015. * NEED_RESCHED is set, the preempt_enable_notrace() called
  3016. * by the function tracer will call this function again and
  3017. * cause infinite recursion.
  3018. *
  3019. * Preemption must be disabled here before the function
  3020. * tracer can trace. Break up preempt_disable() into two
  3021. * calls. One to disable preemption without fear of being
  3022. * traced. The other to still record the preemption latency,
  3023. * which can also be traced by the function tracer.
  3024. */
  3025. preempt_disable_notrace();
  3026. preempt_latency_start(1);
  3027. /*
  3028. * Needs preempt disabled in case user_exit() is traced
  3029. * and the tracer calls preempt_enable_notrace() causing
  3030. * an infinite recursion.
  3031. */
  3032. prev_ctx = exception_enter();
  3033. __schedule(true);
  3034. exception_exit(prev_ctx);
  3035. preempt_latency_stop(1);
  3036. preempt_enable_no_resched_notrace();
  3037. } while (need_resched());
  3038. }
  3039. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  3040. #endif /* CONFIG_PREEMPT */
  3041. /*
  3042. * this is the entry point to schedule() from kernel preemption
  3043. * off of irq context.
  3044. * Note, that this is called and return with irqs disabled. This will
  3045. * protect us against recursive calling from irq.
  3046. */
  3047. asmlinkage __visible void __sched preempt_schedule_irq(void)
  3048. {
  3049. enum ctx_state prev_state;
  3050. /* Catch callers which need to be fixed */
  3051. BUG_ON(preempt_count() || !irqs_disabled());
  3052. prev_state = exception_enter();
  3053. do {
  3054. preempt_disable();
  3055. local_irq_enable();
  3056. __schedule(true);
  3057. local_irq_disable();
  3058. sched_preempt_enable_no_resched();
  3059. } while (need_resched());
  3060. exception_exit(prev_state);
  3061. }
  3062. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3063. void *key)
  3064. {
  3065. return try_to_wake_up(curr->private, mode, wake_flags);
  3066. }
  3067. EXPORT_SYMBOL(default_wake_function);
  3068. #ifdef CONFIG_RT_MUTEXES
  3069. /*
  3070. * rt_mutex_setprio - set the current priority of a task
  3071. * @p: task
  3072. * @prio: prio value (kernel-internal form)
  3073. *
  3074. * This function changes the 'effective' priority of a task. It does
  3075. * not touch ->normal_prio like __setscheduler().
  3076. *
  3077. * Used by the rt_mutex code to implement priority inheritance
  3078. * logic. Call site only calls if the priority of the task changed.
  3079. */
  3080. void rt_mutex_setprio(struct task_struct *p, int prio)
  3081. {
  3082. int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
  3083. const struct sched_class *prev_class;
  3084. struct rq_flags rf;
  3085. struct rq *rq;
  3086. BUG_ON(prio > MAX_PRIO);
  3087. rq = __task_rq_lock(p, &rf);
  3088. /*
  3089. * Idle task boosting is a nono in general. There is one
  3090. * exception, when PREEMPT_RT and NOHZ is active:
  3091. *
  3092. * The idle task calls get_next_timer_interrupt() and holds
  3093. * the timer wheel base->lock on the CPU and another CPU wants
  3094. * to access the timer (probably to cancel it). We can safely
  3095. * ignore the boosting request, as the idle CPU runs this code
  3096. * with interrupts disabled and will complete the lock
  3097. * protected section without being interrupted. So there is no
  3098. * real need to boost.
  3099. */
  3100. if (unlikely(p == rq->idle)) {
  3101. WARN_ON(p != rq->curr);
  3102. WARN_ON(p->pi_blocked_on);
  3103. goto out_unlock;
  3104. }
  3105. trace_sched_pi_setprio(p, prio);
  3106. oldprio = p->prio;
  3107. if (oldprio == prio)
  3108. queue_flag &= ~DEQUEUE_MOVE;
  3109. prev_class = p->sched_class;
  3110. queued = task_on_rq_queued(p);
  3111. running = task_current(rq, p);
  3112. if (queued)
  3113. dequeue_task(rq, p, queue_flag);
  3114. if (running)
  3115. put_prev_task(rq, p);
  3116. /*
  3117. * Boosting condition are:
  3118. * 1. -rt task is running and holds mutex A
  3119. * --> -dl task blocks on mutex A
  3120. *
  3121. * 2. -dl task is running and holds mutex A
  3122. * --> -dl task blocks on mutex A and could preempt the
  3123. * running task
  3124. */
  3125. if (dl_prio(prio)) {
  3126. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  3127. if (!dl_prio(p->normal_prio) ||
  3128. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  3129. p->dl.dl_boosted = 1;
  3130. queue_flag |= ENQUEUE_REPLENISH;
  3131. } else
  3132. p->dl.dl_boosted = 0;
  3133. p->sched_class = &dl_sched_class;
  3134. } else if (rt_prio(prio)) {
  3135. if (dl_prio(oldprio))
  3136. p->dl.dl_boosted = 0;
  3137. if (oldprio < prio)
  3138. queue_flag |= ENQUEUE_HEAD;
  3139. p->sched_class = &rt_sched_class;
  3140. } else {
  3141. if (dl_prio(oldprio))
  3142. p->dl.dl_boosted = 0;
  3143. if (rt_prio(oldprio))
  3144. p->rt.timeout = 0;
  3145. p->sched_class = &fair_sched_class;
  3146. }
  3147. p->prio = prio;
  3148. if (running)
  3149. p->sched_class->set_curr_task(rq);
  3150. if (queued)
  3151. enqueue_task(rq, p, queue_flag);
  3152. check_class_changed(rq, p, prev_class, oldprio);
  3153. out_unlock:
  3154. preempt_disable(); /* avoid rq from going away on us */
  3155. __task_rq_unlock(rq, &rf);
  3156. balance_callback(rq);
  3157. preempt_enable();
  3158. }
  3159. #endif
  3160. void set_user_nice(struct task_struct *p, long nice)
  3161. {
  3162. int old_prio, delta, queued;
  3163. struct rq_flags rf;
  3164. struct rq *rq;
  3165. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  3166. return;
  3167. /*
  3168. * We have to be careful, if called from sys_setpriority(),
  3169. * the task might be in the middle of scheduling on another CPU.
  3170. */
  3171. rq = task_rq_lock(p, &rf);
  3172. /*
  3173. * The RT priorities are set via sched_setscheduler(), but we still
  3174. * allow the 'normal' nice value to be set - but as expected
  3175. * it wont have any effect on scheduling until the task is
  3176. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  3177. */
  3178. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  3179. p->static_prio = NICE_TO_PRIO(nice);
  3180. goto out_unlock;
  3181. }
  3182. queued = task_on_rq_queued(p);
  3183. if (queued)
  3184. dequeue_task(rq, p, DEQUEUE_SAVE);
  3185. p->static_prio = NICE_TO_PRIO(nice);
  3186. set_load_weight(p);
  3187. old_prio = p->prio;
  3188. p->prio = effective_prio(p);
  3189. delta = p->prio - old_prio;
  3190. if (queued) {
  3191. enqueue_task(rq, p, ENQUEUE_RESTORE);
  3192. /*
  3193. * If the task increased its priority or is running and
  3194. * lowered its priority, then reschedule its CPU:
  3195. */
  3196. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3197. resched_curr(rq);
  3198. }
  3199. out_unlock:
  3200. task_rq_unlock(rq, p, &rf);
  3201. }
  3202. EXPORT_SYMBOL(set_user_nice);
  3203. /*
  3204. * can_nice - check if a task can reduce its nice value
  3205. * @p: task
  3206. * @nice: nice value
  3207. */
  3208. int can_nice(const struct task_struct *p, const int nice)
  3209. {
  3210. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3211. int nice_rlim = nice_to_rlimit(nice);
  3212. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3213. capable(CAP_SYS_NICE));
  3214. }
  3215. #ifdef __ARCH_WANT_SYS_NICE
  3216. /*
  3217. * sys_nice - change the priority of the current process.
  3218. * @increment: priority increment
  3219. *
  3220. * sys_setpriority is a more generic, but much slower function that
  3221. * does similar things.
  3222. */
  3223. SYSCALL_DEFINE1(nice, int, increment)
  3224. {
  3225. long nice, retval;
  3226. /*
  3227. * Setpriority might change our priority at the same moment.
  3228. * We don't have to worry. Conceptually one call occurs first
  3229. * and we have a single winner.
  3230. */
  3231. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  3232. nice = task_nice(current) + increment;
  3233. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  3234. if (increment < 0 && !can_nice(current, nice))
  3235. return -EPERM;
  3236. retval = security_task_setnice(current, nice);
  3237. if (retval)
  3238. return retval;
  3239. set_user_nice(current, nice);
  3240. return 0;
  3241. }
  3242. #endif
  3243. /**
  3244. * task_prio - return the priority value of a given task.
  3245. * @p: the task in question.
  3246. *
  3247. * Return: The priority value as seen by users in /proc.
  3248. * RT tasks are offset by -200. Normal tasks are centered
  3249. * around 0, value goes from -16 to +15.
  3250. */
  3251. int task_prio(const struct task_struct *p)
  3252. {
  3253. return p->prio - MAX_RT_PRIO;
  3254. }
  3255. /**
  3256. * idle_cpu - is a given cpu idle currently?
  3257. * @cpu: the processor in question.
  3258. *
  3259. * Return: 1 if the CPU is currently idle. 0 otherwise.
  3260. */
  3261. int idle_cpu(int cpu)
  3262. {
  3263. struct rq *rq = cpu_rq(cpu);
  3264. if (rq->curr != rq->idle)
  3265. return 0;
  3266. if (rq->nr_running)
  3267. return 0;
  3268. #ifdef CONFIG_SMP
  3269. if (!llist_empty(&rq->wake_list))
  3270. return 0;
  3271. #endif
  3272. return 1;
  3273. }
  3274. /**
  3275. * idle_task - return the idle task for a given cpu.
  3276. * @cpu: the processor in question.
  3277. *
  3278. * Return: The idle task for the cpu @cpu.
  3279. */
  3280. struct task_struct *idle_task(int cpu)
  3281. {
  3282. return cpu_rq(cpu)->idle;
  3283. }
  3284. /**
  3285. * find_process_by_pid - find a process with a matching PID value.
  3286. * @pid: the pid in question.
  3287. *
  3288. * The task of @pid, if found. %NULL otherwise.
  3289. */
  3290. static struct task_struct *find_process_by_pid(pid_t pid)
  3291. {
  3292. return pid ? find_task_by_vpid(pid) : current;
  3293. }
  3294. /*
  3295. * This function initializes the sched_dl_entity of a newly becoming
  3296. * SCHED_DEADLINE task.
  3297. *
  3298. * Only the static values are considered here, the actual runtime and the
  3299. * absolute deadline will be properly calculated when the task is enqueued
  3300. * for the first time with its new policy.
  3301. */
  3302. static void
  3303. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3304. {
  3305. struct sched_dl_entity *dl_se = &p->dl;
  3306. dl_se->dl_runtime = attr->sched_runtime;
  3307. dl_se->dl_deadline = attr->sched_deadline;
  3308. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3309. dl_se->flags = attr->sched_flags;
  3310. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3311. /*
  3312. * Changing the parameters of a task is 'tricky' and we're not doing
  3313. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3314. *
  3315. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3316. * point. This would include retaining the task_struct until that time
  3317. * and change dl_overflow() to not immediately decrement the current
  3318. * amount.
  3319. *
  3320. * Instead we retain the current runtime/deadline and let the new
  3321. * parameters take effect after the current reservation period lapses.
  3322. * This is safe (albeit pessimistic) because the 0-lag point is always
  3323. * before the current scheduling deadline.
  3324. *
  3325. * We can still have temporary overloads because we do not delay the
  3326. * change in bandwidth until that time; so admission control is
  3327. * not on the safe side. It does however guarantee tasks will never
  3328. * consume more than promised.
  3329. */
  3330. }
  3331. /*
  3332. * sched_setparam() passes in -1 for its policy, to let the functions
  3333. * it calls know not to change it.
  3334. */
  3335. #define SETPARAM_POLICY -1
  3336. static void __setscheduler_params(struct task_struct *p,
  3337. const struct sched_attr *attr)
  3338. {
  3339. int policy = attr->sched_policy;
  3340. if (policy == SETPARAM_POLICY)
  3341. policy = p->policy;
  3342. p->policy = policy;
  3343. if (dl_policy(policy))
  3344. __setparam_dl(p, attr);
  3345. else if (fair_policy(policy))
  3346. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3347. /*
  3348. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3349. * !rt_policy. Always setting this ensures that things like
  3350. * getparam()/getattr() don't report silly values for !rt tasks.
  3351. */
  3352. p->rt_priority = attr->sched_priority;
  3353. p->normal_prio = normal_prio(p);
  3354. set_load_weight(p);
  3355. }
  3356. /* Actually do priority change: must hold pi & rq lock. */
  3357. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3358. const struct sched_attr *attr, bool keep_boost)
  3359. {
  3360. __setscheduler_params(p, attr);
  3361. /*
  3362. * Keep a potential priority boosting if called from
  3363. * sched_setscheduler().
  3364. */
  3365. if (keep_boost)
  3366. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3367. else
  3368. p->prio = normal_prio(p);
  3369. if (dl_prio(p->prio))
  3370. p->sched_class = &dl_sched_class;
  3371. else if (rt_prio(p->prio))
  3372. p->sched_class = &rt_sched_class;
  3373. else
  3374. p->sched_class = &fair_sched_class;
  3375. }
  3376. static void
  3377. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3378. {
  3379. struct sched_dl_entity *dl_se = &p->dl;
  3380. attr->sched_priority = p->rt_priority;
  3381. attr->sched_runtime = dl_se->dl_runtime;
  3382. attr->sched_deadline = dl_se->dl_deadline;
  3383. attr->sched_period = dl_se->dl_period;
  3384. attr->sched_flags = dl_se->flags;
  3385. }
  3386. /*
  3387. * This function validates the new parameters of a -deadline task.
  3388. * We ask for the deadline not being zero, and greater or equal
  3389. * than the runtime, as well as the period of being zero or
  3390. * greater than deadline. Furthermore, we have to be sure that
  3391. * user parameters are above the internal resolution of 1us (we
  3392. * check sched_runtime only since it is always the smaller one) and
  3393. * below 2^63 ns (we have to check both sched_deadline and
  3394. * sched_period, as the latter can be zero).
  3395. */
  3396. static bool
  3397. __checkparam_dl(const struct sched_attr *attr)
  3398. {
  3399. /* deadline != 0 */
  3400. if (attr->sched_deadline == 0)
  3401. return false;
  3402. /*
  3403. * Since we truncate DL_SCALE bits, make sure we're at least
  3404. * that big.
  3405. */
  3406. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3407. return false;
  3408. /*
  3409. * Since we use the MSB for wrap-around and sign issues, make
  3410. * sure it's not set (mind that period can be equal to zero).
  3411. */
  3412. if (attr->sched_deadline & (1ULL << 63) ||
  3413. attr->sched_period & (1ULL << 63))
  3414. return false;
  3415. /* runtime <= deadline <= period (if period != 0) */
  3416. if ((attr->sched_period != 0 &&
  3417. attr->sched_period < attr->sched_deadline) ||
  3418. attr->sched_deadline < attr->sched_runtime)
  3419. return false;
  3420. return true;
  3421. }
  3422. /*
  3423. * check the target process has a UID that matches the current process's
  3424. */
  3425. static bool check_same_owner(struct task_struct *p)
  3426. {
  3427. const struct cred *cred = current_cred(), *pcred;
  3428. bool match;
  3429. rcu_read_lock();
  3430. pcred = __task_cred(p);
  3431. match = (uid_eq(cred->euid, pcred->euid) ||
  3432. uid_eq(cred->euid, pcred->uid));
  3433. rcu_read_unlock();
  3434. return match;
  3435. }
  3436. static bool dl_param_changed(struct task_struct *p,
  3437. const struct sched_attr *attr)
  3438. {
  3439. struct sched_dl_entity *dl_se = &p->dl;
  3440. if (dl_se->dl_runtime != attr->sched_runtime ||
  3441. dl_se->dl_deadline != attr->sched_deadline ||
  3442. dl_se->dl_period != attr->sched_period ||
  3443. dl_se->flags != attr->sched_flags)
  3444. return true;
  3445. return false;
  3446. }
  3447. static int __sched_setscheduler(struct task_struct *p,
  3448. const struct sched_attr *attr,
  3449. bool user, bool pi)
  3450. {
  3451. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3452. MAX_RT_PRIO - 1 - attr->sched_priority;
  3453. int retval, oldprio, oldpolicy = -1, queued, running;
  3454. int new_effective_prio, policy = attr->sched_policy;
  3455. const struct sched_class *prev_class;
  3456. struct rq_flags rf;
  3457. int reset_on_fork;
  3458. int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
  3459. struct rq *rq;
  3460. /* may grab non-irq protected spin_locks */
  3461. BUG_ON(in_interrupt());
  3462. recheck:
  3463. /* double check policy once rq lock held */
  3464. if (policy < 0) {
  3465. reset_on_fork = p->sched_reset_on_fork;
  3466. policy = oldpolicy = p->policy;
  3467. } else {
  3468. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3469. if (!valid_policy(policy))
  3470. return -EINVAL;
  3471. }
  3472. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3473. return -EINVAL;
  3474. /*
  3475. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3476. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3477. * SCHED_BATCH and SCHED_IDLE is 0.
  3478. */
  3479. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3480. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3481. return -EINVAL;
  3482. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3483. (rt_policy(policy) != (attr->sched_priority != 0)))
  3484. return -EINVAL;
  3485. /*
  3486. * Allow unprivileged RT tasks to decrease priority:
  3487. */
  3488. if (user && !capable(CAP_SYS_NICE)) {
  3489. if (fair_policy(policy)) {
  3490. if (attr->sched_nice < task_nice(p) &&
  3491. !can_nice(p, attr->sched_nice))
  3492. return -EPERM;
  3493. }
  3494. if (rt_policy(policy)) {
  3495. unsigned long rlim_rtprio =
  3496. task_rlimit(p, RLIMIT_RTPRIO);
  3497. /* can't set/change the rt policy */
  3498. if (policy != p->policy && !rlim_rtprio)
  3499. return -EPERM;
  3500. /* can't increase priority */
  3501. if (attr->sched_priority > p->rt_priority &&
  3502. attr->sched_priority > rlim_rtprio)
  3503. return -EPERM;
  3504. }
  3505. /*
  3506. * Can't set/change SCHED_DEADLINE policy at all for now
  3507. * (safest behavior); in the future we would like to allow
  3508. * unprivileged DL tasks to increase their relative deadline
  3509. * or reduce their runtime (both ways reducing utilization)
  3510. */
  3511. if (dl_policy(policy))
  3512. return -EPERM;
  3513. /*
  3514. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3515. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3516. */
  3517. if (idle_policy(p->policy) && !idle_policy(policy)) {
  3518. if (!can_nice(p, task_nice(p)))
  3519. return -EPERM;
  3520. }
  3521. /* can't change other user's priorities */
  3522. if (!check_same_owner(p))
  3523. return -EPERM;
  3524. /* Normal users shall not reset the sched_reset_on_fork flag */
  3525. if (p->sched_reset_on_fork && !reset_on_fork)
  3526. return -EPERM;
  3527. }
  3528. if (user) {
  3529. retval = security_task_setscheduler(p);
  3530. if (retval)
  3531. return retval;
  3532. }
  3533. /*
  3534. * make sure no PI-waiters arrive (or leave) while we are
  3535. * changing the priority of the task:
  3536. *
  3537. * To be able to change p->policy safely, the appropriate
  3538. * runqueue lock must be held.
  3539. */
  3540. rq = task_rq_lock(p, &rf);
  3541. /*
  3542. * Changing the policy of the stop threads its a very bad idea
  3543. */
  3544. if (p == rq->stop) {
  3545. task_rq_unlock(rq, p, &rf);
  3546. return -EINVAL;
  3547. }
  3548. /*
  3549. * If not changing anything there's no need to proceed further,
  3550. * but store a possible modification of reset_on_fork.
  3551. */
  3552. if (unlikely(policy == p->policy)) {
  3553. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3554. goto change;
  3555. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3556. goto change;
  3557. if (dl_policy(policy) && dl_param_changed(p, attr))
  3558. goto change;
  3559. p->sched_reset_on_fork = reset_on_fork;
  3560. task_rq_unlock(rq, p, &rf);
  3561. return 0;
  3562. }
  3563. change:
  3564. if (user) {
  3565. #ifdef CONFIG_RT_GROUP_SCHED
  3566. /*
  3567. * Do not allow realtime tasks into groups that have no runtime
  3568. * assigned.
  3569. */
  3570. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3571. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3572. !task_group_is_autogroup(task_group(p))) {
  3573. task_rq_unlock(rq, p, &rf);
  3574. return -EPERM;
  3575. }
  3576. #endif
  3577. #ifdef CONFIG_SMP
  3578. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3579. cpumask_t *span = rq->rd->span;
  3580. /*
  3581. * Don't allow tasks with an affinity mask smaller than
  3582. * the entire root_domain to become SCHED_DEADLINE. We
  3583. * will also fail if there's no bandwidth available.
  3584. */
  3585. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3586. rq->rd->dl_bw.bw == 0) {
  3587. task_rq_unlock(rq, p, &rf);
  3588. return -EPERM;
  3589. }
  3590. }
  3591. #endif
  3592. }
  3593. /* recheck policy now with rq lock held */
  3594. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3595. policy = oldpolicy = -1;
  3596. task_rq_unlock(rq, p, &rf);
  3597. goto recheck;
  3598. }
  3599. /*
  3600. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3601. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3602. * is available.
  3603. */
  3604. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3605. task_rq_unlock(rq, p, &rf);
  3606. return -EBUSY;
  3607. }
  3608. p->sched_reset_on_fork = reset_on_fork;
  3609. oldprio = p->prio;
  3610. if (pi) {
  3611. /*
  3612. * Take priority boosted tasks into account. If the new
  3613. * effective priority is unchanged, we just store the new
  3614. * normal parameters and do not touch the scheduler class and
  3615. * the runqueue. This will be done when the task deboost
  3616. * itself.
  3617. */
  3618. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3619. if (new_effective_prio == oldprio)
  3620. queue_flags &= ~DEQUEUE_MOVE;
  3621. }
  3622. queued = task_on_rq_queued(p);
  3623. running = task_current(rq, p);
  3624. if (queued)
  3625. dequeue_task(rq, p, queue_flags);
  3626. if (running)
  3627. put_prev_task(rq, p);
  3628. prev_class = p->sched_class;
  3629. __setscheduler(rq, p, attr, pi);
  3630. if (running)
  3631. p->sched_class->set_curr_task(rq);
  3632. if (queued) {
  3633. /*
  3634. * We enqueue to tail when the priority of a task is
  3635. * increased (user space view).
  3636. */
  3637. if (oldprio < p->prio)
  3638. queue_flags |= ENQUEUE_HEAD;
  3639. enqueue_task(rq, p, queue_flags);
  3640. }
  3641. check_class_changed(rq, p, prev_class, oldprio);
  3642. preempt_disable(); /* avoid rq from going away on us */
  3643. task_rq_unlock(rq, p, &rf);
  3644. if (pi)
  3645. rt_mutex_adjust_pi(p);
  3646. /*
  3647. * Run balance callbacks after we've adjusted the PI chain.
  3648. */
  3649. balance_callback(rq);
  3650. preempt_enable();
  3651. return 0;
  3652. }
  3653. static int _sched_setscheduler(struct task_struct *p, int policy,
  3654. const struct sched_param *param, bool check)
  3655. {
  3656. struct sched_attr attr = {
  3657. .sched_policy = policy,
  3658. .sched_priority = param->sched_priority,
  3659. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3660. };
  3661. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3662. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3663. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3664. policy &= ~SCHED_RESET_ON_FORK;
  3665. attr.sched_policy = policy;
  3666. }
  3667. return __sched_setscheduler(p, &attr, check, true);
  3668. }
  3669. /**
  3670. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3671. * @p: the task in question.
  3672. * @policy: new policy.
  3673. * @param: structure containing the new RT priority.
  3674. *
  3675. * Return: 0 on success. An error code otherwise.
  3676. *
  3677. * NOTE that the task may be already dead.
  3678. */
  3679. int sched_setscheduler(struct task_struct *p, int policy,
  3680. const struct sched_param *param)
  3681. {
  3682. return _sched_setscheduler(p, policy, param, true);
  3683. }
  3684. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3685. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3686. {
  3687. return __sched_setscheduler(p, attr, true, true);
  3688. }
  3689. EXPORT_SYMBOL_GPL(sched_setattr);
  3690. /**
  3691. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3692. * @p: the task in question.
  3693. * @policy: new policy.
  3694. * @param: structure containing the new RT priority.
  3695. *
  3696. * Just like sched_setscheduler, only don't bother checking if the
  3697. * current context has permission. For example, this is needed in
  3698. * stop_machine(): we create temporary high priority worker threads,
  3699. * but our caller might not have that capability.
  3700. *
  3701. * Return: 0 on success. An error code otherwise.
  3702. */
  3703. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3704. const struct sched_param *param)
  3705. {
  3706. return _sched_setscheduler(p, policy, param, false);
  3707. }
  3708. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3709. static int
  3710. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3711. {
  3712. struct sched_param lparam;
  3713. struct task_struct *p;
  3714. int retval;
  3715. if (!param || pid < 0)
  3716. return -EINVAL;
  3717. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3718. return -EFAULT;
  3719. rcu_read_lock();
  3720. retval = -ESRCH;
  3721. p = find_process_by_pid(pid);
  3722. if (p != NULL)
  3723. retval = sched_setscheduler(p, policy, &lparam);
  3724. rcu_read_unlock();
  3725. return retval;
  3726. }
  3727. /*
  3728. * Mimics kernel/events/core.c perf_copy_attr().
  3729. */
  3730. static int sched_copy_attr(struct sched_attr __user *uattr,
  3731. struct sched_attr *attr)
  3732. {
  3733. u32 size;
  3734. int ret;
  3735. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3736. return -EFAULT;
  3737. /*
  3738. * zero the full structure, so that a short copy will be nice.
  3739. */
  3740. memset(attr, 0, sizeof(*attr));
  3741. ret = get_user(size, &uattr->size);
  3742. if (ret)
  3743. return ret;
  3744. if (size > PAGE_SIZE) /* silly large */
  3745. goto err_size;
  3746. if (!size) /* abi compat */
  3747. size = SCHED_ATTR_SIZE_VER0;
  3748. if (size < SCHED_ATTR_SIZE_VER0)
  3749. goto err_size;
  3750. /*
  3751. * If we're handed a bigger struct than we know of,
  3752. * ensure all the unknown bits are 0 - i.e. new
  3753. * user-space does not rely on any kernel feature
  3754. * extensions we dont know about yet.
  3755. */
  3756. if (size > sizeof(*attr)) {
  3757. unsigned char __user *addr;
  3758. unsigned char __user *end;
  3759. unsigned char val;
  3760. addr = (void __user *)uattr + sizeof(*attr);
  3761. end = (void __user *)uattr + size;
  3762. for (; addr < end; addr++) {
  3763. ret = get_user(val, addr);
  3764. if (ret)
  3765. return ret;
  3766. if (val)
  3767. goto err_size;
  3768. }
  3769. size = sizeof(*attr);
  3770. }
  3771. ret = copy_from_user(attr, uattr, size);
  3772. if (ret)
  3773. return -EFAULT;
  3774. /*
  3775. * XXX: do we want to be lenient like existing syscalls; or do we want
  3776. * to be strict and return an error on out-of-bounds values?
  3777. */
  3778. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3779. return 0;
  3780. err_size:
  3781. put_user(sizeof(*attr), &uattr->size);
  3782. return -E2BIG;
  3783. }
  3784. /**
  3785. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3786. * @pid: the pid in question.
  3787. * @policy: new policy.
  3788. * @param: structure containing the new RT priority.
  3789. *
  3790. * Return: 0 on success. An error code otherwise.
  3791. */
  3792. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3793. struct sched_param __user *, param)
  3794. {
  3795. /* negative values for policy are not valid */
  3796. if (policy < 0)
  3797. return -EINVAL;
  3798. return do_sched_setscheduler(pid, policy, param);
  3799. }
  3800. /**
  3801. * sys_sched_setparam - set/change the RT priority of a thread
  3802. * @pid: the pid in question.
  3803. * @param: structure containing the new RT priority.
  3804. *
  3805. * Return: 0 on success. An error code otherwise.
  3806. */
  3807. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3808. {
  3809. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3810. }
  3811. /**
  3812. * sys_sched_setattr - same as above, but with extended sched_attr
  3813. * @pid: the pid in question.
  3814. * @uattr: structure containing the extended parameters.
  3815. * @flags: for future extension.
  3816. */
  3817. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3818. unsigned int, flags)
  3819. {
  3820. struct sched_attr attr;
  3821. struct task_struct *p;
  3822. int retval;
  3823. if (!uattr || pid < 0 || flags)
  3824. return -EINVAL;
  3825. retval = sched_copy_attr(uattr, &attr);
  3826. if (retval)
  3827. return retval;
  3828. if ((int)attr.sched_policy < 0)
  3829. return -EINVAL;
  3830. rcu_read_lock();
  3831. retval = -ESRCH;
  3832. p = find_process_by_pid(pid);
  3833. if (p != NULL)
  3834. retval = sched_setattr(p, &attr);
  3835. rcu_read_unlock();
  3836. return retval;
  3837. }
  3838. /**
  3839. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3840. * @pid: the pid in question.
  3841. *
  3842. * Return: On success, the policy of the thread. Otherwise, a negative error
  3843. * code.
  3844. */
  3845. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3846. {
  3847. struct task_struct *p;
  3848. int retval;
  3849. if (pid < 0)
  3850. return -EINVAL;
  3851. retval = -ESRCH;
  3852. rcu_read_lock();
  3853. p = find_process_by_pid(pid);
  3854. if (p) {
  3855. retval = security_task_getscheduler(p);
  3856. if (!retval)
  3857. retval = p->policy
  3858. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3859. }
  3860. rcu_read_unlock();
  3861. return retval;
  3862. }
  3863. /**
  3864. * sys_sched_getparam - get the RT priority of a thread
  3865. * @pid: the pid in question.
  3866. * @param: structure containing the RT priority.
  3867. *
  3868. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3869. * code.
  3870. */
  3871. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3872. {
  3873. struct sched_param lp = { .sched_priority = 0 };
  3874. struct task_struct *p;
  3875. int retval;
  3876. if (!param || pid < 0)
  3877. return -EINVAL;
  3878. rcu_read_lock();
  3879. p = find_process_by_pid(pid);
  3880. retval = -ESRCH;
  3881. if (!p)
  3882. goto out_unlock;
  3883. retval = security_task_getscheduler(p);
  3884. if (retval)
  3885. goto out_unlock;
  3886. if (task_has_rt_policy(p))
  3887. lp.sched_priority = p->rt_priority;
  3888. rcu_read_unlock();
  3889. /*
  3890. * This one might sleep, we cannot do it with a spinlock held ...
  3891. */
  3892. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3893. return retval;
  3894. out_unlock:
  3895. rcu_read_unlock();
  3896. return retval;
  3897. }
  3898. static int sched_read_attr(struct sched_attr __user *uattr,
  3899. struct sched_attr *attr,
  3900. unsigned int usize)
  3901. {
  3902. int ret;
  3903. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3904. return -EFAULT;
  3905. /*
  3906. * If we're handed a smaller struct than we know of,
  3907. * ensure all the unknown bits are 0 - i.e. old
  3908. * user-space does not get uncomplete information.
  3909. */
  3910. if (usize < sizeof(*attr)) {
  3911. unsigned char *addr;
  3912. unsigned char *end;
  3913. addr = (void *)attr + usize;
  3914. end = (void *)attr + sizeof(*attr);
  3915. for (; addr < end; addr++) {
  3916. if (*addr)
  3917. return -EFBIG;
  3918. }
  3919. attr->size = usize;
  3920. }
  3921. ret = copy_to_user(uattr, attr, attr->size);
  3922. if (ret)
  3923. return -EFAULT;
  3924. return 0;
  3925. }
  3926. /**
  3927. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3928. * @pid: the pid in question.
  3929. * @uattr: structure containing the extended parameters.
  3930. * @size: sizeof(attr) for fwd/bwd comp.
  3931. * @flags: for future extension.
  3932. */
  3933. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3934. unsigned int, size, unsigned int, flags)
  3935. {
  3936. struct sched_attr attr = {
  3937. .size = sizeof(struct sched_attr),
  3938. };
  3939. struct task_struct *p;
  3940. int retval;
  3941. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3942. size < SCHED_ATTR_SIZE_VER0 || flags)
  3943. return -EINVAL;
  3944. rcu_read_lock();
  3945. p = find_process_by_pid(pid);
  3946. retval = -ESRCH;
  3947. if (!p)
  3948. goto out_unlock;
  3949. retval = security_task_getscheduler(p);
  3950. if (retval)
  3951. goto out_unlock;
  3952. attr.sched_policy = p->policy;
  3953. if (p->sched_reset_on_fork)
  3954. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3955. if (task_has_dl_policy(p))
  3956. __getparam_dl(p, &attr);
  3957. else if (task_has_rt_policy(p))
  3958. attr.sched_priority = p->rt_priority;
  3959. else
  3960. attr.sched_nice = task_nice(p);
  3961. rcu_read_unlock();
  3962. retval = sched_read_attr(uattr, &attr, size);
  3963. return retval;
  3964. out_unlock:
  3965. rcu_read_unlock();
  3966. return retval;
  3967. }
  3968. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3969. {
  3970. cpumask_var_t cpus_allowed, new_mask;
  3971. struct task_struct *p;
  3972. int retval;
  3973. rcu_read_lock();
  3974. p = find_process_by_pid(pid);
  3975. if (!p) {
  3976. rcu_read_unlock();
  3977. return -ESRCH;
  3978. }
  3979. /* Prevent p going away */
  3980. get_task_struct(p);
  3981. rcu_read_unlock();
  3982. if (p->flags & PF_NO_SETAFFINITY) {
  3983. retval = -EINVAL;
  3984. goto out_put_task;
  3985. }
  3986. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3987. retval = -ENOMEM;
  3988. goto out_put_task;
  3989. }
  3990. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3991. retval = -ENOMEM;
  3992. goto out_free_cpus_allowed;
  3993. }
  3994. retval = -EPERM;
  3995. if (!check_same_owner(p)) {
  3996. rcu_read_lock();
  3997. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3998. rcu_read_unlock();
  3999. goto out_free_new_mask;
  4000. }
  4001. rcu_read_unlock();
  4002. }
  4003. retval = security_task_setscheduler(p);
  4004. if (retval)
  4005. goto out_free_new_mask;
  4006. cpuset_cpus_allowed(p, cpus_allowed);
  4007. cpumask_and(new_mask, in_mask, cpus_allowed);
  4008. /*
  4009. * Since bandwidth control happens on root_domain basis,
  4010. * if admission test is enabled, we only admit -deadline
  4011. * tasks allowed to run on all the CPUs in the task's
  4012. * root_domain.
  4013. */
  4014. #ifdef CONFIG_SMP
  4015. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  4016. rcu_read_lock();
  4017. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  4018. retval = -EBUSY;
  4019. rcu_read_unlock();
  4020. goto out_free_new_mask;
  4021. }
  4022. rcu_read_unlock();
  4023. }
  4024. #endif
  4025. again:
  4026. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  4027. if (!retval) {
  4028. cpuset_cpus_allowed(p, cpus_allowed);
  4029. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4030. /*
  4031. * We must have raced with a concurrent cpuset
  4032. * update. Just reset the cpus_allowed to the
  4033. * cpuset's cpus_allowed
  4034. */
  4035. cpumask_copy(new_mask, cpus_allowed);
  4036. goto again;
  4037. }
  4038. }
  4039. out_free_new_mask:
  4040. free_cpumask_var(new_mask);
  4041. out_free_cpus_allowed:
  4042. free_cpumask_var(cpus_allowed);
  4043. out_put_task:
  4044. put_task_struct(p);
  4045. return retval;
  4046. }
  4047. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4048. struct cpumask *new_mask)
  4049. {
  4050. if (len < cpumask_size())
  4051. cpumask_clear(new_mask);
  4052. else if (len > cpumask_size())
  4053. len = cpumask_size();
  4054. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4055. }
  4056. /**
  4057. * sys_sched_setaffinity - set the cpu affinity of a process
  4058. * @pid: pid of the process
  4059. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4060. * @user_mask_ptr: user-space pointer to the new cpu mask
  4061. *
  4062. * Return: 0 on success. An error code otherwise.
  4063. */
  4064. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4065. unsigned long __user *, user_mask_ptr)
  4066. {
  4067. cpumask_var_t new_mask;
  4068. int retval;
  4069. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4070. return -ENOMEM;
  4071. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4072. if (retval == 0)
  4073. retval = sched_setaffinity(pid, new_mask);
  4074. free_cpumask_var(new_mask);
  4075. return retval;
  4076. }
  4077. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4078. {
  4079. struct task_struct *p;
  4080. unsigned long flags;
  4081. int retval;
  4082. rcu_read_lock();
  4083. retval = -ESRCH;
  4084. p = find_process_by_pid(pid);
  4085. if (!p)
  4086. goto out_unlock;
  4087. retval = security_task_getscheduler(p);
  4088. if (retval)
  4089. goto out_unlock;
  4090. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4091. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  4092. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4093. out_unlock:
  4094. rcu_read_unlock();
  4095. return retval;
  4096. }
  4097. /**
  4098. * sys_sched_getaffinity - get the cpu affinity of a process
  4099. * @pid: pid of the process
  4100. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4101. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4102. *
  4103. * Return: size of CPU mask copied to user_mask_ptr on success. An
  4104. * error code otherwise.
  4105. */
  4106. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4107. unsigned long __user *, user_mask_ptr)
  4108. {
  4109. int ret;
  4110. cpumask_var_t mask;
  4111. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4112. return -EINVAL;
  4113. if (len & (sizeof(unsigned long)-1))
  4114. return -EINVAL;
  4115. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4116. return -ENOMEM;
  4117. ret = sched_getaffinity(pid, mask);
  4118. if (ret == 0) {
  4119. size_t retlen = min_t(size_t, len, cpumask_size());
  4120. if (copy_to_user(user_mask_ptr, mask, retlen))
  4121. ret = -EFAULT;
  4122. else
  4123. ret = retlen;
  4124. }
  4125. free_cpumask_var(mask);
  4126. return ret;
  4127. }
  4128. /**
  4129. * sys_sched_yield - yield the current processor to other threads.
  4130. *
  4131. * This function yields the current CPU to other tasks. If there are no
  4132. * other threads running on this CPU then this function will return.
  4133. *
  4134. * Return: 0.
  4135. */
  4136. SYSCALL_DEFINE0(sched_yield)
  4137. {
  4138. struct rq *rq = this_rq_lock();
  4139. schedstat_inc(rq, yld_count);
  4140. current->sched_class->yield_task(rq);
  4141. /*
  4142. * Since we are going to call schedule() anyway, there's
  4143. * no need to preempt or enable interrupts:
  4144. */
  4145. __release(rq->lock);
  4146. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4147. do_raw_spin_unlock(&rq->lock);
  4148. sched_preempt_enable_no_resched();
  4149. schedule();
  4150. return 0;
  4151. }
  4152. int __sched _cond_resched(void)
  4153. {
  4154. if (should_resched(0)) {
  4155. preempt_schedule_common();
  4156. return 1;
  4157. }
  4158. return 0;
  4159. }
  4160. EXPORT_SYMBOL(_cond_resched);
  4161. /*
  4162. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4163. * call schedule, and on return reacquire the lock.
  4164. *
  4165. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4166. * operations here to prevent schedule() from being called twice (once via
  4167. * spin_unlock(), once by hand).
  4168. */
  4169. int __cond_resched_lock(spinlock_t *lock)
  4170. {
  4171. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  4172. int ret = 0;
  4173. lockdep_assert_held(lock);
  4174. if (spin_needbreak(lock) || resched) {
  4175. spin_unlock(lock);
  4176. if (resched)
  4177. preempt_schedule_common();
  4178. else
  4179. cpu_relax();
  4180. ret = 1;
  4181. spin_lock(lock);
  4182. }
  4183. return ret;
  4184. }
  4185. EXPORT_SYMBOL(__cond_resched_lock);
  4186. int __sched __cond_resched_softirq(void)
  4187. {
  4188. BUG_ON(!in_softirq());
  4189. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  4190. local_bh_enable();
  4191. preempt_schedule_common();
  4192. local_bh_disable();
  4193. return 1;
  4194. }
  4195. return 0;
  4196. }
  4197. EXPORT_SYMBOL(__cond_resched_softirq);
  4198. /**
  4199. * yield - yield the current processor to other threads.
  4200. *
  4201. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4202. *
  4203. * The scheduler is at all times free to pick the calling task as the most
  4204. * eligible task to run, if removing the yield() call from your code breaks
  4205. * it, its already broken.
  4206. *
  4207. * Typical broken usage is:
  4208. *
  4209. * while (!event)
  4210. * yield();
  4211. *
  4212. * where one assumes that yield() will let 'the other' process run that will
  4213. * make event true. If the current task is a SCHED_FIFO task that will never
  4214. * happen. Never use yield() as a progress guarantee!!
  4215. *
  4216. * If you want to use yield() to wait for something, use wait_event().
  4217. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4218. * If you still want to use yield(), do not!
  4219. */
  4220. void __sched yield(void)
  4221. {
  4222. set_current_state(TASK_RUNNING);
  4223. sys_sched_yield();
  4224. }
  4225. EXPORT_SYMBOL(yield);
  4226. /**
  4227. * yield_to - yield the current processor to another thread in
  4228. * your thread group, or accelerate that thread toward the
  4229. * processor it's on.
  4230. * @p: target task
  4231. * @preempt: whether task preemption is allowed or not
  4232. *
  4233. * It's the caller's job to ensure that the target task struct
  4234. * can't go away on us before we can do any checks.
  4235. *
  4236. * Return:
  4237. * true (>0) if we indeed boosted the target task.
  4238. * false (0) if we failed to boost the target.
  4239. * -ESRCH if there's no task to yield to.
  4240. */
  4241. int __sched yield_to(struct task_struct *p, bool preempt)
  4242. {
  4243. struct task_struct *curr = current;
  4244. struct rq *rq, *p_rq;
  4245. unsigned long flags;
  4246. int yielded = 0;
  4247. local_irq_save(flags);
  4248. rq = this_rq();
  4249. again:
  4250. p_rq = task_rq(p);
  4251. /*
  4252. * If we're the only runnable task on the rq and target rq also
  4253. * has only one task, there's absolutely no point in yielding.
  4254. */
  4255. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  4256. yielded = -ESRCH;
  4257. goto out_irq;
  4258. }
  4259. double_rq_lock(rq, p_rq);
  4260. if (task_rq(p) != p_rq) {
  4261. double_rq_unlock(rq, p_rq);
  4262. goto again;
  4263. }
  4264. if (!curr->sched_class->yield_to_task)
  4265. goto out_unlock;
  4266. if (curr->sched_class != p->sched_class)
  4267. goto out_unlock;
  4268. if (task_running(p_rq, p) || p->state)
  4269. goto out_unlock;
  4270. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4271. if (yielded) {
  4272. schedstat_inc(rq, yld_count);
  4273. /*
  4274. * Make p's CPU reschedule; pick_next_entity takes care of
  4275. * fairness.
  4276. */
  4277. if (preempt && rq != p_rq)
  4278. resched_curr(p_rq);
  4279. }
  4280. out_unlock:
  4281. double_rq_unlock(rq, p_rq);
  4282. out_irq:
  4283. local_irq_restore(flags);
  4284. if (yielded > 0)
  4285. schedule();
  4286. return yielded;
  4287. }
  4288. EXPORT_SYMBOL_GPL(yield_to);
  4289. /*
  4290. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4291. * that process accounting knows that this is a task in IO wait state.
  4292. */
  4293. long __sched io_schedule_timeout(long timeout)
  4294. {
  4295. int old_iowait = current->in_iowait;
  4296. struct rq *rq;
  4297. long ret;
  4298. current->in_iowait = 1;
  4299. blk_schedule_flush_plug(current);
  4300. delayacct_blkio_start();
  4301. rq = raw_rq();
  4302. atomic_inc(&rq->nr_iowait);
  4303. ret = schedule_timeout(timeout);
  4304. current->in_iowait = old_iowait;
  4305. atomic_dec(&rq->nr_iowait);
  4306. delayacct_blkio_end();
  4307. return ret;
  4308. }
  4309. EXPORT_SYMBOL(io_schedule_timeout);
  4310. /**
  4311. * sys_sched_get_priority_max - return maximum RT priority.
  4312. * @policy: scheduling class.
  4313. *
  4314. * Return: On success, this syscall returns the maximum
  4315. * rt_priority that can be used by a given scheduling class.
  4316. * On failure, a negative error code is returned.
  4317. */
  4318. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4319. {
  4320. int ret = -EINVAL;
  4321. switch (policy) {
  4322. case SCHED_FIFO:
  4323. case SCHED_RR:
  4324. ret = MAX_USER_RT_PRIO-1;
  4325. break;
  4326. case SCHED_DEADLINE:
  4327. case SCHED_NORMAL:
  4328. case SCHED_BATCH:
  4329. case SCHED_IDLE:
  4330. ret = 0;
  4331. break;
  4332. }
  4333. return ret;
  4334. }
  4335. /**
  4336. * sys_sched_get_priority_min - return minimum RT priority.
  4337. * @policy: scheduling class.
  4338. *
  4339. * Return: On success, this syscall returns the minimum
  4340. * rt_priority that can be used by a given scheduling class.
  4341. * On failure, a negative error code is returned.
  4342. */
  4343. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4344. {
  4345. int ret = -EINVAL;
  4346. switch (policy) {
  4347. case SCHED_FIFO:
  4348. case SCHED_RR:
  4349. ret = 1;
  4350. break;
  4351. case SCHED_DEADLINE:
  4352. case SCHED_NORMAL:
  4353. case SCHED_BATCH:
  4354. case SCHED_IDLE:
  4355. ret = 0;
  4356. }
  4357. return ret;
  4358. }
  4359. /**
  4360. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4361. * @pid: pid of the process.
  4362. * @interval: userspace pointer to the timeslice value.
  4363. *
  4364. * this syscall writes the default timeslice value of a given process
  4365. * into the user-space timespec buffer. A value of '0' means infinity.
  4366. *
  4367. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4368. * an error code.
  4369. */
  4370. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4371. struct timespec __user *, interval)
  4372. {
  4373. struct task_struct *p;
  4374. unsigned int time_slice;
  4375. struct rq_flags rf;
  4376. struct timespec t;
  4377. struct rq *rq;
  4378. int retval;
  4379. if (pid < 0)
  4380. return -EINVAL;
  4381. retval = -ESRCH;
  4382. rcu_read_lock();
  4383. p = find_process_by_pid(pid);
  4384. if (!p)
  4385. goto out_unlock;
  4386. retval = security_task_getscheduler(p);
  4387. if (retval)
  4388. goto out_unlock;
  4389. rq = task_rq_lock(p, &rf);
  4390. time_slice = 0;
  4391. if (p->sched_class->get_rr_interval)
  4392. time_slice = p->sched_class->get_rr_interval(rq, p);
  4393. task_rq_unlock(rq, p, &rf);
  4394. rcu_read_unlock();
  4395. jiffies_to_timespec(time_slice, &t);
  4396. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4397. return retval;
  4398. out_unlock:
  4399. rcu_read_unlock();
  4400. return retval;
  4401. }
  4402. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4403. void sched_show_task(struct task_struct *p)
  4404. {
  4405. unsigned long free = 0;
  4406. int ppid;
  4407. unsigned long state = p->state;
  4408. if (state)
  4409. state = __ffs(state) + 1;
  4410. printk(KERN_INFO "%-15.15s %c", p->comm,
  4411. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4412. #if BITS_PER_LONG == 32
  4413. if (state == TASK_RUNNING)
  4414. printk(KERN_CONT " running ");
  4415. else
  4416. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4417. #else
  4418. if (state == TASK_RUNNING)
  4419. printk(KERN_CONT " running task ");
  4420. else
  4421. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4422. #endif
  4423. #ifdef CONFIG_DEBUG_STACK_USAGE
  4424. free = stack_not_used(p);
  4425. #endif
  4426. ppid = 0;
  4427. rcu_read_lock();
  4428. if (pid_alive(p))
  4429. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4430. rcu_read_unlock();
  4431. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4432. task_pid_nr(p), ppid,
  4433. (unsigned long)task_thread_info(p)->flags);
  4434. print_worker_info(KERN_INFO, p);
  4435. show_stack(p, NULL);
  4436. }
  4437. void show_state_filter(unsigned long state_filter)
  4438. {
  4439. struct task_struct *g, *p;
  4440. #if BITS_PER_LONG == 32
  4441. printk(KERN_INFO
  4442. " task PC stack pid father\n");
  4443. #else
  4444. printk(KERN_INFO
  4445. " task PC stack pid father\n");
  4446. #endif
  4447. rcu_read_lock();
  4448. for_each_process_thread(g, p) {
  4449. /*
  4450. * reset the NMI-timeout, listing all files on a slow
  4451. * console might take a lot of time:
  4452. * Also, reset softlockup watchdogs on all CPUs, because
  4453. * another CPU might be blocked waiting for us to process
  4454. * an IPI.
  4455. */
  4456. touch_nmi_watchdog();
  4457. touch_all_softlockup_watchdogs();
  4458. if (!state_filter || (p->state & state_filter))
  4459. sched_show_task(p);
  4460. }
  4461. #ifdef CONFIG_SCHED_DEBUG
  4462. if (!state_filter)
  4463. sysrq_sched_debug_show();
  4464. #endif
  4465. rcu_read_unlock();
  4466. /*
  4467. * Only show locks if all tasks are dumped:
  4468. */
  4469. if (!state_filter)
  4470. debug_show_all_locks();
  4471. }
  4472. void init_idle_bootup_task(struct task_struct *idle)
  4473. {
  4474. idle->sched_class = &idle_sched_class;
  4475. }
  4476. /**
  4477. * init_idle - set up an idle thread for a given CPU
  4478. * @idle: task in question
  4479. * @cpu: cpu the idle task belongs to
  4480. *
  4481. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4482. * flag, to make booting more robust.
  4483. */
  4484. void init_idle(struct task_struct *idle, int cpu)
  4485. {
  4486. struct rq *rq = cpu_rq(cpu);
  4487. unsigned long flags;
  4488. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4489. raw_spin_lock(&rq->lock);
  4490. __sched_fork(0, idle);
  4491. idle->state = TASK_RUNNING;
  4492. idle->se.exec_start = sched_clock();
  4493. kasan_unpoison_task_stack(idle);
  4494. #ifdef CONFIG_SMP
  4495. /*
  4496. * Its possible that init_idle() gets called multiple times on a task,
  4497. * in that case do_set_cpus_allowed() will not do the right thing.
  4498. *
  4499. * And since this is boot we can forgo the serialization.
  4500. */
  4501. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4502. #endif
  4503. /*
  4504. * We're having a chicken and egg problem, even though we are
  4505. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4506. * lockdep check in task_group() will fail.
  4507. *
  4508. * Similar case to sched_fork(). / Alternatively we could
  4509. * use task_rq_lock() here and obtain the other rq->lock.
  4510. *
  4511. * Silence PROVE_RCU
  4512. */
  4513. rcu_read_lock();
  4514. __set_task_cpu(idle, cpu);
  4515. rcu_read_unlock();
  4516. rq->curr = rq->idle = idle;
  4517. idle->on_rq = TASK_ON_RQ_QUEUED;
  4518. #ifdef CONFIG_SMP
  4519. idle->on_cpu = 1;
  4520. #endif
  4521. raw_spin_unlock(&rq->lock);
  4522. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4523. /* Set the preempt count _outside_ the spinlocks! */
  4524. init_idle_preempt_count(idle, cpu);
  4525. /*
  4526. * The idle tasks have their own, simple scheduling class:
  4527. */
  4528. idle->sched_class = &idle_sched_class;
  4529. ftrace_graph_init_idle_task(idle, cpu);
  4530. vtime_init_idle(idle, cpu);
  4531. #ifdef CONFIG_SMP
  4532. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4533. #endif
  4534. }
  4535. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4536. const struct cpumask *trial)
  4537. {
  4538. int ret = 1, trial_cpus;
  4539. struct dl_bw *cur_dl_b;
  4540. unsigned long flags;
  4541. if (!cpumask_weight(cur))
  4542. return ret;
  4543. rcu_read_lock_sched();
  4544. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4545. trial_cpus = cpumask_weight(trial);
  4546. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4547. if (cur_dl_b->bw != -1 &&
  4548. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4549. ret = 0;
  4550. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4551. rcu_read_unlock_sched();
  4552. return ret;
  4553. }
  4554. int task_can_attach(struct task_struct *p,
  4555. const struct cpumask *cs_cpus_allowed)
  4556. {
  4557. int ret = 0;
  4558. /*
  4559. * Kthreads which disallow setaffinity shouldn't be moved
  4560. * to a new cpuset; we don't want to change their cpu
  4561. * affinity and isolating such threads by their set of
  4562. * allowed nodes is unnecessary. Thus, cpusets are not
  4563. * applicable for such threads. This prevents checking for
  4564. * success of set_cpus_allowed_ptr() on all attached tasks
  4565. * before cpus_allowed may be changed.
  4566. */
  4567. if (p->flags & PF_NO_SETAFFINITY) {
  4568. ret = -EINVAL;
  4569. goto out;
  4570. }
  4571. #ifdef CONFIG_SMP
  4572. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4573. cs_cpus_allowed)) {
  4574. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4575. cs_cpus_allowed);
  4576. struct dl_bw *dl_b;
  4577. bool overflow;
  4578. int cpus;
  4579. unsigned long flags;
  4580. rcu_read_lock_sched();
  4581. dl_b = dl_bw_of(dest_cpu);
  4582. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4583. cpus = dl_bw_cpus(dest_cpu);
  4584. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4585. if (overflow)
  4586. ret = -EBUSY;
  4587. else {
  4588. /*
  4589. * We reserve space for this task in the destination
  4590. * root_domain, as we can't fail after this point.
  4591. * We will free resources in the source root_domain
  4592. * later on (see set_cpus_allowed_dl()).
  4593. */
  4594. __dl_add(dl_b, p->dl.dl_bw);
  4595. }
  4596. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4597. rcu_read_unlock_sched();
  4598. }
  4599. #endif
  4600. out:
  4601. return ret;
  4602. }
  4603. #ifdef CONFIG_SMP
  4604. static bool sched_smp_initialized __read_mostly;
  4605. #ifdef CONFIG_NUMA_BALANCING
  4606. /* Migrate current task p to target_cpu */
  4607. int migrate_task_to(struct task_struct *p, int target_cpu)
  4608. {
  4609. struct migration_arg arg = { p, target_cpu };
  4610. int curr_cpu = task_cpu(p);
  4611. if (curr_cpu == target_cpu)
  4612. return 0;
  4613. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4614. return -EINVAL;
  4615. /* TODO: This is not properly updating schedstats */
  4616. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4617. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4618. }
  4619. /*
  4620. * Requeue a task on a given node and accurately track the number of NUMA
  4621. * tasks on the runqueues
  4622. */
  4623. void sched_setnuma(struct task_struct *p, int nid)
  4624. {
  4625. bool queued, running;
  4626. struct rq_flags rf;
  4627. struct rq *rq;
  4628. rq = task_rq_lock(p, &rf);
  4629. queued = task_on_rq_queued(p);
  4630. running = task_current(rq, p);
  4631. if (queued)
  4632. dequeue_task(rq, p, DEQUEUE_SAVE);
  4633. if (running)
  4634. put_prev_task(rq, p);
  4635. p->numa_preferred_nid = nid;
  4636. if (running)
  4637. p->sched_class->set_curr_task(rq);
  4638. if (queued)
  4639. enqueue_task(rq, p, ENQUEUE_RESTORE);
  4640. task_rq_unlock(rq, p, &rf);
  4641. }
  4642. #endif /* CONFIG_NUMA_BALANCING */
  4643. #ifdef CONFIG_HOTPLUG_CPU
  4644. /*
  4645. * Ensures that the idle task is using init_mm right before its cpu goes
  4646. * offline.
  4647. */
  4648. void idle_task_exit(void)
  4649. {
  4650. struct mm_struct *mm = current->active_mm;
  4651. BUG_ON(cpu_online(smp_processor_id()));
  4652. if (mm != &init_mm) {
  4653. switch_mm_irqs_off(mm, &init_mm, current);
  4654. finish_arch_post_lock_switch();
  4655. }
  4656. mmdrop(mm);
  4657. }
  4658. /*
  4659. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4660. * we might have. Assumes we're called after migrate_tasks() so that the
  4661. * nr_active count is stable. We need to take the teardown thread which
  4662. * is calling this into account, so we hand in adjust = 1 to the load
  4663. * calculation.
  4664. *
  4665. * Also see the comment "Global load-average calculations".
  4666. */
  4667. static void calc_load_migrate(struct rq *rq)
  4668. {
  4669. long delta = calc_load_fold_active(rq, 1);
  4670. if (delta)
  4671. atomic_long_add(delta, &calc_load_tasks);
  4672. }
  4673. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4674. {
  4675. }
  4676. static const struct sched_class fake_sched_class = {
  4677. .put_prev_task = put_prev_task_fake,
  4678. };
  4679. static struct task_struct fake_task = {
  4680. /*
  4681. * Avoid pull_{rt,dl}_task()
  4682. */
  4683. .prio = MAX_PRIO + 1,
  4684. .sched_class = &fake_sched_class,
  4685. };
  4686. /*
  4687. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4688. * try_to_wake_up()->select_task_rq().
  4689. *
  4690. * Called with rq->lock held even though we'er in stop_machine() and
  4691. * there's no concurrency possible, we hold the required locks anyway
  4692. * because of lock validation efforts.
  4693. */
  4694. static void migrate_tasks(struct rq *dead_rq)
  4695. {
  4696. struct rq *rq = dead_rq;
  4697. struct task_struct *next, *stop = rq->stop;
  4698. struct pin_cookie cookie;
  4699. int dest_cpu;
  4700. /*
  4701. * Fudge the rq selection such that the below task selection loop
  4702. * doesn't get stuck on the currently eligible stop task.
  4703. *
  4704. * We're currently inside stop_machine() and the rq is either stuck
  4705. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4706. * either way we should never end up calling schedule() until we're
  4707. * done here.
  4708. */
  4709. rq->stop = NULL;
  4710. /*
  4711. * put_prev_task() and pick_next_task() sched
  4712. * class method both need to have an up-to-date
  4713. * value of rq->clock[_task]
  4714. */
  4715. update_rq_clock(rq);
  4716. for (;;) {
  4717. /*
  4718. * There's this thread running, bail when that's the only
  4719. * remaining thread.
  4720. */
  4721. if (rq->nr_running == 1)
  4722. break;
  4723. /*
  4724. * pick_next_task assumes pinned rq->lock.
  4725. */
  4726. cookie = lockdep_pin_lock(&rq->lock);
  4727. next = pick_next_task(rq, &fake_task, cookie);
  4728. BUG_ON(!next);
  4729. next->sched_class->put_prev_task(rq, next);
  4730. /*
  4731. * Rules for changing task_struct::cpus_allowed are holding
  4732. * both pi_lock and rq->lock, such that holding either
  4733. * stabilizes the mask.
  4734. *
  4735. * Drop rq->lock is not quite as disastrous as it usually is
  4736. * because !cpu_active at this point, which means load-balance
  4737. * will not interfere. Also, stop-machine.
  4738. */
  4739. lockdep_unpin_lock(&rq->lock, cookie);
  4740. raw_spin_unlock(&rq->lock);
  4741. raw_spin_lock(&next->pi_lock);
  4742. raw_spin_lock(&rq->lock);
  4743. /*
  4744. * Since we're inside stop-machine, _nothing_ should have
  4745. * changed the task, WARN if weird stuff happened, because in
  4746. * that case the above rq->lock drop is a fail too.
  4747. */
  4748. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4749. raw_spin_unlock(&next->pi_lock);
  4750. continue;
  4751. }
  4752. /* Find suitable destination for @next, with force if needed. */
  4753. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4754. rq = __migrate_task(rq, next, dest_cpu);
  4755. if (rq != dead_rq) {
  4756. raw_spin_unlock(&rq->lock);
  4757. rq = dead_rq;
  4758. raw_spin_lock(&rq->lock);
  4759. }
  4760. raw_spin_unlock(&next->pi_lock);
  4761. }
  4762. rq->stop = stop;
  4763. }
  4764. #endif /* CONFIG_HOTPLUG_CPU */
  4765. static void set_rq_online(struct rq *rq)
  4766. {
  4767. if (!rq->online) {
  4768. const struct sched_class *class;
  4769. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4770. rq->online = 1;
  4771. for_each_class(class) {
  4772. if (class->rq_online)
  4773. class->rq_online(rq);
  4774. }
  4775. }
  4776. }
  4777. static void set_rq_offline(struct rq *rq)
  4778. {
  4779. if (rq->online) {
  4780. const struct sched_class *class;
  4781. for_each_class(class) {
  4782. if (class->rq_offline)
  4783. class->rq_offline(rq);
  4784. }
  4785. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4786. rq->online = 0;
  4787. }
  4788. }
  4789. static void set_cpu_rq_start_time(unsigned int cpu)
  4790. {
  4791. struct rq *rq = cpu_rq(cpu);
  4792. rq->age_stamp = sched_clock_cpu(cpu);
  4793. }
  4794. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4795. #ifdef CONFIG_SCHED_DEBUG
  4796. static __read_mostly int sched_debug_enabled;
  4797. static int __init sched_debug_setup(char *str)
  4798. {
  4799. sched_debug_enabled = 1;
  4800. return 0;
  4801. }
  4802. early_param("sched_debug", sched_debug_setup);
  4803. static inline bool sched_debug(void)
  4804. {
  4805. return sched_debug_enabled;
  4806. }
  4807. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4808. struct cpumask *groupmask)
  4809. {
  4810. struct sched_group *group = sd->groups;
  4811. cpumask_clear(groupmask);
  4812. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4813. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4814. printk("does not load-balance\n");
  4815. if (sd->parent)
  4816. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4817. " has parent");
  4818. return -1;
  4819. }
  4820. printk(KERN_CONT "span %*pbl level %s\n",
  4821. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4822. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4823. printk(KERN_ERR "ERROR: domain->span does not contain "
  4824. "CPU%d\n", cpu);
  4825. }
  4826. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4827. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4828. " CPU%d\n", cpu);
  4829. }
  4830. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4831. do {
  4832. if (!group) {
  4833. printk("\n");
  4834. printk(KERN_ERR "ERROR: group is NULL\n");
  4835. break;
  4836. }
  4837. if (!cpumask_weight(sched_group_cpus(group))) {
  4838. printk(KERN_CONT "\n");
  4839. printk(KERN_ERR "ERROR: empty group\n");
  4840. break;
  4841. }
  4842. if (!(sd->flags & SD_OVERLAP) &&
  4843. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4844. printk(KERN_CONT "\n");
  4845. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4846. break;
  4847. }
  4848. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4849. printk(KERN_CONT " %*pbl",
  4850. cpumask_pr_args(sched_group_cpus(group)));
  4851. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4852. printk(KERN_CONT " (cpu_capacity = %d)",
  4853. group->sgc->capacity);
  4854. }
  4855. group = group->next;
  4856. } while (group != sd->groups);
  4857. printk(KERN_CONT "\n");
  4858. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4859. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4860. if (sd->parent &&
  4861. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4862. printk(KERN_ERR "ERROR: parent span is not a superset "
  4863. "of domain->span\n");
  4864. return 0;
  4865. }
  4866. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4867. {
  4868. int level = 0;
  4869. if (!sched_debug_enabled)
  4870. return;
  4871. if (!sd) {
  4872. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4873. return;
  4874. }
  4875. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4876. for (;;) {
  4877. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4878. break;
  4879. level++;
  4880. sd = sd->parent;
  4881. if (!sd)
  4882. break;
  4883. }
  4884. }
  4885. #else /* !CONFIG_SCHED_DEBUG */
  4886. # define sched_domain_debug(sd, cpu) do { } while (0)
  4887. static inline bool sched_debug(void)
  4888. {
  4889. return false;
  4890. }
  4891. #endif /* CONFIG_SCHED_DEBUG */
  4892. static int sd_degenerate(struct sched_domain *sd)
  4893. {
  4894. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4895. return 1;
  4896. /* Following flags need at least 2 groups */
  4897. if (sd->flags & (SD_LOAD_BALANCE |
  4898. SD_BALANCE_NEWIDLE |
  4899. SD_BALANCE_FORK |
  4900. SD_BALANCE_EXEC |
  4901. SD_SHARE_CPUCAPACITY |
  4902. SD_SHARE_PKG_RESOURCES |
  4903. SD_SHARE_POWERDOMAIN)) {
  4904. if (sd->groups != sd->groups->next)
  4905. return 0;
  4906. }
  4907. /* Following flags don't use groups */
  4908. if (sd->flags & (SD_WAKE_AFFINE))
  4909. return 0;
  4910. return 1;
  4911. }
  4912. static int
  4913. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4914. {
  4915. unsigned long cflags = sd->flags, pflags = parent->flags;
  4916. if (sd_degenerate(parent))
  4917. return 1;
  4918. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4919. return 0;
  4920. /* Flags needing groups don't count if only 1 group in parent */
  4921. if (parent->groups == parent->groups->next) {
  4922. pflags &= ~(SD_LOAD_BALANCE |
  4923. SD_BALANCE_NEWIDLE |
  4924. SD_BALANCE_FORK |
  4925. SD_BALANCE_EXEC |
  4926. SD_SHARE_CPUCAPACITY |
  4927. SD_SHARE_PKG_RESOURCES |
  4928. SD_PREFER_SIBLING |
  4929. SD_SHARE_POWERDOMAIN);
  4930. if (nr_node_ids == 1)
  4931. pflags &= ~SD_SERIALIZE;
  4932. }
  4933. if (~cflags & pflags)
  4934. return 0;
  4935. return 1;
  4936. }
  4937. static void free_rootdomain(struct rcu_head *rcu)
  4938. {
  4939. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4940. cpupri_cleanup(&rd->cpupri);
  4941. cpudl_cleanup(&rd->cpudl);
  4942. free_cpumask_var(rd->dlo_mask);
  4943. free_cpumask_var(rd->rto_mask);
  4944. free_cpumask_var(rd->online);
  4945. free_cpumask_var(rd->span);
  4946. kfree(rd);
  4947. }
  4948. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4949. {
  4950. struct root_domain *old_rd = NULL;
  4951. unsigned long flags;
  4952. raw_spin_lock_irqsave(&rq->lock, flags);
  4953. if (rq->rd) {
  4954. old_rd = rq->rd;
  4955. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4956. set_rq_offline(rq);
  4957. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4958. /*
  4959. * If we dont want to free the old_rd yet then
  4960. * set old_rd to NULL to skip the freeing later
  4961. * in this function:
  4962. */
  4963. if (!atomic_dec_and_test(&old_rd->refcount))
  4964. old_rd = NULL;
  4965. }
  4966. atomic_inc(&rd->refcount);
  4967. rq->rd = rd;
  4968. cpumask_set_cpu(rq->cpu, rd->span);
  4969. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4970. set_rq_online(rq);
  4971. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4972. if (old_rd)
  4973. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4974. }
  4975. static int init_rootdomain(struct root_domain *rd)
  4976. {
  4977. memset(rd, 0, sizeof(*rd));
  4978. if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
  4979. goto out;
  4980. if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
  4981. goto free_span;
  4982. if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4983. goto free_online;
  4984. if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4985. goto free_dlo_mask;
  4986. init_dl_bw(&rd->dl_bw);
  4987. if (cpudl_init(&rd->cpudl) != 0)
  4988. goto free_dlo_mask;
  4989. if (cpupri_init(&rd->cpupri) != 0)
  4990. goto free_rto_mask;
  4991. return 0;
  4992. free_rto_mask:
  4993. free_cpumask_var(rd->rto_mask);
  4994. free_dlo_mask:
  4995. free_cpumask_var(rd->dlo_mask);
  4996. free_online:
  4997. free_cpumask_var(rd->online);
  4998. free_span:
  4999. free_cpumask_var(rd->span);
  5000. out:
  5001. return -ENOMEM;
  5002. }
  5003. /*
  5004. * By default the system creates a single root-domain with all cpus as
  5005. * members (mimicking the global state we have today).
  5006. */
  5007. struct root_domain def_root_domain;
  5008. static void init_defrootdomain(void)
  5009. {
  5010. init_rootdomain(&def_root_domain);
  5011. atomic_set(&def_root_domain.refcount, 1);
  5012. }
  5013. static struct root_domain *alloc_rootdomain(void)
  5014. {
  5015. struct root_domain *rd;
  5016. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5017. if (!rd)
  5018. return NULL;
  5019. if (init_rootdomain(rd) != 0) {
  5020. kfree(rd);
  5021. return NULL;
  5022. }
  5023. return rd;
  5024. }
  5025. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5026. {
  5027. struct sched_group *tmp, *first;
  5028. if (!sg)
  5029. return;
  5030. first = sg;
  5031. do {
  5032. tmp = sg->next;
  5033. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5034. kfree(sg->sgc);
  5035. kfree(sg);
  5036. sg = tmp;
  5037. } while (sg != first);
  5038. }
  5039. static void free_sched_domain(struct rcu_head *rcu)
  5040. {
  5041. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5042. /*
  5043. * If its an overlapping domain it has private groups, iterate and
  5044. * nuke them all.
  5045. */
  5046. if (sd->flags & SD_OVERLAP) {
  5047. free_sched_groups(sd->groups, 1);
  5048. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5049. kfree(sd->groups->sgc);
  5050. kfree(sd->groups);
  5051. }
  5052. kfree(sd);
  5053. }
  5054. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5055. {
  5056. call_rcu(&sd->rcu, free_sched_domain);
  5057. }
  5058. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5059. {
  5060. for (; sd; sd = sd->parent)
  5061. destroy_sched_domain(sd, cpu);
  5062. }
  5063. /*
  5064. * Keep a special pointer to the highest sched_domain that has
  5065. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5066. * allows us to avoid some pointer chasing select_idle_sibling().
  5067. *
  5068. * Also keep a unique ID per domain (we use the first cpu number in
  5069. * the cpumask of the domain), this allows us to quickly tell if
  5070. * two cpus are in the same cache domain, see cpus_share_cache().
  5071. */
  5072. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5073. DEFINE_PER_CPU(int, sd_llc_size);
  5074. DEFINE_PER_CPU(int, sd_llc_id);
  5075. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5076. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5077. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5078. static void update_top_cache_domain(int cpu)
  5079. {
  5080. struct sched_domain *sd;
  5081. struct sched_domain *busy_sd = NULL;
  5082. int id = cpu;
  5083. int size = 1;
  5084. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5085. if (sd) {
  5086. id = cpumask_first(sched_domain_span(sd));
  5087. size = cpumask_weight(sched_domain_span(sd));
  5088. busy_sd = sd->parent; /* sd_busy */
  5089. }
  5090. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5091. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5092. per_cpu(sd_llc_size, cpu) = size;
  5093. per_cpu(sd_llc_id, cpu) = id;
  5094. sd = lowest_flag_domain(cpu, SD_NUMA);
  5095. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5096. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5097. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5098. }
  5099. /*
  5100. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5101. * hold the hotplug lock.
  5102. */
  5103. static void
  5104. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5105. {
  5106. struct rq *rq = cpu_rq(cpu);
  5107. struct sched_domain *tmp;
  5108. /* Remove the sched domains which do not contribute to scheduling. */
  5109. for (tmp = sd; tmp; ) {
  5110. struct sched_domain *parent = tmp->parent;
  5111. if (!parent)
  5112. break;
  5113. if (sd_parent_degenerate(tmp, parent)) {
  5114. tmp->parent = parent->parent;
  5115. if (parent->parent)
  5116. parent->parent->child = tmp;
  5117. /*
  5118. * Transfer SD_PREFER_SIBLING down in case of a
  5119. * degenerate parent; the spans match for this
  5120. * so the property transfers.
  5121. */
  5122. if (parent->flags & SD_PREFER_SIBLING)
  5123. tmp->flags |= SD_PREFER_SIBLING;
  5124. destroy_sched_domain(parent, cpu);
  5125. } else
  5126. tmp = tmp->parent;
  5127. }
  5128. if (sd && sd_degenerate(sd)) {
  5129. tmp = sd;
  5130. sd = sd->parent;
  5131. destroy_sched_domain(tmp, cpu);
  5132. if (sd)
  5133. sd->child = NULL;
  5134. }
  5135. sched_domain_debug(sd, cpu);
  5136. rq_attach_root(rq, rd);
  5137. tmp = rq->sd;
  5138. rcu_assign_pointer(rq->sd, sd);
  5139. destroy_sched_domains(tmp, cpu);
  5140. update_top_cache_domain(cpu);
  5141. }
  5142. /* Setup the mask of cpus configured for isolated domains */
  5143. static int __init isolated_cpu_setup(char *str)
  5144. {
  5145. int ret;
  5146. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5147. ret = cpulist_parse(str, cpu_isolated_map);
  5148. if (ret) {
  5149. pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
  5150. return 0;
  5151. }
  5152. return 1;
  5153. }
  5154. __setup("isolcpus=", isolated_cpu_setup);
  5155. struct s_data {
  5156. struct sched_domain ** __percpu sd;
  5157. struct root_domain *rd;
  5158. };
  5159. enum s_alloc {
  5160. sa_rootdomain,
  5161. sa_sd,
  5162. sa_sd_storage,
  5163. sa_none,
  5164. };
  5165. /*
  5166. * Build an iteration mask that can exclude certain CPUs from the upwards
  5167. * domain traversal.
  5168. *
  5169. * Asymmetric node setups can result in situations where the domain tree is of
  5170. * unequal depth, make sure to skip domains that already cover the entire
  5171. * range.
  5172. *
  5173. * In that case build_sched_domains() will have terminated the iteration early
  5174. * and our sibling sd spans will be empty. Domains should always include the
  5175. * cpu they're built on, so check that.
  5176. *
  5177. */
  5178. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5179. {
  5180. const struct cpumask *span = sched_domain_span(sd);
  5181. struct sd_data *sdd = sd->private;
  5182. struct sched_domain *sibling;
  5183. int i;
  5184. for_each_cpu(i, span) {
  5185. sibling = *per_cpu_ptr(sdd->sd, i);
  5186. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5187. continue;
  5188. cpumask_set_cpu(i, sched_group_mask(sg));
  5189. }
  5190. }
  5191. /*
  5192. * Return the canonical balance cpu for this group, this is the first cpu
  5193. * of this group that's also in the iteration mask.
  5194. */
  5195. int group_balance_cpu(struct sched_group *sg)
  5196. {
  5197. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5198. }
  5199. static int
  5200. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5201. {
  5202. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5203. const struct cpumask *span = sched_domain_span(sd);
  5204. struct cpumask *covered = sched_domains_tmpmask;
  5205. struct sd_data *sdd = sd->private;
  5206. struct sched_domain *sibling;
  5207. int i;
  5208. cpumask_clear(covered);
  5209. for_each_cpu(i, span) {
  5210. struct cpumask *sg_span;
  5211. if (cpumask_test_cpu(i, covered))
  5212. continue;
  5213. sibling = *per_cpu_ptr(sdd->sd, i);
  5214. /* See the comment near build_group_mask(). */
  5215. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5216. continue;
  5217. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5218. GFP_KERNEL, cpu_to_node(cpu));
  5219. if (!sg)
  5220. goto fail;
  5221. sg_span = sched_group_cpus(sg);
  5222. if (sibling->child)
  5223. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5224. else
  5225. cpumask_set_cpu(i, sg_span);
  5226. cpumask_or(covered, covered, sg_span);
  5227. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5228. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5229. build_group_mask(sd, sg);
  5230. /*
  5231. * Initialize sgc->capacity such that even if we mess up the
  5232. * domains and no possible iteration will get us here, we won't
  5233. * die on a /0 trap.
  5234. */
  5235. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5236. /*
  5237. * Make sure the first group of this domain contains the
  5238. * canonical balance cpu. Otherwise the sched_domain iteration
  5239. * breaks. See update_sg_lb_stats().
  5240. */
  5241. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5242. group_balance_cpu(sg) == cpu)
  5243. groups = sg;
  5244. if (!first)
  5245. first = sg;
  5246. if (last)
  5247. last->next = sg;
  5248. last = sg;
  5249. last->next = first;
  5250. }
  5251. sd->groups = groups;
  5252. return 0;
  5253. fail:
  5254. free_sched_groups(first, 0);
  5255. return -ENOMEM;
  5256. }
  5257. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5258. {
  5259. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5260. struct sched_domain *child = sd->child;
  5261. if (child)
  5262. cpu = cpumask_first(sched_domain_span(child));
  5263. if (sg) {
  5264. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5265. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5266. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5267. }
  5268. return cpu;
  5269. }
  5270. /*
  5271. * build_sched_groups will build a circular linked list of the groups
  5272. * covered by the given span, and will set each group's ->cpumask correctly,
  5273. * and ->cpu_capacity to 0.
  5274. *
  5275. * Assumes the sched_domain tree is fully constructed
  5276. */
  5277. static int
  5278. build_sched_groups(struct sched_domain *sd, int cpu)
  5279. {
  5280. struct sched_group *first = NULL, *last = NULL;
  5281. struct sd_data *sdd = sd->private;
  5282. const struct cpumask *span = sched_domain_span(sd);
  5283. struct cpumask *covered;
  5284. int i;
  5285. get_group(cpu, sdd, &sd->groups);
  5286. atomic_inc(&sd->groups->ref);
  5287. if (cpu != cpumask_first(span))
  5288. return 0;
  5289. lockdep_assert_held(&sched_domains_mutex);
  5290. covered = sched_domains_tmpmask;
  5291. cpumask_clear(covered);
  5292. for_each_cpu(i, span) {
  5293. struct sched_group *sg;
  5294. int group, j;
  5295. if (cpumask_test_cpu(i, covered))
  5296. continue;
  5297. group = get_group(i, sdd, &sg);
  5298. cpumask_setall(sched_group_mask(sg));
  5299. for_each_cpu(j, span) {
  5300. if (get_group(j, sdd, NULL) != group)
  5301. continue;
  5302. cpumask_set_cpu(j, covered);
  5303. cpumask_set_cpu(j, sched_group_cpus(sg));
  5304. }
  5305. if (!first)
  5306. first = sg;
  5307. if (last)
  5308. last->next = sg;
  5309. last = sg;
  5310. }
  5311. last->next = first;
  5312. return 0;
  5313. }
  5314. /*
  5315. * Initialize sched groups cpu_capacity.
  5316. *
  5317. * cpu_capacity indicates the capacity of sched group, which is used while
  5318. * distributing the load between different sched groups in a sched domain.
  5319. * Typically cpu_capacity for all the groups in a sched domain will be same
  5320. * unless there are asymmetries in the topology. If there are asymmetries,
  5321. * group having more cpu_capacity will pickup more load compared to the
  5322. * group having less cpu_capacity.
  5323. */
  5324. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5325. {
  5326. struct sched_group *sg = sd->groups;
  5327. WARN_ON(!sg);
  5328. do {
  5329. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5330. sg = sg->next;
  5331. } while (sg != sd->groups);
  5332. if (cpu != group_balance_cpu(sg))
  5333. return;
  5334. update_group_capacity(sd, cpu);
  5335. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5336. }
  5337. /*
  5338. * Initializers for schedule domains
  5339. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5340. */
  5341. static int default_relax_domain_level = -1;
  5342. int sched_domain_level_max;
  5343. static int __init setup_relax_domain_level(char *str)
  5344. {
  5345. if (kstrtoint(str, 0, &default_relax_domain_level))
  5346. pr_warn("Unable to set relax_domain_level\n");
  5347. return 1;
  5348. }
  5349. __setup("relax_domain_level=", setup_relax_domain_level);
  5350. static void set_domain_attribute(struct sched_domain *sd,
  5351. struct sched_domain_attr *attr)
  5352. {
  5353. int request;
  5354. if (!attr || attr->relax_domain_level < 0) {
  5355. if (default_relax_domain_level < 0)
  5356. return;
  5357. else
  5358. request = default_relax_domain_level;
  5359. } else
  5360. request = attr->relax_domain_level;
  5361. if (request < sd->level) {
  5362. /* turn off idle balance on this domain */
  5363. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5364. } else {
  5365. /* turn on idle balance on this domain */
  5366. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5367. }
  5368. }
  5369. static void __sdt_free(const struct cpumask *cpu_map);
  5370. static int __sdt_alloc(const struct cpumask *cpu_map);
  5371. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5372. const struct cpumask *cpu_map)
  5373. {
  5374. switch (what) {
  5375. case sa_rootdomain:
  5376. if (!atomic_read(&d->rd->refcount))
  5377. free_rootdomain(&d->rd->rcu); /* fall through */
  5378. case sa_sd:
  5379. free_percpu(d->sd); /* fall through */
  5380. case sa_sd_storage:
  5381. __sdt_free(cpu_map); /* fall through */
  5382. case sa_none:
  5383. break;
  5384. }
  5385. }
  5386. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5387. const struct cpumask *cpu_map)
  5388. {
  5389. memset(d, 0, sizeof(*d));
  5390. if (__sdt_alloc(cpu_map))
  5391. return sa_sd_storage;
  5392. d->sd = alloc_percpu(struct sched_domain *);
  5393. if (!d->sd)
  5394. return sa_sd_storage;
  5395. d->rd = alloc_rootdomain();
  5396. if (!d->rd)
  5397. return sa_sd;
  5398. return sa_rootdomain;
  5399. }
  5400. /*
  5401. * NULL the sd_data elements we've used to build the sched_domain and
  5402. * sched_group structure so that the subsequent __free_domain_allocs()
  5403. * will not free the data we're using.
  5404. */
  5405. static void claim_allocations(int cpu, struct sched_domain *sd)
  5406. {
  5407. struct sd_data *sdd = sd->private;
  5408. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5409. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5410. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5411. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5412. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5413. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5414. }
  5415. #ifdef CONFIG_NUMA
  5416. static int sched_domains_numa_levels;
  5417. enum numa_topology_type sched_numa_topology_type;
  5418. static int *sched_domains_numa_distance;
  5419. int sched_max_numa_distance;
  5420. static struct cpumask ***sched_domains_numa_masks;
  5421. static int sched_domains_curr_level;
  5422. #endif
  5423. /*
  5424. * SD_flags allowed in topology descriptions.
  5425. *
  5426. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5427. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5428. * SD_NUMA - describes NUMA topologies
  5429. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5430. *
  5431. * Odd one out:
  5432. * SD_ASYM_PACKING - describes SMT quirks
  5433. */
  5434. #define TOPOLOGY_SD_FLAGS \
  5435. (SD_SHARE_CPUCAPACITY | \
  5436. SD_SHARE_PKG_RESOURCES | \
  5437. SD_NUMA | \
  5438. SD_ASYM_PACKING | \
  5439. SD_SHARE_POWERDOMAIN)
  5440. static struct sched_domain *
  5441. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5442. {
  5443. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5444. int sd_weight, sd_flags = 0;
  5445. #ifdef CONFIG_NUMA
  5446. /*
  5447. * Ugly hack to pass state to sd_numa_mask()...
  5448. */
  5449. sched_domains_curr_level = tl->numa_level;
  5450. #endif
  5451. sd_weight = cpumask_weight(tl->mask(cpu));
  5452. if (tl->sd_flags)
  5453. sd_flags = (*tl->sd_flags)();
  5454. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5455. "wrong sd_flags in topology description\n"))
  5456. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5457. *sd = (struct sched_domain){
  5458. .min_interval = sd_weight,
  5459. .max_interval = 2*sd_weight,
  5460. .busy_factor = 32,
  5461. .imbalance_pct = 125,
  5462. .cache_nice_tries = 0,
  5463. .busy_idx = 0,
  5464. .idle_idx = 0,
  5465. .newidle_idx = 0,
  5466. .wake_idx = 0,
  5467. .forkexec_idx = 0,
  5468. .flags = 1*SD_LOAD_BALANCE
  5469. | 1*SD_BALANCE_NEWIDLE
  5470. | 1*SD_BALANCE_EXEC
  5471. | 1*SD_BALANCE_FORK
  5472. | 0*SD_BALANCE_WAKE
  5473. | 1*SD_WAKE_AFFINE
  5474. | 0*SD_SHARE_CPUCAPACITY
  5475. | 0*SD_SHARE_PKG_RESOURCES
  5476. | 0*SD_SERIALIZE
  5477. | 0*SD_PREFER_SIBLING
  5478. | 0*SD_NUMA
  5479. | sd_flags
  5480. ,
  5481. .last_balance = jiffies,
  5482. .balance_interval = sd_weight,
  5483. .smt_gain = 0,
  5484. .max_newidle_lb_cost = 0,
  5485. .next_decay_max_lb_cost = jiffies,
  5486. #ifdef CONFIG_SCHED_DEBUG
  5487. .name = tl->name,
  5488. #endif
  5489. };
  5490. /*
  5491. * Convert topological properties into behaviour.
  5492. */
  5493. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5494. sd->flags |= SD_PREFER_SIBLING;
  5495. sd->imbalance_pct = 110;
  5496. sd->smt_gain = 1178; /* ~15% */
  5497. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5498. sd->imbalance_pct = 117;
  5499. sd->cache_nice_tries = 1;
  5500. sd->busy_idx = 2;
  5501. #ifdef CONFIG_NUMA
  5502. } else if (sd->flags & SD_NUMA) {
  5503. sd->cache_nice_tries = 2;
  5504. sd->busy_idx = 3;
  5505. sd->idle_idx = 2;
  5506. sd->flags |= SD_SERIALIZE;
  5507. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5508. sd->flags &= ~(SD_BALANCE_EXEC |
  5509. SD_BALANCE_FORK |
  5510. SD_WAKE_AFFINE);
  5511. }
  5512. #endif
  5513. } else {
  5514. sd->flags |= SD_PREFER_SIBLING;
  5515. sd->cache_nice_tries = 1;
  5516. sd->busy_idx = 2;
  5517. sd->idle_idx = 1;
  5518. }
  5519. sd->private = &tl->data;
  5520. return sd;
  5521. }
  5522. /*
  5523. * Topology list, bottom-up.
  5524. */
  5525. static struct sched_domain_topology_level default_topology[] = {
  5526. #ifdef CONFIG_SCHED_SMT
  5527. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5528. #endif
  5529. #ifdef CONFIG_SCHED_MC
  5530. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5531. #endif
  5532. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5533. { NULL, },
  5534. };
  5535. static struct sched_domain_topology_level *sched_domain_topology =
  5536. default_topology;
  5537. #define for_each_sd_topology(tl) \
  5538. for (tl = sched_domain_topology; tl->mask; tl++)
  5539. void set_sched_topology(struct sched_domain_topology_level *tl)
  5540. {
  5541. sched_domain_topology = tl;
  5542. }
  5543. #ifdef CONFIG_NUMA
  5544. static const struct cpumask *sd_numa_mask(int cpu)
  5545. {
  5546. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5547. }
  5548. static void sched_numa_warn(const char *str)
  5549. {
  5550. static int done = false;
  5551. int i,j;
  5552. if (done)
  5553. return;
  5554. done = true;
  5555. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5556. for (i = 0; i < nr_node_ids; i++) {
  5557. printk(KERN_WARNING " ");
  5558. for (j = 0; j < nr_node_ids; j++)
  5559. printk(KERN_CONT "%02d ", node_distance(i,j));
  5560. printk(KERN_CONT "\n");
  5561. }
  5562. printk(KERN_WARNING "\n");
  5563. }
  5564. bool find_numa_distance(int distance)
  5565. {
  5566. int i;
  5567. if (distance == node_distance(0, 0))
  5568. return true;
  5569. for (i = 0; i < sched_domains_numa_levels; i++) {
  5570. if (sched_domains_numa_distance[i] == distance)
  5571. return true;
  5572. }
  5573. return false;
  5574. }
  5575. /*
  5576. * A system can have three types of NUMA topology:
  5577. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5578. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5579. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5580. *
  5581. * The difference between a glueless mesh topology and a backplane
  5582. * topology lies in whether communication between not directly
  5583. * connected nodes goes through intermediary nodes (where programs
  5584. * could run), or through backplane controllers. This affects
  5585. * placement of programs.
  5586. *
  5587. * The type of topology can be discerned with the following tests:
  5588. * - If the maximum distance between any nodes is 1 hop, the system
  5589. * is directly connected.
  5590. * - If for two nodes A and B, located N > 1 hops away from each other,
  5591. * there is an intermediary node C, which is < N hops away from both
  5592. * nodes A and B, the system is a glueless mesh.
  5593. */
  5594. static void init_numa_topology_type(void)
  5595. {
  5596. int a, b, c, n;
  5597. n = sched_max_numa_distance;
  5598. if (sched_domains_numa_levels <= 1) {
  5599. sched_numa_topology_type = NUMA_DIRECT;
  5600. return;
  5601. }
  5602. for_each_online_node(a) {
  5603. for_each_online_node(b) {
  5604. /* Find two nodes furthest removed from each other. */
  5605. if (node_distance(a, b) < n)
  5606. continue;
  5607. /* Is there an intermediary node between a and b? */
  5608. for_each_online_node(c) {
  5609. if (node_distance(a, c) < n &&
  5610. node_distance(b, c) < n) {
  5611. sched_numa_topology_type =
  5612. NUMA_GLUELESS_MESH;
  5613. return;
  5614. }
  5615. }
  5616. sched_numa_topology_type = NUMA_BACKPLANE;
  5617. return;
  5618. }
  5619. }
  5620. }
  5621. static void sched_init_numa(void)
  5622. {
  5623. int next_distance, curr_distance = node_distance(0, 0);
  5624. struct sched_domain_topology_level *tl;
  5625. int level = 0;
  5626. int i, j, k;
  5627. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5628. if (!sched_domains_numa_distance)
  5629. return;
  5630. /*
  5631. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5632. * unique distances in the node_distance() table.
  5633. *
  5634. * Assumes node_distance(0,j) includes all distances in
  5635. * node_distance(i,j) in order to avoid cubic time.
  5636. */
  5637. next_distance = curr_distance;
  5638. for (i = 0; i < nr_node_ids; i++) {
  5639. for (j = 0; j < nr_node_ids; j++) {
  5640. for (k = 0; k < nr_node_ids; k++) {
  5641. int distance = node_distance(i, k);
  5642. if (distance > curr_distance &&
  5643. (distance < next_distance ||
  5644. next_distance == curr_distance))
  5645. next_distance = distance;
  5646. /*
  5647. * While not a strong assumption it would be nice to know
  5648. * about cases where if node A is connected to B, B is not
  5649. * equally connected to A.
  5650. */
  5651. if (sched_debug() && node_distance(k, i) != distance)
  5652. sched_numa_warn("Node-distance not symmetric");
  5653. if (sched_debug() && i && !find_numa_distance(distance))
  5654. sched_numa_warn("Node-0 not representative");
  5655. }
  5656. if (next_distance != curr_distance) {
  5657. sched_domains_numa_distance[level++] = next_distance;
  5658. sched_domains_numa_levels = level;
  5659. curr_distance = next_distance;
  5660. } else break;
  5661. }
  5662. /*
  5663. * In case of sched_debug() we verify the above assumption.
  5664. */
  5665. if (!sched_debug())
  5666. break;
  5667. }
  5668. if (!level)
  5669. return;
  5670. /*
  5671. * 'level' contains the number of unique distances, excluding the
  5672. * identity distance node_distance(i,i).
  5673. *
  5674. * The sched_domains_numa_distance[] array includes the actual distance
  5675. * numbers.
  5676. */
  5677. /*
  5678. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5679. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5680. * the array will contain less then 'level' members. This could be
  5681. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5682. * in other functions.
  5683. *
  5684. * We reset it to 'level' at the end of this function.
  5685. */
  5686. sched_domains_numa_levels = 0;
  5687. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5688. if (!sched_domains_numa_masks)
  5689. return;
  5690. /*
  5691. * Now for each level, construct a mask per node which contains all
  5692. * cpus of nodes that are that many hops away from us.
  5693. */
  5694. for (i = 0; i < level; i++) {
  5695. sched_domains_numa_masks[i] =
  5696. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5697. if (!sched_domains_numa_masks[i])
  5698. return;
  5699. for (j = 0; j < nr_node_ids; j++) {
  5700. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5701. if (!mask)
  5702. return;
  5703. sched_domains_numa_masks[i][j] = mask;
  5704. for_each_node(k) {
  5705. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5706. continue;
  5707. cpumask_or(mask, mask, cpumask_of_node(k));
  5708. }
  5709. }
  5710. }
  5711. /* Compute default topology size */
  5712. for (i = 0; sched_domain_topology[i].mask; i++);
  5713. tl = kzalloc((i + level + 1) *
  5714. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5715. if (!tl)
  5716. return;
  5717. /*
  5718. * Copy the default topology bits..
  5719. */
  5720. for (i = 0; sched_domain_topology[i].mask; i++)
  5721. tl[i] = sched_domain_topology[i];
  5722. /*
  5723. * .. and append 'j' levels of NUMA goodness.
  5724. */
  5725. for (j = 0; j < level; i++, j++) {
  5726. tl[i] = (struct sched_domain_topology_level){
  5727. .mask = sd_numa_mask,
  5728. .sd_flags = cpu_numa_flags,
  5729. .flags = SDTL_OVERLAP,
  5730. .numa_level = j,
  5731. SD_INIT_NAME(NUMA)
  5732. };
  5733. }
  5734. sched_domain_topology = tl;
  5735. sched_domains_numa_levels = level;
  5736. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5737. init_numa_topology_type();
  5738. }
  5739. static void sched_domains_numa_masks_set(unsigned int cpu)
  5740. {
  5741. int node = cpu_to_node(cpu);
  5742. int i, j;
  5743. for (i = 0; i < sched_domains_numa_levels; i++) {
  5744. for (j = 0; j < nr_node_ids; j++) {
  5745. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5746. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5747. }
  5748. }
  5749. }
  5750. static void sched_domains_numa_masks_clear(unsigned int cpu)
  5751. {
  5752. int i, j;
  5753. for (i = 0; i < sched_domains_numa_levels; i++) {
  5754. for (j = 0; j < nr_node_ids; j++)
  5755. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5756. }
  5757. }
  5758. #else
  5759. static inline void sched_init_numa(void) { }
  5760. static void sched_domains_numa_masks_set(unsigned int cpu) { }
  5761. static void sched_domains_numa_masks_clear(unsigned int cpu) { }
  5762. #endif /* CONFIG_NUMA */
  5763. static int __sdt_alloc(const struct cpumask *cpu_map)
  5764. {
  5765. struct sched_domain_topology_level *tl;
  5766. int j;
  5767. for_each_sd_topology(tl) {
  5768. struct sd_data *sdd = &tl->data;
  5769. sdd->sd = alloc_percpu(struct sched_domain *);
  5770. if (!sdd->sd)
  5771. return -ENOMEM;
  5772. sdd->sg = alloc_percpu(struct sched_group *);
  5773. if (!sdd->sg)
  5774. return -ENOMEM;
  5775. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5776. if (!sdd->sgc)
  5777. return -ENOMEM;
  5778. for_each_cpu(j, cpu_map) {
  5779. struct sched_domain *sd;
  5780. struct sched_group *sg;
  5781. struct sched_group_capacity *sgc;
  5782. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5783. GFP_KERNEL, cpu_to_node(j));
  5784. if (!sd)
  5785. return -ENOMEM;
  5786. *per_cpu_ptr(sdd->sd, j) = sd;
  5787. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5788. GFP_KERNEL, cpu_to_node(j));
  5789. if (!sg)
  5790. return -ENOMEM;
  5791. sg->next = sg;
  5792. *per_cpu_ptr(sdd->sg, j) = sg;
  5793. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5794. GFP_KERNEL, cpu_to_node(j));
  5795. if (!sgc)
  5796. return -ENOMEM;
  5797. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5798. }
  5799. }
  5800. return 0;
  5801. }
  5802. static void __sdt_free(const struct cpumask *cpu_map)
  5803. {
  5804. struct sched_domain_topology_level *tl;
  5805. int j;
  5806. for_each_sd_topology(tl) {
  5807. struct sd_data *sdd = &tl->data;
  5808. for_each_cpu(j, cpu_map) {
  5809. struct sched_domain *sd;
  5810. if (sdd->sd) {
  5811. sd = *per_cpu_ptr(sdd->sd, j);
  5812. if (sd && (sd->flags & SD_OVERLAP))
  5813. free_sched_groups(sd->groups, 0);
  5814. kfree(*per_cpu_ptr(sdd->sd, j));
  5815. }
  5816. if (sdd->sg)
  5817. kfree(*per_cpu_ptr(sdd->sg, j));
  5818. if (sdd->sgc)
  5819. kfree(*per_cpu_ptr(sdd->sgc, j));
  5820. }
  5821. free_percpu(sdd->sd);
  5822. sdd->sd = NULL;
  5823. free_percpu(sdd->sg);
  5824. sdd->sg = NULL;
  5825. free_percpu(sdd->sgc);
  5826. sdd->sgc = NULL;
  5827. }
  5828. }
  5829. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5830. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5831. struct sched_domain *child, int cpu)
  5832. {
  5833. struct sched_domain *sd = sd_init(tl, cpu);
  5834. if (!sd)
  5835. return child;
  5836. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5837. if (child) {
  5838. sd->level = child->level + 1;
  5839. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5840. child->parent = sd;
  5841. sd->child = child;
  5842. if (!cpumask_subset(sched_domain_span(child),
  5843. sched_domain_span(sd))) {
  5844. pr_err("BUG: arch topology borken\n");
  5845. #ifdef CONFIG_SCHED_DEBUG
  5846. pr_err(" the %s domain not a subset of the %s domain\n",
  5847. child->name, sd->name);
  5848. #endif
  5849. /* Fixup, ensure @sd has at least @child cpus. */
  5850. cpumask_or(sched_domain_span(sd),
  5851. sched_domain_span(sd),
  5852. sched_domain_span(child));
  5853. }
  5854. }
  5855. set_domain_attribute(sd, attr);
  5856. return sd;
  5857. }
  5858. /*
  5859. * Build sched domains for a given set of cpus and attach the sched domains
  5860. * to the individual cpus
  5861. */
  5862. static int build_sched_domains(const struct cpumask *cpu_map,
  5863. struct sched_domain_attr *attr)
  5864. {
  5865. enum s_alloc alloc_state;
  5866. struct sched_domain *sd;
  5867. struct s_data d;
  5868. int i, ret = -ENOMEM;
  5869. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5870. if (alloc_state != sa_rootdomain)
  5871. goto error;
  5872. /* Set up domains for cpus specified by the cpu_map. */
  5873. for_each_cpu(i, cpu_map) {
  5874. struct sched_domain_topology_level *tl;
  5875. sd = NULL;
  5876. for_each_sd_topology(tl) {
  5877. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5878. if (tl == sched_domain_topology)
  5879. *per_cpu_ptr(d.sd, i) = sd;
  5880. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5881. sd->flags |= SD_OVERLAP;
  5882. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5883. break;
  5884. }
  5885. }
  5886. /* Build the groups for the domains */
  5887. for_each_cpu(i, cpu_map) {
  5888. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5889. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5890. if (sd->flags & SD_OVERLAP) {
  5891. if (build_overlap_sched_groups(sd, i))
  5892. goto error;
  5893. } else {
  5894. if (build_sched_groups(sd, i))
  5895. goto error;
  5896. }
  5897. }
  5898. }
  5899. /* Calculate CPU capacity for physical packages and nodes */
  5900. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5901. if (!cpumask_test_cpu(i, cpu_map))
  5902. continue;
  5903. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5904. claim_allocations(i, sd);
  5905. init_sched_groups_capacity(i, sd);
  5906. }
  5907. }
  5908. /* Attach the domains */
  5909. rcu_read_lock();
  5910. for_each_cpu(i, cpu_map) {
  5911. sd = *per_cpu_ptr(d.sd, i);
  5912. cpu_attach_domain(sd, d.rd, i);
  5913. }
  5914. rcu_read_unlock();
  5915. ret = 0;
  5916. error:
  5917. __free_domain_allocs(&d, alloc_state, cpu_map);
  5918. return ret;
  5919. }
  5920. static cpumask_var_t *doms_cur; /* current sched domains */
  5921. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5922. static struct sched_domain_attr *dattr_cur;
  5923. /* attribues of custom domains in 'doms_cur' */
  5924. /*
  5925. * Special case: If a kmalloc of a doms_cur partition (array of
  5926. * cpumask) fails, then fallback to a single sched domain,
  5927. * as determined by the single cpumask fallback_doms.
  5928. */
  5929. static cpumask_var_t fallback_doms;
  5930. /*
  5931. * arch_update_cpu_topology lets virtualized architectures update the
  5932. * cpu core maps. It is supposed to return 1 if the topology changed
  5933. * or 0 if it stayed the same.
  5934. */
  5935. int __weak arch_update_cpu_topology(void)
  5936. {
  5937. return 0;
  5938. }
  5939. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5940. {
  5941. int i;
  5942. cpumask_var_t *doms;
  5943. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5944. if (!doms)
  5945. return NULL;
  5946. for (i = 0; i < ndoms; i++) {
  5947. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5948. free_sched_domains(doms, i);
  5949. return NULL;
  5950. }
  5951. }
  5952. return doms;
  5953. }
  5954. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5955. {
  5956. unsigned int i;
  5957. for (i = 0; i < ndoms; i++)
  5958. free_cpumask_var(doms[i]);
  5959. kfree(doms);
  5960. }
  5961. /*
  5962. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5963. * For now this just excludes isolated cpus, but could be used to
  5964. * exclude other special cases in the future.
  5965. */
  5966. static int init_sched_domains(const struct cpumask *cpu_map)
  5967. {
  5968. int err;
  5969. arch_update_cpu_topology();
  5970. ndoms_cur = 1;
  5971. doms_cur = alloc_sched_domains(ndoms_cur);
  5972. if (!doms_cur)
  5973. doms_cur = &fallback_doms;
  5974. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5975. err = build_sched_domains(doms_cur[0], NULL);
  5976. register_sched_domain_sysctl();
  5977. return err;
  5978. }
  5979. /*
  5980. * Detach sched domains from a group of cpus specified in cpu_map
  5981. * These cpus will now be attached to the NULL domain
  5982. */
  5983. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5984. {
  5985. int i;
  5986. rcu_read_lock();
  5987. for_each_cpu(i, cpu_map)
  5988. cpu_attach_domain(NULL, &def_root_domain, i);
  5989. rcu_read_unlock();
  5990. }
  5991. /* handle null as "default" */
  5992. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5993. struct sched_domain_attr *new, int idx_new)
  5994. {
  5995. struct sched_domain_attr tmp;
  5996. /* fast path */
  5997. if (!new && !cur)
  5998. return 1;
  5999. tmp = SD_ATTR_INIT;
  6000. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6001. new ? (new + idx_new) : &tmp,
  6002. sizeof(struct sched_domain_attr));
  6003. }
  6004. /*
  6005. * Partition sched domains as specified by the 'ndoms_new'
  6006. * cpumasks in the array doms_new[] of cpumasks. This compares
  6007. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6008. * It destroys each deleted domain and builds each new domain.
  6009. *
  6010. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6011. * The masks don't intersect (don't overlap.) We should setup one
  6012. * sched domain for each mask. CPUs not in any of the cpumasks will
  6013. * not be load balanced. If the same cpumask appears both in the
  6014. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6015. * it as it is.
  6016. *
  6017. * The passed in 'doms_new' should be allocated using
  6018. * alloc_sched_domains. This routine takes ownership of it and will
  6019. * free_sched_domains it when done with it. If the caller failed the
  6020. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6021. * and partition_sched_domains() will fallback to the single partition
  6022. * 'fallback_doms', it also forces the domains to be rebuilt.
  6023. *
  6024. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6025. * ndoms_new == 0 is a special case for destroying existing domains,
  6026. * and it will not create the default domain.
  6027. *
  6028. * Call with hotplug lock held
  6029. */
  6030. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6031. struct sched_domain_attr *dattr_new)
  6032. {
  6033. int i, j, n;
  6034. int new_topology;
  6035. mutex_lock(&sched_domains_mutex);
  6036. /* always unregister in case we don't destroy any domains */
  6037. unregister_sched_domain_sysctl();
  6038. /* Let architecture update cpu core mappings. */
  6039. new_topology = arch_update_cpu_topology();
  6040. n = doms_new ? ndoms_new : 0;
  6041. /* Destroy deleted domains */
  6042. for (i = 0; i < ndoms_cur; i++) {
  6043. for (j = 0; j < n && !new_topology; j++) {
  6044. if (cpumask_equal(doms_cur[i], doms_new[j])
  6045. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6046. goto match1;
  6047. }
  6048. /* no match - a current sched domain not in new doms_new[] */
  6049. detach_destroy_domains(doms_cur[i]);
  6050. match1:
  6051. ;
  6052. }
  6053. n = ndoms_cur;
  6054. if (doms_new == NULL) {
  6055. n = 0;
  6056. doms_new = &fallback_doms;
  6057. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6058. WARN_ON_ONCE(dattr_new);
  6059. }
  6060. /* Build new domains */
  6061. for (i = 0; i < ndoms_new; i++) {
  6062. for (j = 0; j < n && !new_topology; j++) {
  6063. if (cpumask_equal(doms_new[i], doms_cur[j])
  6064. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6065. goto match2;
  6066. }
  6067. /* no match - add a new doms_new */
  6068. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6069. match2:
  6070. ;
  6071. }
  6072. /* Remember the new sched domains */
  6073. if (doms_cur != &fallback_doms)
  6074. free_sched_domains(doms_cur, ndoms_cur);
  6075. kfree(dattr_cur); /* kfree(NULL) is safe */
  6076. doms_cur = doms_new;
  6077. dattr_cur = dattr_new;
  6078. ndoms_cur = ndoms_new;
  6079. register_sched_domain_sysctl();
  6080. mutex_unlock(&sched_domains_mutex);
  6081. }
  6082. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6083. /*
  6084. * Update cpusets according to cpu_active mask. If cpusets are
  6085. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6086. * around partition_sched_domains().
  6087. *
  6088. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6089. * want to restore it back to its original state upon resume anyway.
  6090. */
  6091. static void cpuset_cpu_active(void)
  6092. {
  6093. if (cpuhp_tasks_frozen) {
  6094. /*
  6095. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6096. * resume sequence. As long as this is not the last online
  6097. * operation in the resume sequence, just build a single sched
  6098. * domain, ignoring cpusets.
  6099. */
  6100. num_cpus_frozen--;
  6101. if (likely(num_cpus_frozen)) {
  6102. partition_sched_domains(1, NULL, NULL);
  6103. return;
  6104. }
  6105. /*
  6106. * This is the last CPU online operation. So fall through and
  6107. * restore the original sched domains by considering the
  6108. * cpuset configurations.
  6109. */
  6110. }
  6111. cpuset_update_active_cpus(true);
  6112. }
  6113. static int cpuset_cpu_inactive(unsigned int cpu)
  6114. {
  6115. unsigned long flags;
  6116. struct dl_bw *dl_b;
  6117. bool overflow;
  6118. int cpus;
  6119. if (!cpuhp_tasks_frozen) {
  6120. rcu_read_lock_sched();
  6121. dl_b = dl_bw_of(cpu);
  6122. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6123. cpus = dl_bw_cpus(cpu);
  6124. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6125. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6126. rcu_read_unlock_sched();
  6127. if (overflow)
  6128. return -EBUSY;
  6129. cpuset_update_active_cpus(false);
  6130. } else {
  6131. num_cpus_frozen++;
  6132. partition_sched_domains(1, NULL, NULL);
  6133. }
  6134. return 0;
  6135. }
  6136. int sched_cpu_activate(unsigned int cpu)
  6137. {
  6138. struct rq *rq = cpu_rq(cpu);
  6139. unsigned long flags;
  6140. set_cpu_active(cpu, true);
  6141. if (sched_smp_initialized) {
  6142. sched_domains_numa_masks_set(cpu);
  6143. cpuset_cpu_active();
  6144. }
  6145. /*
  6146. * Put the rq online, if not already. This happens:
  6147. *
  6148. * 1) In the early boot process, because we build the real domains
  6149. * after all cpus have been brought up.
  6150. *
  6151. * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
  6152. * domains.
  6153. */
  6154. raw_spin_lock_irqsave(&rq->lock, flags);
  6155. if (rq->rd) {
  6156. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6157. set_rq_online(rq);
  6158. }
  6159. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6160. update_max_interval();
  6161. return 0;
  6162. }
  6163. int sched_cpu_deactivate(unsigned int cpu)
  6164. {
  6165. int ret;
  6166. set_cpu_active(cpu, false);
  6167. /*
  6168. * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
  6169. * users of this state to go away such that all new such users will
  6170. * observe it.
  6171. *
  6172. * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
  6173. * not imply sync_sched(), so wait for both.
  6174. *
  6175. * Do sync before park smpboot threads to take care the rcu boost case.
  6176. */
  6177. if (IS_ENABLED(CONFIG_PREEMPT))
  6178. synchronize_rcu_mult(call_rcu, call_rcu_sched);
  6179. else
  6180. synchronize_rcu();
  6181. if (!sched_smp_initialized)
  6182. return 0;
  6183. ret = cpuset_cpu_inactive(cpu);
  6184. if (ret) {
  6185. set_cpu_active(cpu, true);
  6186. return ret;
  6187. }
  6188. sched_domains_numa_masks_clear(cpu);
  6189. return 0;
  6190. }
  6191. static void sched_rq_cpu_starting(unsigned int cpu)
  6192. {
  6193. struct rq *rq = cpu_rq(cpu);
  6194. rq->calc_load_update = calc_load_update;
  6195. update_max_interval();
  6196. }
  6197. int sched_cpu_starting(unsigned int cpu)
  6198. {
  6199. set_cpu_rq_start_time(cpu);
  6200. sched_rq_cpu_starting(cpu);
  6201. return 0;
  6202. }
  6203. #ifdef CONFIG_HOTPLUG_CPU
  6204. int sched_cpu_dying(unsigned int cpu)
  6205. {
  6206. struct rq *rq = cpu_rq(cpu);
  6207. unsigned long flags;
  6208. /* Handle pending wakeups and then migrate everything off */
  6209. sched_ttwu_pending();
  6210. raw_spin_lock_irqsave(&rq->lock, flags);
  6211. if (rq->rd) {
  6212. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6213. set_rq_offline(rq);
  6214. }
  6215. migrate_tasks(rq);
  6216. BUG_ON(rq->nr_running != 1);
  6217. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6218. calc_load_migrate(rq);
  6219. update_max_interval();
  6220. nohz_balance_exit_idle(cpu);
  6221. hrtick_clear(rq);
  6222. return 0;
  6223. }
  6224. #endif
  6225. void __init sched_init_smp(void)
  6226. {
  6227. cpumask_var_t non_isolated_cpus;
  6228. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6229. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6230. sched_init_numa();
  6231. /*
  6232. * There's no userspace yet to cause hotplug operations; hence all the
  6233. * cpu masks are stable and all blatant races in the below code cannot
  6234. * happen.
  6235. */
  6236. mutex_lock(&sched_domains_mutex);
  6237. init_sched_domains(cpu_active_mask);
  6238. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6239. if (cpumask_empty(non_isolated_cpus))
  6240. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6241. mutex_unlock(&sched_domains_mutex);
  6242. /* Move init over to a non-isolated CPU */
  6243. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6244. BUG();
  6245. sched_init_granularity();
  6246. free_cpumask_var(non_isolated_cpus);
  6247. init_sched_rt_class();
  6248. init_sched_dl_class();
  6249. sched_smp_initialized = true;
  6250. }
  6251. static int __init migration_init(void)
  6252. {
  6253. sched_rq_cpu_starting(smp_processor_id());
  6254. return 0;
  6255. }
  6256. early_initcall(migration_init);
  6257. #else
  6258. void __init sched_init_smp(void)
  6259. {
  6260. sched_init_granularity();
  6261. }
  6262. #endif /* CONFIG_SMP */
  6263. int in_sched_functions(unsigned long addr)
  6264. {
  6265. return in_lock_functions(addr) ||
  6266. (addr >= (unsigned long)__sched_text_start
  6267. && addr < (unsigned long)__sched_text_end);
  6268. }
  6269. #ifdef CONFIG_CGROUP_SCHED
  6270. /*
  6271. * Default task group.
  6272. * Every task in system belongs to this group at bootup.
  6273. */
  6274. struct task_group root_task_group;
  6275. LIST_HEAD(task_groups);
  6276. /* Cacheline aligned slab cache for task_group */
  6277. static struct kmem_cache *task_group_cache __read_mostly;
  6278. #endif
  6279. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6280. void __init sched_init(void)
  6281. {
  6282. int i, j;
  6283. unsigned long alloc_size = 0, ptr;
  6284. #ifdef CONFIG_FAIR_GROUP_SCHED
  6285. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6286. #endif
  6287. #ifdef CONFIG_RT_GROUP_SCHED
  6288. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6289. #endif
  6290. if (alloc_size) {
  6291. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6292. #ifdef CONFIG_FAIR_GROUP_SCHED
  6293. root_task_group.se = (struct sched_entity **)ptr;
  6294. ptr += nr_cpu_ids * sizeof(void **);
  6295. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6296. ptr += nr_cpu_ids * sizeof(void **);
  6297. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6298. #ifdef CONFIG_RT_GROUP_SCHED
  6299. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6300. ptr += nr_cpu_ids * sizeof(void **);
  6301. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6302. ptr += nr_cpu_ids * sizeof(void **);
  6303. #endif /* CONFIG_RT_GROUP_SCHED */
  6304. }
  6305. #ifdef CONFIG_CPUMASK_OFFSTACK
  6306. for_each_possible_cpu(i) {
  6307. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6308. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6309. }
  6310. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6311. init_rt_bandwidth(&def_rt_bandwidth,
  6312. global_rt_period(), global_rt_runtime());
  6313. init_dl_bandwidth(&def_dl_bandwidth,
  6314. global_rt_period(), global_rt_runtime());
  6315. #ifdef CONFIG_SMP
  6316. init_defrootdomain();
  6317. #endif
  6318. #ifdef CONFIG_RT_GROUP_SCHED
  6319. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6320. global_rt_period(), global_rt_runtime());
  6321. #endif /* CONFIG_RT_GROUP_SCHED */
  6322. #ifdef CONFIG_CGROUP_SCHED
  6323. task_group_cache = KMEM_CACHE(task_group, 0);
  6324. list_add(&root_task_group.list, &task_groups);
  6325. INIT_LIST_HEAD(&root_task_group.children);
  6326. INIT_LIST_HEAD(&root_task_group.siblings);
  6327. autogroup_init(&init_task);
  6328. #endif /* CONFIG_CGROUP_SCHED */
  6329. for_each_possible_cpu(i) {
  6330. struct rq *rq;
  6331. rq = cpu_rq(i);
  6332. raw_spin_lock_init(&rq->lock);
  6333. rq->nr_running = 0;
  6334. rq->calc_load_active = 0;
  6335. rq->calc_load_update = jiffies + LOAD_FREQ;
  6336. init_cfs_rq(&rq->cfs);
  6337. init_rt_rq(&rq->rt);
  6338. init_dl_rq(&rq->dl);
  6339. #ifdef CONFIG_FAIR_GROUP_SCHED
  6340. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6341. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6342. /*
  6343. * How much cpu bandwidth does root_task_group get?
  6344. *
  6345. * In case of task-groups formed thr' the cgroup filesystem, it
  6346. * gets 100% of the cpu resources in the system. This overall
  6347. * system cpu resource is divided among the tasks of
  6348. * root_task_group and its child task-groups in a fair manner,
  6349. * based on each entity's (task or task-group's) weight
  6350. * (se->load.weight).
  6351. *
  6352. * In other words, if root_task_group has 10 tasks of weight
  6353. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6354. * then A0's share of the cpu resource is:
  6355. *
  6356. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6357. *
  6358. * We achieve this by letting root_task_group's tasks sit
  6359. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6360. */
  6361. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6362. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6363. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6364. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6365. #ifdef CONFIG_RT_GROUP_SCHED
  6366. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6367. #endif
  6368. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6369. rq->cpu_load[j] = 0;
  6370. #ifdef CONFIG_SMP
  6371. rq->sd = NULL;
  6372. rq->rd = NULL;
  6373. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6374. rq->balance_callback = NULL;
  6375. rq->active_balance = 0;
  6376. rq->next_balance = jiffies;
  6377. rq->push_cpu = 0;
  6378. rq->cpu = i;
  6379. rq->online = 0;
  6380. rq->idle_stamp = 0;
  6381. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6382. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6383. INIT_LIST_HEAD(&rq->cfs_tasks);
  6384. rq_attach_root(rq, &def_root_domain);
  6385. #ifdef CONFIG_NO_HZ_COMMON
  6386. rq->last_load_update_tick = jiffies;
  6387. rq->nohz_flags = 0;
  6388. #endif
  6389. #ifdef CONFIG_NO_HZ_FULL
  6390. rq->last_sched_tick = 0;
  6391. #endif
  6392. #endif /* CONFIG_SMP */
  6393. init_rq_hrtick(rq);
  6394. atomic_set(&rq->nr_iowait, 0);
  6395. }
  6396. set_load_weight(&init_task);
  6397. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6398. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6399. #endif
  6400. /*
  6401. * The boot idle thread does lazy MMU switching as well:
  6402. */
  6403. atomic_inc(&init_mm.mm_count);
  6404. enter_lazy_tlb(&init_mm, current);
  6405. /*
  6406. * During early bootup we pretend to be a normal task:
  6407. */
  6408. current->sched_class = &fair_sched_class;
  6409. /*
  6410. * Make us the idle thread. Technically, schedule() should not be
  6411. * called from this thread, however somewhere below it might be,
  6412. * but because we are the idle thread, we just pick up running again
  6413. * when this runqueue becomes "idle".
  6414. */
  6415. init_idle(current, smp_processor_id());
  6416. calc_load_update = jiffies + LOAD_FREQ;
  6417. #ifdef CONFIG_SMP
  6418. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6419. /* May be allocated at isolcpus cmdline parse time */
  6420. if (cpu_isolated_map == NULL)
  6421. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6422. idle_thread_set_boot_cpu();
  6423. set_cpu_rq_start_time(smp_processor_id());
  6424. #endif
  6425. init_sched_fair_class();
  6426. init_schedstats();
  6427. scheduler_running = 1;
  6428. }
  6429. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6430. static inline int preempt_count_equals(int preempt_offset)
  6431. {
  6432. int nested = preempt_count() + rcu_preempt_depth();
  6433. return (nested == preempt_offset);
  6434. }
  6435. void __might_sleep(const char *file, int line, int preempt_offset)
  6436. {
  6437. /*
  6438. * Blocking primitives will set (and therefore destroy) current->state,
  6439. * since we will exit with TASK_RUNNING make sure we enter with it,
  6440. * otherwise we will destroy state.
  6441. */
  6442. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6443. "do not call blocking ops when !TASK_RUNNING; "
  6444. "state=%lx set at [<%p>] %pS\n",
  6445. current->state,
  6446. (void *)current->task_state_change,
  6447. (void *)current->task_state_change);
  6448. ___might_sleep(file, line, preempt_offset);
  6449. }
  6450. EXPORT_SYMBOL(__might_sleep);
  6451. void ___might_sleep(const char *file, int line, int preempt_offset)
  6452. {
  6453. static unsigned long prev_jiffy; /* ratelimiting */
  6454. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6455. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6456. !is_idle_task(current)) ||
  6457. system_state != SYSTEM_RUNNING || oops_in_progress)
  6458. return;
  6459. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6460. return;
  6461. prev_jiffy = jiffies;
  6462. printk(KERN_ERR
  6463. "BUG: sleeping function called from invalid context at %s:%d\n",
  6464. file, line);
  6465. printk(KERN_ERR
  6466. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6467. in_atomic(), irqs_disabled(),
  6468. current->pid, current->comm);
  6469. if (task_stack_end_corrupted(current))
  6470. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6471. debug_show_held_locks(current);
  6472. if (irqs_disabled())
  6473. print_irqtrace_events(current);
  6474. #ifdef CONFIG_DEBUG_PREEMPT
  6475. if (!preempt_count_equals(preempt_offset)) {
  6476. pr_err("Preemption disabled at:");
  6477. print_ip_sym(current->preempt_disable_ip);
  6478. pr_cont("\n");
  6479. }
  6480. #endif
  6481. dump_stack();
  6482. }
  6483. EXPORT_SYMBOL(___might_sleep);
  6484. #endif
  6485. #ifdef CONFIG_MAGIC_SYSRQ
  6486. void normalize_rt_tasks(void)
  6487. {
  6488. struct task_struct *g, *p;
  6489. struct sched_attr attr = {
  6490. .sched_policy = SCHED_NORMAL,
  6491. };
  6492. read_lock(&tasklist_lock);
  6493. for_each_process_thread(g, p) {
  6494. /*
  6495. * Only normalize user tasks:
  6496. */
  6497. if (p->flags & PF_KTHREAD)
  6498. continue;
  6499. p->se.exec_start = 0;
  6500. #ifdef CONFIG_SCHEDSTATS
  6501. p->se.statistics.wait_start = 0;
  6502. p->se.statistics.sleep_start = 0;
  6503. p->se.statistics.block_start = 0;
  6504. #endif
  6505. if (!dl_task(p) && !rt_task(p)) {
  6506. /*
  6507. * Renice negative nice level userspace
  6508. * tasks back to 0:
  6509. */
  6510. if (task_nice(p) < 0)
  6511. set_user_nice(p, 0);
  6512. continue;
  6513. }
  6514. __sched_setscheduler(p, &attr, false, false);
  6515. }
  6516. read_unlock(&tasklist_lock);
  6517. }
  6518. #endif /* CONFIG_MAGIC_SYSRQ */
  6519. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6520. /*
  6521. * These functions are only useful for the IA64 MCA handling, or kdb.
  6522. *
  6523. * They can only be called when the whole system has been
  6524. * stopped - every CPU needs to be quiescent, and no scheduling
  6525. * activity can take place. Using them for anything else would
  6526. * be a serious bug, and as a result, they aren't even visible
  6527. * under any other configuration.
  6528. */
  6529. /**
  6530. * curr_task - return the current task for a given cpu.
  6531. * @cpu: the processor in question.
  6532. *
  6533. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6534. *
  6535. * Return: The current task for @cpu.
  6536. */
  6537. struct task_struct *curr_task(int cpu)
  6538. {
  6539. return cpu_curr(cpu);
  6540. }
  6541. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6542. #ifdef CONFIG_IA64
  6543. /**
  6544. * set_curr_task - set the current task for a given cpu.
  6545. * @cpu: the processor in question.
  6546. * @p: the task pointer to set.
  6547. *
  6548. * Description: This function must only be used when non-maskable interrupts
  6549. * are serviced on a separate stack. It allows the architecture to switch the
  6550. * notion of the current task on a cpu in a non-blocking manner. This function
  6551. * must be called with all CPU's synchronized, and interrupts disabled, the
  6552. * and caller must save the original value of the current task (see
  6553. * curr_task() above) and restore that value before reenabling interrupts and
  6554. * re-starting the system.
  6555. *
  6556. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6557. */
  6558. void set_curr_task(int cpu, struct task_struct *p)
  6559. {
  6560. cpu_curr(cpu) = p;
  6561. }
  6562. #endif
  6563. #ifdef CONFIG_CGROUP_SCHED
  6564. /* task_group_lock serializes the addition/removal of task groups */
  6565. static DEFINE_SPINLOCK(task_group_lock);
  6566. static void sched_free_group(struct task_group *tg)
  6567. {
  6568. free_fair_sched_group(tg);
  6569. free_rt_sched_group(tg);
  6570. autogroup_free(tg);
  6571. kmem_cache_free(task_group_cache, tg);
  6572. }
  6573. /* allocate runqueue etc for a new task group */
  6574. struct task_group *sched_create_group(struct task_group *parent)
  6575. {
  6576. struct task_group *tg;
  6577. tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
  6578. if (!tg)
  6579. return ERR_PTR(-ENOMEM);
  6580. if (!alloc_fair_sched_group(tg, parent))
  6581. goto err;
  6582. if (!alloc_rt_sched_group(tg, parent))
  6583. goto err;
  6584. return tg;
  6585. err:
  6586. sched_free_group(tg);
  6587. return ERR_PTR(-ENOMEM);
  6588. }
  6589. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6590. {
  6591. unsigned long flags;
  6592. spin_lock_irqsave(&task_group_lock, flags);
  6593. list_add_rcu(&tg->list, &task_groups);
  6594. WARN_ON(!parent); /* root should already exist */
  6595. tg->parent = parent;
  6596. INIT_LIST_HEAD(&tg->children);
  6597. list_add_rcu(&tg->siblings, &parent->children);
  6598. spin_unlock_irqrestore(&task_group_lock, flags);
  6599. online_fair_sched_group(tg);
  6600. }
  6601. /* rcu callback to free various structures associated with a task group */
  6602. static void sched_free_group_rcu(struct rcu_head *rhp)
  6603. {
  6604. /* now it should be safe to free those cfs_rqs */
  6605. sched_free_group(container_of(rhp, struct task_group, rcu));
  6606. }
  6607. void sched_destroy_group(struct task_group *tg)
  6608. {
  6609. /* wait for possible concurrent references to cfs_rqs complete */
  6610. call_rcu(&tg->rcu, sched_free_group_rcu);
  6611. }
  6612. void sched_offline_group(struct task_group *tg)
  6613. {
  6614. unsigned long flags;
  6615. /* end participation in shares distribution */
  6616. unregister_fair_sched_group(tg);
  6617. spin_lock_irqsave(&task_group_lock, flags);
  6618. list_del_rcu(&tg->list);
  6619. list_del_rcu(&tg->siblings);
  6620. spin_unlock_irqrestore(&task_group_lock, flags);
  6621. }
  6622. static void sched_change_group(struct task_struct *tsk, int type)
  6623. {
  6624. struct task_group *tg;
  6625. /*
  6626. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6627. * which is pointless here. Thus, we pass "true" to task_css_check()
  6628. * to prevent lockdep warnings.
  6629. */
  6630. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6631. struct task_group, css);
  6632. tg = autogroup_task_group(tsk, tg);
  6633. tsk->sched_task_group = tg;
  6634. #ifdef CONFIG_FAIR_GROUP_SCHED
  6635. if (tsk->sched_class->task_change_group)
  6636. tsk->sched_class->task_change_group(tsk, type);
  6637. else
  6638. #endif
  6639. set_task_rq(tsk, task_cpu(tsk));
  6640. }
  6641. /*
  6642. * Change task's runqueue when it moves between groups.
  6643. *
  6644. * The caller of this function should have put the task in its new group by
  6645. * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
  6646. * its new group.
  6647. */
  6648. void sched_move_task(struct task_struct *tsk)
  6649. {
  6650. int queued, running;
  6651. struct rq_flags rf;
  6652. struct rq *rq;
  6653. rq = task_rq_lock(tsk, &rf);
  6654. running = task_current(rq, tsk);
  6655. queued = task_on_rq_queued(tsk);
  6656. if (queued)
  6657. dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
  6658. if (unlikely(running))
  6659. put_prev_task(rq, tsk);
  6660. sched_change_group(tsk, TASK_MOVE_GROUP);
  6661. if (unlikely(running))
  6662. tsk->sched_class->set_curr_task(rq);
  6663. if (queued)
  6664. enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
  6665. task_rq_unlock(rq, tsk, &rf);
  6666. }
  6667. #endif /* CONFIG_CGROUP_SCHED */
  6668. #ifdef CONFIG_RT_GROUP_SCHED
  6669. /*
  6670. * Ensure that the real time constraints are schedulable.
  6671. */
  6672. static DEFINE_MUTEX(rt_constraints_mutex);
  6673. /* Must be called with tasklist_lock held */
  6674. static inline int tg_has_rt_tasks(struct task_group *tg)
  6675. {
  6676. struct task_struct *g, *p;
  6677. /*
  6678. * Autogroups do not have RT tasks; see autogroup_create().
  6679. */
  6680. if (task_group_is_autogroup(tg))
  6681. return 0;
  6682. for_each_process_thread(g, p) {
  6683. if (rt_task(p) && task_group(p) == tg)
  6684. return 1;
  6685. }
  6686. return 0;
  6687. }
  6688. struct rt_schedulable_data {
  6689. struct task_group *tg;
  6690. u64 rt_period;
  6691. u64 rt_runtime;
  6692. };
  6693. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6694. {
  6695. struct rt_schedulable_data *d = data;
  6696. struct task_group *child;
  6697. unsigned long total, sum = 0;
  6698. u64 period, runtime;
  6699. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6700. runtime = tg->rt_bandwidth.rt_runtime;
  6701. if (tg == d->tg) {
  6702. period = d->rt_period;
  6703. runtime = d->rt_runtime;
  6704. }
  6705. /*
  6706. * Cannot have more runtime than the period.
  6707. */
  6708. if (runtime > period && runtime != RUNTIME_INF)
  6709. return -EINVAL;
  6710. /*
  6711. * Ensure we don't starve existing RT tasks.
  6712. */
  6713. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6714. return -EBUSY;
  6715. total = to_ratio(period, runtime);
  6716. /*
  6717. * Nobody can have more than the global setting allows.
  6718. */
  6719. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6720. return -EINVAL;
  6721. /*
  6722. * The sum of our children's runtime should not exceed our own.
  6723. */
  6724. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6725. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6726. runtime = child->rt_bandwidth.rt_runtime;
  6727. if (child == d->tg) {
  6728. period = d->rt_period;
  6729. runtime = d->rt_runtime;
  6730. }
  6731. sum += to_ratio(period, runtime);
  6732. }
  6733. if (sum > total)
  6734. return -EINVAL;
  6735. return 0;
  6736. }
  6737. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6738. {
  6739. int ret;
  6740. struct rt_schedulable_data data = {
  6741. .tg = tg,
  6742. .rt_period = period,
  6743. .rt_runtime = runtime,
  6744. };
  6745. rcu_read_lock();
  6746. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6747. rcu_read_unlock();
  6748. return ret;
  6749. }
  6750. static int tg_set_rt_bandwidth(struct task_group *tg,
  6751. u64 rt_period, u64 rt_runtime)
  6752. {
  6753. int i, err = 0;
  6754. /*
  6755. * Disallowing the root group RT runtime is BAD, it would disallow the
  6756. * kernel creating (and or operating) RT threads.
  6757. */
  6758. if (tg == &root_task_group && rt_runtime == 0)
  6759. return -EINVAL;
  6760. /* No period doesn't make any sense. */
  6761. if (rt_period == 0)
  6762. return -EINVAL;
  6763. mutex_lock(&rt_constraints_mutex);
  6764. read_lock(&tasklist_lock);
  6765. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6766. if (err)
  6767. goto unlock;
  6768. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6769. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6770. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6771. for_each_possible_cpu(i) {
  6772. struct rt_rq *rt_rq = tg->rt_rq[i];
  6773. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6774. rt_rq->rt_runtime = rt_runtime;
  6775. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6776. }
  6777. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6778. unlock:
  6779. read_unlock(&tasklist_lock);
  6780. mutex_unlock(&rt_constraints_mutex);
  6781. return err;
  6782. }
  6783. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6784. {
  6785. u64 rt_runtime, rt_period;
  6786. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6787. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6788. if (rt_runtime_us < 0)
  6789. rt_runtime = RUNTIME_INF;
  6790. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6791. }
  6792. static long sched_group_rt_runtime(struct task_group *tg)
  6793. {
  6794. u64 rt_runtime_us;
  6795. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6796. return -1;
  6797. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6798. do_div(rt_runtime_us, NSEC_PER_USEC);
  6799. return rt_runtime_us;
  6800. }
  6801. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6802. {
  6803. u64 rt_runtime, rt_period;
  6804. rt_period = rt_period_us * NSEC_PER_USEC;
  6805. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6806. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6807. }
  6808. static long sched_group_rt_period(struct task_group *tg)
  6809. {
  6810. u64 rt_period_us;
  6811. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6812. do_div(rt_period_us, NSEC_PER_USEC);
  6813. return rt_period_us;
  6814. }
  6815. #endif /* CONFIG_RT_GROUP_SCHED */
  6816. #ifdef CONFIG_RT_GROUP_SCHED
  6817. static int sched_rt_global_constraints(void)
  6818. {
  6819. int ret = 0;
  6820. mutex_lock(&rt_constraints_mutex);
  6821. read_lock(&tasklist_lock);
  6822. ret = __rt_schedulable(NULL, 0, 0);
  6823. read_unlock(&tasklist_lock);
  6824. mutex_unlock(&rt_constraints_mutex);
  6825. return ret;
  6826. }
  6827. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6828. {
  6829. /* Don't accept realtime tasks when there is no way for them to run */
  6830. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6831. return 0;
  6832. return 1;
  6833. }
  6834. #else /* !CONFIG_RT_GROUP_SCHED */
  6835. static int sched_rt_global_constraints(void)
  6836. {
  6837. unsigned long flags;
  6838. int i;
  6839. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6840. for_each_possible_cpu(i) {
  6841. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6842. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6843. rt_rq->rt_runtime = global_rt_runtime();
  6844. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6845. }
  6846. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6847. return 0;
  6848. }
  6849. #endif /* CONFIG_RT_GROUP_SCHED */
  6850. static int sched_dl_global_validate(void)
  6851. {
  6852. u64 runtime = global_rt_runtime();
  6853. u64 period = global_rt_period();
  6854. u64 new_bw = to_ratio(period, runtime);
  6855. struct dl_bw *dl_b;
  6856. int cpu, ret = 0;
  6857. unsigned long flags;
  6858. /*
  6859. * Here we want to check the bandwidth not being set to some
  6860. * value smaller than the currently allocated bandwidth in
  6861. * any of the root_domains.
  6862. *
  6863. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6864. * cycling on root_domains... Discussion on different/better
  6865. * solutions is welcome!
  6866. */
  6867. for_each_possible_cpu(cpu) {
  6868. rcu_read_lock_sched();
  6869. dl_b = dl_bw_of(cpu);
  6870. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6871. if (new_bw < dl_b->total_bw)
  6872. ret = -EBUSY;
  6873. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6874. rcu_read_unlock_sched();
  6875. if (ret)
  6876. break;
  6877. }
  6878. return ret;
  6879. }
  6880. static void sched_dl_do_global(void)
  6881. {
  6882. u64 new_bw = -1;
  6883. struct dl_bw *dl_b;
  6884. int cpu;
  6885. unsigned long flags;
  6886. def_dl_bandwidth.dl_period = global_rt_period();
  6887. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6888. if (global_rt_runtime() != RUNTIME_INF)
  6889. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6890. /*
  6891. * FIXME: As above...
  6892. */
  6893. for_each_possible_cpu(cpu) {
  6894. rcu_read_lock_sched();
  6895. dl_b = dl_bw_of(cpu);
  6896. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6897. dl_b->bw = new_bw;
  6898. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6899. rcu_read_unlock_sched();
  6900. }
  6901. }
  6902. static int sched_rt_global_validate(void)
  6903. {
  6904. if (sysctl_sched_rt_period <= 0)
  6905. return -EINVAL;
  6906. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6907. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6908. return -EINVAL;
  6909. return 0;
  6910. }
  6911. static void sched_rt_do_global(void)
  6912. {
  6913. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6914. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6915. }
  6916. int sched_rt_handler(struct ctl_table *table, int write,
  6917. void __user *buffer, size_t *lenp,
  6918. loff_t *ppos)
  6919. {
  6920. int old_period, old_runtime;
  6921. static DEFINE_MUTEX(mutex);
  6922. int ret;
  6923. mutex_lock(&mutex);
  6924. old_period = sysctl_sched_rt_period;
  6925. old_runtime = sysctl_sched_rt_runtime;
  6926. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6927. if (!ret && write) {
  6928. ret = sched_rt_global_validate();
  6929. if (ret)
  6930. goto undo;
  6931. ret = sched_dl_global_validate();
  6932. if (ret)
  6933. goto undo;
  6934. ret = sched_rt_global_constraints();
  6935. if (ret)
  6936. goto undo;
  6937. sched_rt_do_global();
  6938. sched_dl_do_global();
  6939. }
  6940. if (0) {
  6941. undo:
  6942. sysctl_sched_rt_period = old_period;
  6943. sysctl_sched_rt_runtime = old_runtime;
  6944. }
  6945. mutex_unlock(&mutex);
  6946. return ret;
  6947. }
  6948. int sched_rr_handler(struct ctl_table *table, int write,
  6949. void __user *buffer, size_t *lenp,
  6950. loff_t *ppos)
  6951. {
  6952. int ret;
  6953. static DEFINE_MUTEX(mutex);
  6954. mutex_lock(&mutex);
  6955. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6956. /* make sure that internally we keep jiffies */
  6957. /* also, writing zero resets timeslice to default */
  6958. if (!ret && write) {
  6959. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6960. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6961. }
  6962. mutex_unlock(&mutex);
  6963. return ret;
  6964. }
  6965. #ifdef CONFIG_CGROUP_SCHED
  6966. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6967. {
  6968. return css ? container_of(css, struct task_group, css) : NULL;
  6969. }
  6970. static struct cgroup_subsys_state *
  6971. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6972. {
  6973. struct task_group *parent = css_tg(parent_css);
  6974. struct task_group *tg;
  6975. if (!parent) {
  6976. /* This is early initialization for the top cgroup */
  6977. return &root_task_group.css;
  6978. }
  6979. tg = sched_create_group(parent);
  6980. if (IS_ERR(tg))
  6981. return ERR_PTR(-ENOMEM);
  6982. sched_online_group(tg, parent);
  6983. return &tg->css;
  6984. }
  6985. static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
  6986. {
  6987. struct task_group *tg = css_tg(css);
  6988. sched_offline_group(tg);
  6989. }
  6990. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6991. {
  6992. struct task_group *tg = css_tg(css);
  6993. /*
  6994. * Relies on the RCU grace period between css_released() and this.
  6995. */
  6996. sched_free_group(tg);
  6997. }
  6998. /*
  6999. * This is called before wake_up_new_task(), therefore we really only
  7000. * have to set its group bits, all the other stuff does not apply.
  7001. */
  7002. static void cpu_cgroup_fork(struct task_struct *task)
  7003. {
  7004. struct rq_flags rf;
  7005. struct rq *rq;
  7006. rq = task_rq_lock(task, &rf);
  7007. sched_change_group(task, TASK_SET_GROUP);
  7008. task_rq_unlock(rq, task, &rf);
  7009. }
  7010. static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
  7011. {
  7012. struct task_struct *task;
  7013. struct cgroup_subsys_state *css;
  7014. int ret = 0;
  7015. cgroup_taskset_for_each(task, css, tset) {
  7016. #ifdef CONFIG_RT_GROUP_SCHED
  7017. if (!sched_rt_can_attach(css_tg(css), task))
  7018. return -EINVAL;
  7019. #else
  7020. /* We don't support RT-tasks being in separate groups */
  7021. if (task->sched_class != &fair_sched_class)
  7022. return -EINVAL;
  7023. #endif
  7024. /*
  7025. * Serialize against wake_up_new_task() such that if its
  7026. * running, we're sure to observe its full state.
  7027. */
  7028. raw_spin_lock_irq(&task->pi_lock);
  7029. /*
  7030. * Avoid calling sched_move_task() before wake_up_new_task()
  7031. * has happened. This would lead to problems with PELT, due to
  7032. * move wanting to detach+attach while we're not attached yet.
  7033. */
  7034. if (task->state == TASK_NEW)
  7035. ret = -EINVAL;
  7036. raw_spin_unlock_irq(&task->pi_lock);
  7037. if (ret)
  7038. break;
  7039. }
  7040. return ret;
  7041. }
  7042. static void cpu_cgroup_attach(struct cgroup_taskset *tset)
  7043. {
  7044. struct task_struct *task;
  7045. struct cgroup_subsys_state *css;
  7046. cgroup_taskset_for_each(task, css, tset)
  7047. sched_move_task(task);
  7048. }
  7049. #ifdef CONFIG_FAIR_GROUP_SCHED
  7050. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  7051. struct cftype *cftype, u64 shareval)
  7052. {
  7053. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  7054. }
  7055. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  7056. struct cftype *cft)
  7057. {
  7058. struct task_group *tg = css_tg(css);
  7059. return (u64) scale_load_down(tg->shares);
  7060. }
  7061. #ifdef CONFIG_CFS_BANDWIDTH
  7062. static DEFINE_MUTEX(cfs_constraints_mutex);
  7063. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7064. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7065. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7066. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7067. {
  7068. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  7069. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7070. if (tg == &root_task_group)
  7071. return -EINVAL;
  7072. /*
  7073. * Ensure we have at some amount of bandwidth every period. This is
  7074. * to prevent reaching a state of large arrears when throttled via
  7075. * entity_tick() resulting in prolonged exit starvation.
  7076. */
  7077. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7078. return -EINVAL;
  7079. /*
  7080. * Likewise, bound things on the otherside by preventing insane quota
  7081. * periods. This also allows us to normalize in computing quota
  7082. * feasibility.
  7083. */
  7084. if (period > max_cfs_quota_period)
  7085. return -EINVAL;
  7086. /*
  7087. * Prevent race between setting of cfs_rq->runtime_enabled and
  7088. * unthrottle_offline_cfs_rqs().
  7089. */
  7090. get_online_cpus();
  7091. mutex_lock(&cfs_constraints_mutex);
  7092. ret = __cfs_schedulable(tg, period, quota);
  7093. if (ret)
  7094. goto out_unlock;
  7095. runtime_enabled = quota != RUNTIME_INF;
  7096. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7097. /*
  7098. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7099. * before making related changes, and on->off must occur afterwards
  7100. */
  7101. if (runtime_enabled && !runtime_was_enabled)
  7102. cfs_bandwidth_usage_inc();
  7103. raw_spin_lock_irq(&cfs_b->lock);
  7104. cfs_b->period = ns_to_ktime(period);
  7105. cfs_b->quota = quota;
  7106. __refill_cfs_bandwidth_runtime(cfs_b);
  7107. /* restart the period timer (if active) to handle new period expiry */
  7108. if (runtime_enabled)
  7109. start_cfs_bandwidth(cfs_b);
  7110. raw_spin_unlock_irq(&cfs_b->lock);
  7111. for_each_online_cpu(i) {
  7112. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7113. struct rq *rq = cfs_rq->rq;
  7114. raw_spin_lock_irq(&rq->lock);
  7115. cfs_rq->runtime_enabled = runtime_enabled;
  7116. cfs_rq->runtime_remaining = 0;
  7117. if (cfs_rq->throttled)
  7118. unthrottle_cfs_rq(cfs_rq);
  7119. raw_spin_unlock_irq(&rq->lock);
  7120. }
  7121. if (runtime_was_enabled && !runtime_enabled)
  7122. cfs_bandwidth_usage_dec();
  7123. out_unlock:
  7124. mutex_unlock(&cfs_constraints_mutex);
  7125. put_online_cpus();
  7126. return ret;
  7127. }
  7128. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7129. {
  7130. u64 quota, period;
  7131. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7132. if (cfs_quota_us < 0)
  7133. quota = RUNTIME_INF;
  7134. else
  7135. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7136. return tg_set_cfs_bandwidth(tg, period, quota);
  7137. }
  7138. long tg_get_cfs_quota(struct task_group *tg)
  7139. {
  7140. u64 quota_us;
  7141. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7142. return -1;
  7143. quota_us = tg->cfs_bandwidth.quota;
  7144. do_div(quota_us, NSEC_PER_USEC);
  7145. return quota_us;
  7146. }
  7147. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7148. {
  7149. u64 quota, period;
  7150. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7151. quota = tg->cfs_bandwidth.quota;
  7152. return tg_set_cfs_bandwidth(tg, period, quota);
  7153. }
  7154. long tg_get_cfs_period(struct task_group *tg)
  7155. {
  7156. u64 cfs_period_us;
  7157. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7158. do_div(cfs_period_us, NSEC_PER_USEC);
  7159. return cfs_period_us;
  7160. }
  7161. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7162. struct cftype *cft)
  7163. {
  7164. return tg_get_cfs_quota(css_tg(css));
  7165. }
  7166. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7167. struct cftype *cftype, s64 cfs_quota_us)
  7168. {
  7169. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7170. }
  7171. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7172. struct cftype *cft)
  7173. {
  7174. return tg_get_cfs_period(css_tg(css));
  7175. }
  7176. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7177. struct cftype *cftype, u64 cfs_period_us)
  7178. {
  7179. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7180. }
  7181. struct cfs_schedulable_data {
  7182. struct task_group *tg;
  7183. u64 period, quota;
  7184. };
  7185. /*
  7186. * normalize group quota/period to be quota/max_period
  7187. * note: units are usecs
  7188. */
  7189. static u64 normalize_cfs_quota(struct task_group *tg,
  7190. struct cfs_schedulable_data *d)
  7191. {
  7192. u64 quota, period;
  7193. if (tg == d->tg) {
  7194. period = d->period;
  7195. quota = d->quota;
  7196. } else {
  7197. period = tg_get_cfs_period(tg);
  7198. quota = tg_get_cfs_quota(tg);
  7199. }
  7200. /* note: these should typically be equivalent */
  7201. if (quota == RUNTIME_INF || quota == -1)
  7202. return RUNTIME_INF;
  7203. return to_ratio(period, quota);
  7204. }
  7205. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7206. {
  7207. struct cfs_schedulable_data *d = data;
  7208. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7209. s64 quota = 0, parent_quota = -1;
  7210. if (!tg->parent) {
  7211. quota = RUNTIME_INF;
  7212. } else {
  7213. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7214. quota = normalize_cfs_quota(tg, d);
  7215. parent_quota = parent_b->hierarchical_quota;
  7216. /*
  7217. * ensure max(child_quota) <= parent_quota, inherit when no
  7218. * limit is set
  7219. */
  7220. if (quota == RUNTIME_INF)
  7221. quota = parent_quota;
  7222. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7223. return -EINVAL;
  7224. }
  7225. cfs_b->hierarchical_quota = quota;
  7226. return 0;
  7227. }
  7228. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7229. {
  7230. int ret;
  7231. struct cfs_schedulable_data data = {
  7232. .tg = tg,
  7233. .period = period,
  7234. .quota = quota,
  7235. };
  7236. if (quota != RUNTIME_INF) {
  7237. do_div(data.period, NSEC_PER_USEC);
  7238. do_div(data.quota, NSEC_PER_USEC);
  7239. }
  7240. rcu_read_lock();
  7241. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7242. rcu_read_unlock();
  7243. return ret;
  7244. }
  7245. static int cpu_stats_show(struct seq_file *sf, void *v)
  7246. {
  7247. struct task_group *tg = css_tg(seq_css(sf));
  7248. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7249. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7250. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7251. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7252. return 0;
  7253. }
  7254. #endif /* CONFIG_CFS_BANDWIDTH */
  7255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7256. #ifdef CONFIG_RT_GROUP_SCHED
  7257. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7258. struct cftype *cft, s64 val)
  7259. {
  7260. return sched_group_set_rt_runtime(css_tg(css), val);
  7261. }
  7262. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7263. struct cftype *cft)
  7264. {
  7265. return sched_group_rt_runtime(css_tg(css));
  7266. }
  7267. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7268. struct cftype *cftype, u64 rt_period_us)
  7269. {
  7270. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7271. }
  7272. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7273. struct cftype *cft)
  7274. {
  7275. return sched_group_rt_period(css_tg(css));
  7276. }
  7277. #endif /* CONFIG_RT_GROUP_SCHED */
  7278. static struct cftype cpu_files[] = {
  7279. #ifdef CONFIG_FAIR_GROUP_SCHED
  7280. {
  7281. .name = "shares",
  7282. .read_u64 = cpu_shares_read_u64,
  7283. .write_u64 = cpu_shares_write_u64,
  7284. },
  7285. #endif
  7286. #ifdef CONFIG_CFS_BANDWIDTH
  7287. {
  7288. .name = "cfs_quota_us",
  7289. .read_s64 = cpu_cfs_quota_read_s64,
  7290. .write_s64 = cpu_cfs_quota_write_s64,
  7291. },
  7292. {
  7293. .name = "cfs_period_us",
  7294. .read_u64 = cpu_cfs_period_read_u64,
  7295. .write_u64 = cpu_cfs_period_write_u64,
  7296. },
  7297. {
  7298. .name = "stat",
  7299. .seq_show = cpu_stats_show,
  7300. },
  7301. #endif
  7302. #ifdef CONFIG_RT_GROUP_SCHED
  7303. {
  7304. .name = "rt_runtime_us",
  7305. .read_s64 = cpu_rt_runtime_read,
  7306. .write_s64 = cpu_rt_runtime_write,
  7307. },
  7308. {
  7309. .name = "rt_period_us",
  7310. .read_u64 = cpu_rt_period_read_uint,
  7311. .write_u64 = cpu_rt_period_write_uint,
  7312. },
  7313. #endif
  7314. { } /* terminate */
  7315. };
  7316. struct cgroup_subsys cpu_cgrp_subsys = {
  7317. .css_alloc = cpu_cgroup_css_alloc,
  7318. .css_released = cpu_cgroup_css_released,
  7319. .css_free = cpu_cgroup_css_free,
  7320. .fork = cpu_cgroup_fork,
  7321. .can_attach = cpu_cgroup_can_attach,
  7322. .attach = cpu_cgroup_attach,
  7323. .legacy_cftypes = cpu_files,
  7324. .early_init = true,
  7325. };
  7326. #endif /* CONFIG_CGROUP_SCHED */
  7327. void dump_cpu_task(int cpu)
  7328. {
  7329. pr_info("Task dump for CPU %d:\n", cpu);
  7330. sched_show_task(cpu_curr(cpu));
  7331. }
  7332. /*
  7333. * Nice levels are multiplicative, with a gentle 10% change for every
  7334. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  7335. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  7336. * that remained on nice 0.
  7337. *
  7338. * The "10% effect" is relative and cumulative: from _any_ nice level,
  7339. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  7340. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  7341. * If a task goes up by ~10% and another task goes down by ~10% then
  7342. * the relative distance between them is ~25%.)
  7343. */
  7344. const int sched_prio_to_weight[40] = {
  7345. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  7346. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  7347. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  7348. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  7349. /* 0 */ 1024, 820, 655, 526, 423,
  7350. /* 5 */ 335, 272, 215, 172, 137,
  7351. /* 10 */ 110, 87, 70, 56, 45,
  7352. /* 15 */ 36, 29, 23, 18, 15,
  7353. };
  7354. /*
  7355. * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
  7356. *
  7357. * In cases where the weight does not change often, we can use the
  7358. * precalculated inverse to speed up arithmetics by turning divisions
  7359. * into multiplications:
  7360. */
  7361. const u32 sched_prio_to_wmult[40] = {
  7362. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  7363. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  7364. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  7365. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  7366. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  7367. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  7368. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  7369. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  7370. };